2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
19 #include "x86_emulate.h"
20 #include "segment_descriptor.h"
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
43 #include <asm/processor.h>
46 #include <asm/uaccess.h>
49 MODULE_AUTHOR("Qumranet");
50 MODULE_LICENSE("GPL");
52 static DEFINE_SPINLOCK(kvm_lock
);
53 static LIST_HEAD(vm_list
);
55 static cpumask_t cpus_hardware_enabled
;
57 struct kvm_x86_ops
*kvm_x86_ops
;
58 struct kmem_cache
*kvm_vcpu_cache
;
59 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
61 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
63 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
65 static struct kvm_stats_debugfs_item
{
68 struct dentry
*dentry
;
69 } debugfs_entries
[] = {
70 { "pf_fixed", STAT_OFFSET(pf_fixed
) },
71 { "pf_guest", STAT_OFFSET(pf_guest
) },
72 { "tlb_flush", STAT_OFFSET(tlb_flush
) },
73 { "invlpg", STAT_OFFSET(invlpg
) },
74 { "exits", STAT_OFFSET(exits
) },
75 { "io_exits", STAT_OFFSET(io_exits
) },
76 { "mmio_exits", STAT_OFFSET(mmio_exits
) },
77 { "signal_exits", STAT_OFFSET(signal_exits
) },
78 { "irq_window", STAT_OFFSET(irq_window_exits
) },
79 { "halt_exits", STAT_OFFSET(halt_exits
) },
80 { "halt_wakeup", STAT_OFFSET(halt_wakeup
) },
81 { "request_irq", STAT_OFFSET(request_irq_exits
) },
82 { "irq_exits", STAT_OFFSET(irq_exits
) },
83 { "light_exits", STAT_OFFSET(light_exits
) },
84 { "efer_reload", STAT_OFFSET(efer_reload
) },
88 static struct dentry
*debugfs_dir
;
90 #define MAX_IO_MSRS 256
92 #define CR0_RESERVED_BITS \
93 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
94 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
95 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
96 #define CR4_RESERVED_BITS \
97 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
98 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
99 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
100 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
102 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
103 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
106 // LDT or TSS descriptor in the GDT. 16 bytes.
107 struct segment_descriptor_64
{
108 struct segment_descriptor s
;
115 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
118 unsigned long segment_base(u16 selector
)
120 struct descriptor_table gdt
;
121 struct segment_descriptor
*d
;
122 unsigned long table_base
;
123 typedef unsigned long ul
;
129 asm ("sgdt %0" : "=m"(gdt
));
130 table_base
= gdt
.base
;
132 if (selector
& 4) { /* from ldt */
135 asm ("sldt %0" : "=g"(ldt_selector
));
136 table_base
= segment_base(ldt_selector
);
138 d
= (struct segment_descriptor
*)(table_base
+ (selector
& ~7));
139 v
= d
->base_low
| ((ul
)d
->base_mid
<< 16) | ((ul
)d
->base_high
<< 24);
142 && (d
->type
== 2 || d
->type
== 9 || d
->type
== 11))
143 v
|= ((ul
)((struct segment_descriptor_64
*)d
)->base_higher
) << 32;
147 EXPORT_SYMBOL_GPL(segment_base
);
149 static inline int valid_vcpu(int n
)
151 return likely(n
>= 0 && n
< KVM_MAX_VCPUS
);
154 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
156 if (!vcpu
->fpu_active
|| vcpu
->guest_fpu_loaded
)
159 vcpu
->guest_fpu_loaded
= 1;
160 fx_save(&vcpu
->host_fx_image
);
161 fx_restore(&vcpu
->guest_fx_image
);
163 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu
);
165 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
167 if (!vcpu
->guest_fpu_loaded
)
170 vcpu
->guest_fpu_loaded
= 0;
171 fx_save(&vcpu
->guest_fx_image
);
172 fx_restore(&vcpu
->host_fx_image
);
174 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu
);
177 * Switches to specified vcpu, until a matching vcpu_put()
179 static void vcpu_load(struct kvm_vcpu
*vcpu
)
183 mutex_lock(&vcpu
->mutex
);
185 preempt_notifier_register(&vcpu
->preempt_notifier
);
186 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
190 static void vcpu_put(struct kvm_vcpu
*vcpu
)
193 kvm_x86_ops
->vcpu_put(vcpu
);
194 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
196 mutex_unlock(&vcpu
->mutex
);
199 static void ack_flush(void *_completed
)
203 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
207 struct kvm_vcpu
*vcpu
;
210 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
211 vcpu
= kvm
->vcpus
[i
];
214 if (test_and_set_bit(KVM_TLB_FLUSH
, &vcpu
->requests
))
217 if (cpu
!= -1 && cpu
!= raw_smp_processor_id())
220 smp_call_function_mask(cpus
, ack_flush
, NULL
, 1);
223 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
228 mutex_init(&vcpu
->mutex
);
230 vcpu
->mmu
.root_hpa
= INVALID_PAGE
;
233 if (!irqchip_in_kernel(kvm
) || id
== 0)
234 vcpu
->mp_state
= VCPU_MP_STATE_RUNNABLE
;
236 vcpu
->mp_state
= VCPU_MP_STATE_UNINITIALIZED
;
237 init_waitqueue_head(&vcpu
->wq
);
239 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
244 vcpu
->run
= page_address(page
);
246 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
251 vcpu
->pio_data
= page_address(page
);
253 r
= kvm_mmu_create(vcpu
);
255 goto fail_free_pio_data
;
260 free_page((unsigned long)vcpu
->pio_data
);
262 free_page((unsigned long)vcpu
->run
);
266 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
268 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
270 kvm_mmu_destroy(vcpu
);
272 hrtimer_cancel(&vcpu
->apic
->timer
.dev
);
273 kvm_free_apic(vcpu
->apic
);
274 free_page((unsigned long)vcpu
->pio_data
);
275 free_page((unsigned long)vcpu
->run
);
277 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
279 static struct kvm
*kvm_create_vm(void)
281 struct kvm
*kvm
= kzalloc(sizeof(struct kvm
), GFP_KERNEL
);
284 return ERR_PTR(-ENOMEM
);
286 kvm_io_bus_init(&kvm
->pio_bus
);
287 mutex_init(&kvm
->lock
);
288 INIT_LIST_HEAD(&kvm
->active_mmu_pages
);
289 kvm_io_bus_init(&kvm
->mmio_bus
);
290 spin_lock(&kvm_lock
);
291 list_add(&kvm
->vm_list
, &vm_list
);
292 spin_unlock(&kvm_lock
);
297 * Free any memory in @free but not in @dont.
299 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
300 struct kvm_memory_slot
*dont
)
304 if (!dont
|| free
->phys_mem
!= dont
->phys_mem
)
305 if (free
->phys_mem
) {
306 for (i
= 0; i
< free
->npages
; ++i
)
307 if (free
->phys_mem
[i
])
308 __free_page(free
->phys_mem
[i
]);
309 vfree(free
->phys_mem
);
312 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
313 vfree(free
->dirty_bitmap
);
315 free
->phys_mem
= NULL
;
317 free
->dirty_bitmap
= NULL
;
320 static void kvm_free_physmem(struct kvm
*kvm
)
324 for (i
= 0; i
< kvm
->nmemslots
; ++i
)
325 kvm_free_physmem_slot(&kvm
->memslots
[i
], NULL
);
328 static void free_pio_guest_pages(struct kvm_vcpu
*vcpu
)
332 for (i
= 0; i
< ARRAY_SIZE(vcpu
->pio
.guest_pages
); ++i
)
333 if (vcpu
->pio
.guest_pages
[i
]) {
334 __free_page(vcpu
->pio
.guest_pages
[i
]);
335 vcpu
->pio
.guest_pages
[i
] = NULL
;
339 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
342 kvm_mmu_unload(vcpu
);
346 static void kvm_free_vcpus(struct kvm
*kvm
)
351 * Unpin any mmu pages first.
353 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
)
355 kvm_unload_vcpu_mmu(kvm
->vcpus
[i
]);
356 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
358 kvm_x86_ops
->vcpu_free(kvm
->vcpus
[i
]);
359 kvm
->vcpus
[i
] = NULL
;
365 static void kvm_destroy_vm(struct kvm
*kvm
)
367 spin_lock(&kvm_lock
);
368 list_del(&kvm
->vm_list
);
369 spin_unlock(&kvm_lock
);
370 kvm_io_bus_destroy(&kvm
->pio_bus
);
371 kvm_io_bus_destroy(&kvm
->mmio_bus
);
375 kvm_free_physmem(kvm
);
379 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
381 struct kvm
*kvm
= filp
->private_data
;
387 static void inject_gp(struct kvm_vcpu
*vcpu
)
389 kvm_x86_ops
->inject_gp(vcpu
, 0);
393 * Load the pae pdptrs. Return true is they are all valid.
395 static int load_pdptrs(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
397 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
398 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
403 u64 pdpte
[ARRAY_SIZE(vcpu
->pdptrs
)];
405 mutex_lock(&vcpu
->kvm
->lock
);
406 page
= gfn_to_page(vcpu
->kvm
, pdpt_gfn
);
412 pdpt
= kmap_atomic(page
, KM_USER0
);
413 memcpy(pdpte
, pdpt
+offset
, sizeof(pdpte
));
414 kunmap_atomic(pdpt
, KM_USER0
);
416 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
417 if ((pdpte
[i
] & 1) && (pdpte
[i
] & 0xfffffff0000001e6ull
)) {
424 memcpy(vcpu
->pdptrs
, pdpte
, sizeof(vcpu
->pdptrs
));
426 mutex_unlock(&vcpu
->kvm
->lock
);
431 void set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
433 if (cr0
& CR0_RESERVED_BITS
) {
434 printk(KERN_DEBUG
"set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
440 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
)) {
441 printk(KERN_DEBUG
"set_cr0: #GP, CD == 0 && NW == 1\n");
446 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
)) {
447 printk(KERN_DEBUG
"set_cr0: #GP, set PG flag "
448 "and a clear PE flag\n");
453 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
455 if ((vcpu
->shadow_efer
& EFER_LME
)) {
459 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
460 "in long mode while PAE is disabled\n");
464 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
466 printk(KERN_DEBUG
"set_cr0: #GP, start paging "
467 "in long mode while CS.L == 1\n");
474 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
475 printk(KERN_DEBUG
"set_cr0: #GP, pdptrs "
483 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
486 mutex_lock(&vcpu
->kvm
->lock
);
487 kvm_mmu_reset_context(vcpu
);
488 mutex_unlock(&vcpu
->kvm
->lock
);
491 EXPORT_SYMBOL_GPL(set_cr0
);
493 void lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
495 set_cr0(vcpu
, (vcpu
->cr0
& ~0x0ful
) | (msw
& 0x0f));
497 EXPORT_SYMBOL_GPL(lmsw
);
499 void set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
501 if (cr4
& CR4_RESERVED_BITS
) {
502 printk(KERN_DEBUG
"set_cr4: #GP, reserved bits\n");
507 if (is_long_mode(vcpu
)) {
508 if (!(cr4
& X86_CR4_PAE
)) {
509 printk(KERN_DEBUG
"set_cr4: #GP, clearing PAE while "
514 } else if (is_paging(vcpu
) && !is_pae(vcpu
) && (cr4
& X86_CR4_PAE
)
515 && !load_pdptrs(vcpu
, vcpu
->cr3
)) {
516 printk(KERN_DEBUG
"set_cr4: #GP, pdptrs reserved bits\n");
521 if (cr4
& X86_CR4_VMXE
) {
522 printk(KERN_DEBUG
"set_cr4: #GP, setting VMXE\n");
526 kvm_x86_ops
->set_cr4(vcpu
, cr4
);
528 mutex_lock(&vcpu
->kvm
->lock
);
529 kvm_mmu_reset_context(vcpu
);
530 mutex_unlock(&vcpu
->kvm
->lock
);
532 EXPORT_SYMBOL_GPL(set_cr4
);
534 void set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
536 if (is_long_mode(vcpu
)) {
537 if (cr3
& CR3_L_MODE_RESERVED_BITS
) {
538 printk(KERN_DEBUG
"set_cr3: #GP, reserved bits\n");
544 if (cr3
& CR3_PAE_RESERVED_BITS
) {
546 "set_cr3: #GP, reserved bits\n");
550 if (is_paging(vcpu
) && !load_pdptrs(vcpu
, cr3
)) {
551 printk(KERN_DEBUG
"set_cr3: #GP, pdptrs "
557 if (cr3
& CR3_NONPAE_RESERVED_BITS
) {
559 "set_cr3: #GP, reserved bits\n");
566 mutex_lock(&vcpu
->kvm
->lock
);
568 * Does the new cr3 value map to physical memory? (Note, we
569 * catch an invalid cr3 even in real-mode, because it would
570 * cause trouble later on when we turn on paging anyway.)
