4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 #include <linux/delayacct.h>
47 #include <linux/taskstats_kern.h>
48 #include <linux/random.h>
50 #include <asm/pgtable.h>
51 #include <asm/pgalloc.h>
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
58 * Protected counters by write_lock_irq(&tasklist_lock)
60 unsigned long total_forks
; /* Handle normal Linux uptimes. */
61 int nr_threads
; /* The idle threads do not count.. */
63 int max_threads
; /* tunable limit on nr_threads */
65 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
67 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
69 int nr_processes(void)
74 for_each_online_cpu(cpu
)
75 total
+= per_cpu(process_counts
, cpu
);
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t
*task_struct_cachep
;
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t
*signal_cachep
;
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t
*sighand_cachep
;
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t
*files_cachep
;
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t
*fs_cachep
;
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t
*vm_area_cachep
;
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t
*mm_cachep
;
104 void free_task(struct task_struct
*tsk
)
106 free_thread_info(tsk
->thread_info
);
107 rt_mutex_debug_task_free(tsk
);
108 free_task_struct(tsk
);
110 EXPORT_SYMBOL(free_task
);
112 void __put_task_struct(struct task_struct
*tsk
)
114 WARN_ON(!(tsk
->exit_state
& (EXIT_DEAD
| EXIT_ZOMBIE
)));
115 WARN_ON(atomic_read(&tsk
->usage
));
116 WARN_ON(tsk
== current
);
118 security_task_free(tsk
);
120 put_group_info(tsk
->group_info
);
121 delayacct_tsk_free(tsk
);
123 if (!profile_handoff_task(tsk
))
127 void __init
fork_init(unsigned long mempages
)
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
133 /* create a slab on which task_structs can be allocated */
135 kmem_cache_create("task_struct", sizeof(struct task_struct
),
136 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
, NULL
);
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
144 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
147 * we need to allow at least 20 threads to boot a system
152 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
153 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
154 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
155 init_task
.signal
->rlim
[RLIMIT_NPROC
];
158 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
160 struct task_struct
*tsk
;
161 struct thread_info
*ti
;
163 prepare_to_copy(orig
);
165 tsk
= alloc_task_struct();
169 ti
= alloc_thread_info(tsk
);
171 free_task_struct(tsk
);
176 tsk
->thread_info
= ti
;
177 setup_thread_stack(tsk
, orig
);
179 #ifdef CONFIG_CC_STACKPROTECTOR
180 tsk
->stack_canary
= get_random_int();
183 /* One for us, one for whoever does the "release_task()" (usually parent) */
184 atomic_set(&tsk
->usage
,2);
185 atomic_set(&tsk
->fs_excl
, 0);
187 tsk
->splice_pipe
= NULL
;
192 static inline int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
194 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
195 struct rb_node
**rb_link
, *rb_parent
;
197 unsigned long charge
;
198 struct mempolicy
*pol
;
200 down_write(&oldmm
->mmap_sem
);
201 flush_cache_mm(oldmm
);
203 * Not linked in yet - no deadlock potential:
205 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
209 mm
->mmap_cache
= NULL
;
210 mm
->free_area_cache
= oldmm
->mmap_base
;
211 mm
->cached_hole_size
= ~0UL;
213 cpus_clear(mm
->cpu_vm_mask
);
215 rb_link
= &mm
->mm_rb
.rb_node
;
219 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
222 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
223 long pages
= vma_pages(mpnt
);
224 mm
->total_vm
-= pages
;
225 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
230 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
231 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
232 if (security_vm_enough_memory(len
))
236 tmp
= kmem_cache_alloc(vm_area_cachep
, SLAB_KERNEL
);
240 pol
= mpol_copy(vma_policy(mpnt
));
241 retval
= PTR_ERR(pol
);
243 goto fail_nomem_policy
;
244 vma_set_policy(tmp
, pol
);
245 tmp
->vm_flags
&= ~VM_LOCKED
;
251 struct inode
*inode
= file
->f_dentry
->d_inode
;
253 if (tmp
->vm_flags
& VM_DENYWRITE
)
254 atomic_dec(&inode
->i_writecount
);
256 /* insert tmp into the share list, just after mpnt */
257 spin_lock(&file
->f_mapping
->i_mmap_lock
);
258 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
259 flush_dcache_mmap_lock(file
->f_mapping
);
260 vma_prio_tree_add(tmp
, mpnt
);
261 flush_dcache_mmap_unlock(file
->f_mapping
);
262 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
266 * Link in the new vma and copy the page table entries.
