gma500: Cursor interface
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / staging / gma500 / cdv_intel_display.c
blob7b97c600eff0c49885b742f14b9f11cf80bdbefd
1 /*
2 * Copyright © 2006-2011 Intel Corporation
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31 #include "cdv_device.h"
34 struct cdv_intel_range_t {
35 int min, max;
38 struct cdv_intel_p2_t {
39 int dot_limit;
40 int p2_slow, p2_fast;
43 struct cdv_intel_clock_t {
44 /* given values */
45 int n;
46 int m1, m2;
47 int p1, p2;
48 /* derived values */
49 int dot;
50 int vco;
51 int m;
52 int p;
55 #define INTEL_P2_NUM 2
57 struct cdv_intel_limit_t {
58 struct cdv_intel_range_t dot, vco, n, m, m1, m2, p, p1;
59 struct cdv_intel_p2_t p2;
62 #define CDV_LIMIT_SINGLE_LVDS_96 0
63 #define CDV_LIMIT_SINGLE_LVDS_100 1
64 #define CDV_LIMIT_DAC_HDMI_27 2
65 #define CDV_LIMIT_DAC_HDMI_96 3
67 static const struct cdv_intel_limit_t cdv_intel_limits[] = {
68 { /* CDV_SIGNLE_LVDS_96MHz */
69 .dot = {.min = 20000, .max = 115500},
70 .vco = {.min = 1800000, .max = 3600000},
71 .n = {.min = 2, .max = 6},
72 .m = {.min = 60, .max = 160},
73 .m1 = {.min = 0, .max = 0},
74 .m2 = {.min = 58, .max = 158},
75 .p = {.min = 28, .max = 140},
76 .p1 = {.min = 2, .max = 10},
77 .p2 = {.dot_limit = 200000,
78 .p2_slow = 14, .p2_fast = 14},
80 { /* CDV_SINGLE_LVDS_100MHz */
81 .dot = {.min = 20000, .max = 115500},
82 .vco = {.min = 1800000, .max = 3600000},
83 .n = {.min = 2, .max = 6},
84 .m = {.min = 60, .max = 160},
85 .m1 = {.min = 0, .max = 0},
86 .m2 = {.min = 58, .max = 158},
87 .p = {.min = 28, .max = 140},
88 .p1 = {.min = 2, .max = 10},
89 /* The single-channel range is 25-112Mhz, and dual-channel
90 * is 80-224Mhz. Prefer single channel as much as possible.
92 .p2 = {.dot_limit = 200000, .p2_slow = 14, .p2_fast = 14},
94 { /* CDV_DAC_HDMI_27MHz */
95 .dot = {.min = 20000, .max = 400000},
96 .vco = {.min = 1809000, .max = 3564000},
97 .n = {.min = 1, .max = 1},
98 .m = {.min = 67, .max = 132},
99 .m1 = {.min = 0, .max = 0},
100 .m2 = {.min = 65, .max = 130},
101 .p = {.min = 5, .max = 90},
102 .p1 = {.min = 1, .max = 9},
103 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
105 { /* CDV_DAC_HDMI_96MHz */
106 .dot = {.min = 20000, .max = 400000},
107 .vco = {.min = 1800000, .max = 3600000},
108 .n = {.min = 2, .max = 6},
109 .m = {.min = 60, .max = 160},
110 .m1 = {.min = 0, .max = 0},
111 .m2 = {.min = 58, .max = 158},
112 .p = {.min = 5, .max = 100},
113 .p1 = {.min = 1, .max = 10},
114 .p2 = {.dot_limit = 225000, .p2_slow = 10, .p2_fast = 5},
118 #define _wait_for(COND, MS, W) ({ \
119 unsigned long timeout__ = jiffies + msecs_to_jiffies(MS); \
120 int ret__ = 0; \
121 while (!(COND)) { \
122 if (time_after(jiffies, timeout__)) { \
123 ret__ = -ETIMEDOUT; \
124 break; \
126 if (W && !in_dbg_master()) \
127 msleep(W); \
129 ret__; \
132 #define wait_for(COND, MS) _wait_for(COND, MS, 1)
135 static int cdv_sb_read(struct drm_device *dev, u32 reg, u32 *val)
137 int ret;
139 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
140 if (ret) {
141 DRM_ERROR("timeout waiting for SB to idle before read\n");
142 return ret;
145 REG_WRITE(SB_ADDR, reg);
146 REG_WRITE(SB_PCKT,
147 SET_FIELD(SB_OPCODE_READ, SB_OPCODE) |
148 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
149 SET_FIELD(0xf, SB_BYTE_ENABLE));
151 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
152 if (ret) {
153 DRM_ERROR("timeout waiting for SB to idle after read\n");
154 return ret;
157 *val = REG_READ(SB_DATA);
159 return 0;
162 static int cdv_sb_write(struct drm_device *dev, u32 reg, u32 val)
164 int ret;
165 static bool dpio_debug = true;
166 u32 temp;
168 if (dpio_debug) {
169 if (cdv_sb_read(dev, reg, &temp) == 0)
170 DRM_DEBUG_KMS("0x%08x: 0x%08x (before)\n", reg, temp);
171 DRM_DEBUG_KMS("0x%08x: 0x%08x\n", reg, val);
174 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
175 if (ret) {
176 DRM_ERROR("timeout waiting for SB to idle before write\n");
177 return ret;
180 REG_WRITE(SB_ADDR, reg);
181 REG_WRITE(SB_DATA, val);
182 REG_WRITE(SB_PCKT,
183 SET_FIELD(SB_OPCODE_WRITE, SB_OPCODE) |
184 SET_FIELD(SB_DEST_DPLL, SB_DEST) |
185 SET_FIELD(0xf, SB_BYTE_ENABLE));
187 ret = wait_for((REG_READ(SB_PCKT) & SB_BUSY) == 0, 1000);
188 if (ret) {
189 DRM_ERROR("timeout waiting for SB to idle after write\n");
190 return ret;
193 if (dpio_debug) {
194 if (cdv_sb_read(dev, reg, &temp) == 0)
195 DRM_DEBUG_KMS("0x%08x: 0x%08x (after)\n", reg, temp);
198 return 0;
201 /* Reset the DPIO configuration register. The BIOS does this at every
202 * mode set.