572 * A real CPU would silently accept an invalid cr3 and would
573 * attempt to use it - with largely undefined (and often hard
574 * to debug) behavior on the guest side.
576 if (unlikely(!gfn_to_memslot(vcpu
->kvm
, cr3
>> PAGE_SHIFT
)))
580 vcpu
->mmu
.new_cr3(vcpu
);
582 mutex_unlock(&vcpu
->kvm
->lock
);
584 EXPORT_SYMBOL_GPL(set_cr3
);
586 void set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
588 if (cr8
& CR8_RESERVED_BITS
) {
589 printk(KERN_DEBUG
"set_cr8: #GP, reserved bits 0x%lx\n", cr8
);
593 if (irqchip_in_kernel(vcpu
->kvm
))
594 kvm_lapic_set_tpr(vcpu
, cr8
);
598 EXPORT_SYMBOL_GPL(set_cr8
);
600 unsigned long get_cr8(struct kvm_vcpu
*vcpu
)
602 if (irqchip_in_kernel(vcpu
->kvm
))
603 return kvm_lapic_get_cr8(vcpu
);
607 EXPORT_SYMBOL_GPL(get_cr8
);
609 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
611 if (irqchip_in_kernel(vcpu
->kvm
))
612 return vcpu
->apic_base
;
614 return vcpu
->apic_base
;
616 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
618 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
620 /* TODO: reserve bits check */
621 if (irqchip_in_kernel(vcpu
->kvm
))
622 kvm_lapic_set_base(vcpu
, data
);
624 vcpu
->apic_base
= data
;
626 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
628 void fx_init(struct kvm_vcpu
*vcpu
)
630 unsigned after_mxcsr_mask
;
632 /* Initialize guest FPU by resetting ours and saving into guest's */
634 fx_save(&vcpu
->host_fx_image
);
636 fx_save(&vcpu
->guest_fx_image
);
637 fx_restore(&vcpu
->host_fx_image
);
640 vcpu
->cr0
|= X86_CR0_ET
;
641 after_mxcsr_mask
= offsetof(struct i387_fxsave_struct
, st_space
);
642 vcpu
->guest_fx_image
.mxcsr
= 0x1f80;
643 memset((void *)&vcpu
->guest_fx_image
+ after_mxcsr_mask
,
644 0, sizeof(struct i387_fxsave_struct
) - after_mxcsr_mask
);
646 EXPORT_SYMBOL_GPL(fx_init
);
649 * Allocate some memory and give it an address in the guest physical address
652 * Discontiguous memory is allowed, mostly for framebuffers.
654 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
655 struct kvm_memory_region
*mem
)
659 unsigned long npages
;
661 struct kvm_memory_slot
*memslot
;
662 struct kvm_memory_slot old
, new;
665 /* General sanity checks */
666 if (mem
->memory_size
& (PAGE_SIZE
- 1))
668 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
670 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
672 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
675 memslot
= &kvm
->memslots
[mem
->slot
];
676 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
677 npages
= mem
->memory_size
>> PAGE_SHIFT
;
680 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
682 mutex_lock(&kvm
->lock
);
684 new = old
= *memslot
;
686 new.base_gfn
= base_gfn
;
688 new.flags
= mem
->flags
;
690 /* Disallow changing a memory slot's size. */
692 if (npages
&& old
.npages
&& npages
!= old
.npages
)
695 /* Check for overlaps */
697 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
698 struct kvm_memory_slot
*s
= &kvm
->memslots
[i
];
702 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
703 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
707 /* Deallocate if slot is being removed */
711 /* Free page dirty bitmap if unneeded */
712 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
713 new.dirty_bitmap
= NULL
;
717 /* Allocate if a slot is being created */
718 if (npages
&& !new.phys_mem
) {
719 new.phys_mem
= vmalloc(npages
* sizeof(struct page
*));
724 memset(new.phys_mem
, 0, npages
* sizeof(struct page
*));
725 for (i
= 0; i
< npages
; ++i
) {
726 new.phys_mem
[i
] = alloc_page(GFP_HIGHUSER
728 if (!new.phys_mem
[i
])
730 set_page_private(new.phys_mem
[i
],0);
734 /* Allocate page dirty bitmap if needed */
735 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
736 unsigned dirty_bytes
= ALIGN(npages
, BITS_PER_LONG
) / 8;
738 new.dirty_bitmap
= vmalloc(dirty_bytes
);
739 if (!new.dirty_bitmap
)
741 memset(new.dirty_bitmap
, 0, dirty_bytes
);
744 if (mem
->slot
>= kvm
->nmemslots
)
745 kvm
->nmemslots
= mem
->slot
+ 1;
749 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
750 kvm_flush_remote_tlbs(kvm
);
752 mutex_unlock(&kvm
->lock
);
754 kvm_free_physmem_slot(&old
, &new);
758 mutex_unlock(&kvm
->lock
);
759 kvm_free_physmem_slot(&new, &old
);
765 * Get (and clear) the dirty memory log for a memory slot.
767 static int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
,
768 struct kvm_dirty_log
*log
)
770 struct kvm_memory_slot
*memslot
;
773 unsigned long any
= 0;
775 mutex_lock(&kvm
->lock
);
778 if (log
->slot
>= KVM_MEMORY_SLOTS
)
781 memslot
= &kvm
->memslots
[log
->slot
];
783 if (!memslot
->dirty_bitmap
)
786 n
= ALIGN(memslot
->npages
, BITS_PER_LONG
) / 8;
788 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
789 any
= memslot
->dirty_bitmap
[i
];
792 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
795 /* If nothing is dirty, don't bother messing with page tables. */
797 kvm_mmu_slot_remove_write_access(kvm
, log
->slot
);
798 kvm_flush_remote_tlbs(kvm
);
799 memset(memslot
->dirty_bitmap
, 0, n
);
805 mutex_unlock(&kvm
->lock
);
810 * Set a new alias region. Aliases map a portion of physical memory into
811 * another portion. This is useful for memory windows, for example the PC
814 static int kvm_vm_ioctl_set_memory_alias(struct kvm
*kvm
,
815 struct kvm_memory_alias
*alias
)
818 struct kvm_mem_alias
*p
;
821 /* General sanity checks */
822 if (alias
->memory_size
& (PAGE_SIZE
- 1))
824 if (alias
->guest_phys_addr
& (PAGE_SIZE
- 1))
826 if (alias
->slot
>= KVM_ALIAS_SLOTS
)
828 if (alias
->guest_phys_addr
+ alias
->memory_size
829 < alias
->guest_phys_addr
)
831 if (alias
->target_phys_addr
+ alias
->memory_size
832 < alias
->target_phys_addr
)
835 mutex_lock(&kvm
->lock
);
837 p
= &kvm
->aliases
[alias
->slot
];
838 p
->base_gfn
= alias
->guest_phys_addr
>> PAGE_SHIFT
;
839 p
->npages
= alias
->memory_size
>> PAGE_SHIFT
;
840 p
->target_gfn
= alias
->target_phys_addr
>> PAGE_SHIFT
;
842 for (n
= KVM_ALIAS_SLOTS
; n
> 0; --n
)
843 if (kvm
->aliases
[n
- 1].npages
)
847 kvm_mmu_zap_all(kvm
);
849 mutex_unlock(&kvm
->lock
);
857 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
862 switch (chip
->chip_id
) {
863 case KVM_IRQCHIP_PIC_MASTER
:
864 memcpy (&chip
->chip
.pic
,
865 &pic_irqchip(kvm
)->pics
[0],
866 sizeof(struct kvm_pic_state
));
868 case KVM_IRQCHIP_PIC_SLAVE
:
869 memcpy (&chip
->chip
.pic
,
870 &pic_irqchip(kvm
)->pics
[1],
871 sizeof(struct kvm_pic_state
));
873 case KVM_IRQCHIP_IOAPIC
:
874 memcpy (&chip
->chip
.ioapic
,
876 sizeof(struct kvm_ioapic_state
));
885 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
890 switch (chip
->chip_id
) {
891 case KVM_IRQCHIP_PIC_MASTER
:
892 memcpy (&pic_irqchip(kvm
)->pics
[0],
894 sizeof(struct kvm_pic_state
));
896 case KVM_IRQCHIP_PIC_SLAVE
:
897 memcpy (&pic_irqchip(kvm
)->pics
[1],
899 sizeof(struct kvm_pic_state
));
901 case KVM_IRQCHIP_IOAPIC
:
902 memcpy (ioapic_irqchip(kvm
),
904 sizeof(struct kvm_ioapic_state
));
910 kvm_pic_update_irq(pic_irqchip(kvm
));
914 static gfn_t
unalias_gfn(struct kvm
*kvm
, gfn_t gfn
)
917 struct kvm_mem_alias
*alias
;
919 for (i
= 0; i
< kvm
->naliases
; ++i
) {
920 alias
= &kvm
->aliases
[i
];
921 if (gfn
>= alias
->base_gfn
922 && gfn
< alias
->base_gfn
+ alias
->npages
)
923 return alias
->target_gfn
+ gfn
- alias
->base_gfn
;
928 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
932 for (i
= 0; i
< kvm
->nmemslots
; ++i
) {
933 struct kvm_memory_slot
*memslot
= &kvm
->memslots
[i
];
935 if (gfn
>= memslot
->base_gfn
936 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
942 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
944 gfn
= unalias_gfn(kvm
, gfn
);
945 return __gfn_to_memslot(kvm
, gfn
);
948 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
950 struct kvm_memory_slot
*slot
;
952 gfn
= unalias_gfn(kvm
, gfn
);
953 slot
= __gfn_to_memslot(kvm
, gfn
);
956 return slot
->phys_mem
[gfn
- slot
->base_gfn
];
958 EXPORT_SYMBOL_GPL(gfn_to_page
);
960 /* WARNING: Does not work on aliased pages. */
961 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
963 struct kvm_memory_slot
*memslot
;
965 memslot
= __gfn_to_memslot(kvm
, gfn
);
966 if (memslot
&& memslot
->dirty_bitmap
) {
967 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
970 if (!test_bit(rel_gfn
, memslot
->dirty_bitmap
))
971 set_bit(rel_gfn
, memslot
->dirty_bitmap
);
975 int emulator_read_std(unsigned long addr
,
978 struct kvm_vcpu
*vcpu
)
983 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
984 unsigned offset
= addr
& (PAGE_SIZE
-1);
985 unsigned tocopy
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
990 if (gpa
== UNMAPPED_GVA
)
991 return X86EMUL_PROPAGATE_FAULT
;
992 pfn
= gpa
>> PAGE_SHIFT
;
993 page
= gfn_to_page(vcpu
->kvm
, pfn
);
995 return X86EMUL_UNHANDLEABLE
;
996 page_virt
= kmap_atomic(page
, KM_USER0
);
998 memcpy(data
, page_virt
+ offset
, tocopy
);
1000 kunmap_atomic(page_virt
, KM_USER0
);
1007 return X86EMUL_CONTINUE
;
1009 EXPORT_SYMBOL_GPL(emulator_read_std
);
1011 static int emulator_write_std(unsigned long addr
,
1014 struct kvm_vcpu
*vcpu
)
1016 pr_unimpl(vcpu
, "emulator_write_std: addr %lx n %d\n", addr
, bytes
);
1017 return X86EMUL_UNHANDLEABLE
;
1021 * Only apic need an MMIO device hook, so shortcut now..