269 pprev
= &tmp
->vm_next
;
271 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
272 rb_link
= &tmp
->vm_rb
.rb_right
;
273 rb_parent
= &tmp
->vm_rb
;
276 retval
= copy_page_range(mm
, oldmm
, mpnt
);
278 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
279 tmp
->vm_ops
->open(tmp
);
286 up_write(&mm
->mmap_sem
);
288 up_write(&oldmm
->mmap_sem
);
291 kmem_cache_free(vm_area_cachep
, tmp
);
294 vm_unacct_memory(charge
);
298 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
300 mm
->pgd
= pgd_alloc(mm
);
301 if (unlikely(!mm
->pgd
))
306 static inline void mm_free_pgd(struct mm_struct
* mm
)
311 #define dup_mmap(mm, oldmm) (0)
312 #define mm_alloc_pgd(mm) (0)
313 #define mm_free_pgd(mm)
314 #endif /* CONFIG_MMU */
316 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
318 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
319 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
321 #include <linux/init_task.h>
323 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
325 atomic_set(&mm
->mm_users
, 1);
326 atomic_set(&mm
->mm_count
, 1);
327 init_rwsem(&mm
->mmap_sem
);
328 INIT_LIST_HEAD(&mm
->mmlist
);
329 mm
->core_waiters
= 0;
331 set_mm_counter(mm
, file_rss
, 0);
332 set_mm_counter(mm
, anon_rss
, 0);
333 spin_lock_init(&mm
->page_table_lock
);
334 rwlock_init(&mm
->ioctx_list_lock
);
335 mm
->ioctx_list
= NULL
;
336 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
337 mm
->cached_hole_size
= ~0UL;
339 if (likely(!mm_alloc_pgd(mm
))) {
348 * Allocate and initialize an mm_struct.
350 struct mm_struct
* mm_alloc(void)
352 struct mm_struct
* mm
;
356 memset(mm
, 0, sizeof(*mm
));
363 * Called when the last reference to the mm
364 * is dropped: either by a lazy thread or by
365 * mmput. Free the page directory and the mm.
367 void fastcall
__mmdrop(struct mm_struct
*mm
)
369 BUG_ON(mm
== &init_mm
);
376 * Decrement the use count and release all resources for an mm.
378 void mmput(struct mm_struct
*mm
)
382 if (atomic_dec_and_test(&mm
->mm_users
)) {
385 if (!list_empty(&mm
->mmlist
)) {
386 spin_lock(&mmlist_lock
);
387 list_del(&mm
->mmlist
);
388 spin_unlock(&mmlist_lock
);
394 EXPORT_SYMBOL_GPL(mmput
);
397 * get_task_mm - acquire a reference to the task's mm
399 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
400 * this kernel workthread has transiently adopted a user mm with use_mm,
401 * to do its AIO) is not set and if so returns a reference to it, after
402 * bumping up the use count. User must release the mm via mmput()
403 * after use. Typically used by /proc and ptrace.
405 struct mm_struct
*get_task_mm(struct task_struct
*task
)
407 struct mm_struct
*mm
;
412 if (task
->flags
& PF_BORROWED_MM
)
415 atomic_inc(&mm
->mm_users
);
420 EXPORT_SYMBOL_GPL(get_task_mm
);
422 /* Please note the differences between mmput and mm_release.
423 * mmput is called whenever we stop holding onto a mm_struct,
424 * error success whatever.
426 * mm_release is called after a mm_struct has been removed
427 * from the current process.
429 * This difference is important for error handling, when we
430 * only half set up a mm_struct for a new process and need to restore
431 * the old one. Because we mmput the new mm_struct before
432 * restoring the old one. . .
433 * Eric Biederman 10 January 1998
435 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
437 struct completion
*vfork_done
= tsk
->vfork_done
;
439 /* Get rid of any cached register state */
440 deactivate_mm(tsk
, mm
);
442 /* notify parent sleeping on vfork() */
444 tsk
->vfork_done
= NULL
;
445 complete(vfork_done
);
447 if (tsk
->clear_child_tid
&& atomic_read(&mm
->mm_users
) > 1) {
448 u32 __user
* tidptr
= tsk
->clear_child_tid
;
449 tsk
->clear_child_tid
= NULL
;
452 * We don't check the error code - if userspace has
453 * not set up a proper pointer then tough luck.
456 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
461 * Allocate a new mm structure and copy contents from the
462 * mm structure of the passed in task structure.
464 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
466 struct mm_struct
*mm
, *oldmm
= current
->mm
;
476 memcpy(mm
, oldmm
, sizeof(*mm
));
481 if (init_new_context(tsk
, mm
))
484 err
= dup_mmap(mm
, oldmm
);
488 mm
->hiwater_rss
= get_mm_rss(mm
);
489 mm
->hiwater_vm
= mm
->total_vm
;
501 * If init_new_context() failed, we cannot use mmput() to free the mm
502 * because it calls destroy_context()
509 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
511 struct mm_struct
* mm
, *oldmm
;
514 tsk
->min_flt
= tsk
->maj_flt
= 0;
515 tsk
->nvcsw
= tsk
->nivcsw
= 0;
518 tsk
->active_mm
= NULL
;
521 * Are we cloning a kernel thread?
523 * We need to steal a active VM for that..
