4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 akpm@zip.com.au
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
39 * The maximum number of pages to writeout in a single bdflush/kupdate
40 * operation. We do this so we don't hold I_SYNC against an inode for
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
45 #define MAX_WRITEBACK_PAGES 1024
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
51 static long ratelimit_pages
= 32;
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
59 static inline long sync_writeback_pages(void)
61 return ratelimit_pages
+ ratelimit_pages
/ 2;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via pdflush) at this percentage
69 int dirty_background_ratio
= 5;
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 int vm_highmem_is_dirtyable
;
78 * The generator of dirty data starts writeback at this percentage
80 int vm_dirty_ratio
= 10;
83 * The interval between `kupdate'-style writebacks, in jiffies
85 int dirty_writeback_interval
= 5 * HZ
;
88 * The longest number of jiffies for which data is allowed to remain dirty
90 int dirty_expire_interval
= 30 * HZ
;
93 * Flag that makes the machine dump writes/reads and block dirtyings.
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
103 EXPORT_SYMBOL(laptop_mode
);
105 /* End of sysctl-exported parameters */
108 static void background_writeout(unsigned long _min_pages
);
111 * Scale the writeback cache size proportional to the relative writeout speeds.
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
126 static struct prop_descriptor vm_completions
;
127 static struct prop_descriptor vm_dirties
;
130 * couple the period to the dirty_ratio:
132 * period/2 ~ roundup_pow_of_two(dirty limit)
134 static int calc_period_shift(void)
136 unsigned long dirty_total
;
138 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) / 100;
139 return 2 + ilog2(dirty_total
- 1);
143 * update the period when the dirty ratio changes.
145 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
146 struct file
*filp
, void __user
*buffer
, size_t *lenp
,
149 int old_ratio
= vm_dirty_ratio
;
150 int ret
= proc_dointvec_minmax(table
, write
, filp
, buffer
, lenp
, ppos
);
151 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
152 int shift
= calc_period_shift();
153 prop_change_shift(&vm_completions
, shift
);
154 prop_change_shift(&vm_dirties
, shift
);
160 * Increment the BDI's writeout completion count and the global writeout
161 * completion count. Called from test_clear_page_writeback().
163 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
165 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
169 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
173 local_irq_save(flags
);
174 __bdi_writeout_inc(bdi
);
175 local_irq_restore(flags
);
177 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
179 static inline void task_dirty_inc(struct task_struct
*tsk
)
181 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
185 * Obtain an accurate fraction of the BDI's portion.
187 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
188 long *numerator
, long *denominator
)
190 if (bdi_cap_writeback_dirty(bdi
)) {
191 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
192 numerator
, denominator
);
200 * Clip the earned share of dirty pages to that which is actually available.
201 * This avoids exceeding the total dirty_limit when the floating averages
202 * fluctuate too quickly.
205 clip_bdi_dirty_limit(struct backing_dev_info
*bdi
, long dirty
, long *pbdi_dirty
)
209 avail_dirty
= dirty
-
210 (global_page_state(NR_FILE_DIRTY
) +
211 global_page_state(NR_WRITEBACK
) +
212 global_page_state(NR_UNSTABLE_NFS
) +
213 global_page_state(NR_WRITEBACK_TEMP
));
218 avail_dirty
+= bdi_stat(bdi
, BDI_RECLAIMABLE
) +