204 static void cdv_sb_reset(struct drm_device *dev)
207 REG_WRITE(DPIO_CFG, 0);
208 REG_READ(DPIO_CFG);
209 REG_WRITE(DPIO_CFG, DPIO_MODE_SELECT_0 | DPIO_CMN_RESET_N);
212 /* Unlike most Intel display engines, on Cedarview the DPLL registers
213 * are behind this sideband bus. They must be programmed while the
214 * DPLL reference clock is on in the DPLL control register, but before
215 * the DPLL is enabled in the DPLL control register.
217 static int
218 cdv_dpll_set_clock_cdv(struct drm_device *dev, struct drm_crtc *crtc,
219 struct cdv_intel_clock_t *clock)
221 struct psb_intel_crtc *psb_crtc =
222 to_psb_intel_crtc(crtc);
223 int pipe = psb_crtc->pipe;
224 u32 m, n_vco, p;
225 int ret = 0;
226 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
227 u32 ref_value;
229 cdv_sb_reset(dev);
231 if ((REG_READ(dpll_reg) & DPLL_SYNCLOCK_ENABLE) == 0) {
232 DRM_ERROR("Attempting to set DPLL with refclk disabled\n");
233 return -EBUSY;
236 /* Follow the BIOS and write the REF/SFR Register. Hardcoded value */
237 ref_value = 0x68A701;
239 cdv_sb_write(dev, SB_REF_SFR(pipe), ref_value);
241 /* We don't know what the other fields of these regs are, so
242 * leave them in place.
244 ret = cdv_sb_read(dev, SB_M(pipe), &m);
245 if (ret)
246 return ret;
247 m &= ~SB_M_DIVIDER_MASK;
248 m |= ((clock->m2) << SB_M_DIVIDER_SHIFT);
249 ret = cdv_sb_write(dev, SB_M(pipe), m);
250 if (ret)
251 return ret;
253 ret = cdv_sb_read(dev, SB_N_VCO(pipe), &n_vco);
254 if (ret)
255 return ret;
257 /* Follow the BIOS to program the N_DIVIDER REG */
258 n_vco &= 0xFFFF;
259 n_vco |= 0x107;
260 n_vco &= ~(SB_N_VCO_SEL_MASK |
261 SB_N_DIVIDER_MASK |
262 SB_N_CB_TUNE_MASK);
264 n_vco |= ((clock->n) << SB_N_DIVIDER_SHIFT);
266 if (clock->vco < 2250000) {
267 n_vco |= (2 << SB_N_CB_TUNE_SHIFT);
268 n_vco |= (0 << SB_N_VCO_SEL_SHIFT);
269 } else if (clock->vco < 2750000) {
270 n_vco |= (1 << SB_N_CB_TUNE_SHIFT);
271 n_vco |= (1 << SB_N_VCO_SEL_SHIFT);
272 } else if (clock->vco < 3300000) {
273 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
274 n_vco |= (2 << SB_N_VCO_SEL_SHIFT);
275 } else {
276 n_vco |= (0 << SB_N_CB_TUNE_SHIFT);
277 n_vco |= (3 << SB_N_VCO_SEL_SHIFT);
280 ret = cdv_sb_write(dev, SB_N_VCO(pipe), n_vco);
281 if (ret)
282 return ret;
284 ret = cdv_sb_read(dev, SB_P(pipe), &p);
285 if (ret)
286 return ret;
287 p &= ~(SB_P2_DIVIDER_MASK | SB_P1_DIVIDER_MASK);
288 p |= SET_FIELD(clock->p1, SB_P1_DIVIDER);
289 switch (clock->p2) {
290 case 5:
291 p |= SET_FIELD(SB_P2_5, SB_P2_DIVIDER);
292 break;
293 case 10:
294 p |= SET_FIELD(SB_P2_10, SB_P2_DIVIDER);
295 break;
296 case 14:
297 p |= SET_FIELD(SB_P2_14, SB_P2_DIVIDER);
298 break;
299 case 7:
300 p |= SET_FIELD(SB_P2_7, SB_P2_DIVIDER);
301 break;
302 default:
303 DRM_ERROR("Bad P2 clock: %d\n", clock->p2);
304 return -EINVAL;
306 ret = cdv_sb_write(dev, SB_P(pipe), p);
307 if (ret)
308 return ret;
310 /* always Program the Lane Register for the Pipe A*/
311 if (pipe == 0) {
312 /* Program the Lane0/1 for HDMI B */
313 u32 lane_reg, lane_value;
315 lane_reg = PSB_LANE0;
316 cdv_sb_read(dev, lane_reg, &lane_value);
317 lane_value &= ~(LANE_PLL_MASK);
318 lane_value |= LANE_PLL_ENABLE;
319 cdv_sb_write(dev, lane_reg, lane_value);
321 lane_reg = PSB_LANE1;
322 cdv_sb_read(dev, lane_reg, &lane_value);
323 lane_value &= ~(LANE_PLL_MASK);
324 lane_value |= LANE_PLL_ENABLE;
325 cdv_sb_write(dev, lane_reg, lane_value);
327 /* Program the Lane2/3 for HDMI C */
328 lane_reg = PSB_LANE2;
329 cdv_sb_read(dev, lane_reg, &lane_value);
330 lane_value &= ~(LANE_PLL_MASK);
331 lane_value |= LANE_PLL_ENABLE;
332 cdv_sb_write(dev, lane_reg, lane_value);
334 lane_reg = PSB_LANE3;
335 cdv_sb_read(dev, lane_reg, &lane_value);
336 lane_value &= ~(LANE_PLL_MASK);
337 lane_value |= LANE_PLL_ENABLE;
338 cdv_sb_write(dev, lane_reg, lane_value);
341 return 0;
345 * Returns whether any output on the specified pipe is of the specified type
347 bool cdv_intel_pipe_has_type(struct drm_crtc *crtc, int type)
349 struct drm_device *dev = crtc->dev;
350 struct drm_mode_config *mode_config = &dev->mode_config;
351 struct drm_connector *l_entry;
353 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
354 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
355 struct psb_intel_output *psb_intel_output =
356 to_psb_intel_output(l_entry);
357 if (psb_intel_output->type == type)
358 return true;
361 return false;
364 static const struct cdv_intel_limit_t *cdv_intel_limit(struct drm_crtc *crtc,
365 int refclk)
367 const struct cdv_intel_limit_t *limit;
368 if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
370 * Now only single-channel LVDS is supported on CDV. If it is
371 * incorrect, please add the dual-channel LVDS.