529 if (clone_flags
& CLONE_VM
) {
530 atomic_inc(&oldmm
->mm_users
);
549 static inline struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
551 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
552 /* We don't need to lock fs - think why ;-) */
554 atomic_set(&fs
->count
, 1);
555 rwlock_init(&fs
->lock
);
556 fs
->umask
= old
->umask
;
557 read_lock(&old
->lock
);
558 fs
->rootmnt
= mntget(old
->rootmnt
);
559 fs
->root
= dget(old
->root
);
560 fs
->pwdmnt
= mntget(old
->pwdmnt
);
561 fs
->pwd
= dget(old
->pwd
);
563 fs
->altrootmnt
= mntget(old
->altrootmnt
);
564 fs
->altroot
= dget(old
->altroot
);
566 fs
->altrootmnt
= NULL
;
569 read_unlock(&old
->lock
);
574 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
576 return __copy_fs_struct(old
);
579 EXPORT_SYMBOL_GPL(copy_fs_struct
);
581 static inline int copy_fs(unsigned long clone_flags
, struct task_struct
* tsk
)
583 if (clone_flags
& CLONE_FS
) {
584 atomic_inc(¤t
->fs
->count
);
587 tsk
->fs
= __copy_fs_struct(current
->fs
);
593 static int count_open_files(struct fdtable
*fdt
)
595 int size
= fdt
->max_fdset
;
598 /* Find the last open fd */
599 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
600 if (fdt
->open_fds
->fds_bits
[--i
])
603 i
= (i
+1) * 8 * sizeof(long);
607 static struct files_struct
*alloc_files(void)
609 struct files_struct
*newf
;
612 newf
= kmem_cache_alloc(files_cachep
, SLAB_KERNEL
);
616 atomic_set(&newf
->count
, 1);
618 spin_lock_init(&newf
->file_lock
);
621 fdt
->max_fds
= NR_OPEN_DEFAULT
;
622 fdt
->max_fdset
= EMBEDDED_FD_SET_SIZE
;
623 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
624 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
625 fdt
->fd
= &newf
->fd_array
[0];
626 INIT_RCU_HEAD(&fdt
->rcu
);
627 fdt
->free_files
= NULL
;
629 rcu_assign_pointer(newf
->fdt
, fdt
);
635 * Allocate a new files structure and copy contents from the
636 * passed in files structure.
637 * errorp will be valid only when the returned files_struct is NULL.
639 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
641 struct files_struct
*newf
;
642 struct file
**old_fds
, **new_fds
;
643 int open_files
, size
, i
, expand
;
644 struct fdtable
*old_fdt
, *new_fdt
;
647 newf
= alloc_files();
651 spin_lock(&oldf
->file_lock
);
652 old_fdt
= files_fdtable(oldf
);
653 new_fdt
= files_fdtable(newf
);
654 size
= old_fdt
->max_fdset
;
655 open_files
= count_open_files(old_fdt
);
659 * Check whether we need to allocate a larger fd array or fd set.
660 * Note: we're not a clone task, so the open count won't change.
662 if (open_files
> new_fdt
->max_fdset
) {
663 new_fdt
->max_fdset
= 0;
666 if (open_files
> new_fdt
->max_fds
) {
667 new_fdt
->max_fds
= 0;
671 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
673 spin_unlock(&oldf
->file_lock
);
674 spin_lock(&newf
->file_lock
);
675 *errorp
= expand_files(newf
, open_files
-1);
676 spin_unlock(&newf
->file_lock
);
679 new_fdt
= files_fdtable(newf
);
681 * Reacquire the oldf lock and a pointer to its fd table
682 * who knows it may have a new bigger fd table. We need
683 * the latest pointer.
685 spin_lock(&oldf
->file_lock
);
686 old_fdt
= files_fdtable(oldf
);
689 old_fds
= old_fdt
->fd
;
690 new_fds
= new_fdt
->fd
;
692 memcpy(new_fdt
->open_fds
->fds_bits
, old_fdt
->open_fds
->fds_bits
, open_files
/8);
693 memcpy(new_fdt
->close_on_exec
->fds_bits
, old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
695 for (i
= open_files
; i
!= 0; i
--) {
696 struct file
*f
= *old_fds
++;
701 * The fd may be claimed in the fd bitmap but not yet
702 * instantiated in the files array if a sibling thread
703 * is partway through open(). So make sure that this
704 * fd is available to the new process.
706 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
708 rcu_assign_pointer(*new_fds
++, f
);
710 spin_unlock(&oldf
->file_lock
);
712 /* compute the remainder to be cleared */
713 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
715 /* This is long word aligned thus could use a optimized version */
716 memset(new_fds
, 0, size
);
718 if (new_fdt
->max_fdset
> open_files
) {
719 int left
= (new_fdt
->max_fdset
-open_files
)/8;
720 int start
= open_files
/ (8 * sizeof(unsigned long));
722 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
723 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
730 free_fdset (new_fdt
->close_on_exec
, new_fdt
->max_fdset
);
731 free_fdset (new_fdt
->open_fds
, new_fdt
->max_fdset
);
732 free_fd_array(new_fdt
->fd
, new_fdt
->max_fds
);
733 kmem_cache_free(files_cachep
, newf
);
737 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
739 struct files_struct
*oldf
, *newf
;
743 * A background process may not have any files ...