219 bdi_stat(bdi
, BDI_WRITEBACK
);
221 *pbdi_dirty
= min(*pbdi_dirty
, avail_dirty
);
224 static inline void task_dirties_fraction(struct task_struct
*tsk
,
225 long *numerator
, long *denominator
)
227 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
228 numerator
, denominator
);
232 * scale the dirty limit
234 * task specific dirty limit:
236 * dirty -= (dirty/8) * p_{t}
238 static void task_dirty_limit(struct task_struct
*tsk
, long *pdirty
)
240 long numerator
, denominator
;
241 long dirty
= *pdirty
;
242 u64 inv
= dirty
>> 3;
244 task_dirties_fraction(tsk
, &numerator
, &denominator
);
246 do_div(inv
, denominator
);
249 if (dirty
< *pdirty
/2)
258 static DEFINE_SPINLOCK(bdi_lock
);
259 static unsigned int bdi_min_ratio
;
261 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
266 spin_lock_irqsave(&bdi_lock
, flags
);
267 if (min_ratio
> bdi
->max_ratio
) {
270 min_ratio
-= bdi
->min_ratio
;
271 if (bdi_min_ratio
+ min_ratio
< 100) {
272 bdi_min_ratio
+= min_ratio
;
273 bdi
->min_ratio
+= min_ratio
;
278 spin_unlock_irqrestore(&bdi_lock
, flags
);
283 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
291 spin_lock_irqsave(&bdi_lock
, flags
);
292 if (bdi
->min_ratio
> max_ratio
) {
295 bdi
->max_ratio
= max_ratio
;
296 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
298 spin_unlock_irqrestore(&bdi_lock
, flags
);
302 EXPORT_SYMBOL(bdi_set_max_ratio
);
305 * Work out the current dirty-memory clamping and background writeout
308 * The main aim here is to lower them aggressively if there is a lot of mapped
309 * memory around. To avoid stressing page reclaim with lots of unreclaimable
310 * pages. It is better to clamp down on writers than to start swapping, and
311 * performing lots of scanning.
313 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
315 * We don't permit the clamping level to fall below 5% - that is getting rather
318 * We make sure that the background writeout level is below the adjusted
322 static unsigned long highmem_dirtyable_memory(unsigned long total
)
324 #ifdef CONFIG_HIGHMEM
328 for_each_node_state(node
, N_HIGH_MEMORY
) {
330 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
332 x
+= zone_page_state(z
, NR_FREE_PAGES
)
333 + zone_page_state(z
, NR_INACTIVE
)
334 + zone_page_state(z
, NR_ACTIVE
);
337 * Make sure that the number of highmem pages is never larger
338 * than the number of the total dirtyable memory. This can only
339 * occur in very strange VM situations but we want to make sure
340 * that this does not occur.
342 return min(x
, total
);
349 * determine_dirtyable_memory - amount of memory that may be used
351 * Returns the numebr of pages that can currently be freed and used
352 * by the kernel for direct mappings.
354 unsigned long determine_dirtyable_memory(void)
358 x
= global_page_state(NR_FREE_PAGES
)
359 + global_page_state(NR_INACTIVE
)
360 + global_page_state(NR_ACTIVE
);
362 if (!vm_highmem_is_dirtyable
)
363 x
-= highmem_dirtyable_memory(x
);
365 return x
+ 1; /* Ensure that we never return 0 */
369 get_dirty_limits(long *pbackground
, long *pdirty
, long *pbdi_dirty
,
370 struct backing_dev_info
*bdi
)
372 int background_ratio
; /* Percentages */
376 unsigned long available_memory
= determine_dirtyable_memory();
377 struct task_struct
*tsk
;
379 dirty_ratio
= vm_dirty_ratio
;
383 background_ratio
= dirty_background_ratio
;
384 if (background_ratio
>= dirty_ratio
)
385 background_ratio
= dirty_ratio
/ 2;
387 background
= (background_ratio
* available_memory
) / 100;
388 dirty
= (dirty_ratio
* available_memory
) / 100;
390 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
391 background
+= background
/ 4;
394 *pbackground
= background
;
399 long numerator
, denominator
;
402 * Calculate this BDI's share of the dirty ratio.