1023 static struct kvm_io_device
*vcpu_find_pervcpu_dev(struct kvm_vcpu
*vcpu
,
1026 struct kvm_io_device
*dev
;
1029 dev
= &vcpu
->apic
->dev
;
1030 if (dev
->in_range(dev
, addr
))
1036 static struct kvm_io_device
*vcpu_find_mmio_dev(struct kvm_vcpu
*vcpu
,
1039 struct kvm_io_device
*dev
;
1041 dev
= vcpu_find_pervcpu_dev(vcpu
, addr
);
1043 dev
= kvm_io_bus_find_dev(&vcpu
->kvm
->mmio_bus
, addr
);
1047 static struct kvm_io_device
*vcpu_find_pio_dev(struct kvm_vcpu
*vcpu
,
1050 return kvm_io_bus_find_dev(&vcpu
->kvm
->pio_bus
, addr
);
1053 static int emulator_read_emulated(unsigned long addr
,
1056 struct kvm_vcpu
*vcpu
)
1058 struct kvm_io_device
*mmio_dev
;
1061 if (vcpu
->mmio_read_completed
) {
1062 memcpy(val
, vcpu
->mmio_data
, bytes
);
1063 vcpu
->mmio_read_completed
= 0;
1064 return X86EMUL_CONTINUE
;
1065 } else if (emulator_read_std(addr
, val
, bytes
, vcpu
)
1066 == X86EMUL_CONTINUE
)
1067 return X86EMUL_CONTINUE
;
1069 gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1070 if (gpa
== UNMAPPED_GVA
)
1071 return X86EMUL_PROPAGATE_FAULT
;
1074 * Is this MMIO handled locally?
1076 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1078 kvm_iodevice_read(mmio_dev
, gpa
, bytes
, val
);
1079 return X86EMUL_CONTINUE
;
1082 vcpu
->mmio_needed
= 1;
1083 vcpu
->mmio_phys_addr
= gpa
;
1084 vcpu
->mmio_size
= bytes
;
1085 vcpu
->mmio_is_write
= 0;
1087 return X86EMUL_UNHANDLEABLE
;
1090 static int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
1091 const void *val
, int bytes
)
1096 if (((gpa
+ bytes
- 1) >> PAGE_SHIFT
) != (gpa
>> PAGE_SHIFT
))
1098 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1101 mark_page_dirty(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
1102 virt
= kmap_atomic(page
, KM_USER0
);
1103 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
1104 memcpy(virt
+ offset_in_page(gpa
), val
, bytes
);
1105 kunmap_atomic(virt
, KM_USER0
);
1109 static int emulator_write_emulated_onepage(unsigned long addr
,
1112 struct kvm_vcpu
*vcpu
)
1114 struct kvm_io_device
*mmio_dev
;
1115 gpa_t gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, addr
);
1117 if (gpa
== UNMAPPED_GVA
) {
1118 kvm_x86_ops
->inject_page_fault(vcpu
, addr
, 2);
1119 return X86EMUL_PROPAGATE_FAULT
;
1122 if (emulator_write_phys(vcpu
, gpa
, val
, bytes
))
1123 return X86EMUL_CONTINUE
;
1126 * Is this MMIO handled locally?
1128 mmio_dev
= vcpu_find_mmio_dev(vcpu
, gpa
);
1130 kvm_iodevice_write(mmio_dev
, gpa
, bytes
, val
);
1131 return X86EMUL_CONTINUE
;
1134 vcpu
->mmio_needed
= 1;
1135 vcpu
->mmio_phys_addr
= gpa
;
1136 vcpu
->mmio_size
= bytes
;
1137 vcpu
->mmio_is_write
= 1;
1138 memcpy(vcpu
->mmio_data
, val
, bytes
);
1140 return X86EMUL_CONTINUE
;
1143 int emulator_write_emulated(unsigned long addr
,
1146 struct kvm_vcpu
*vcpu
)
1148 /* Crossing a page boundary? */
1149 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
1152 now
= -addr
& ~PAGE_MASK
;
1153 rc
= emulator_write_emulated_onepage(addr
, val
, now
, vcpu
);
1154 if (rc
!= X86EMUL_CONTINUE
)
1160 return emulator_write_emulated_onepage(addr
, val
, bytes
, vcpu
);
1162 EXPORT_SYMBOL_GPL(emulator_write_emulated
);
1164 static int emulator_cmpxchg_emulated(unsigned long addr
,
1168 struct kvm_vcpu
*vcpu
)
1170 static int reported
;
1174 printk(KERN_WARNING
"kvm: emulating exchange as write\n");
1176 return emulator_write_emulated(addr
, new, bytes
, vcpu
);
1179 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1181 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
1184 int emulate_invlpg(struct kvm_vcpu
*vcpu
, gva_t address
)
1186 return X86EMUL_CONTINUE
;
1189 int emulate_clts(struct kvm_vcpu
*vcpu
)
1191 kvm_x86_ops
->set_cr0(vcpu
, vcpu
->cr0
& ~X86_CR0_TS
);
1192 return X86EMUL_CONTINUE
;
1195 int emulator_get_dr(struct x86_emulate_ctxt
* ctxt
, int dr
, unsigned long *dest
)
1197 struct kvm_vcpu
*vcpu
= ctxt
->vcpu
;
1201 *dest
= kvm_x86_ops
->get_dr(vcpu
, dr
);
1202 return X86EMUL_CONTINUE
;
1204 pr_unimpl(vcpu
, "%s: unexpected dr %u\n", __FUNCTION__
, dr
);
1205 return X86EMUL_UNHANDLEABLE
;
1209 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
1211 unsigned long mask
= (ctxt
->mode
== X86EMUL_MODE_PROT64
) ? ~0ULL : ~0U;
1214 kvm_x86_ops
->set_dr(ctxt
->vcpu
, dr
, value
& mask
, &exception
);
1216 /* FIXME: better handling */
1217 return X86EMUL_UNHANDLEABLE
;
1219 return X86EMUL_CONTINUE
;
1222 void kvm_report_emulation_failure(struct kvm_vcpu
*vcpu
, const char *context
)
1224 static int reported
;
1226 unsigned long rip
= vcpu
->rip
;
1227 unsigned long rip_linear
;
1229 rip_linear
= rip
+ get_segment_base(vcpu
, VCPU_SREG_CS
);
1234 emulator_read_std(rip_linear
, (void *)opcodes
, 4, vcpu
);
1236 printk(KERN_ERR
"emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
1237 context
, rip
, opcodes
[0], opcodes
[1], opcodes
[2], opcodes
[3]);
1240 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure
);
1242 struct x86_emulate_ops emulate_ops
= {
1243 .read_std
= emulator_read_std
,
1244 .write_std
= emulator_write_std
,
1245 .read_emulated
= emulator_read_emulated
,
1246 .write_emulated
= emulator_write_emulated
,
1247 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
1250 int emulate_instruction(struct kvm_vcpu
*vcpu
,
1251 struct kvm_run
*run
,
1255 struct x86_emulate_ctxt emulate_ctxt
;
1259 vcpu
->mmio_fault_cr2
= cr2
;
1260 kvm_x86_ops
->cache_regs(vcpu
);
1262 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
1264 emulate_ctxt
.vcpu
= vcpu
;
1265 emulate_ctxt
.eflags
= kvm_x86_ops
->get_rflags(vcpu
);
1266 emulate_ctxt
.cr2
= cr2
;
1267 emulate_ctxt
.mode
= (emulate_ctxt
.eflags
& X86_EFLAGS_VM
)
1268 ? X86EMUL_MODE_REAL
: cs_l
1269 ? X86EMUL_MODE_PROT64
: cs_db
1270 ? X86EMUL_MODE_PROT32
: X86EMUL_MODE_PROT16
;
1272 if (emulate_ctxt
.mode
== X86EMUL_MODE_PROT64
) {
1273 emulate_ctxt
.cs_base
= 0;
1274 emulate_ctxt
.ds_base
= 0;
1275 emulate_ctxt
.es_base
= 0;
1276 emulate_ctxt
.ss_base
= 0;
1278 emulate_ctxt
.cs_base
= get_segment_base(vcpu
, VCPU_SREG_CS
);
1279 emulate_ctxt
.ds_base
= get_segment_base(vcpu
, VCPU_SREG_DS
);
1280 emulate_ctxt
.es_base
= get_segment_base(vcpu
, VCPU_SREG_ES
);
1281 emulate_ctxt
.ss_base
= get_segment_base(vcpu
, VCPU_SREG_SS
);
1284 emulate_ctxt
.gs_base
= get_segment_base(vcpu
, VCPU_SREG_GS
);
1285 emulate_ctxt
.fs_base
= get_segment_base(vcpu
, VCPU_SREG_FS
);
1287 vcpu
->mmio_is_write
= 0;
1288 vcpu
->pio
.string
= 0;
1289 r
= x86_emulate_memop(&emulate_ctxt
, &emulate_ops
);
1290 if (vcpu
->pio
.string
)
1291 return EMULATE_DO_MMIO
;
1293 if ((r
|| vcpu
->mmio_is_write
) && run
) {
1294 run
->exit_reason
= KVM_EXIT_MMIO
;
1295 run
->mmio
.phys_addr
= vcpu
->mmio_phys_addr
;
1296 memcpy(run
->mmio
.data
, vcpu
->mmio_data
, 8);
1297 run
->mmio
.len
= vcpu
->mmio_size
;
1298 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
1302 if (kvm_mmu_unprotect_page_virt(vcpu
, cr2
))
1303 return EMULATE_DONE
;
1304 if (!vcpu
->mmio_needed
) {
1305 kvm_report_emulation_failure(vcpu
, "mmio");
1306 return EMULATE_FAIL
;
1308 return EMULATE_DO_MMIO
;
1311 kvm_x86_ops
->decache_regs(vcpu
);
1312 kvm_x86_ops
->set_rflags(vcpu
, emulate_ctxt
.eflags
);
1314 if (vcpu
->mmio_is_write
) {
1315 vcpu
->mmio_needed
= 0;
1316 return EMULATE_DO_MMIO
;
1319 return EMULATE_DONE
;
1321 EXPORT_SYMBOL_GPL(emulate_instruction
);
1324 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1326 static void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1328 DECLARE_WAITQUEUE(wait
, current
);
1330 add_wait_queue(&vcpu
->wq
, &wait
);
1333 * We will block until either an interrupt or a signal wakes us up
1335 while (!kvm_cpu_has_interrupt(vcpu
)
1336 && !signal_pending(current
)
1337 && vcpu
->mp_state
!= VCPU_MP_STATE_RUNNABLE
1338 && vcpu
->mp_state
!= VCPU_MP_STATE_SIPI_RECEIVED
) {
1339 set_current_state(TASK_INTERRUPTIBLE
);
1345 __set_current_state(TASK_RUNNING