373 if (refclk == 96000)
374 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_96];
375 else
376 limit = &cdv_intel_limits[CDV_LIMIT_SINGLE_LVDS_100];
377 } else {
378 if (refclk == 27000)
379 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_27];
380 else
381 limit = &cdv_intel_limits[CDV_LIMIT_DAC_HDMI_96];
383 return limit;
386 /* m1 is reserved as 0 in CDV, n is a ring counter */
387 static void cdv_intel_clock(struct drm_device *dev,
388 int refclk, struct cdv_intel_clock_t *clock)
390 clock->m = clock->m2 + 2;
391 clock->p = clock->p1 * clock->p2;
392 clock->vco = (refclk * clock->m) / clock->n;
393 clock->dot = clock->vco / clock->p;
397 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
398 static bool cdv_intel_PLL_is_valid(struct drm_crtc *crtc,
399 const struct cdv_intel_limit_t *limit,
400 struct cdv_intel_clock_t *clock)
402 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
403 INTELPllInvalid("p1 out of range\n");
404 if (clock->p < limit->p.min || limit->p.max < clock->p)
405 INTELPllInvalid("p out of range\n");
406 /* unnecessary to check the range of m(m1/M2)/n again */
407 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
408 INTELPllInvalid("vco out of range\n");
409 /* XXX: We may need to be checking "Dot clock"
410 * depending on the multiplier, connector, etc.,
411 * rather than just a single range.
413 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
414 INTELPllInvalid("dot out of range\n");
416 return true;
419 static bool cdv_intel_find_best_PLL(struct drm_crtc *crtc, int target,
420 int refclk,
421 struct cdv_intel_clock_t *best_clock)
423 struct drm_device *dev = crtc->dev;
424 struct cdv_intel_clock_t clock;
425 const struct cdv_intel_limit_t *limit = cdv_intel_limit(crtc, refclk);
426 int err = target;
429 if (cdv_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
430 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
432 * For LVDS, if the panel is on, just rely on its current
433 * settings for dual-channel. We haven't figured out how to
434 * reliably set up different single/dual channel state, if we
435 * even can.
437 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
438 LVDS_CLKB_POWER_UP)
439 clock.p2 = limit->p2.p2_fast;
440 else
441 clock.p2 = limit->p2.p2_slow;
442 } else {
443 if (target < limit->p2.dot_limit)
444 clock.p2 = limit->p2.p2_slow;
445 else
446 clock.p2 = limit->p2.p2_fast;
449 memset(best_clock, 0, sizeof(*best_clock));
450 clock.m1 = 0;
451 /* m1 is reserved as 0 in CDV, n is a ring counter.
452 So skip the m1 loop */
453 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
454 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max;
455 clock.m2++) {
456 for (clock.p1 = limit->p1.min;
457 clock.p1 <= limit->p1.max;
458 clock.p1++) {
459 int this_err;
461 cdv_intel_clock(dev, refclk, &clock);
463 if (!cdv_intel_PLL_is_valid(crtc,
464 limit, &clock))
465 continue;
467 this_err = abs(clock.dot - target);
468 if (this_err < err) {
469 *best_clock = clock;
470 err = this_err;
476 return err != target;
479 int cdv_intel_pipe_set_base(struct drm_crtc *crtc,
480 int x, int y, struct drm_framebuffer *old_fb)
482 struct drm_device *dev = crtc->dev;
483 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
484 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
485 int pipe = psb_intel_crtc->pipe;
486 unsigned long start, offset;
487 int dspbase = (pipe == 0 ? DSPABASE : DSPBBASE);
488 int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
489 int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
490 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
491 u32 dspcntr;
492 int ret = 0;
494 if (!gma_power_begin(dev, true))
495 return 0;
497 /* no fb bound */
498 if (!crtc->fb) {
499 dev_err(dev->dev, "No FB bound\n");
500 goto psb_intel_pipe_cleaner;
504 /* We are displaying this buffer, make sure it is actually loaded
505 into the GTT */
506 ret = psb_gtt_pin(psbfb->gtt);
507 if (ret < 0)
508 goto psb_intel_pipe_set_base_exit;
509 start = psbfb->gtt->offset;
510 offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
512 REG_WRITE(dspstride, crtc->fb->pitch);
514 dspcntr = REG_READ(dspcntr_reg);
515 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
517 switch (crtc->fb->bits_per_pixel) {
518 case 8:
519 dspcntr |= DISPPLANE_8BPP;
520 break;
521 case 16:
522 if (crtc->fb->depth == 15)
523 dspcntr |= DISPPLANE_15_16BPP;
524 else
525 dspcntr |= DISPPLANE_16BPP;
526 break;
527 case 24:
528 case 32:
529 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
530 break;
531 default:
532 dev_err(dev->dev, "Unknown color depth\n");
533 ret = -EINVAL;
534 goto psb_intel_pipe_set_base_exit;
536 REG_WRITE(dspcntr_reg, dspcntr);
538 dev_dbg(dev->dev,
539 "Writing base %08lX %08lX %d %d\n", start, offset, x, y);
541 REG_WRITE(dspbase, offset);
542 REG_READ(dspbase);
543 REG_WRITE(dspsurf, start);
544 REG_READ(dspsurf);
546 psb_intel_pipe_cleaner:
547 /* If there was a previous display we can now unpin it */
548 if (old_fb)
549 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
551 psb_intel_pipe_set_base_exit:
552 gma_power_end(dev);
553 return ret;
557 * Sets the power management mode of the pipe and plane.
559 * This code should probably grow support for turning the cursor off and back
560 * on appropriately at the same time as we're turning the pipe off/on.