404 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
406 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
407 bdi_dirty
*= numerator
;
408 do_div(bdi_dirty
, denominator
);
409 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
410 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
411 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
413 *pbdi_dirty
= bdi_dirty
;
414 clip_bdi_dirty_limit(bdi
, dirty
, pbdi_dirty
);
415 task_dirty_limit(current
, pbdi_dirty
);
420 * balance_dirty_pages() must be called by processes which are generating dirty
421 * data. It looks at the number of dirty pages in the machine and will force
422 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
423 * If we're over `background_thresh' then pdflush is woken to perform some
426 static void balance_dirty_pages(struct address_space
*mapping
)
428 long nr_reclaimable
, bdi_nr_reclaimable
;
429 long nr_writeback
, bdi_nr_writeback
;
430 long background_thresh
;
433 unsigned long pages_written
= 0;
434 unsigned long write_chunk
= sync_writeback_pages();
436 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
439 struct writeback_control wbc
= {
441 .sync_mode
= WB_SYNC_NONE
,
442 .older_than_this
= NULL
,
443 .nr_to_write
= write_chunk
,
447 get_dirty_limits(&background_thresh
, &dirty_thresh
,
450 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
451 global_page_state(NR_UNSTABLE_NFS
);
452 nr_writeback
= global_page_state(NR_WRITEBACK
);
454 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
455 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
457 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
461 * Throttle it only when the background writeback cannot
462 * catch-up. This avoids (excessively) small writeouts
463 * when the bdi limits are ramping up.
465 if (nr_reclaimable
+ nr_writeback
<
466 (background_thresh
+ dirty_thresh
) / 2)
469 if (!bdi
->dirty_exceeded
)
470 bdi
->dirty_exceeded
= 1;
472 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
473 * Unstable writes are a feature of certain networked
474 * filesystems (i.e. NFS) in which data may have been
475 * written to the server's write cache, but has not yet
476 * been flushed to permanent storage.
478 if (bdi_nr_reclaimable
) {
479 writeback_inodes(&wbc
);
480 pages_written
+= write_chunk
- wbc
.nr_to_write
;
481 get_dirty_limits(&background_thresh
, &dirty_thresh
,
486 * In order to avoid the stacked BDI deadlock we need
487 * to ensure we accurately count the 'dirty' pages when
488 * the threshold is low.
490 * Otherwise it would be possible to get thresh+n pages
491 * reported dirty, even though there are thresh-m pages
492 * actually dirty; with m+n sitting in the percpu
495 if (bdi_thresh
< 2*bdi_stat_error(bdi
)) {
496 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
497 bdi_nr_writeback
= bdi_stat_sum(bdi
, BDI_WRITEBACK
);
498 } else if (bdi_nr_reclaimable
) {
499 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
500 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
503 if (bdi_nr_reclaimable
+ bdi_nr_writeback
<= bdi_thresh
)
505 if (pages_written
>= write_chunk
)
506 break; /* We've done our duty */
508 congestion_wait(WRITE
, HZ
/10);
511 if (bdi_nr_reclaimable
+ bdi_nr_writeback
< bdi_thresh
&&
513 bdi
->dirty_exceeded
= 0;
515 if (writeback_in_progress(bdi
))
516 return; /* pdflush is already working this queue */
519 * In laptop mode, we wait until hitting the higher threshold before
520 * starting background writeout, and then write out all the way down
521 * to the lower threshold. So slow writers cause minimal disk activity.
523 * In normal mode, we start background writeout at the lower
524 * background_thresh, to keep the amount of dirty memory low.
526 if ((laptop_mode
&& pages_written
) ||
527 (!laptop_mode
&& (global_page_state(NR_FILE_DIRTY
)
528 + global_page_state(NR_UNSTABLE_NFS
)
529 > background_thresh
)))
530 pdflush_operation(background_writeout
, 0);
533 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
535 if (set_page_dirty(page
) || page_mkwrite
) {
536 struct address_space
*mapping
= page_mapping(page
);
539 balance_dirty_pages_ratelimited(mapping
);
544 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
545 * @mapping: address_space which was dirtied
546 * @nr_pages_dirtied: number of pages which the caller has just dirtied
548 * Processes which are dirtying memory should call in here once for each page
549 * which was newly dirtied. The function will periodically check the system's
550 * dirty state and will initiate writeback if needed.
552 * On really big machines, get_writeback_state is expensive, so try to avoid
553 * calling it too often (ratelimiting). But once we're over the dirty memory
554 * limit we decrease the ratelimiting by a lot, to prevent individual processes
555 * from overshooting the limit by (ratelimit_pages) each.