);
1346 remove_wait_queue(&vcpu
->wq
, &wait
);
1349 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
1351 ++vcpu
->stat
.halt_exits
;
1352 if (irqchip_in_kernel(vcpu
->kvm
)) {
1353 vcpu
->mp_state
= VCPU_MP_STATE_HALTED
;
1354 kvm_vcpu_block(vcpu
);
1355 if (vcpu
->mp_state
!= VCPU_MP_STATE_RUNNABLE
)
1359 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
1363 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
1365 int kvm_hypercall(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
1367 unsigned long nr
, a0
, a1
, a2
, a3
, a4
, a5
, ret
;
1369 kvm_x86_ops
->cache_regs(vcpu
);
1371 #ifdef CONFIG_X86_64
1372 if (is_long_mode(vcpu
)) {
1373 nr
= vcpu
->regs
[VCPU_REGS_RAX
];
1374 a0
= vcpu
->regs
[VCPU_REGS_RDI
];
1375 a1
= vcpu
->regs
[VCPU_REGS_RSI
];
1376 a2
= vcpu
->regs
[VCPU_REGS_RDX
];
1377 a3
= vcpu
->regs
[VCPU_REGS_RCX
];
1378 a4
= vcpu
->regs
[VCPU_REGS_R8
];
1379 a5
= vcpu
->regs
[VCPU_REGS_R9
];
1383 nr
= vcpu
->regs
[VCPU_REGS_RBX
] & -1u;
1384 a0
= vcpu
->regs
[VCPU_REGS_RAX
] & -1u;
1385 a1
= vcpu
->regs
[VCPU_REGS_RCX
] & -1u;
1386 a2
= vcpu
->regs
[VCPU_REGS_RDX
] & -1u;
1387 a3
= vcpu
->regs
[VCPU_REGS_RSI
] & -1u;
1388 a4
= vcpu
->regs
[VCPU_REGS_RDI
] & -1u;
1389 a5
= vcpu
->regs
[VCPU_REGS_RBP
] & -1u;
1393 run
->hypercall
.nr
= nr
;
1394 run
->hypercall
.args
[0] = a0
;
1395 run
->hypercall
.args
[1] = a1
;
1396 run
->hypercall
.args
[2] = a2
;
1397 run
->hypercall
.args
[3] = a3
;
1398 run
->hypercall
.args
[4] = a4
;
1399 run
->hypercall
.args
[5] = a5
;
1400 run
->hypercall
.ret
= ret
;
1401 run
->hypercall
.longmode
= is_long_mode(vcpu
);
1402 kvm_x86_ops
->decache_regs(vcpu
);
1405 vcpu
->regs
[VCPU_REGS_RAX
] = ret
;
1406 kvm_x86_ops
->decache_regs(vcpu
);
1409 EXPORT_SYMBOL_GPL(kvm_hypercall
);
1411 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
1413 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
1416 void realmode_lgdt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1418 struct descriptor_table dt
= { limit
, base
};
1420 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
1423 void realmode_lidt(struct kvm_vcpu
*vcpu
, u16 limit
, unsigned long base
)
1425 struct descriptor_table dt
= { limit
, base
};
1427 kvm_x86_ops
->set_idt(vcpu
, &dt
);
1430 void realmode_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
,
1431 unsigned long *rflags
)
1434 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
1437 unsigned long realmode_get_cr(struct kvm_vcpu
*vcpu
, int cr
)
1439 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
1450 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1455 void realmode_set_cr(struct kvm_vcpu
*vcpu
, int cr
, unsigned long val
,
1456 unsigned long *rflags
)
1460 set_cr0(vcpu
, mk_cr_64(vcpu
->cr0
, val
));
1461 *rflags
= kvm_x86_ops
->get_rflags(vcpu
);
1470 set_cr4(vcpu
, mk_cr_64(vcpu
->cr4
, val
));
1473 vcpu_printf(vcpu
, "%s: unexpected cr %u\n", __FUNCTION__
, cr
);
1478 * Register the para guest with the host:
1480 static int vcpu_register_para(struct kvm_vcpu
*vcpu
, gpa_t para_state_gpa
)
1482 struct kvm_vcpu_para_state
*para_state
;
1483 hpa_t para_state_hpa
, hypercall_hpa
;
1484 struct page
*para_state_page
;
1485 unsigned char *hypercall
;
1486 gpa_t hypercall_gpa
;
1488 printk(KERN_DEBUG
"kvm: guest trying to enter paravirtual mode\n");
1489 printk(KERN_DEBUG
".... para_state_gpa: %08Lx\n", para_state_gpa
);
1492 * Needs to be page aligned:
1494 if (para_state_gpa
!= PAGE_ALIGN(para_state_gpa
))
1497 para_state_hpa
= gpa_to_hpa(vcpu
, para_state_gpa
);
1498 printk(KERN_DEBUG
".... para_state_hpa: %08Lx\n", para_state_hpa
);
1499 if (is_error_hpa(para_state_hpa
))
1502 mark_page_dirty(vcpu
->kvm
, para_state_gpa
>> PAGE_SHIFT
);
1503 para_state_page
= pfn_to_page(para_state_hpa
>> PAGE_SHIFT
);
1504 para_state
= kmap(para_state_page
);
1506 printk(KERN_DEBUG
".... guest version: %d\n", para_state
->guest_version
);
1507 printk(KERN_DEBUG
".... size: %d\n", para_state
->size
);
1509 para_state
->host_version
= KVM_PARA_API_VERSION
;
1511 * We cannot support guests that try to register themselves
1512 * with a newer API version than the host supports:
1514 if (para_state
->guest_version
> KVM_PARA_API_VERSION
) {
1515 para_state
->ret
= -KVM_EINVAL
;
1516 goto err_kunmap_skip
;
1519 hypercall_gpa
= para_state
->hypercall_gpa
;
1520 hypercall_hpa
= gpa_to_hpa(vcpu
, hypercall_gpa
);
1521 printk(KERN_DEBUG
".... hypercall_hpa: %08Lx\n", hypercall_hpa
);
1522 if (is_error_hpa(hypercall_hpa
)) {
1523 para_state
->ret
= -KVM_EINVAL
;
1524 goto err_kunmap_skip
;
1527 printk(KERN_DEBUG
"kvm: para guest successfully registered.\n");
1528 vcpu
->para_state_page
= para_state_page
;
1529 vcpu
->para_state_gpa
= para_state_gpa
;
1530 vcpu
->hypercall_gpa
= hypercall_gpa
;
1532 mark_page_dirty(vcpu
->kvm
, hypercall_gpa
>> PAGE_SHIFT
);
1533 hypercall
= kmap_atomic(pfn_to_page(hypercall_hpa
>> PAGE_SHIFT
),
1534 KM_USER1
) + (hypercall_hpa
& ~PAGE_MASK
);
1535 kvm_x86_ops
->patch_hypercall(vcpu
, hypercall
);
1536 kunmap_atomic(hypercall
, KM_USER1
);
1538 para_state
->ret
= 0;
1540 kunmap(para_state_page
);
1546 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
1551 case 0xc0010010: /* SYSCFG */
1552 case 0xc0010015: /* HWCR */
1553 case MSR_IA32_PLATFORM_ID
:
1554 case MSR_IA32_P5_MC_ADDR
:
1555 case MSR_IA32_P5_MC_TYPE
:
1556 case MSR_IA32_MC0_CTL
:
1557 case MSR_IA32_MCG_STATUS
:
1558 case MSR_IA32_MCG_CAP
:
1559 case MSR_IA32_MC0_MISC
:
1560 case MSR_IA32_MC0_MISC
+4:
1561 case MSR_IA32_MC0_MISC
+8:
1562 case MSR_IA32_MC0_MISC
+12:
1563 case MSR_IA32_MC0_MISC
+16:
1564 case MSR_IA32_UCODE_REV
:
1565 case MSR_IA32_PERF_STATUS
:
1566 case MSR_IA32_EBL_CR_POWERON
:
1567 /* MTRR registers */
1569 case 0x200 ... 0x2ff:
1572 case 0xcd: /* fsb frequency */
1575 case MSR_IA32_APICBASE
:
1576 data
= kvm_get_apic_base(vcpu
);
1578 case MSR_IA32_MISC_ENABLE
:
1579 data
= vcpu
->ia32_misc_enable_msr
;
1581 #ifdef CONFIG_X86_64
1583 data
= vcpu
->shadow_efer
;
1587 pr_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
1593 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
1596 * Reads an msr value (of 'msr_index') into 'pdata'.
1597 * Returns 0 on success, non-0 otherwise.
1598 * Assumes vcpu_load() was already called.
1600 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
1602 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
1605 #ifdef CONFIG_X86_64
1607 static void set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1609 if (efer
& EFER_RESERVED_BITS
) {
1610 printk(KERN_DEBUG
"set_efer: 0x%llx #GP, reserved bits\n",
1617 && (vcpu
->shadow_efer
& EFER_LME
) != (efer
& EFER_LME
)) {
1618 printk(KERN_DEBUG
"set_efer: #GP, change LME while paging\n");
1623 kvm_x86_ops
->set_efer(vcpu
, efer
);
1626 efer
|= vcpu
->shadow_efer
& EFER_LMA
;
1628 vcpu
->shadow_efer
= efer
;
1633 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1636 #ifdef CONFIG_X86_64
1638 set_efer(vcpu
, data
);
1641 case MSR_IA32_MC0_STATUS
:
1642 pr_unimpl(vcpu
, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1643 __FUNCTION__
, data
);
1645 case MSR_IA32_MCG_STATUS
:
1646 pr_unimpl(vcpu
, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
1647 __FUNCTION__
, data
);
1649 case MSR_IA32_UCODE_REV
:
1650 case MSR_IA32_UCODE_WRITE
:
1651 case 0x200 ... 0x2ff: /* MTRRs */
1653 case MSR_IA32_APICBASE
:
1654 kvm_set_apic_base(vcpu
, data
);
1656 case MSR_IA32_MISC_ENABLE
:
1657 vcpu
->ia32_misc_enable_msr
= data
;
1660 * This is the 'probe whether the host is KVM' logic:
1662 case MSR_KVM_API_MAGIC
:
1663 return vcpu_register_para(vcpu
, data
);
1666 pr_unimpl(vcpu
, "unhandled wrmsr: 0x%x\n", msr
);
1671 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
1674 * Writes msr value into into the appropriate "register".
1675 * Returns 0 on success, non-0 otherwise.
1676 * Assumes vcpu_load() was already called.