562 static void cdv_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
564 struct drm_device *dev = crtc->dev;
565 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
566 int pipe = psb_intel_crtc->pipe;
567 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
568 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
569 int dspbase_reg = (pipe == 0) ? DSPABASE : DSPBBASE;
570 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
571 u32 temp;
572 bool enabled;
574 /* XXX: When our outputs are all unaware of DPMS modes other than off
575 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
577 switch (mode) {
578 case DRM_MODE_DPMS_ON:
579 case DRM_MODE_DPMS_STANDBY:
580 case DRM_MODE_DPMS_SUSPEND:
581 /* Enable the DPLL */
582 temp = REG_READ(dpll_reg);
583 if ((temp & DPLL_VCO_ENABLE) == 0) {
584 REG_WRITE(dpll_reg, temp);
585 REG_READ(dpll_reg);
586 /* Wait for the clocks to stabilize. */
587 udelay(150);
588 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
589 REG_READ(dpll_reg);
590 /* Wait for the clocks to stabilize. */
591 udelay(150);
592 REG_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
593 REG_READ(dpll_reg);
594 /* Wait for the clocks to stabilize. */
595 udelay(150);
598 /* Jim Bish - switch plan and pipe per scott */
599 /* Enable the plane */
600 temp = REG_READ(dspcntr_reg);
601 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
602 REG_WRITE(dspcntr_reg,
603 temp | DISPLAY_PLANE_ENABLE);
604 /* Flush the plane changes */
605 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
608 udelay(150);
610 /* Enable the pipe */
611 temp = REG_READ(pipeconf_reg);
612 if ((temp & PIPEACONF_ENABLE) == 0)
613 REG_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
615 psb_intel_crtc_load_lut(crtc);
617 /* Give the overlay scaler a chance to enable
618 * if it's on this pipe */
619 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
620 break;
621 case DRM_MODE_DPMS_OFF:
622 /* Give the overlay scaler a chance to disable
623 * if it's on this pipe */
624 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
626 /* Disable the VGA plane that we never use */
627 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
629 /* Jim Bish - changed pipe/plane here as well. */
631 /* Wait for vblank for the disable to take effect */
632 cdv_intel_wait_for_vblank(dev);
634 /* Next, disable display pipes */
635 temp = REG_READ(pipeconf_reg);
636 if ((temp & PIPEACONF_ENABLE) != 0) {
637 REG_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
638 REG_READ(pipeconf_reg);
641 /* Wait for vblank for the disable to take effect. */
642 cdv_intel_wait_for_vblank(dev);
644 udelay(150);
646 /* Disable display plane */
647 temp = REG_READ(dspcntr_reg);
648 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
649 REG_WRITE(dspcntr_reg,
650 temp & ~DISPLAY_PLANE_ENABLE);
651 /* Flush the plane changes */
652 REG_WRITE(dspbase_reg, REG_READ(dspbase_reg));
653 REG_READ(dspbase_reg);
656 temp = REG_READ(dpll_reg);
657 if ((temp & DPLL_VCO_ENABLE) != 0) {
658 REG_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
659 REG_READ(dpll_reg);
662 /* Wait for the clocks to turn off. */
663 udelay(150);
664 break;
666 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
667 /*Set FIFO Watermarks*/
668 REG_WRITE(DSPARB, 0x3F3E);
671 static void cdv_intel_crtc_prepare(struct drm_crtc *crtc)
673 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
674 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
677 static void cdv_intel_crtc_commit(struct drm_crtc *crtc)
679 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
680 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
683 void cdv_intel_encoder_prepare(struct drm_encoder *encoder)
685 struct drm_encoder_helper_funcs *encoder_funcs =
686 encoder->helper_private;
687 /* lvds has its own version of prepare see cdv_intel_lvds_prepare */
688 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
691 void cdv_intel_encoder_commit(struct drm_encoder *encoder)
693 struct drm_encoder_helper_funcs *encoder_funcs =
694 encoder->helper_private;
695 /* lvds has its own version of commit see cdv_intel_lvds_commit */
696 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
699 static bool cdv_intel_crtc_mode_fixup(struct drm_crtc *crtc,
700 struct drm_display_mode *mode,
701 struct drm_display_mode *adjusted_mode)
703 return true;
708 * Return the pipe currently connected to the panel fitter,
709 * or -1 if the panel fitter is not present or not in use
711 static int cdv_intel_panel_fitter_pipe(struct drm_device *dev)
713 u32 pfit_control;
715 pfit_control = REG_READ(PFIT_CONTROL);
717 /* See if the panel fitter is in use */
718 if ((pfit_control & PFIT_ENABLE) == 0)
719 return -1;
720 return (pfit_control >> 29) & 0x3;
723 static int cdv_intel_crtc_mode_set(struct drm_crtc *crtc,
724 struct drm_display_mode *mode,
725 struct drm_display_mode *adjusted_mode,
726 int x, int y,
727 struct drm_framebuffer *old_fb)
729 struct drm_device *dev = crtc->dev;
730 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
731 int pipe = psb_intel_crtc->pipe;
732 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
733 int dpll_md_reg = (psb_intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
734 int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
735 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
736 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
737 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
738 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
739 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
740 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
741 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
742 int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
743 int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
744 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
745 int refclk;
746 struct cdv_intel_clock_t clock;
747 u32 dpll = 0, dspcntr, pipeconf;
748 bool ok, is_sdvo = false, is_dvo = false;
749 bool is_crt = false, is_lvds = false, is_tv = false;
750 bool is_hdmi = false;
751 struct drm_mode_config *mode_config = &dev->mode_config;
752 struct drm_connector *connector;
754 list_for_each_entry(connector, &mode_config->connector_list, head) {
755 struct psb_intel_output *psb_intel_output =
756 to_psb_intel_output(connector);
758 if (!connector->encoder
759 || connector->encoder->crtc != crtc)
760 continue;
762 switch (psb_intel_output->type) {
763 case INTEL_OUTPUT_LVDS:
764 is_lvds = true;
765 break;
766 case INTEL_OUTPUT_SDVO:
767 is_sdvo = true;
768 break;
769 case INTEL_OUTPUT_DVO:
770 is_dvo = true;
771 break;
772 case INTEL_OUTPUT_TVOUT:
773 is_tv = true;
774 break;
775 case INTEL_OUTPUT_ANALOG:
776 is_crt = true;
777 break;
778 case INTEL_OUTPUT_HDMI:
779 is_hdmi = true;
780 break;
784 refclk = 96000;
786 /* Hack selection about ref clk for CRT */
787 /* Select 27MHz as the reference clk for HDMI */
788 if (is_crt || is_hdmi)
789 refclk = 27000;
791 drm_mode_debug_printmodeline(adjusted_mode);
793 ok = cdv_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
794 &clock);
795 if (!ok) {
796 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
797 return 0;
800 dpll = DPLL_VGA_MODE_DIS;
801 if (is_tv) {
802 /* XXX: just matching BIOS for now */
803 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
804 dpll |= 3;
806 dpll |= PLL_REF_INPUT_DREFCLK;
808 dpll |= DPLL_SYNCLOCK_ENABLE;
809 dpll |= DPLL_VGA_MODE_DIS;
810 if (is_lvds)
811 dpll |= DPLLB_MODE_LVDS;
812 else
813 dpll |= DPLLB_MODE_DAC_SERIAL;
814 /* dpll |= (2 << 11); */
816 /* setup pipeconf */
817 pipeconf = REG_READ(pipeconf_reg);
819 /* Set up the display plane register */
820 dspcntr = DISPPLANE_GAMMA_ENABLE;
822 if (pipe == 0)
823 dspcntr |= DISPPLANE_SEL_PIPE_A;
824 else
825 dspcntr |= DISPPLANE_SEL_PIPE_B;
827 dspcntr |= DISPLAY_PLANE_ENABLE;
828 pipeconf |= PIPEACONF_ENABLE;
830 REG_WRITE(dpll_reg, dpll | DPLL_VGA_MODE_DIS | DPLL_SYNCLOCK_ENABLE);
831 REG_READ(dpll_reg);
833 cdv_dpll_set_clock_cdv(dev, crtc, &clock);
835 udelay(150);
838 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
839 * This is an exception to the general rule that mode_set doesn't turn
840 * things on.