557 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
558 unsigned long nr_pages_dirtied
)
560 static DEFINE_PER_CPU(unsigned long, ratelimits
) = 0;
561 unsigned long ratelimit
;
564 ratelimit
= ratelimit_pages
;
565 if (mapping
->backing_dev_info
->dirty_exceeded
)
569 * Check the rate limiting. Also, we do not want to throttle real-time
570 * tasks in balance_dirty_pages(). Period.
573 p
= &__get_cpu_var(ratelimits
);
574 *p
+= nr_pages_dirtied
;
575 if (unlikely(*p
>= ratelimit
)) {
578 balance_dirty_pages(mapping
);
583 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
585 void throttle_vm_writeout(gfp_t gfp_mask
)
587 long background_thresh
;
591 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
594 * Boost the allowable dirty threshold a bit for page
595 * allocators so they don't get DoS'ed by heavy writers
597 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
599 if (global_page_state(NR_UNSTABLE_NFS
) +
600 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
602 congestion_wait(WRITE
, HZ
/10);
605 * The caller might hold locks which can prevent IO completion
606 * or progress in the filesystem. So we cannot just sit here
607 * waiting for IO to complete.
609 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
615 * writeback at least _min_pages, and keep writing until the amount of dirty
616 * memory is less than the background threshold, or until we're all clean.
618 static void background_writeout(unsigned long _min_pages
)
620 long min_pages
= _min_pages
;
621 struct writeback_control wbc
= {
623 .sync_mode
= WB_SYNC_NONE
,
624 .older_than_this
= NULL
,
631 long background_thresh
;
634 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
635 if (global_page_state(NR_FILE_DIRTY
) +
636 global_page_state(NR_UNSTABLE_NFS
) < background_thresh
640 wbc
.encountered_congestion
= 0;
641 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
642 wbc
.pages_skipped
= 0;
643 writeback_inodes(&wbc
);
644 min_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
645 if (wbc
.nr_to_write
> 0 || wbc
.pages_skipped
> 0) {
646 /* Wrote less than expected */
647 if (wbc
.encountered_congestion
|| wbc
.more_io
)
648 congestion_wait(WRITE
, HZ
/10);
656 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
657 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
658 * -1 if all pdflush threads were busy.
660 int wakeup_pdflush(long nr_pages
)
663 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
664 global_page_state(NR_UNSTABLE_NFS
);
665 return pdflush_operation(background_writeout
, nr_pages
);
668 static void wb_timer_fn(unsigned long unused
);
669 static void laptop_timer_fn(unsigned long unused
);
671 static DEFINE_TIMER(wb_timer
, wb_timer_fn
, 0, 0);
672 static DEFINE_TIMER(laptop_mode_wb_timer
, laptop_timer_fn
, 0, 0);
675 * Periodic writeback of "old" data.
677 * Define "old": the first time one of an inode's pages is dirtied, we mark the
678 * dirtying-time in the inode's address_space. So this periodic writeback code
679 * just walks the superblock inode list, writing back any inodes which are
680 * older than a specific point in time.
682 * Try to run once per dirty_writeback_interval. But if a writeback event
683 * takes longer than a dirty_writeback_interval interval, then leave a
686 * older_than_this takes precedence over nr_to_write. So we'll only write back
687 * all dirty pages if they are all attached to "old" mappings.