745 oldf
= current
->files
;
749 if (clone_flags
& CLONE_FILES
) {
750 atomic_inc(&oldf
->count
);
755 * Note: we may be using current for both targets (See exec.c)
756 * This works because we cache current->files (old) as oldf. Don't
760 newf
= dup_fd(oldf
, &error
);
771 * Helper to unshare the files of the current task.
772 * We don't want to expose copy_files internals to
773 * the exec layer of the kernel.
776 int unshare_files(void)
778 struct files_struct
*files
= current
->files
;
783 /* This can race but the race causes us to copy when we don't
784 need to and drop the copy */
785 if(atomic_read(&files
->count
) == 1)
787 atomic_inc(&files
->count
);
790 rc
= copy_files(0, current
);
792 current
->files
= files
;
796 EXPORT_SYMBOL(unshare_files
);
798 static inline int copy_sighand(unsigned long clone_flags
, struct task_struct
* tsk
)
800 struct sighand_struct
*sig
;
802 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
803 atomic_inc(¤t
->sighand
->count
);
806 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
807 rcu_assign_pointer(tsk
->sighand
, sig
);
810 atomic_set(&sig
->count
, 1);
811 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
815 void __cleanup_sighand(struct sighand_struct
*sighand
)
817 if (atomic_dec_and_test(&sighand
->count
))
818 kmem_cache_free(sighand_cachep
, sighand
);
821 static inline int copy_signal(unsigned long clone_flags
, struct task_struct
* tsk
)
823 struct signal_struct
*sig
;
826 if (clone_flags
& CLONE_THREAD
) {
827 atomic_inc(¤t
->signal
->count
);
828 atomic_inc(¤t
->signal
->live
);
829 taskstats_tgid_alloc(current
->signal
);
832 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
837 ret
= copy_thread_group_keys(tsk
);
839 kmem_cache_free(signal_cachep
, sig
);
843 atomic_set(&sig
->count
, 1);
844 atomic_set(&sig
->live
, 1);
845 init_waitqueue_head(&sig
->wait_chldexit
);
847 sig
->group_exit_code
= 0;
848 sig
->group_exit_task
= NULL
;
849 sig
->group_stop_count
= 0;
850 sig
->curr_target
= NULL
;
851 init_sigpending(&sig
->shared_pending
);
852 INIT_LIST_HEAD(&sig
->posix_timers
);
854 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_REL
);
855 sig
->it_real_incr
.tv64
= 0;
856 sig
->real_timer
.function
= it_real_fn
;
859 sig
->it_virt_expires
= cputime_zero
;
860 sig
->it_virt_incr
= cputime_zero
;
861 sig
->it_prof_expires
= cputime_zero
;
862 sig
->it_prof_incr
= cputime_zero
;
864 sig
->leader
= 0; /* session leadership doesn't inherit */
865 sig
->tty_old_pgrp
= 0;
867 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
868 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
869 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
871 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
872 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
873 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
874 taskstats_tgid_init(sig
);
876 task_lock(current
->group_leader
);
877 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
878 task_unlock(current
->group_leader
);
880 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
882 * New sole thread in the process gets an expiry time
883 * of the whole CPU time limit.
885 tsk
->it_prof_expires
=
886 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
888 acct_init_pacct(&sig
->pacct
);
893 void __cleanup_signal(struct signal_struct
*sig
)
895 exit_thread_group_keys(sig
);
896 taskstats_tgid_free(sig
);
897 kmem_cache_free(signal_cachep
, sig
);
900 static inline void cleanup_signal(struct task_struct
*tsk
)
902 struct signal_struct
*sig
= tsk
->signal
;
904 atomic_dec(&sig
->live
);
906 if (atomic_dec_and_test(&sig
->count
))
907 __cleanup_signal(sig
);
910 static inline void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
912 unsigned long new_flags
= p
->flags
;
914 new_flags
&= ~(PF_SUPERPRIV
| PF_NOFREEZE
);
915 new_flags
|= PF_FORKNOEXEC
;
916 if (!(clone_flags
& CLONE_PTRACE
))
918 p
->flags
= new_flags
;
921 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
923 current
->clear_child_tid
= tidptr
;
928 static inline void rt_mutex_init_task(struct task_struct
*p
)
930 #ifdef CONFIG_RT_MUTEXES
931 spin_lock_init(&p
->pi_lock
);
932 plist_head_init(&p
->pi_waiters
, &p
->pi_lock
);
933 p
->pi_blocked_on
= NULL
;
938 * This creates a new process as a copy of the old one,
939 * but does not actually start it yet.
941 * It copies the registers, and all the appropriate
942 * parts of the process environment (as per the clone
943 * flags). The actual kick-off is left to the caller.
945 static struct task_struct
*copy_process(unsigned long clone_flags
,
946 unsigned long stack_start
,
947 struct pt_regs
*regs
,
948 unsigned long stack_size
,
949 int __user
*parent_tidptr
,
950 int __user
*child_tidptr
,
954 struct task_struct
*p
= NULL
;
956 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
957 return ERR_PTR(-EINVAL
);
960 * Thread groups must share signals as well, and detached threads
961 * can only be started up within the thread group.