1678 int kvm_set_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64 data
)
1680 return kvm_x86_ops
->set_msr(vcpu
, msr_index
, data
);
1683 void kvm_resched(struct kvm_vcpu
*vcpu
)
1685 if (!need_resched())
1689 EXPORT_SYMBOL_GPL(kvm_resched
);
1691 void kvm_emulate_cpuid(struct kvm_vcpu
*vcpu
)
1695 struct kvm_cpuid_entry
*e
, *best
;
1697 kvm_x86_ops
->cache_regs(vcpu
);
1698 function
= vcpu
->regs
[VCPU_REGS_RAX
];
1699 vcpu
->regs
[VCPU_REGS_RAX
] = 0;
1700 vcpu
->regs
[VCPU_REGS_RBX
] = 0;
1701 vcpu
->regs
[VCPU_REGS_RCX
] = 0;
1702 vcpu
->regs
[VCPU_REGS_RDX
] = 0;
1704 for (i
= 0; i
< vcpu
->cpuid_nent
; ++i
) {
1705 e
= &vcpu
->cpuid_entries
[i
];
1706 if (e
->function
== function
) {
1711 * Both basic or both extended?
1713 if (((e
->function
^ function
) & 0x80000000) == 0)
1714 if (!best
|| e
->function
> best
->function
)
1718 vcpu
->regs
[VCPU_REGS_RAX
] = best
->eax
;
1719 vcpu
->regs
[VCPU_REGS_RBX
] = best
->ebx
;
1720 vcpu
->regs
[VCPU_REGS_RCX
] = best
->ecx
;
1721 vcpu
->regs
[VCPU_REGS_RDX
] = best
->edx
;
1723 kvm_x86_ops
->decache_regs(vcpu
);
1724 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1726 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid
);
1728 static int pio_copy_data(struct kvm_vcpu
*vcpu
)
1730 void *p
= vcpu
->pio_data
;
1733 int nr_pages
= vcpu
->pio
.guest_pages
[1] ? 2 : 1;
1735 q
= vmap(vcpu
->pio
.guest_pages
, nr_pages
, VM_READ
|VM_WRITE
,
1738 free_pio_guest_pages(vcpu
);
1741 q
+= vcpu
->pio
.guest_page_offset
;
1742 bytes
= vcpu
->pio
.size
* vcpu
->pio
.cur_count
;
1744 memcpy(q
, p
, bytes
);
1746 memcpy(p
, q
, bytes
);
1747 q
-= vcpu
->pio
.guest_page_offset
;
1749 free_pio_guest_pages(vcpu
);
1753 static int complete_pio(struct kvm_vcpu
*vcpu
)
1755 struct kvm_pio_request
*io
= &vcpu
->pio
;
1759 kvm_x86_ops
->cache_regs(vcpu
);
1763 memcpy(&vcpu
->regs
[VCPU_REGS_RAX
], vcpu
->pio_data
,
1767 r
= pio_copy_data(vcpu
);
1769 kvm_x86_ops
->cache_regs(vcpu
);
1776 delta
*= io
->cur_count
;
1778 * The size of the register should really depend on
1779 * current address size.
1781 vcpu
->regs
[VCPU_REGS_RCX
] -= delta
;
1787 vcpu
->regs
[VCPU_REGS_RDI
] += delta
;
1789 vcpu
->regs
[VCPU_REGS_RSI
] += delta
;
1792 kvm_x86_ops
->decache_regs(vcpu
);
1794 io
->count
-= io
->cur_count
;
1800 static void kernel_pio(struct kvm_io_device
*pio_dev
,
1801 struct kvm_vcpu
*vcpu
,
1804 /* TODO: String I/O for in kernel device */
1806 mutex_lock(&vcpu
->kvm
->lock
);
1808 kvm_iodevice_read(pio_dev
, vcpu
->pio
.port
,
1812 kvm_iodevice_write(pio_dev
, vcpu
->pio
.port
,
1815 mutex_unlock(&vcpu
->kvm
->lock
);
1818 static void pio_string_write(struct kvm_io_device
*pio_dev
,
1819 struct kvm_vcpu
*vcpu
)
1821 struct kvm_pio_request
*io
= &vcpu
->pio
;
1822 void *pd
= vcpu
->pio_data
;
1825 mutex_lock(&vcpu
->kvm
->lock
);
1826 for (i
= 0; i
< io
->cur_count
; i
++) {
1827 kvm_iodevice_write(pio_dev
, io
->port
,
1832 mutex_unlock(&vcpu
->kvm
->lock
);
1835 int kvm_emulate_pio (struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
1836 int size
, unsigned port
)
1838 struct kvm_io_device
*pio_dev
;
1840 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
1841 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
1842 vcpu
->run
->io
.size
= vcpu
->pio
.size
= size
;
1843 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
1844 vcpu
->run
->io
.count
= vcpu
->pio
.count
= vcpu
->pio
.cur_count
= 1;
1845 vcpu
->run
->io
.port
= vcpu
->pio
.port
= port
;
1847 vcpu
->pio
.string
= 0;
1849 vcpu
->pio
.guest_page_offset
= 0;
1852 kvm_x86_ops
->cache_regs(vcpu
);
1853 memcpy(vcpu
->pio_data
, &vcpu
->regs
[VCPU_REGS_RAX
], 4);
1854 kvm_x86_ops
->decache_regs(vcpu
);
1856 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1858 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
1860 kernel_pio(pio_dev
, vcpu
, vcpu
->pio_data
);
1866 EXPORT_SYMBOL_GPL(kvm_emulate_pio
);
1868 int kvm_emulate_pio_string(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
, int in
,
1869 int size
, unsigned long count
, int down
,
1870 gva_t address
, int rep
, unsigned port
)
1872 unsigned now
, in_page
;
1876 struct kvm_io_device
*pio_dev
;
1878 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
1879 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
1880 vcpu
->run
->io
.size
= vcpu
->pio
.size
= size
;
1881 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
1882 vcpu
->run
->io
.count
= vcpu
->pio
.count
= vcpu
->pio
.cur_count
= count
;
1883 vcpu
->run
->io
.port
= vcpu
->pio
.port
= port
;
1885 vcpu
->pio
.string
= 1;
1886 vcpu
->pio
.down
= down
;
1887 vcpu
->pio
.guest_page_offset
= offset_in_page(address
);
1888 vcpu
->pio
.rep
= rep
;
1891 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1896 in_page
= PAGE_SIZE
- offset_in_page(address
);
1898 in_page
= offset_in_page(address
) + size
;
1899 now
= min(count
, (unsigned long)in_page
/ size
);
1902 * String I/O straddles page boundary. Pin two guest pages
1903 * so that we satisfy atomicity constraints. Do just one
1904 * transaction to avoid complexity.
1911 * String I/O in reverse. Yuck. Kill the guest, fix later.
1913 pr_unimpl(vcpu
, "guest string pio down\n");
1917 vcpu
->run
->io
.count
= now
;
1918 vcpu
->pio
.cur_count
= now
;
1920 if (vcpu
->pio
.cur_count
== vcpu
->pio
.count
)
1921 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
1923 for (i
= 0; i
< nr_pages
; ++i
) {
1924 mutex_lock(&vcpu
->kvm
->lock
);
1925 page
= gva_to_page(vcpu
, address
+ i
* PAGE_SIZE
);
1928 vcpu
->pio
.guest_pages
[i
] = page
;
1929 mutex_unlock(&vcpu
->kvm
->lock
);
1932 free_pio_guest_pages(vcpu
);
1937 pio_dev
= vcpu_find_pio_dev(vcpu
, port
);
1938 if (!vcpu
->pio
.in
) {
1939 /* string PIO write */
1940 ret
= pio_copy_data(vcpu
);
1941 if (ret
>= 0 && pio_dev
) {
1942 pio_string_write(pio_dev
, vcpu
);
1944 if (vcpu
->pio
.count
== 0)
1948 pr_unimpl(vcpu
, "no string pio read support yet, "
1949 "port %x size %d count %ld\n",
1954 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string
);
1957 * Check if userspace requested an interrupt window, and that the
1958 * interrupt window is open.
1960 * No need to exit to userspace if we already have an interrupt queued.
1962 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
,
1963 struct kvm_run
*kvm_run
)
1965 return (!vcpu
->irq_summary
&&
1966 kvm_run
->request_interrupt_window
&&
1967 vcpu
->interrupt_window_open
&&
1968 (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
));
1971 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
,
1972 struct kvm_run
*kvm_run
)
1974 kvm_run
->if_flag
= (kvm_x86_ops
->get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
1975 kvm_run
->cr8
= get_cr8(vcpu
);
1976 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
1977 if (irqchip_in_kernel(vcpu
->kvm
))
1978 kvm_run
->ready_for_interrupt_injection
= 1;
1980 kvm_run
->ready_for_interrupt_injection
=
1981 (vcpu
->interrupt_window_open
&&
1982 vcpu
->irq_summary
== 0);
1985 static int __vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
1989 if (unlikely(vcpu
->mp_state
== VCPU_MP_STATE_SIPI_RECEIVED
)) {
1990 printk("vcpu %d received sipi with vector # %x\n",
1991 vcpu
->vcpu_id
, vcpu
->sipi_vector
);
1992 kvm_lapic_reset(vcpu
);
1993 kvm_x86_ops
->vcpu_reset(vcpu
);
1994 vcpu
->mp_state
= VCPU_MP_STATE_RUNNABLE
;
1998 if (vcpu
->guest_debug
.enabled
)
1999 kvm_x86_ops
->guest_debug_pre(vcpu
);
2002 r
= kvm_mmu_reload(vcpu
);
2008 kvm_x86_ops
->prepare_guest_switch(vcpu
);
2009 kvm_load_guest_fpu(vcpu
);
2011 local_irq_disable();
2013 if (signal_pending(current
)) {
2017 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2018 ++vcpu
->stat
.signal_exits
;
2022 if (irqchip_in_kernel(vcpu
->kvm
))
2023 kvm_x86_ops
->inject_pending_irq(vcpu
);
2024 else if (!vcpu
->mmio_read_completed
)
2025 kvm_x86_ops
->inject_pending_vectors(vcpu
, kvm_run
);
2027 vcpu
->guest_mode
= 1;
2031 if (test_and_clear_bit(KVM_TLB_FLUSH
, &vcpu
->requests
))
2032 kvm_x86_ops
->tlb_flush(vcpu
);
2034 kvm_x86_ops
->run(vcpu
, kvm_run
);
2036 vcpu
->guest_mode
= 0;
2042 * We must have an instruction between local_irq_enable() and
2043 * kvm_guest_exit(), so the timer interrupt isn't delayed by
2044 * the interrupt shadow. The stat.exits increment will do nicely.
2045 * But we need to prevent reordering, hence this barrier():
2054 * Profile KVM exit RIPs:
2056 if (unlikely(prof_on
== KVM_PROFILING
)) {
2057 kvm_x86_ops
->cache_regs(vcpu
);
2058 profile_hit(KVM_PROFILING
, (void *)vcpu
->rip
);
2061 r
= kvm_x86_ops
->handle_exit(kvm_run
, vcpu
);
2064 if (dm_request_for_irq_injection(vcpu
, kvm_run
)) {
2066 kvm_run
->exit_reason
= KVM_EXIT_INTR
;
2067 ++vcpu
->stat
.request_irq_exits
;
2070 if (!need_resched()) {
2071 ++vcpu
->stat
.light_exits
;
2082 post_kvm_run_save(vcpu
, kvm_run
);
2088 static int kvm_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2095 if (unlikely(vcpu
->mp_state
== VCPU_MP_STATE_UNINITIALIZED
)) {
2096 kvm_vcpu_block(vcpu
);
2101 if (vcpu
->sigset_active
)
2102 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
2104 /* re-sync apic's tpr */
2105 if (!irqchip_in_kernel(vcpu
->kvm
))
2106 set_cr8(vcpu
, kvm_run
->cr8
);
2108 if (vcpu
->pio
.cur_count
) {
2109 r
= complete_pio(vcpu
);
2114 if (vcpu
->mmio_needed
) {
2115 memcpy(vcpu
->mmio_data
, kvm_run
->mmio
.data
, 8);
2116 vcpu
->mmio_read_completed
= 1;
2117 vcpu
->mmio_needed
= 0;
2118 r
= emulate_instruction(vcpu
, kvm_run
,
2119 vcpu
->mmio_fault_cr2
, 0);
2120 if (r
== EMULATE_DO_MMIO
) {
2122 * Read-modify-write. Back to userspace.