842 if (is_lvds) {
843 u32 lvds = REG_READ(LVDS);
845 lvds |=
846 LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP |
847 LVDS_PIPEB_SELECT;
848 /* Set the B0-B3 data pairs corresponding to
849 * whether we're going to
850 * set the DPLLs for dual-channel mode or not.
852 if (clock.p2 == 7)
853 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
854 else
855 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
857 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
858 * appropriately here, but we need to look more
859 * thoroughly into how panels behave in the two modes.
862 REG_WRITE(LVDS, lvds);
863 REG_READ(LVDS);
866 dpll |= DPLL_VCO_ENABLE;
868 /* Disable the panel fitter if it was on our pipe */
869 if (cdv_intel_panel_fitter_pipe(dev) == pipe)
870 REG_WRITE(PFIT_CONTROL, 0);
872 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
873 drm_mode_debug_printmodeline(mode);
875 REG_WRITE(dpll_reg,
876 (REG_READ(dpll_reg) & ~DPLL_LOCK) | DPLL_VCO_ENABLE);
877 REG_READ(dpll_reg);
878 /* Wait for the clocks to stabilize. */
879 udelay(150); /* 42 usec w/o calibration, 110 with. rounded up. */
881 if (!(REG_READ(dpll_reg) & DPLL_LOCK)) {
882 dev_err(dev->dev, "Failed to get DPLL lock\n");
883 return -EBUSY;
887 int sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
888 REG_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) | ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
891 REG_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
892 ((adjusted_mode->crtc_htotal - 1) << 16));
893 REG_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
894 ((adjusted_mode->crtc_hblank_end - 1) << 16));
895 REG_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
896 ((adjusted_mode->crtc_hsync_end - 1) << 16));
897 REG_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
898 ((adjusted_mode->crtc_vtotal - 1) << 16));
899 REG_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
900 ((adjusted_mode->crtc_vblank_end - 1) << 16));
901 REG_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
902 ((adjusted_mode->crtc_vsync_end - 1) << 16));
903 /* pipesrc and dspsize control the size that is scaled from,
904 * which should always be the user's requested size.
906 REG_WRITE(dspsize_reg,
907 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
908 REG_WRITE(dsppos_reg, 0);
909 REG_WRITE(pipesrc_reg,
910 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
911 REG_WRITE(pipeconf_reg, pipeconf);
912 REG_READ(pipeconf_reg);
914 cdv_intel_wait_for_vblank(dev);
916 REG_WRITE(dspcntr_reg, dspcntr);
918 /* Flush the plane changes */
920 struct drm_crtc_helper_funcs *crtc_funcs =
921 crtc->helper_private;
922 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
925 cdv_intel_wait_for_vblank(dev);
927 return 0;
930 /** Loads the palette/gamma unit for the CRTC with the prepared values */
931 void cdv_intel_crtc_load_lut(struct drm_crtc *crtc)
933 struct drm_device *dev = crtc->dev;
934 struct drm_psb_private *dev_priv =
935 (struct drm_psb_private *)dev->dev_private;
936 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
937 int palreg = PALETTE_A;
938 int i;
940 /* The clocks have to be on to load the palette. */
941 if (!crtc->enabled)
942 return;
944 switch (psb_intel_crtc->pipe) {
945 case 0:
946 break;
947 case 1:
948 palreg = PALETTE_B;
949 break;
950 case 2:
951 palreg = PALETTE_C;
952 break;
953 default:
954 dev_err(dev->dev, "Illegal Pipe Number.\n");
955 return;
958 if (gma_power_begin(dev, false)) {
959 for (i = 0; i < 256; i++) {
960 REG_WRITE(palreg + 4 * i,
961 ((psb_intel_crtc->lut_r[i] +
962 psb_intel_crtc->lut_adj[i]) << 16) |
963 ((psb_intel_crtc->lut_g[i] +
964 psb_intel_crtc->lut_adj[i]) << 8) |
965 (psb_intel_crtc->lut_b[i] +
966 psb_intel_crtc->lut_adj[i]));
968 gma_power_end(dev);
969 } else {
970 for (i = 0; i < 256; i++) {
971 dev_priv->save_palette_a[i] =
972 ((psb_intel_crtc->lut_r[i] +
973 psb_intel_crtc->lut_adj[i]) << 16) |
974 ((psb_intel_crtc->lut_g[i] +
975 psb_intel_crtc->lut_adj[i]) << 8) |
976 (psb_intel_crtc->lut_b[i] +
977 psb_intel_crtc->lut_adj[i]);
984 * Save HW states of giving crtc
986 static void cdv_intel_crtc_save(struct drm_crtc *crtc)
988 struct drm_device *dev = crtc->dev;
989 /* struct drm_psb_private *dev_priv =
990 (struct drm_psb_private *)dev->dev_private; */
991 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
992 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
993 int pipeA = (psb_intel_crtc->pipe == 0);
994 uint32_t paletteReg;
995 int i;
997 if (!crtc_state) {
998 dev_dbg(dev->dev, "No CRTC state found\n");
999 return;
1002 crtc_state->saveDSPCNTR = REG_READ(pipeA ? DSPACNTR : DSPBCNTR);
1003 crtc_state->savePIPECONF = REG_READ(pipeA ? PIPEACONF : PIPEBCONF);
1004 crtc_state->savePIPESRC = REG_READ(pipeA ? PIPEASRC : PIPEBSRC);
1005 crtc_state->saveFP0 = REG_READ(pipeA ? FPA0 : FPB0);
1006 crtc_state->saveFP1 = REG_READ(pipeA ? FPA1 : FPB1);
1007 crtc_state->saveDPLL = REG_READ(pipeA ? DPLL_A : DPLL_B);
1008 crtc_state->saveHTOTAL = REG_READ(pipeA ? HTOTAL_A : HTOTAL_B);
1009 crtc_state->saveHBLANK = REG_READ(pipeA ? HBLANK_A : HBLANK_B);