963 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
964 return ERR_PTR(-EINVAL
);
967 * Shared signal handlers imply shared VM. By way of the above,
968 * thread groups also imply shared VM. Blocking this case allows
969 * for various simplifications in other code.
971 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
972 return ERR_PTR(-EINVAL
);
974 retval
= security_task_create(clone_flags
);
979 p
= dup_task_struct(current
);
983 #ifdef CONFIG_TRACE_IRQFLAGS
984 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
985 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
988 if (atomic_read(&p
->user
->processes
) >=
989 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
990 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
991 p
->user
!= &root_user
)
995 atomic_inc(&p
->user
->__count
);
996 atomic_inc(&p
->user
->processes
);
997 get_group_info(p
->group_info
);
1000 * If multiple threads are within copy_process(), then this check
1001 * triggers too late. This doesn't hurt, the check is only there
1002 * to stop root fork bombs.
1004 if (nr_threads
>= max_threads
)
1005 goto bad_fork_cleanup_count
;
1007 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1008 goto bad_fork_cleanup_count
;
1010 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
1011 goto bad_fork_cleanup_put_domain
;
1014 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1015 copy_flags(clone_flags
, p
);
1018 if (clone_flags
& CLONE_PARENT_SETTID
)
1019 if (put_user(p
->pid
, parent_tidptr
))
1020 goto bad_fork_cleanup_delays_binfmt
;
1022 INIT_LIST_HEAD(&p
->children
);
1023 INIT_LIST_HEAD(&p
->sibling
);
1024 p
->vfork_done
= NULL
;
1025 spin_lock_init(&p
->alloc_lock
);
1027 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1028 init_sigpending(&p
->pending
);
1030 p
->utime
= cputime_zero
;
1031 p
->stime
= cputime_zero
;
1033 p
->rchar
= 0; /* I/O counter: bytes read */
1034 p
->wchar
= 0; /* I/O counter: bytes written */
1035 p
->syscr
= 0; /* I/O counter: read syscalls */
1036 p
->syscw
= 0; /* I/O counter: write syscalls */
1037 acct_clear_integrals(p
);
1039 p
->it_virt_expires
= cputime_zero
;
1040 p
->it_prof_expires
= cputime_zero
;
1041 p
->it_sched_expires
= 0;
1042 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1043 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1044 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1046 p
->lock_depth
= -1; /* -1 = no lock */
1047 do_posix_clock_monotonic_gettime(&p
->start_time
);
1049 p
->io_context
= NULL
;
1051 p
->audit_context
= NULL
;
1054 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1055 if (IS_ERR(p
->mempolicy
)) {
1056 retval
= PTR_ERR(p
->mempolicy
);
1057 p
->mempolicy
= NULL
;
1058 goto bad_fork_cleanup_cpuset
;
1060 mpol_fix_fork_child_flag(p
);
1062 #ifdef CONFIG_TRACE_IRQFLAGS
1064 p
->hardirqs_enabled
= 0;
1065 p
->hardirq_enable_ip
= 0;
1066 p
->hardirq_enable_event
= 0;
1067 p
->hardirq_disable_ip
= _THIS_IP_
;
1068 p
->hardirq_disable_event
= 0;
1069 p
->softirqs_enabled
= 1;
1070 p
->softirq_enable_ip
= _THIS_IP_
;
1071 p
->softirq_enable_event
= 0;
1072 p
->softirq_disable_ip
= 0;
1073 p
->softirq_disable_event
= 0;
1074 p
->hardirq_context
= 0;
1075 p
->softirq_context
= 0;
1077 #ifdef CONFIG_LOCKDEP
1078 p
->lockdep_depth
= 0; /* no locks held yet */
1079 p
->curr_chain_key
= 0;
1080 p
->lockdep_recursion
= 0;
1083 rt_mutex_init_task(p
);
1085 #ifdef CONFIG_DEBUG_MUTEXES
1086 p
->blocked_on
= NULL
; /* not blocked yet */
1090 if (clone_flags
& CLONE_THREAD
)
1091 p
->tgid
= current
->tgid
;
1093 if ((retval
= security_task_alloc(p
)))
1094 goto bad_fork_cleanup_policy
;
1095 if ((retval
= audit_alloc(p
)))
1096 goto bad_fork_cleanup_security
;
1097 /* copy all the process information */
1098 if ((retval
= copy_semundo(clone_flags
, p
)))
1099 goto bad_fork_cleanup_audit
;
1100 if ((retval
= copy_files(clone_flags
, p
)))
1101 goto bad_fork_cleanup_semundo
;
1102 if ((retval
= copy_fs(clone_flags
, p
)))
1103 goto bad_fork_cleanup_files
;
1104 if ((retval
= copy_sighand(clone_flags
, p
)))
1105 goto bad_fork_cleanup_fs
;
1106 if ((retval
= copy_signal(clone_flags
, p
)))
1107 goto bad_fork_cleanup_sighand
;
1108 if ((retval
= copy_mm(clone_flags
, p
)))
1109 goto bad_fork_cleanup_signal
;
1110 if ((retval
= copy_keys(clone_flags
, p
)))
1111 goto bad_fork_cleanup_mm
;
1112 if ((retval
= copy_namespace(clone_flags
, p
)))
1113 goto bad_fork_cleanup_keys
;
1114 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1116 goto bad_fork_cleanup_namespace
;
1118 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1120 * Clear TID on mm_release()?