2129 if (kvm_run
->exit_reason
== KVM_EXIT_HYPERCALL
) {
2130 kvm_x86_ops
->cache_regs(vcpu
);
2131 vcpu
->regs
[VCPU_REGS_RAX
] = kvm_run
->hypercall
.ret
;
2132 kvm_x86_ops
->decache_regs(vcpu
);
2135 r
= __vcpu_run(vcpu
, kvm_run
);
2138 if (vcpu
->sigset_active
)
2139 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
2145 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
,
2146 struct kvm_regs
*regs
)
2150 kvm_x86_ops
->cache_regs(vcpu
);
2152 regs
->rax
= vcpu
->regs
[VCPU_REGS_RAX
];
2153 regs
->rbx
= vcpu
->regs
[VCPU_REGS_RBX
];
2154 regs
->rcx
= vcpu
->regs
[VCPU_REGS_RCX
];
2155 regs
->rdx
= vcpu
->regs
[VCPU_REGS_RDX
];
2156 regs
->rsi
= vcpu
->regs
[VCPU_REGS_RSI
];
2157 regs
->rdi
= vcpu
->regs
[VCPU_REGS_RDI
];
2158 regs
->rsp
= vcpu
->regs
[VCPU_REGS_RSP
];
2159 regs
->rbp
= vcpu
->regs
[VCPU_REGS_RBP
];
2160 #ifdef CONFIG_X86_64
2161 regs
->r8
= vcpu
->regs
[VCPU_REGS_R8
];
2162 regs
->r9
= vcpu
->regs
[VCPU_REGS_R9
];
2163 regs
->r10
= vcpu
->regs
[VCPU_REGS_R10
];
2164 regs
->r11
= vcpu
->regs
[VCPU_REGS_R11
];
2165 regs
->r12
= vcpu
->regs
[VCPU_REGS_R12
];
2166 regs
->r13
= vcpu
->regs
[VCPU_REGS_R13
];
2167 regs
->r14
= vcpu
->regs
[VCPU_REGS_R14
];
2168 regs
->r15
= vcpu
->regs
[VCPU_REGS_R15
];
2171 regs
->rip
= vcpu
->rip
;
2172 regs
->rflags
= kvm_x86_ops
->get_rflags(vcpu
);
2175 * Don't leak debug flags in case they were set for guest debugging
2177 if (vcpu
->guest_debug
.enabled
&& vcpu
->guest_debug
.singlestep
)
2178 regs
->rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2185 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
,
2186 struct kvm_regs
*regs
)
2190 vcpu
->regs
[VCPU_REGS_RAX
] = regs
->rax
;
2191 vcpu
->regs
[VCPU_REGS_RBX
] = regs
->rbx
;
2192 vcpu
->regs
[VCPU_REGS_RCX
] = regs
->rcx
;
2193 vcpu
->regs
[VCPU_REGS_RDX
] = regs
->rdx
;
2194 vcpu
->regs
[VCPU_REGS_RSI
] = regs
->rsi
;
2195 vcpu
->regs
[VCPU_REGS_RDI
] = regs
->rdi
;
2196 vcpu
->regs
[VCPU_REGS_RSP
] = regs
->rsp
;
2197 vcpu
->regs
[VCPU_REGS_RBP
] = regs
->rbp
;
2198 #ifdef CONFIG_X86_64
2199 vcpu
->regs
[VCPU_REGS_R8
] = regs
->r8
;
2200 vcpu
->regs
[VCPU_REGS_R9
] = regs
->r9
;
2201 vcpu
->regs
[VCPU_REGS_R10
] = regs
->r10
;
2202 vcpu
->regs
[VCPU_REGS_R11
] = regs
->r11
;
2203 vcpu
->regs
[VCPU_REGS_R12
] = regs
->r12
;
2204 vcpu
->regs
[VCPU_REGS_R13
] = regs
->r13
;
2205 vcpu
->regs
[VCPU_REGS_R14
] = regs
->r14
;
2206 vcpu
->regs
[VCPU_REGS_R15
] = regs
->r15
;
2209 vcpu
->rip
= regs
->rip
;
2210 kvm_x86_ops
->set_rflags(vcpu
, regs
->rflags
);
2212 kvm_x86_ops
->decache_regs(vcpu
);
2219 static void get_segment(struct kvm_vcpu
*vcpu
,
2220 struct kvm_segment
*var
, int seg
)
2222 return kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
2225 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
2226 struct kvm_sregs
*sregs
)
2228 struct descriptor_table dt
;
2233 get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2234 get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2235 get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2236 get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2237 get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2238 get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2240 get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2241 get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2243 kvm_x86_ops
->get_idt(vcpu
, &dt
);
2244 sregs
->idt
.limit
= dt
.limit
;
2245 sregs
->idt
.base
= dt
.base
;
2246 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
2247 sregs
->gdt
.limit
= dt
.limit
;
2248 sregs
->gdt
.base
= dt
.base
;
2250 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2251 sregs
->cr0
= vcpu
->cr0
;
2252 sregs
->cr2
= vcpu
->cr2
;
2253 sregs
->cr3
= vcpu
->cr3
;
2254 sregs
->cr4
= vcpu
->cr4
;
2255 sregs
->cr8
= get_cr8(vcpu
);
2256 sregs
->efer
= vcpu
->shadow_efer
;
2257 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
2259 if (irqchip_in_kernel(vcpu
->kvm
)) {
2260 memset(sregs
->interrupt_bitmap
, 0,
2261 sizeof sregs
->interrupt_bitmap
);
2262 pending_vec
= kvm_x86_ops
->get_irq(vcpu
);
2263 if (pending_vec
>= 0)
2264 set_bit(pending_vec
, (unsigned long *)sregs
->interrupt_bitmap
);
2266 memcpy(sregs
->interrupt_bitmap
, vcpu
->irq_pending
,
2267 sizeof sregs
->interrupt_bitmap
);
2274 static void set_segment(struct kvm_vcpu
*vcpu
,
2275 struct kvm_segment
*var
, int seg
)
2277 return kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
2280 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
2281 struct kvm_sregs
*sregs
)
2283 int mmu_reset_needed
= 0;
2284 int i
, pending_vec
, max_bits
;
2285 struct descriptor_table dt
;
2289 dt
.limit
= sregs
->idt
.limit
;
2290 dt
.base
= sregs
->idt
.base
;
2291 kvm_x86_ops
->set_idt(vcpu
, &dt
);
2292 dt
.limit
= sregs
->gdt
.limit
;
2293 dt
.base
= sregs
->gdt
.base
;
2294 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
2296 vcpu
->cr2
= sregs
->cr2
;
2297 mmu_reset_needed
|= vcpu
->cr3
!= sregs
->cr3
;
2298 vcpu
->cr3
= sregs
->cr3
;
2300 set_cr8(vcpu
, sregs
->cr8
);
2302 mmu_reset_needed
|= vcpu
->shadow_efer
!= sregs
->efer
;
2303 #ifdef CONFIG_X86_64
2304 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
2306 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
2308 kvm_x86_ops
->decache_cr4_guest_bits(vcpu
);
2310 mmu_reset_needed
|= vcpu
->cr0
!= sregs
->cr0
;
2311 vcpu
->cr0
= sregs
->cr0
;
2312 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
2314 mmu_reset_needed
|= vcpu
->cr4
!= sregs
->cr4
;
2315 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
2316 if (!is_long_mode(vcpu
) && is_pae(vcpu
))
2317 load_pdptrs(vcpu
, vcpu
->cr3
);
2319 if (mmu_reset_needed
)
2320 kvm_mmu_reset_context(vcpu
);
2322 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2323 memcpy(vcpu
->irq_pending
, sregs
->interrupt_bitmap
,
2324 sizeof vcpu
->irq_pending
);
2325 vcpu
->irq_summary
= 0;
2326 for (i
= 0; i
< ARRAY_SIZE(vcpu
->irq_pending
); ++i
)
2327 if (vcpu
->irq_pending
[i
])
2328 __set_bit(i
, &vcpu
->irq_summary
);
2330 max_bits
= (sizeof sregs
->interrupt_bitmap
) << 3;
2331 pending_vec
= find_first_bit(
2332 (const unsigned long *)sregs
->interrupt_bitmap
,
2334 /* Only pending external irq is handled here */
2335 if (pending_vec
< max_bits
) {
2336 kvm_x86_ops
->set_irq(vcpu
, pending_vec
);
2337 printk("Set back pending irq %d\n", pending_vec
);
2341 set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
2342 set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
2343 set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
2344 set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
2345 set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
2346 set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
2348 set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
2349 set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
2356 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
2358 struct kvm_segment cs
;
2360 get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
2364 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
2367 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
2368 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
2370 * This list is modified at module load time to reflect the
2371 * capabilities of the host cpu.
2373 static u32 msrs_to_save
[] = {
2374 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
2376 #ifdef CONFIG_X86_64
2377 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
2379 MSR_IA32_TIME_STAMP_COUNTER
,
2382 static unsigned num_msrs_to_save
;
2384 static u32 emulated_msrs
[] = {
2385 MSR_IA32_MISC_ENABLE
,
2388 static __init
void kvm_init_msr_list(void)
2393 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
2394 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
2397 msrs_to_save
[j
] = msrs_to_save
[i
];
2400 num_msrs_to_save
= j
;
2404 * Adapt set_msr() to msr_io()'s calling convention
2406 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
2408 return kvm_set_msr(vcpu
, index
, *data
);
2412 * Read or write a bunch of msrs. All parameters are kernel addresses.
2414 * @return number of msrs set successfully.
2416 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2417 struct kvm_msr_entry
*entries
,
2418 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2419 unsigned index
, u64
*data
))
2425 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2426 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2435 * Read or write a bunch of msrs. Parameters are user addresses.
2437 * @return number of msrs set successfully.
2439 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2440 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2441 unsigned index
, u64
*data
),
2444 struct kvm_msrs msrs
;
2445 struct kvm_msr_entry
*entries
;
2450 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2454 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2458 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2459 entries
= vmalloc(size
);
2464 if (copy_from_user(entries
, user_msrs
->entries
, size
))
2467 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2472 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2484 * Translate a guest virtual address to a guest physical address.