1010 crtc_state->saveHSYNC = REG_READ(pipeA ? HSYNC_A : HSYNC_B);
1011 crtc_state->saveVTOTAL = REG_READ(pipeA ? VTOTAL_A : VTOTAL_B);
1012 crtc_state->saveVBLANK = REG_READ(pipeA ? VBLANK_A : VBLANK_B);
1013 crtc_state->saveVSYNC = REG_READ(pipeA ? VSYNC_A : VSYNC_B);
1014 crtc_state->saveDSPSTRIDE = REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE);
1016 /*NOTE: DSPSIZE DSPPOS only for psb*/
1017 crtc_state->saveDSPSIZE = REG_READ(pipeA ? DSPASIZE : DSPBSIZE);
1018 crtc_state->saveDSPPOS = REG_READ(pipeA ? DSPAPOS : DSPBPOS);
1020 crtc_state->saveDSPBASE = REG_READ(pipeA ? DSPABASE : DSPBBASE);
1022 DRM_DEBUG("(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1023 crtc_state->saveDSPCNTR,
1024 crtc_state->savePIPECONF,
1025 crtc_state->savePIPESRC,
1026 crtc_state->saveFP0,
1027 crtc_state->saveFP1,
1028 crtc_state->saveDPLL,
1029 crtc_state->saveHTOTAL,
1030 crtc_state->saveHBLANK,
1031 crtc_state->saveHSYNC,
1032 crtc_state->saveVTOTAL,
1033 crtc_state->saveVBLANK,
1034 crtc_state->saveVSYNC,
1035 crtc_state->saveDSPSTRIDE,
1036 crtc_state->saveDSPSIZE,
1037 crtc_state->saveDSPPOS,
1038 crtc_state->saveDSPBASE
1041 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
1042 for (i = 0; i < 256; ++i)
1043 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
1047 * Restore HW states of giving crtc
1049 static void cdv_intel_crtc_restore(struct drm_crtc *crtc)
1051 struct drm_device *dev = crtc->dev;
1052 /* struct drm_psb_private * dev_priv =
1053 (struct drm_psb_private *)dev->dev_private; */
1054 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1055 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
1056 /* struct drm_crtc_helper_funcs * crtc_funcs = crtc->helper_private; */
1057 int pipeA = (psb_intel_crtc->pipe == 0);
1058 uint32_t paletteReg;
1059 int i;
1061 if (!crtc_state) {
1062 dev_dbg(dev->dev, "No crtc state\n");
1063 return;
1066 DRM_DEBUG(
1067 "current:(%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1068 REG_READ(pipeA ? DSPACNTR : DSPBCNTR),
1069 REG_READ(pipeA ? PIPEACONF : PIPEBCONF),
1070 REG_READ(pipeA ? PIPEASRC : PIPEBSRC),
1071 REG_READ(pipeA ? FPA0 : FPB0),
1072 REG_READ(pipeA ? FPA1 : FPB1),
1073 REG_READ(pipeA ? DPLL_A : DPLL_B),
1074 REG_READ(pipeA ? HTOTAL_A : HTOTAL_B),
1075 REG_READ(pipeA ? HBLANK_A : HBLANK_B),
1076 REG_READ(pipeA ? HSYNC_A : HSYNC_B),
1077 REG_READ(pipeA ? VTOTAL_A : VTOTAL_B),
1078 REG_READ(pipeA ? VBLANK_A : VBLANK_B),
1079 REG_READ(pipeA ? VSYNC_A : VSYNC_B),
1080 REG_READ(pipeA ? DSPASTRIDE : DSPBSTRIDE),
1081 REG_READ(pipeA ? DSPASIZE : DSPBSIZE),
1082 REG_READ(pipeA ? DSPAPOS : DSPBPOS),
1083 REG_READ(pipeA ? DSPABASE : DSPBBASE)
1086 DRM_DEBUG(
1087 "saved: (%x %x %x %x %x %x %x %x %x %x %x %x %x %x %x %x)\n",
1088 crtc_state->saveDSPCNTR,
1089 crtc_state->savePIPECONF,
1090 crtc_state->savePIPESRC,
1091 crtc_state->saveFP0,
1092 crtc_state->saveFP1,
1093 crtc_state->saveDPLL,
1094 crtc_state->saveHTOTAL,
1095 crtc_state->saveHBLANK,
1096 crtc_state->saveHSYNC,
1097 crtc_state->saveVTOTAL,
1098 crtc_state->saveVBLANK,
1099 crtc_state->saveVSYNC,
1100 crtc_state->saveDSPSTRIDE,
1101 crtc_state->saveDSPSIZE,
1102 crtc_state->saveDSPPOS,
1103 crtc_state->saveDSPBASE
1107 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
1108 REG_WRITE(pipeA ? DPLL_A : DPLL_B,
1109 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
1110 REG_READ(pipeA ? DPLL_A : DPLL_B);
1111 DRM_DEBUG("write dpll: %x\n",
1112 REG_READ(pipeA ? DPLL_A : DPLL_B));
1113 udelay(150);
1116 REG_WRITE(pipeA ? FPA0 : FPB0, crtc_state->saveFP0);
1117 REG_READ(pipeA ? FPA0 : FPB0);
1119 REG_WRITE(pipeA ? FPA1 : FPB1, crtc_state->saveFP1);
1120 REG_READ(pipeA ? FPA1 : FPB1);
1122 REG_WRITE(pipeA ? DPLL_A : DPLL_B, crtc_state->saveDPLL);
1123 REG_READ(pipeA ? DPLL_A : DPLL_B);
1124 udelay(150);
1126 REG_WRITE(pipeA ? HTOTAL_A : HTOTAL_B, crtc_state->saveHTOTAL);
1127 REG_WRITE(pipeA ? HBLANK_A : HBLANK_B, crtc_state->saveHBLANK);
1128 REG_WRITE(pipeA ? HSYNC_A : HSYNC_B, crtc_state->saveHSYNC);
1129 REG_WRITE(pipeA ? VTOTAL_A : VTOTAL_B, crtc_state->saveVTOTAL);
1130 REG_WRITE(pipeA ? VBLANK_A : VBLANK_B, crtc_state->saveVBLANK);
1131 REG_WRITE(pipeA ? VSYNC_A : VSYNC_B, crtc_state->saveVSYNC);
1132 REG_WRITE(pipeA ? DSPASTRIDE : DSPBSTRIDE, crtc_state->saveDSPSTRIDE);
1134 REG_WRITE(pipeA ? DSPASIZE : DSPBSIZE, crtc_state->saveDSPSIZE);
1135 REG_WRITE(pipeA ? DSPAPOS : DSPBPOS, crtc_state->saveDSPPOS);
1137 REG_WRITE(pipeA ? PIPEASRC : PIPEBSRC, crtc_state->savePIPESRC);
1138 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
1139 REG_WRITE(pipeA ? PIPEACONF : PIPEBCONF, crtc_state->savePIPECONF);
1141 cdv_intel_wait_for_vblank(dev);
1143 REG_WRITE(pipeA ? DSPACNTR : DSPBCNTR, crtc_state->saveDSPCNTR);
1144 REG_WRITE(pipeA ? DSPABASE : DSPBBASE, crtc_state->saveDSPBASE);
1146 cdv_intel_wait_for_vblank(dev);
1148 paletteReg = pipeA ? PALETTE_A : PALETTE_B;
1149 for (i = 0; i < 256; ++i)
1150 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
1153 static int cdv_intel_crtc_cursor_set(struct drm_crtc *crtc,
1154 struct drm_file *file_priv,
1155 uint32_t handle,