689 static void wb_kupdate(unsigned long arg
)
691 unsigned long oldest_jif
;
692 unsigned long start_jif
;
693 unsigned long next_jif
;
695 struct writeback_control wbc
= {
697 .sync_mode
= WB_SYNC_NONE
,
698 .older_than_this
= &oldest_jif
,
707 oldest_jif
= jiffies
- dirty_expire_interval
;
709 next_jif
= start_jif
+ dirty_writeback_interval
;
710 nr_to_write
= global_page_state(NR_FILE_DIRTY
) +
711 global_page_state(NR_UNSTABLE_NFS
) +
712 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
713 while (nr_to_write
> 0) {
715 wbc
.encountered_congestion
= 0;
716 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
717 writeback_inodes(&wbc
);
718 if (wbc
.nr_to_write
> 0) {
719 if (wbc
.encountered_congestion
|| wbc
.more_io
)
720 congestion_wait(WRITE
, HZ
/10);
722 break; /* All the old data is written */
724 nr_to_write
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
726 if (time_before(next_jif
, jiffies
+ HZ
))
727 next_jif
= jiffies
+ HZ
;
728 if (dirty_writeback_interval
)
729 mod_timer(&wb_timer
, next_jif
);
733 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
735 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
736 struct file
*file
, void __user
*buffer
, size_t *length
, loff_t
*ppos
)
738 proc_dointvec_userhz_jiffies(table
, write
, file
, buffer
, length
, ppos
);
739 if (dirty_writeback_interval
)
740 mod_timer(&wb_timer
, jiffies
+ dirty_writeback_interval
);
742 del_timer(&wb_timer
);
746 static void wb_timer_fn(unsigned long unused
)
748 if (pdflush_operation(wb_kupdate
, 0) < 0)
749 mod_timer(&wb_timer
, jiffies
+ HZ
); /* delay 1 second */
752 static void laptop_flush(unsigned long unused
)
757 static void laptop_timer_fn(unsigned long unused
)
759 pdflush_operation(laptop_flush
, 0);
763 * We've spun up the disk and we're in laptop mode: schedule writeback
764 * of all dirty data a few seconds from now. If the flush is already scheduled
765 * then push it back - the user is still using the disk.
767 void laptop_io_completion(void)
769 mod_timer(&laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
773 * We're in laptop mode and we've just synced. The sync's writes will have
774 * caused another writeback to be scheduled by laptop_io_completion.
775 * Nothing needs to be written back anymore, so we unschedule the writeback.
777 void laptop_sync_completion(void)
779 del_timer(&laptop_mode_wb_timer
);
783 * If ratelimit_pages is too high then we can get into dirty-data overload
784 * if a large number of processes all perform writes at the same time.
785 * If it is too low then SMP machines will call the (expensive)
786 * get_writeback_state too often.
788 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
789 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
790 * thresholds before writeback cuts in.
792 * But the limit should not be set too high. Because it also controls the
793 * amount of memory which the balance_dirty_pages() caller has to write back.
794 * If this is too large then the caller will block on the IO queue all the
795 * time. So limit it to four megabytes - the balance_dirty_pages() caller
796 * will write six megabyte chunks, max.
799 void writeback_set_ratelimit(void)
801 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
802 if (ratelimit_pages
< 16)
803 ratelimit_pages
= 16;
804 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
805 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
809 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
811 writeback_set_ratelimit();
815 static struct notifier_block __cpuinitdata ratelimit_nb
= {
816 .notifier_call
= ratelimit_handler
,
821 * Called early on to tune the page writeback dirty limits.
823 * We used to scale dirty pages according to how total memory
824 * related to pages that could be allocated for buffers (by
825 * comparing nr_free_buffer_pages() to vm_total_pages.
827 * However, that was when we used "dirty_ratio" to scale with
828 * all memory, and we don't do that any more. "dirty_ratio"
829 * is now applied to total non-HIGHPAGE memory (by subtracting
830 * totalhigh_pages from vm_total_pages), and as such we can't
831 * get into the old insane situation any more where we had
832 * large amounts of dirty pages compared to a small amount of
833 * non-HIGHMEM memory.
835 * But we might still want to scale the dirty_ratio by how
836 * much memory the box has..
838 void __init
page_writeback_init(void)
842 mod_timer(&wb_timer
, jiffies
+ dirty_writeback_interval
);
843 writeback_set_ratelimit();
844 register_cpu_notifier(&ratelimit_nb
);
846 shift
= calc_period_shift();
847 prop_descriptor_init(&vm_completions
, shift
);
848 prop_descriptor_init(&vm_dirties
, shift
);
852 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
853 * @mapping: address space structure to write
854 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
855 * @writepage: function called for each page
856 * @data: data passed to writepage function
858 * If a page is already under I/O, write_cache_pages() skips it, even
859 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
860 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
861 * and msync() need to guarantee that all the data which was dirty at the time
862 * the call was made get new I/O started against them. If wbc->sync_mode is
863 * WB_SYNC_ALL then we were called for data integrity and we must wait for
864 * existing IO to complete.