1122 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1123 p
->robust_list
= NULL
;
1124 #ifdef CONFIG_COMPAT
1125 p
->compat_robust_list
= NULL
;
1127 INIT_LIST_HEAD(&p
->pi_state_list
);
1128 p
->pi_state_cache
= NULL
;
1131 * sigaltstack should be cleared when sharing the same VM
1133 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1134 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1137 * Syscall tracing should be turned off in the child regardless
1140 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1141 #ifdef TIF_SYSCALL_EMU
1142 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1145 /* Our parent execution domain becomes current domain
1146 These must match for thread signalling to apply */
1148 p
->parent_exec_id
= p
->self_exec_id
;
1150 /* ok, now we should be set up.. */
1151 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1152 p
->pdeath_signal
= 0;
1156 * Ok, make it visible to the rest of the system.
1157 * We dont wake it up yet.
1159 p
->group_leader
= p
;
1160 INIT_LIST_HEAD(&p
->thread_group
);
1161 INIT_LIST_HEAD(&p
->ptrace_children
);
1162 INIT_LIST_HEAD(&p
->ptrace_list
);
1164 /* Perform scheduler related setup. Assign this task to a CPU. */
1165 sched_fork(p
, clone_flags
);
1167 /* Need tasklist lock for parent etc handling! */
1168 write_lock_irq(&tasklist_lock
);
1171 * The task hasn't been attached yet, so its cpus_allowed mask will
1172 * not be changed, nor will its assigned CPU.
1174 * The cpus_allowed mask of the parent may have changed after it was
1175 * copied first time - so re-copy it here, then check the child's CPU
1176 * to ensure it is on a valid CPU (and if not, just force it back to
1177 * parent's CPU). This avoids alot of nasty races.
1179 p
->cpus_allowed
= current
->cpus_allowed
;
1180 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1181 !cpu_online(task_cpu(p
))))
1182 set_task_cpu(p
, smp_processor_id());
1184 /* CLONE_PARENT re-uses the old parent */
1185 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1186 p
->real_parent
= current
->real_parent
;
1188 p
->real_parent
= current
;
1189 p
->parent
= p
->real_parent
;
1191 spin_lock(¤t
->sighand
->siglock
);
1194 * Process group and session signals need to be delivered to just the
1195 * parent before the fork or both the parent and the child after the
1196 * fork. Restart if a signal comes in before we add the new process to
1197 * it's process group.
1198 * A fatal signal pending means that current will exit, so the new
1199 * thread can't slip out of an OOM kill (or normal SIGKILL).
1201 recalc_sigpending();
1202 if (signal_pending(current
)) {
1203 spin_unlock(¤t
->sighand
->siglock
);
1204 write_unlock_irq(&tasklist_lock
);
1205 retval
= -ERESTARTNOINTR
;
1206 goto bad_fork_cleanup_namespace
;
1209 if (clone_flags
& CLONE_THREAD
) {
1210 p
->group_leader
= current
->group_leader
;
1211 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1213 if (!cputime_eq(current
->signal
->it_virt_expires
,
1215 !cputime_eq(current
->signal
->it_prof_expires
,
1217 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1218 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1219 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1220 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1222 * Have child wake up on its first tick to check
1223 * for process CPU timers.
1225 p
->it_prof_expires
= jiffies_to_cputime(1);
1232 p
->ioprio
= current
->ioprio
;
1234 if (likely(p
->pid
)) {
1236 if (unlikely(p
->ptrace
& PT_PTRACED
))
1237 __ptrace_link(p
, current
->parent
);
1239 if (thread_group_leader(p
)) {
1240 p
->signal
->tty
= current
->signal
->tty
;
1241 p
->signal
->pgrp
= process_group(current
);
1242 p
->signal
->session
= current
->signal
->session
;
1243 attach_pid(p
, PIDTYPE_PGID
, process_group(p
));
1244 attach_pid(p
, PIDTYPE_SID
, p
->signal
->session
);
1246 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1247 __get_cpu_var(process_counts
)++;
1249 attach_pid(p
, PIDTYPE_PID
, p
->pid
);
1254 spin_unlock(¤t
->sighand
->siglock
);
1255 write_unlock_irq(&tasklist_lock
);
1256 proc_fork_connector(p
);
1259 bad_fork_cleanup_namespace
:
1261 bad_fork_cleanup_keys
:
1263 bad_fork_cleanup_mm
:
1266 bad_fork_cleanup_signal
:
1268 bad_fork_cleanup_sighand
:
1269 __cleanup_sighand(p
->sighand
);
1270 bad_fork_cleanup_fs
:
1271 exit_fs(p
); /* blocking */
1272 bad_fork_cleanup_files
:
1273 exit_files(p
); /* blocking */
1274 bad_fork_cleanup_semundo
:
1276 bad_fork_cleanup_audit
:
1278 bad_fork_cleanup_security
:
1279 security_task_free(p
);
1280 bad_fork_cleanup_policy