1156 uint32_t width, uint32_t height)
1158 struct drm_device *dev = crtc->dev;
1159 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1160 int pipe = psb_intel_crtc->pipe;
1161 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1162 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1163 uint32_t temp;
1164 size_t addr = 0;
1165 struct gtt_range *gt;
1166 struct drm_gem_object *obj;
1167 int ret;
1169 /* if we want to turn of the cursor ignore width and height */
1170 if (!handle) {
1171 /* turn off the cursor */
1172 temp = CURSOR_MODE_DISABLE;
1174 if (gma_power_begin(dev, false)) {
1175 REG_WRITE(control, temp);
1176 REG_WRITE(base, 0);
1177 gma_power_end(dev);
1180 /* unpin the old GEM object */
1181 if (psb_intel_crtc->cursor_obj) {
1182 gt = container_of(psb_intel_crtc->cursor_obj,
1183 struct gtt_range, gem);
1184 psb_gtt_unpin(gt);
1185 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1186 psb_intel_crtc->cursor_obj = NULL;
1189 return 0;
1192 /* Currently we only support 64x64 cursors */
1193 if (width != 64 || height != 64) {
1194 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
1195 return -EINVAL;
1198 obj = drm_gem_object_lookup(dev, file_priv, handle);
1199 if (!obj)
1200 return -ENOENT;
1202 if (obj->size < width * height * 4) {
1203 dev_dbg(dev->dev, "buffer is to small\n");
1204 return -ENOMEM;
1207 gt = container_of(obj, struct gtt_range, gem);
1209 /* Pin the memory into the GTT */
1210 ret = psb_gtt_pin(gt);
1211 if (ret) {
1212 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
1213 return ret;
1216 addr = gt->offset; /* Or resource.start ??? */
1218 psb_intel_crtc->cursor_addr = addr;
1220 temp = 0;
1221 /* set the pipe for the cursor */
1222 temp |= (pipe << 28);
1223 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1225 if (gma_power_begin(dev, false)) {
1226 REG_WRITE(control, temp);
1227 REG_WRITE(base, addr);
1228 gma_power_end(dev);
1231 /* unpin the old GEM object */
1232 if (psb_intel_crtc->cursor_obj) {
1233 gt = container_of(psb_intel_crtc->cursor_obj,
1234 struct gtt_range, gem);
1235 psb_gtt_unpin(gt);
1236 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1237 psb_intel_crtc->cursor_obj = obj;
1239 return 0;
1242 static int cdv_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
1244 struct drm_device *dev = crtc->dev;
1245 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1246 int pipe = psb_intel_crtc->pipe;
1247 uint32_t temp = 0;
1248 uint32_t adder;
1251 if (x < 0) {
1252 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
1253 x = -x;
1255 if (y < 0) {
1256 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
1257 y = -y;
1260 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
1261 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1263 adder = psb_intel_crtc->cursor_addr;
1265 if (gma_power_begin(dev, false)) {
1266 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
1267 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
1268 gma_power_end(dev);
1270 return 0;
1273 static void cdv_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
1274 u16 *green, u16 *blue, uint32_t start, uint32_t size)
1276 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1277 int i;
1278 int end = (start + size > 256) ? 256 : start + size;
1280 for (i = start; i < end; i++) {
1281 psb_intel_crtc->lut_r[i] = red[i] >> 8;
1282 psb_intel_crtc->lut_g[i] = green[i] >> 8;
1283 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
1286 cdv_intel_crtc_load_lut(crtc);
1289 static int cdv_crtc_set_config(struct drm_mode_set *set)
1291 int ret = 0;
1292 struct drm_device *dev = set->crtc->dev;
1293 struct drm_psb_private *dev_priv = dev->dev_private;
1295 if (!dev_priv->rpm_enabled)
1296 return drm_crtc_helper_set_config(set);
1298 pm_runtime_forbid(&dev->pdev->dev);
1300 ret = drm_crtc_helper_set_config(set);
1302 pm_runtime_allow(&dev->pdev->dev);
1304 return ret;
1307 /** Derive the pixel clock for the given refclk and divisors for 8xx chips. */
1309 /* FIXME: why are we using this, should it be cdv_ in this tree ? */
1311 static void i8xx_clock(int refclk, struct cdv_intel_clock_t *clock)
1313 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
1314 clock->p = clock->p1 * clock->p2;
1315 clock->vco = refclk * clock->m / (clock->n + 2);
1316 clock->dot = clock->vco / clock->p;
1319 /* Returns the clock of the currently programmed mode of the given pipe. */
1320 static int cdv_intel_crtc_clock_get(struct drm_device *dev,
1321 struct drm_crtc *crtc)
1323 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1324 int pipe = psb_intel_crtc->pipe;
1325 u32 dpll;
1326 u32 fp;
1327 struct cdv_intel_clock_t clock;
1328 bool is_lvds;
1329 struct drm_psb_private *dev_priv = dev->dev_private;
1331 if (gma_power_begin(dev, false)) {
1332 dpll = REG_READ((pipe == 0) ? DPLL_A : DPLL_B);
1333 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1334 fp = REG_READ((pipe == 0) ? FPA0 : FPB0);
1335 else
1336 fp = REG_READ((pipe == 0) ? FPA1 : FPB1);
1337 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1338 gma_power_end(dev);
1339 } else {
1340 dpll = (pipe == 0) ?