866 int write_cache_pages(struct address_space
*mapping
,
867 struct writeback_control
*wbc
, writepage_t writepage
,
870 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
875 pgoff_t
uninitialized_var(writeback_index
);
877 pgoff_t end
; /* Inclusive */
882 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
883 wbc
->encountered_congestion
= 1;
887 pagevec_init(&pvec
, 0);
888 if (wbc
->range_cyclic
) {
889 writeback_index
= mapping
->writeback_index
; /* prev offset */
890 index
= writeback_index
;
897 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
898 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
899 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
901 cycled
= 1; /* ignore range_cyclic tests */
905 while (!done
&& (index
<= end
)) {
908 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
910 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
914 for (i
= 0; i
< nr_pages
; i
++) {
915 struct page
*page
= pvec
.pages
[i
];
918 * At this point, the page may be truncated or
919 * invalidated (changing page->mapping to NULL), or
920 * even swizzled back from swapper_space to tmpfs file
921 * mapping. However, page->index will not change
922 * because we have a reference on the page.
924 if (page
->index
> end
) {
926 * can't be range_cyclic (1st pass) because
927 * end == -1 in that case.
933 done_index
= page
->index
+ 1;
938 * Page truncated or invalidated. We can freely skip it
939 * then, even for data integrity operations: the page
940 * has disappeared concurrently, so there could be no
941 * real expectation of this data interity operation
942 * even if there is now a new, dirty page at the same
945 if (unlikely(page
->mapping
!= mapping
)) {
951 if (!PageDirty(page
)) {
952 /* someone wrote it for us */
953 goto continue_unlock
;
956 if (PageWriteback(page
)) {
957 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
958 wait_on_page_writeback(page
);
960 goto continue_unlock
;
963 BUG_ON(PageWriteback(page
));
964 if (!clear_page_dirty_for_io(page
))
965 goto continue_unlock
;
967 ret
= (*writepage
)(page
, wbc
, data
);
970 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
975 * done_index is set past this page,
976 * so media errors will not choke
977 * background writeout for the entire
978 * file. This has consequences for
979 * range_cyclic semantics (ie. it may
980 * not be suitable for data integrity
988 if (wbc
->nr_to_write
> 0) {
990 if (wbc
->nr_to_write
== 0 &&
991 wbc
->sync_mode
== WB_SYNC_NONE
) {
993 * We stop writing back only if we are
994 * not doing integrity sync. In case of
995 * integrity sync we have to keep going
996 * because someone may be concurrently
997 * dirtying pages, and we might have
998 * synced a lot of newly appeared dirty
999 * pages, but have not synced all of the
1007 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
1008 wbc
->encountered_congestion
= 1;
1013 pagevec_release(&pvec
);
1016 if (!cycled
&& !done
) {
1019 * We hit the last page and there is more work to be done: wrap
1020 * back to the start of the file
1024 end
= writeback_index
- 1;
1027 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1028 mapping
->writeback_index
= done_index
;
1030 if (wbc
->range_cont
)
1031 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
1034 EXPORT_SYMBOL(write_cache_pages
);
1037 * Function used by generic_writepages to call the real writepage
1038 * function and set the mapping flags on error
1040 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1043 struct address_space
*mapping
= data
;
1044 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1045 mapping_set_error(mapping
, ret
);
1050 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1051 * @mapping: address space structure to write
1052 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1054 * This is a library function, which implements the writepages()
1055 * address_space_operation.
1057 int generic_writepages(struct address_space
*mapping
,
1058 struct writeback_control
*wbc
)
1060 /* deal with chardevs and other special file */
1061 if (!mapping
->a_ops
->writepage
)
1064 return write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1067 EXPORT_SYMBOL(generic_writepages
);
1069 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1073 if (wbc
->nr_to_write
<= 0)
1075 wbc
->for_writepages
= 1;
1076 if (mapping
->a_ops
->writepages
)
1077 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1079 ret
= generic_writepages(mapping
, wbc
);
1080 wbc
->for_writepages
= 0;
1085 * write_one_page - write out a single page and optionally wait on I/O
1086 * @page: the page to write
1087 * @wait: if true, wait on writeout
1089 * The page must be locked by the caller and will be unlocked upon return.