:
1282 mpol_free(p
->mempolicy
);
1283 bad_fork_cleanup_cpuset
:
1286 bad_fork_cleanup_delays_binfmt
:
1287 delayacct_tsk_free(p
);
1289 module_put(p
->binfmt
->module
);
1290 bad_fork_cleanup_put_domain
:
1291 module_put(task_thread_info(p
)->exec_domain
->module
);
1292 bad_fork_cleanup_count
:
1293 put_group_info(p
->group_info
);
1294 atomic_dec(&p
->user
->processes
);
1299 return ERR_PTR(retval
);
1302 struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1304 memset(regs
, 0, sizeof(struct pt_regs
));
1308 struct task_struct
* __devinit
fork_idle(int cpu
)
1310 struct task_struct
*task
;
1311 struct pt_regs regs
;
1313 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
, NULL
, 0);
1315 return ERR_PTR(-ENOMEM
);
1316 init_idle(task
, cpu
);
1321 static inline int fork_traceflag (unsigned clone_flags
)
1323 if (clone_flags
& CLONE_UNTRACED
)
1325 else if (clone_flags
& CLONE_VFORK
) {
1326 if (current
->ptrace
& PT_TRACE_VFORK
)
1327 return PTRACE_EVENT_VFORK
;
1328 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1329 if (current
->ptrace
& PT_TRACE_CLONE
)
1330 return PTRACE_EVENT_CLONE
;
1331 } else if (current
->ptrace
& PT_TRACE_FORK
)
1332 return PTRACE_EVENT_FORK
;
1338 * Ok, this is the main fork-routine.
1340 * It copies the process, and if successful kick-starts
1341 * it and waits for it to finish using the VM if required.
1343 long do_fork(unsigned long clone_flags
,
1344 unsigned long stack_start
,
1345 struct pt_regs
*regs
,
1346 unsigned long stack_size
,
1347 int __user
*parent_tidptr
,
1348 int __user
*child_tidptr
)
1350 struct task_struct
*p
;
1352 struct pid
*pid
= alloc_pid();
1358 if (unlikely(current
->ptrace
)) {
1359 trace
= fork_traceflag (clone_flags
);
1361 clone_flags
|= CLONE_PTRACE
;
1364 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
, parent_tidptr
, child_tidptr
, nr
);
1366 * Do this prior waking up the new thread - the thread pointer
1367 * might get invalid after that point, if the thread exits quickly.
1370 struct completion vfork
;
1372 if (clone_flags
& CLONE_VFORK
) {
1373 p
->vfork_done
= &vfork
;
1374 init_completion(&vfork
);
1377 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1379 * We'll start up with an immediate SIGSTOP.
1381 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1382 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1385 if (!(clone_flags
& CLONE_STOPPED
))
1386 wake_up_new_task(p
, clone_flags
);
1388 p
->state
= TASK_STOPPED
;
1390 if (unlikely (trace
)) {
1391 current
->ptrace_message
= nr
;
1392 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1395 if (clone_flags
& CLONE_VFORK
) {
1396 wait_for_completion(&vfork
);
1397 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
)) {
1398 current
->ptrace_message
= nr
;
1399 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1409 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1410 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1413 static void sighand_ctor(void *data
, kmem_cache_t
*cachep
, unsigned long flags
)
1415 struct sighand_struct
*sighand
= data
;
1417 if ((flags
& (SLAB_CTOR_VERIFY
| SLAB_CTOR_CONSTRUCTOR
)) ==
1418 SLAB_CTOR_CONSTRUCTOR
)
1419 spin_lock_init(&sighand
->siglock
);
1422 void __init
proc_caches_init(void)
1424 sighand_cachep
= kmem_cache_create("sighand_cache",
1425 sizeof(struct sighand_struct
), 0,
1426 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1427 sighand_ctor
, NULL
);
1428 signal_cachep
= kmem_cache_create("signal_cache",
1429 sizeof(struct signal_struct
), 0,
1430 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1431 files_cachep
= kmem_cache_create("files_cache",
1432 sizeof(struct files_struct
), 0,
1433 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1434 fs_cachep
= kmem_cache_create("fs_cache",
1435 sizeof(struct fs_struct
), 0,
1436 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1437 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1438 sizeof(struct vm_area_struct
), 0,
1439 SLAB_PANIC
, NULL
, NULL
);
1440 mm_cachep
= kmem_cache_create("mm_struct",
1441 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1442 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
, NULL
);
1447 * Check constraints on flags passed to the unshare system call and
1448 * force unsharing of additional process context as appropriate.
1450 static inline void check_unshare_flags(unsigned long *flags_ptr
)
1453 * If unsharing a thread from a thread group, must also
1456 if (*flags_ptr
& CLONE_THREAD
)
1457 *flags_ptr
|= CLONE_VM
;
1460 * If unsharing vm, must also unshare signal handlers.