1341 dev_priv->saveDPLL_A : dev_priv->saveDPLL_B;
1343 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1344 fp = (pipe == 0) ?
1345 dev_priv->saveFPA0 :
1346 dev_priv->saveFPB0;
1347 else
1348 fp = (pipe == 0) ?
1349 dev_priv->saveFPA1 :
1350 dev_priv->saveFPB1;
1352 is_lvds = (pipe == 1) && (dev_priv->saveLVDS & LVDS_PORT_EN);
1355 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1356 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1357 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1359 if (is_lvds) {
1360 clock.p1 =
1361 ffs((dpll &
1362 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1363 DPLL_FPA01_P1_POST_DIV_SHIFT);
1364 if (clock.p1 == 0) {
1365 clock.p1 = 4;
1366 dev_err(dev->dev, "PLL %d\n", dpll);
1368 clock.p2 = 14;
1370 if ((dpll & PLL_REF_INPUT_MASK) ==
1371 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1372 /* XXX: might not be 66MHz */
1373 i8xx_clock(66000, &clock);
1374 } else
1375 i8xx_clock(48000, &clock);
1376 } else {
1377 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1378 clock.p1 = 2;
1379 else {
1380 clock.p1 =
1381 ((dpll &
1382 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1383 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1385 if (dpll & PLL_P2_DIVIDE_BY_4)
1386 clock.p2 = 4;
1387 else
1388 clock.p2 = 2;
1390 i8xx_clock(48000, &clock);
1393 /* XXX: It would be nice to validate the clocks, but we can't reuse
1394 * i830PllIsValid() because it relies on the xf86_config connector
1395 * configuration being accurate, which it isn't necessarily.
1398 return clock.dot;
1401 /** Returns the currently programmed mode of the given pipe. */
1402 struct drm_display_mode *cdv_intel_crtc_mode_get(struct drm_device *dev,
1403 struct drm_crtc *crtc)
1405 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1406 int pipe = psb_intel_crtc->pipe;
1407 struct drm_display_mode *mode;
1408 int htot;
1409 int hsync;
1410 int vtot;
1411 int vsync;
1412 struct drm_psb_private *dev_priv = dev->dev_private;
1414 if (gma_power_begin(dev, false)) {
1415 htot = REG_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
1416 hsync = REG_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
1417 vtot = REG_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
1418 vsync = REG_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
1419 gma_power_end(dev);
1420 } else {
1421 htot = (pipe == 0) ?
1422 dev_priv->saveHTOTAL_A : dev_priv->saveHTOTAL_B;
1423 hsync = (pipe == 0) ?
1424 dev_priv->saveHSYNC_A : dev_priv->saveHSYNC_B;
1425 vtot = (pipe == 0) ?
1426 dev_priv->saveVTOTAL_A : dev_priv->saveVTOTAL_B;
1427 vsync = (pipe == 0) ?
1428 dev_priv->saveVSYNC_A : dev_priv->saveVSYNC_B;
1431 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1432 if (!mode)
1433 return NULL;
1435 mode->clock = cdv_intel_crtc_clock_get(dev, crtc);
1436 mode->hdisplay = (htot & 0xffff) + 1;
1437 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1438 mode->hsync_start = (hsync & 0xffff) + 1;
1439 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1440 mode->vdisplay = (vtot & 0xffff) + 1;
1441 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1442 mode->vsync_start = (vsync & 0xffff) + 1;
1443 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1445 drm_mode_set_name(mode);
1446 drm_mode_set_crtcinfo(mode, 0);
1448 return mode;
1451 static void cdv_intel_crtc_destroy(struct drm_crtc *crtc)
1453 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1455 kfree(psb_intel_crtc->crtc_state);
1456 drm_crtc_cleanup(crtc);
1457 kfree(psb_intel_crtc);
1460 const struct drm_crtc_helper_funcs cdv_intel_helper_funcs = {
1461 .dpms = cdv_intel_crtc_dpms,
1462 .mode_fixup = cdv_intel_crtc_mode_fixup,
1463 .mode_set = cdv_intel_crtc_mode_set,
1464 .mode_set_base = cdv_intel_pipe_set_base,
1465 .prepare = cdv_intel_crtc_prepare,
1466 .commit = cdv_intel_crtc_commit,
1469 const struct drm_crtc_funcs cdv_intel_crtc_funcs = {
1470 .save = cdv_intel_crtc_save,
1471 .restore = cdv_intel_crtc_restore,
1472 .cursor_set = cdv_intel_crtc_cursor_set,
1473 .cursor_move = cdv_intel_crtc_cursor_move,
1474 .gamma_set = cdv_intel_crtc_gamma_set,
1475 .set_config = cdv_crtc_set_config,
1476 .destroy = cdv_intel_crtc_destroy,
1480 * Set the default value of cursor control and base register
1481 * to zero. This is a workaround for h/w defect on oaktrail
1483 void cdv_intel_cursor_init(struct drm_device *dev, int pipe)
1485 uint32_t control;
1486 uint32_t base;
1488 switch (pipe) {
1489 case 0:
1490 control = CURACNTR;
1491 base = CURABASE;
1492 break;
1493 case 1:
1494 control = CURBCNTR;
1495 base = CURBBASE;
1496 break;
1497 case 2:
1498 control = CURCCNTR;
1499 base = CURCBASE;
1500 break;
1501 default:
1502 return;
1505 REG_WRITE(control, 0);
1506 REG_WRITE(base, 0);