1091 * write_one_page() returns a negative error code if I/O failed.
1093 int write_one_page(struct page
*page
, int wait
)
1095 struct address_space
*mapping
= page
->mapping
;
1097 struct writeback_control wbc
= {
1098 .sync_mode
= WB_SYNC_ALL
,
1102 BUG_ON(!PageLocked(page
));
1105 wait_on_page_writeback(page
);
1107 if (clear_page_dirty_for_io(page
)) {
1108 page_cache_get(page
);
1109 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1110 if (ret
== 0 && wait
) {
1111 wait_on_page_writeback(page
);
1112 if (PageError(page
))
1115 page_cache_release(page
);
1121 EXPORT_SYMBOL(write_one_page
);
1124 * For address_spaces which do not use buffers nor write back.
1126 int __set_page_dirty_no_writeback(struct page
*page
)
1128 if (!PageDirty(page
))
1134 * For address_spaces which do not use buffers. Just tag the page as dirty in
1137 * This is also used when a single buffer is being dirtied: we want to set the
1138 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1139 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1141 * Most callers have locked the page, which pins the address_space in memory.
1142 * But zap_pte_range() does not lock the page, however in that case the
1143 * mapping is pinned by the vma's ->vm_file reference.
1145 * We take care to handle the case where the page was truncated from the
1146 * mapping by re-checking page_mapping() inside tree_lock.
1148 int __set_page_dirty_nobuffers(struct page
*page
)
1150 if (!TestSetPageDirty(page
)) {
1151 struct address_space
*mapping
= page_mapping(page
);
1152 struct address_space
*mapping2
;
1157 spin_lock_irq(&mapping
->tree_lock
);
1158 mapping2
= page_mapping(page
);
1159 if (mapping2
) { /* Race with truncate? */
1160 BUG_ON(mapping2
!= mapping
);
1161 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1162 if (mapping_cap_account_dirty(mapping
)) {
1163 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1164 __inc_bdi_stat(mapping
->backing_dev_info
,
1166 task_io_account_write(PAGE_CACHE_SIZE
);
1168 radix_tree_tag_set(&mapping
->page_tree
,
1169 page_index(page
), PAGECACHE_TAG_DIRTY
);
1171 spin_unlock_irq(&mapping
->tree_lock
);
1172 if (mapping
->host
) {
1173 /* !PageAnon && !swapper_space */
1174 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1180 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1183 * When a writepage implementation decides that it doesn't want to write this
1184 * page for some reason, it should redirty the locked page via
1185 * redirty_page_for_writepage() and it should then unlock the page and return 0
1187 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1189 wbc
->pages_skipped
++;
1190 return __set_page_dirty_nobuffers(page
);
1192 EXPORT_SYMBOL(redirty_page_for_writepage
);
1195 * If the mapping doesn't provide a set_page_dirty a_op, then
1196 * just fall through and assume that it wants buffer_heads.
1198 static int __set_page_dirty(struct page
*page
)
1200 struct address_space
*mapping
= page_mapping(page
);
1202 if (likely(mapping
)) {
1203 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1206 spd
= __set_page_dirty_buffers
;
1208 return (*spd
)(page
);
1210 if (!PageDirty(page
)) {
1211 if (!TestSetPageDirty(page
))
1217 int set_page_dirty(struct page
*page
)
1219 int ret
= __set_page_dirty(page
);
1221 task_dirty_inc(current
);
1224 EXPORT_SYMBOL(set_page_dirty
);
1227 * set_page_dirty() is racy if the caller has no reference against
1228 * page->mapping->host, and if the page is unlocked. This is because another
1229 * CPU could truncate the page off the mapping and then free the mapping.
1231 * Usually, the page _is_ locked, or the caller is a user-space process which
1232 * holds a reference on the inode by having an open file.