1462 if (*flags_ptr
& CLONE_VM
)
1463 *flags_ptr
|= CLONE_SIGHAND
;
1466 * If unsharing signal handlers and the task was created
1467 * using CLONE_THREAD, then must unshare the thread
1469 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1470 (atomic_read(¤t
->signal
->count
) > 1))
1471 *flags_ptr
|= CLONE_THREAD
;
1474 * If unsharing namespace, must also unshare filesystem information.
1476 if (*flags_ptr
& CLONE_NEWNS
)
1477 *flags_ptr
|= CLONE_FS
;
1481 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1483 static int unshare_thread(unsigned long unshare_flags
)
1485 if (unshare_flags
& CLONE_THREAD
)
1492 * Unshare the filesystem structure if it is being shared
1494 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1496 struct fs_struct
*fs
= current
->fs
;
1498 if ((unshare_flags
& CLONE_FS
) &&
1499 (fs
&& atomic_read(&fs
->count
) > 1)) {
1500 *new_fsp
= __copy_fs_struct(current
->fs
);
1509 * Unshare the namespace structure if it is being shared
1511 static int unshare_namespace(unsigned long unshare_flags
, struct namespace **new_nsp
, struct fs_struct
*new_fs
)
1513 struct namespace *ns
= current
->namespace;
1515 if ((unshare_flags
& CLONE_NEWNS
) &&
1516 (ns
&& atomic_read(&ns
->count
) > 1)) {
1517 if (!capable(CAP_SYS_ADMIN
))
1520 *new_nsp
= dup_namespace(current
, new_fs
? new_fs
: current
->fs
);
1529 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1532 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1534 struct sighand_struct
*sigh
= current
->sighand
;
1536 if ((unshare_flags
& CLONE_SIGHAND
) &&
1537 (sigh
&& atomic_read(&sigh
->count
) > 1))
1544 * Unshare vm if it is being shared
1546 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1548 struct mm_struct
*mm
= current
->mm
;
1550 if ((unshare_flags
& CLONE_VM
) &&
1551 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1559 * Unshare file descriptor table if it is being shared
1561 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1563 struct files_struct
*fd
= current
->files
;
1566 if ((unshare_flags
& CLONE_FILES
) &&
1567 (fd
&& atomic_read(&fd
->count
) > 1)) {
1568 *new_fdp
= dup_fd(fd
, &error
);
1577 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1580 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1582 if (unshare_flags
& CLONE_SYSVSEM
)
1589 * unshare allows a process to 'unshare' part of the process
1590 * context which was originally shared using clone. copy_*
1591 * functions used by do_fork() cannot be used here directly
1592 * because they modify an inactive task_struct that is being
1593 * constructed. Here we are modifying the current, active,
1596 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1599 struct fs_struct
*fs
, *new_fs
= NULL
;
1600 struct namespace *ns
, *new_ns
= NULL
;
1601 struct sighand_struct
*sigh
, *new_sigh
= NULL
;
1602 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1603 struct files_struct
*fd
, *new_fd
= NULL
;
1604 struct sem_undo_list
*new_ulist
= NULL
;
1606 check_unshare_flags(&unshare_flags
);
1608 /* Return -EINVAL for all unsupported flags */
1610 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1611 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
))
1612 goto bad_unshare_out
;
1614 if ((err
= unshare_thread(unshare_flags
)))
1615 goto bad_unshare_out
;
1616 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1617 goto bad_unshare_cleanup_thread
;
1618 if ((err
= unshare_namespace(unshare_flags
, &new_ns
, new_fs
)))
1619 goto bad_unshare_cleanup_fs
;
1620 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1621 goto bad_unshare_cleanup_ns
;
1622 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1623 goto bad_unshare_cleanup_sigh
;
1624 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1625 goto bad_unshare_cleanup_vm
;
1626 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1627 goto bad_unshare_cleanup_fd
;
1629 if (new_fs
|| new_ns
|| new_sigh
|| new_mm
|| new_fd
|| new_ulist
) {
1635 current
->fs
= new_fs
;
1640 ns
= current
->namespace;
1641 current
->namespace = new_ns
;
1646 sigh
= current
->sighand
;
1647 rcu_assign_pointer(current
->sighand
, new_sigh
);
1653 active_mm
= current
->active_mm
;
1654 current
->mm
= new_mm
;
1655 current
->active_mm
= new_mm
;
1656 activate_mm(active_mm
, new_mm
);
1661 fd
= current
->files
;
1662 current
->files
= new_fd
;
1666 task_unlock(current
);
1669 bad_unshare_cleanup_fd
:
1671 put_files_struct(new_fd
);
1673 bad_unshare_cleanup_vm
:
1677 bad_unshare_cleanup_sigh
:
1679 if (atomic_dec_and_test(&new_sigh
->count
))
1680 kmem_cache_free(sighand_cachep
, new_sigh
);
1682 bad_unshare_cleanup_ns
:
1684 put_namespace(new_ns
);
1686 bad_unshare_cleanup_fs
:
1688 put_fs_struct(new_fs
);
1690 bad_unshare_cleanup_thread
: