Merge master.kernel.org:/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / filemap.c
blob7b48b2ad00e773853780c1dbc314b850307199cb
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 #include <asm/mman.h>
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
125 void remove_from_page_cache(struct page *page)
127 struct address_space *mapping = page->mapping;
129 BUG_ON(!PageLocked(page));
131 write_lock_irq(&mapping->tree_lock);
132 __remove_from_page_cache(page);
133 write_unlock_irq(&mapping->tree_lock);
136 static int sync_page(void *word)
138 struct address_space *mapping;
139 struct page *page;
141 page = container_of((unsigned long *)word, struct page, flags);
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
162 * -- wli
164 smp_mb();
165 mapping = page_mapping(page);
166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 mapping->a_ops->sync_page(page);
168 io_schedule();
169 return 0;
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 loff_t end, int sync_mode)
190 int ret;
191 struct writeback_control wbc = {
192 .sync_mode = sync_mode,
193 .nr_to_write = mapping->nrpages * 2,
194 .range_start = start,
195 .range_end = end,
198 if (!mapping_cap_writeback_dirty(mapping))
199 return 0;
201 ret = do_writepages(mapping, &wbc);
202 return ret;
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 int sync_mode)
208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
211 int filemap_fdatawrite(struct address_space *mapping)
213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 EXPORT_SYMBOL(filemap_fdatawrite);
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end)
220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
230 int filemap_flush(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 EXPORT_SYMBOL(filemap_flush);
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 pgoff_t start, pgoff_t end)
248 struct pagevec pvec;
249 int nr_pages;
250 int ret = 0;
251 pgoff_t index;
253 if (end < start)
254 return 0;
256 pagevec_init(&pvec, 0);
257 index = start;
258 while ((index <= end) &&
259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 PAGECACHE_TAG_WRITEBACK,
261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 unsigned i;
264 for (i = 0; i < nr_pages; i++) {
265 struct page *page = pvec.pages[i];
267 /* until radix tree lookup accepts end_index */
268 if (page->index > end)
269 continue;
271 wait_on_page_writeback(page);
272 if (PageError(page))
273 ret = -EIO;
275 pagevec_release(&pvec);
276 cond_resched();
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 ret = -ENOSPC;
282 if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 ret = -EIO;
285 return ret;
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 loff_t pos, loff_t count)
305 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 int ret;
309 if (!mapping_cap_writeback_dirty(mapping) || !count)
310 return 0;
311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 if (ret == 0) {
313 mutex_lock(&inode->i_mutex);
314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 mutex_unlock(&inode->i_mutex);
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
321 EXPORT_SYMBOL(sync_page_range);
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 loff_t pos, loff_t count)
337 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 int ret;
341 if (!mapping_cap_writeback_dirty(mapping) || !count)
342 return 0;
343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 if (ret == 0)
345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 if (ret == 0)
347 ret = wait_on_page_writeback_range(mapping, start, end);
348 return ret;
350 EXPORT_SYMBOL(sync_page_range_nolock);
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
359 int filemap_fdatawait(struct address_space *mapping)
361 loff_t i_size = i_size_read(mapping->host);
363 if (i_size == 0)
364 return 0;
366 return wait_on_page_writeback_range(mapping, 0,
367 (i_size - 1) >> PAGE_CACHE_SHIFT);
369 EXPORT_SYMBOL(filemap_fdatawait);
371 int filemap_write_and_wait(struct address_space *mapping)
373 int err = 0;
375 if (mapping->nrpages) {
376 err = filemap_fdatawrite(mapping);
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
383 if (err != -EIO) {
384 int err2 = filemap_fdatawait(mapping);
385 if (!err)
386 err = err2;
389 return err;
391 EXPORT_SYMBOL(filemap_write_and_wait);
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
399 * Write out and wait upon file offsets lstart->lend, inclusive.