1234 * In other cases, the page should be locked before running set_page_dirty().
1236 int set_page_dirty_lock(struct page
*page
)
1240 lock_page_nosync(page
);
1241 ret
= set_page_dirty(page
);
1245 EXPORT_SYMBOL(set_page_dirty_lock
);
1248 * Clear a page's dirty flag, while caring for dirty memory accounting.
1249 * Returns true if the page was previously dirty.
1251 * This is for preparing to put the page under writeout. We leave the page
1252 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1253 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1254 * implementation will run either set_page_writeback() or set_page_dirty(),
1255 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1258 * This incoherency between the page's dirty flag and radix-tree tag is
1259 * unfortunate, but it only exists while the page is locked.
1261 int clear_page_dirty_for_io(struct page
*page
)
1263 struct address_space
*mapping
= page_mapping(page
);
1265 BUG_ON(!PageLocked(page
));
1267 ClearPageReclaim(page
);
1268 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1270 * Yes, Virginia, this is indeed insane.
1272 * We use this sequence to make sure that
1273 * (a) we account for dirty stats properly
1274 * (b) we tell the low-level filesystem to
1275 * mark the whole page dirty if it was
1276 * dirty in a pagetable. Only to then
1277 * (c) clean the page again and return 1 to
1278 * cause the writeback.
1280 * This way we avoid all nasty races with the
1281 * dirty bit in multiple places and clearing
1282 * them concurrently from different threads.
1284 * Note! Normally the "set_page_dirty(page)"
1285 * has no effect on the actual dirty bit - since
1286 * that will already usually be set. But we
1287 * need the side effects, and it can help us
1290 * We basically use the page "master dirty bit"
1291 * as a serialization point for all the different
1292 * threads doing their things.
1294 if (page_mkclean(page
))
1295 set_page_dirty(page
);
1297 * We carefully synchronise fault handlers against
1298 * installing a dirty pte and marking the page dirty
1299 * at this point. We do this by having them hold the
1300 * page lock at some point after installing their
1301 * pte, but before marking the page dirty.
1302 * Pages are always locked coming in here, so we get
1303 * the desired exclusion. See mm/memory.c:do_wp_page()
1304 * for more comments.
1306 if (TestClearPageDirty(page
)) {
1307 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1308 dec_bdi_stat(mapping
->backing_dev_info
,
1314 return TestClearPageDirty(page
);
1316 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1318 int test_clear_page_writeback(struct page
*page
)
1320 struct address_space
*mapping
= page_mapping(page
);
1324 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1325 unsigned long flags
;
1327 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1328 ret
= TestClearPageWriteback(page
);
1330 radix_tree_tag_clear(&mapping
->page_tree
,
1332 PAGECACHE_TAG_WRITEBACK
);
1333 if (bdi_cap_account_writeback(bdi
)) {
1334 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1335 __bdi_writeout_inc(bdi
);
1338 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1340 ret
= TestClearPageWriteback(page
);
1343 dec_zone_page_state(page
, NR_WRITEBACK
);
1347 int test_set_page_writeback(struct page
*page
)
1349 struct address_space
*mapping
= page_mapping(page
);
1353 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1354 unsigned long flags
;
1356 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1357 ret
= TestSetPageWriteback(page
);
1359 radix_tree_tag_set(&mapping
->page_tree
,
1361 PAGECACHE_TAG_WRITEBACK
);
1362 if (bdi_cap_account_writeback(bdi
))
1363 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1365 if (!PageDirty(page
))
1366 radix_tree_tag_clear(&mapping
->page_tree
,
1368 PAGECACHE_TAG_DIRTY
);
1369 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1371 ret
= TestSetPageWriteback(page
);
1374 inc_zone_page_state(page
, NR_WRITEBACK
);
1378 EXPORT_SYMBOL(test_set_page_writeback
);
1381 * Return true if any of the pages in the mapping are marked with the
1384 int mapping_tagged(struct address_space
*mapping
, int tag
)
1388 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1392 EXPORT_SYMBOL(mapping_tagged
);