2486 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
2487 struct kvm_translation
*tr
)
2489 unsigned long vaddr
= tr
->linear_address
;
2493 mutex_lock(&vcpu
->kvm
->lock
);
2494 gpa
= vcpu
->mmu
.gva_to_gpa(vcpu
, vaddr
);
2495 tr
->physical_address
= gpa
;
2496 tr
->valid
= gpa
!= UNMAPPED_GVA
;
2499 mutex_unlock(&vcpu
->kvm
->lock
);
2505 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2506 struct kvm_interrupt
*irq
)
2508 if (irq
->irq
< 0 || irq
->irq
>= 256)
2510 if (irqchip_in_kernel(vcpu
->kvm
))
2514 set_bit(irq
->irq
, vcpu
->irq_pending
);
2515 set_bit(irq
->irq
/ BITS_PER_LONG
, &vcpu
->irq_summary
);
2522 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu
*vcpu
,
2523 struct kvm_debug_guest
*dbg
)
2529 r
= kvm_x86_ops
->set_guest_debug(vcpu
, dbg
);
2536 static struct page
*kvm_vcpu_nopage(struct vm_area_struct
*vma
,
2537 unsigned long address
,
2540 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
2541 unsigned long pgoff
;
2544 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2546 page
= virt_to_page(vcpu
->run
);
2547 else if (pgoff
== KVM_PIO_PAGE_OFFSET
)
2548 page
= virt_to_page(vcpu
->pio_data
);
2550 return NOPAGE_SIGBUS
;
2553 *type
= VM_FAULT_MINOR
;
2558 static struct vm_operations_struct kvm_vcpu_vm_ops
= {
2559 .nopage
= kvm_vcpu_nopage
,
2562 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2564 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
2568 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
2570 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2572 fput(vcpu
->kvm
->filp
);
2576 static struct file_operations kvm_vcpu_fops
= {
2577 .release
= kvm_vcpu_release
,
2578 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2579 .compat_ioctl
= kvm_vcpu_ioctl
,
2580 .mmap
= kvm_vcpu_mmap
,
2584 * Allocates an inode for the vcpu.
2586 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2589 struct inode
*inode
;
2592 r
= anon_inode_getfd(&fd
, &inode
, &file
,
2593 "kvm-vcpu", &kvm_vcpu_fops
, vcpu
);
2596 atomic_inc(&vcpu
->kvm
->filp
->f_count
);
2601 * Creates some virtual cpus. Good luck creating more than one.
2603 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, int n
)
2606 struct kvm_vcpu
*vcpu
;
2611 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, n
);
2613 return PTR_ERR(vcpu
);
2615 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2617 /* We do fxsave: this must be aligned. */
2618 BUG_ON((unsigned long)&vcpu
->host_fx_image
& 0xF);
2621 r
= kvm_mmu_setup(vcpu
);
2626 mutex_lock(&kvm
->lock
);
2627 if (kvm
->vcpus
[n
]) {
2629 mutex_unlock(&kvm
->lock
);
2632 kvm
->vcpus
[n
] = vcpu
;
2633 mutex_unlock(&kvm
->lock
);
2635 /* Now it's all set up, let userspace reach it */
2636 r
= create_vcpu_fd(vcpu
);
2642 mutex_lock(&kvm
->lock
);
2643 kvm
->vcpus
[n
] = NULL
;
2644 mutex_unlock(&kvm
->lock
);
2648 kvm_mmu_unload(vcpu
);
2652 kvm_x86_ops
->vcpu_free(vcpu
);
2656 static void cpuid_fix_nx_cap(struct kvm_vcpu
*vcpu
)
2660 struct kvm_cpuid_entry
*e
, *entry
;
2662 rdmsrl(MSR_EFER
, efer
);
2664 for (i
= 0; i
< vcpu
->cpuid_nent
; ++i
) {
2665 e
= &vcpu
->cpuid_entries
[i
];
2666 if (e
->function
== 0x80000001) {
2671 if (entry
&& (entry
->edx
& (1 << 20)) && !(efer
& EFER_NX
)) {
2672 entry
->edx
&= ~(1 << 20);
2673 printk(KERN_INFO
"kvm: guest NX capability removed\n");
2677 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu
*vcpu
,
2678 struct kvm_cpuid
*cpuid
,
2679 struct kvm_cpuid_entry __user
*entries
)
2684 if (cpuid
->nent
> KVM_MAX_CPUID_ENTRIES
)
2687 if (copy_from_user(&vcpu
->cpuid_entries
, entries
,
2688 cpuid
->nent
* sizeof(struct kvm_cpuid_entry
)))
2690 vcpu
->cpuid_nent
= cpuid
->nent
;
2691 cpuid_fix_nx_cap(vcpu
);
2698 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2701 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2702 vcpu
->sigset_active
= 1;
2703 vcpu
->sigset
= *sigset
;
2705 vcpu
->sigset_active
= 0;
2710 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
2711 * we have asm/x86/processor.h
2722 u32 st_space
[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
2723 #ifdef CONFIG_X86_64
2724 u32 xmm_space
[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
2726 u32 xmm_space
[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
2730 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2732 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->guest_fx_image
;
2736 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
2737 fpu
->fcw
= fxsave
->cwd
;
2738 fpu
->fsw
= fxsave
->swd
;
2739 fpu
->ftwx
= fxsave
->twd
;
2740 fpu
->last_opcode
= fxsave
->fop
;
2741 fpu
->last_ip
= fxsave
->rip
;
2742 fpu
->last_dp
= fxsave
->rdp
;
2743 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
2750 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
2752 struct fxsave
*fxsave
= (struct fxsave
*)&vcpu
->guest_fx_image
;
2756 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
2757 fxsave
->cwd
= fpu
->fcw
;
2758 fxsave
->swd
= fpu
->fsw
;
2759 fxsave
->twd
= fpu
->ftwx
;
2760 fxsave
->fop
= fpu
->last_opcode
;
2761 fxsave
->rip
= fpu
->last_ip
;
2762 fxsave
->rdp
= fpu
->last_dp
;
2763 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
2770 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2771 struct kvm_lapic_state
*s
)
2774 memcpy(s
->regs
, vcpu
->apic
->regs
, sizeof *s
);
2780 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2781 struct kvm_lapic_state
*s
)
2784 memcpy(vcpu
->apic
->regs
, s
->regs
, sizeof *s
);
2785 kvm_apic_post_state_restore(vcpu
);
2791 static long kvm_vcpu_ioctl(struct file
*filp
,
2792 unsigned int ioctl
, unsigned long arg
)
2794 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2795 void __user
*argp
= (void __user
*)arg
;
2803 r
= kvm_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2805 case KVM_GET_REGS
: {
2806 struct kvm_regs kvm_regs
;
2808 memset(&kvm_regs
, 0, sizeof kvm_regs
);
2809 r
= kvm_vcpu_ioctl_get_regs(vcpu
, &kvm_regs
);
2813 if (copy_to_user(argp
, &kvm_regs
, sizeof kvm_regs
))
2818 case KVM_SET_REGS
: {
2819 struct kvm_regs kvm_regs
;
2822 if (copy_from_user(&kvm_regs
, argp
, sizeof kvm_regs
))
2824 r
= kvm_vcpu_ioctl_set_regs(vcpu
, &kvm_regs
);
2830 case KVM_GET_SREGS
: {
2831 struct kvm_sregs kvm_sregs
;
2833 memset(&kvm_sregs
, 0, sizeof kvm_sregs
);
2834 r
= kvm_vcpu_ioctl_get_sregs(vcpu
, &kvm_sregs
);
2838 if (copy_to_user(argp
, &kvm_sregs
, sizeof kvm_sregs
))
2843 case KVM_SET_SREGS
: {
2844 struct kvm_sregs kvm_sregs
;
2847 if (copy_from_user(&kvm_sregs
, argp
, sizeof kvm_sregs
))
2849 r
= kvm_vcpu_ioctl_set_sregs(vcpu
, &kvm_sregs
);
2855 case KVM_TRANSLATE
: {
2856 struct kvm_translation tr
;
2859 if (copy_from_user(&tr
, argp
, sizeof tr
))
2861 r
= kvm_vcpu_ioctl_translate(vcpu
, &tr
);
2865 if (copy_to_user(argp
, &tr
, sizeof tr
))
2870 case KVM_INTERRUPT
: {
2871 struct kvm_interrupt irq
;
2874 if (copy_from_user(&irq
, argp
, sizeof irq
))
2876 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
2882 case KVM_DEBUG_GUEST
: {
2883 struct kvm_debug_guest dbg
;
2886 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
2888 r
= kvm_vcpu_ioctl_debug_guest(vcpu
, &dbg
);
2895 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
2898 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
2900 case KVM_SET_CPUID
: {
2901 struct kvm_cpuid __user
*cpuid_arg
= argp
;
2902 struct kvm_cpuid cpuid
;
2905 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2907 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
2912 case KVM_SET_SIGNAL_MASK
: {
2913 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2914 struct kvm_signal_mask kvm_sigmask
;
2915 sigset_t sigset
, *p
;
2920 if (copy_from_user(&kvm_sigmask
, argp
,
2921 sizeof kvm_sigmask
))
2924 if (kvm_sigmask
.len
!= sizeof sigset
)
2927 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2932 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2938 memset(&fpu
, 0, sizeof fpu
);
2939 r
= kvm_vcpu_ioctl_get_fpu(vcpu
, &fpu
);
2943 if (copy_to_user(argp
, &fpu
, sizeof fpu
))
2952 if (copy_from_user(&fpu
, argp
, sizeof fpu
))
2954 r
= kvm_vcpu_ioctl_set_fpu(vcpu
, &fpu
);
2960 case KVM_GET_LAPIC
: {
2961 struct kvm_lapic_state lapic
;
2963 memset(&lapic
, 0, sizeof lapic
);
2964 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, &lapic
);
2968 if (copy_to_user(argp
, &lapic
, sizeof lapic
))
2973 case KVM_SET_LAPIC
: {
2974 struct kvm_lapic_state lapic
;
2977 if (copy_from_user(&lapic
, argp
, sizeof lapic
))
2979 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, &lapic
);;
2992 static long kvm_vm_ioctl(struct file
*filp
,
2993 unsigned int ioctl
, unsigned long arg
)
2995 struct kvm
*kvm
= filp
->private_data
;
2996 void __user
*argp
= (void __user
*)arg
;
3000 case KVM_CREATE_VCPU
:
3001 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
3005 case KVM_SET_MEMORY_REGION
: {
3006 struct kvm_memory_region kvm_mem
;
3009 if (copy_from_user(&kvm_mem
, argp
, sizeof kvm_mem
))
3011 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_mem
);
3016 case KVM_GET_DIRTY_LOG
: {
3017 struct kvm_dirty_log log
;
3020 if (copy_from_user(&log
, argp
, sizeof log
))
3022 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
3027 case KVM_SET_MEMORY_ALIAS
: {
3028 struct kvm_memory_alias alias
;
3031 if (copy_from_user(&alias
, argp
, sizeof alias
))
3033 r
= kvm_vm_ioctl_set_memory_alias(kvm
, &alias
);
3038 case KVM_CREATE_IRQCHIP
:
3040 kvm
->vpic
= kvm_create_pic(kvm
);
3042 r
= kvm_ioapic_init(kvm
);
3052 case KVM_IRQ_LINE
: {
3053 struct kvm_irq_level irq_event
;
3056 if (copy_from_user(&irq_event
, argp
, sizeof irq_event
))
3058 if (irqchip_in_kernel(kvm
)) {
3059 mutex_lock(&kvm
->lock
);
3060 if (irq_event
.irq
< 16)
3061 kvm_pic_set_irq(pic_irqchip(kvm
),
3064 kvm_ioapic_set_irq(kvm
->vioapic
,
3067 mutex_unlock(&kvm
->lock
);
3072 case KVM_GET_IRQCHIP
: {
3073 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3074 struct kvm_irqchip chip
;
3077 if (copy_from_user(&chip
, argp
, sizeof chip
))
3080 if (!irqchip_in_kernel(kvm
))
3082 r
= kvm_vm_ioctl_get_irqchip(kvm
, &chip
);
3086 if (copy_to_user(argp
, &chip
, sizeof chip
))
3091 case KVM_SET_IRQCHIP
: {
3092 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3093 struct kvm_irqchip chip
;
3096 if (copy_from_user(&chip
, argp
, sizeof chip
))
3099 if (!irqchip_in_kernel(kvm
))
3101 r
= kvm_vm_ioctl_set_irqchip(kvm
, &chip
);
3114 static struct page
*kvm_vm_nopage(struct vm_area_struct
*vma
,
3115 unsigned long address
,
3118 struct kvm
*kvm
= vma
->vm_file
->private_data
;
3119 unsigned long pgoff
;
3122 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3123 page
= gfn_to_page(kvm
, pgoff
);
3125 return NOPAGE_SIGBUS
;
3128 *type
= VM_FAULT_MINOR
;
3133 static struct vm_operations_struct kvm_vm_vm_ops
= {
3134 .nopage
= kvm_vm_nopage
,
3137 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3139 vma
->vm_ops
= &kvm_vm_vm_ops
;
3143 static struct file_operations kvm_vm_fops
= {
3144 .release
= kvm_vm_release
,
3145 .unlocked_ioctl
= kvm_vm_ioctl
,
3146 .compat_ioctl
= kvm_vm_ioctl
,
3147 .mmap
= kvm_vm_mmap
,
3150 static int kvm_dev_ioctl_create_vm(void)
3153 struct inode
*inode
;
3157 kvm
= kvm_create_vm();
3159 return PTR_ERR(kvm
);
3160 r
= anon_inode_getfd(&fd
, &inode
, &file
, "kvm-vm", &kvm_vm_fops
, kvm
);
3162 kvm_destroy_vm(kvm
);
3171 static long kvm_dev_ioctl(struct file
*filp
,
3172 unsigned int ioctl
, unsigned long arg
)
3174 void __user
*argp
= (void __user
*)arg
;
3178 case KVM_GET_API_VERSION
:
3182 r
= KVM_API_VERSION
;
3188 r
= kvm_dev_ioctl_create_vm();
3190 case KVM_GET_MSR_INDEX_LIST
: {
3191 struct kvm_msr_list __user
*user_msr_list
= argp
;
3192 struct kvm_msr_list msr_list
;
3196 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
3199 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
3200 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
3203 if (n
< num_msrs_to_save
)
3206 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
3207 num_msrs_to_save
* sizeof(u32
)))
3209 if (copy_to_user(user_msr_list
->indices
3210 + num_msrs_to_save
* sizeof(u32
),
3212 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
3217 case KVM_CHECK_EXTENSION
: {
3218 int ext
= (long)argp
;
3221 case KVM_CAP_IRQCHIP
:
3231 case KVM_GET_VCPU_MMAP_SIZE
:
3244 static struct file_operations kvm_chardev_ops
= {
3245 .unlocked_ioctl
= kvm_dev_ioctl
,
3246 .compat_ioctl
= kvm_dev_ioctl
,
3249 static struct miscdevice kvm_dev
= {
3256 * Make sure that a cpu that is being hot-unplugged does not have any vcpus
3259 static void decache_vcpus_on_cpu(int cpu
)
3262 struct kvm_vcpu
*vcpu
;
3265 spin_lock(&kvm_lock
);
3266 list_for_each_entry(vm
, &vm_list
, vm_list
)
3267 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3268 vcpu
= vm
->vcpus
[i
];
3272 * If the vcpu is locked, then it is running on some
3273 * other cpu and therefore it is not cached on the
3276 * If it's not locked, check the last cpu it executed
3279 if (mutex_trylock(&vcpu
->mutex
)) {
3280 if (vcpu
->cpu
== cpu
) {
3281 kvm_x86_ops
->vcpu_decache(vcpu
);
3284 mutex_unlock(&vcpu
->mutex
);
3287 spin_unlock(&kvm_lock
);
3290 static void hardware_enable(void *junk
)
3292 int cpu
= raw_smp_processor_id();
3294 if (cpu_isset(cpu
, cpus_hardware_enabled
))
3296 cpu_set(cpu
, cpus_hardware_enabled
);
3297 kvm_x86_ops
->hardware_enable(NULL
);
3300 static void hardware_disable(void *junk
)
3302 int cpu
= raw_smp_processor_id();
3304 if (!cpu_isset(cpu
, cpus_hardware_enabled
))
3306 cpu_clear(cpu
, cpus_hardware_enabled
);
3307 decache_vcpus_on_cpu(cpu
);
3308 kvm_x86_ops
->hardware_disable(NULL
);
3311 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
3318 case CPU_DYING_FROZEN
:
3319 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
3321 hardware_disable(NULL
);
3323 case CPU_UP_CANCELED
:
3324 case CPU_UP_CANCELED_FROZEN
:
3325 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
3327 smp_call_function_single(cpu
, hardware_disable
, NULL
, 0, 1);
3330 case CPU_ONLINE_FROZEN
:
3331 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
3333 smp_call_function_single(cpu
, hardware_enable
, NULL
, 0, 1);
3339 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
3342 if (val
== SYS_RESTART
) {
3344 * Some (well, at least mine) BIOSes hang on reboot if
3347 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
3348 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3353 static struct notifier_block kvm_reboot_notifier
= {
3354 .notifier_call
= kvm_reboot
,
3358 void kvm_io_bus_init(struct kvm_io_bus
*bus
)
3360 memset(bus
, 0, sizeof(*bus
));
3363 void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
3367 for (i
= 0; i
< bus
->dev_count
; i
++) {
3368 struct kvm_io_device
*pos
= bus
->devs
[i
];
3370 kvm_iodevice_destructor(pos
);
3374 struct kvm_io_device
*kvm_io_bus_find_dev(struct kvm_io_bus
*bus
, gpa_t addr
)
3378 for (i
= 0; i
< bus
->dev_count
; i
++) {
3379 struct kvm_io_device
*pos
= bus
->devs
[i
];
3381 if (pos
->in_range(pos
, addr
))
3388 void kvm_io_bus_register_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
)
3390 BUG_ON(bus
->dev_count
> (NR_IOBUS_DEVS
-1));
3392 bus
->devs
[bus
->dev_count
++] = dev
;
3395 static struct notifier_block kvm_cpu_notifier
= {
3396 .notifier_call
= kvm_cpu_hotplug
,
3397 .priority
= 20, /* must be > scheduler priority */
3400 static u64
stat_get(void *_offset
)
3402 unsigned offset
= (long)_offset
;
3405 struct kvm_vcpu
*vcpu
;
3408 spin_lock(&kvm_lock
);
3409 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3410 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
3411 vcpu
= kvm
->vcpus
[i
];
3413 total
+= *(u32
*)((void *)vcpu
+ offset
);
3415 spin_unlock(&kvm_lock
);
3419 DEFINE_SIMPLE_ATTRIBUTE(stat_fops
, stat_get
, NULL
, "%llu\n");
3421 static __init
void kvm_init_debug(void)
3423 struct kvm_stats_debugfs_item
*p
;
3425 debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3426 for (p
= debugfs_entries
; p
->name
; ++p
)
3427 p
->dentry
= debugfs_create_file(p
->name
, 0444, debugfs_dir
,
3428 (void *)(long)p
->offset
,
3432 static void kvm_exit_debug(void)
3434 struct kvm_stats_debugfs_item
*p
;
3436 for (p
= debugfs_entries
; p
->name
; ++p
)
3437 debugfs_remove(p
->dentry
);
3438 debugfs_remove(debugfs_dir
);
3441 static int kvm_suspend(struct sys_device
*dev
, pm_message_t state
)
3443 hardware_disable(NULL
);
3447 static int kvm_resume(struct sys_device
*dev
)
3449 hardware_enable(NULL
);
3453 static struct sysdev_class kvm_sysdev_class
= {
3454 set_kset_name("kvm"),
3455 .suspend
= kvm_suspend
,
3456 .resume
= kvm_resume
,
3459 static struct sys_device kvm_sysdev
= {
3461 .cls
= &kvm_sysdev_class
,
3464 hpa_t bad_page_address
;
3467 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3469 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3472 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3474 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3476 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
3479 static void kvm_sched_out(struct preempt_notifier
*pn
,
3480 struct task_struct
*next
)
3482 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3484 kvm_x86_ops
->vcpu_put(vcpu
);
3487 int kvm_init_x86(struct kvm_x86_ops
*ops
, unsigned int vcpu_size
,
3488 struct module
*module
)
3494 printk(KERN_ERR
"kvm: already loaded the other module\n");
3498 if (!ops
->cpu_has_kvm_support()) {
3499 printk(KERN_ERR
"kvm: no hardware support\n");
3502 if (ops
->disabled_by_bios()) {
3503 printk(KERN_ERR
"kvm: disabled by bios\n");
3509 r
= kvm_x86_ops
->hardware_setup();
3513 for_each_online_cpu(cpu
) {
3514 smp_call_function_single(cpu
,
3515 kvm_x86_ops
->check_processor_compatibility
,
3521 on_each_cpu(hardware_enable
, NULL
, 0, 1);
3522 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3525 register_reboot_notifier(&kvm_reboot_notifier
);
3527 r
= sysdev_class_register(&kvm_sysdev_class
);
3531 r
= sysdev_register(&kvm_sysdev
);
3535 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3536 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
,
3537 __alignof__(struct kvm_vcpu
), 0, 0);
3538 if (!kvm_vcpu_cache
) {
3543 kvm_chardev_ops
.owner
= module
;
3545 r
= misc_register(&kvm_dev
);
3547 printk (KERN_ERR
"kvm: misc device register failed\n");
3551 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3552 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3557 kmem_cache_destroy(kvm_vcpu_cache
);
3559 sysdev_unregister(&kvm_sysdev
);
3561 sysdev_class_unregister(&kvm_sysdev_class
);
3563 unregister_reboot_notifier(&kvm_reboot_notifier
);
3564 unregister_cpu_notifier(&kvm_cpu_notifier
);
3566 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3568 kvm_x86_ops
->hardware_unsetup();
3574 void kvm_exit_x86(void)
3576 misc_deregister(&kvm_dev
);
3577 kmem_cache_destroy(kvm_vcpu_cache
);
3578 sysdev_unregister(&kvm_sysdev
);
3579 sysdev_class_unregister(&kvm_sysdev_class
);
3580 unregister_reboot_notifier(&kvm_reboot_notifier
);
3581 unregister_cpu_notifier(&kvm_cpu_notifier
);
3582 on_each_cpu(hardware_disable
, NULL
, 0, 1);
3583 kvm_x86_ops
->hardware_unsetup();
3587 static __init
int kvm_init(void)
3589 static struct page
*bad_page
;
3592 r
= kvm_mmu_module_init();
3598 kvm_init_msr_list();
3600 if ((bad_page
= alloc_page(GFP_KERNEL
)) == NULL
) {
3605 bad_page_address
= page_to_pfn(bad_page
) << PAGE_SHIFT
;
3606 memset(__va(bad_page_address
), 0, PAGE_SIZE
);
3612 kvm_mmu_module_exit();
3617 static __exit
void kvm_exit(void)
3620 __free_page(pfn_to_page(bad_page_address
>> PAGE_SHIFT
));
3621 kvm_mmu_module_exit();
3624 module_init(kvm_init
)
3625 module_exit(kvm_exit
)
3627 EXPORT_SYMBOL_GPL(kvm_init_x86
);
3628 EXPORT_SYMBOL_GPL(kvm_exit_x86
);