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 loff_t lstart, loff_t lend)
407 int err = 0;
409 if (mapping->nrpages) {
410 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 WB_SYNC_ALL);
412 /* See comment of filemap_write_and_wait() */
413 if (err != -EIO) {
414 int err2 = wait_on_page_writeback_range(mapping,
415 lstart >> PAGE_CACHE_SHIFT,
416 lend >> PAGE_CACHE_SHIFT);
417 if (!err)
418 err = err2;
421 return err;
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page: page to add
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
435 * This function does not add the page to the LRU. The caller must do that.
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442 if (error == 0) {
443 write_lock_irq(&mapping->tree_lock);
444 error = radix_tree_insert(&mapping->page_tree, offset, page);
445 if (!error) {
446 page_cache_get(page);
447 SetPageLocked(page);
448 page->mapping = mapping;
449 page->index = offset;
450 mapping->nrpages++;
451 __inc_zone_page_state(page, NR_FILE_PAGES);
453 write_unlock_irq(&mapping->tree_lock);
454 radix_tree_preload_end();
456 return error;
458 EXPORT_SYMBOL(add_to_page_cache);
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 pgoff_t offset, gfp_t gfp_mask)
463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0)
465 lru_cache_add(page);
466 return ret;
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
472 if (cpuset_do_page_mem_spread()) {
473 int n = cpuset_mem_spread_node();
474 return alloc_pages_node(n, gfp, 0);
476 return alloc_pages(gfp, 0);
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
481 static int __sleep_on_page_lock(void *word)
483 io_schedule();
484 return 0;
488 * In order to wait for pages to become available there must be
489 * waitqueues associated with pages. By using a hash table of
490 * waitqueues where the bucket discipline is to maintain all
491 * waiters on the same queue and wake all when any of the pages
492 * become available, and for the woken contexts to check to be
493 * sure the appropriate page became available, this saves space
494 * at a cost of "thundering herd" phenomena during rare hash
495 * collisions.
497 static wait_queue_head_t *page_waitqueue(struct page *page)
499 const struct zone *zone = page_zone(page);
501 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
504 static inline void wake_up_page(struct page *page, int bit)
506 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513 if (test_bit(bit_nr, &page->flags))
514 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 TASK_UNINTERRUPTIBLE);
517 EXPORT_SYMBOL(wait_on_page_bit);
520 * unlock_page - unlock a locked page
521 * @page: the page
523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525 * mechananism between PageLocked pages and PageWriteback pages is shared.
526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 * The first mb is necessary to safely close the critical section opened by the
529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531 * parallel wait_on_page_locked()).
533 void fastcall unlock_page(struct page *page)
535 smp_mb__before_clear_bit();
536 if (!TestClearPageLocked(page))
537 BUG();
538 smp_mb__after_clear_bit();
539 wake_up_page(page, PG_locked);
541 EXPORT_SYMBOL(unlock_page);
544 * end_page_writeback - end writeback against a page
545 * @page: the page
547 void end_page_writeback(struct page *page)
549 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 if (!test_clear_page_writeback(page))
551 BUG();
553 smp_mb__after_clear_bit();
554 wake_up_page(page, PG_writeback);
556 EXPORT_SYMBOL(end_page_writeback);
559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
560 * @page: the page to lock
562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
563 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
564 * chances are that on the second loop, the block layer's plug list is empty,
565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 void fastcall __lock_page(struct page *page)
569 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 TASK_UNINTERRUPTIBLE);
574 EXPORT_SYMBOL(__lock_page);
577 * Variant of lock_page that does not require the caller to hold a reference
578 * on the page's mapping.
580 void fastcall __lock_page_nosync(struct page *page)
582 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 TASK_UNINTERRUPTIBLE);
588 * find_get_page - find and get a page reference
589 * @mapping: the address_space to search
590 * @offset: the page index
592 * Is there a pagecache struct page at the given (mapping, offset) tuple?
593 * If yes, increment its refcount and return it; if no, return NULL.
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597 struct page *page;
599 read_lock_irq(&mapping->tree_lock);
600 page = radix_tree_lookup(&mapping->page_tree, offset);
601 if (page)
602 page_cache_get(page);
603 read_unlock_irq(&mapping->tree_lock);
604 return page;
606 EXPORT_SYMBOL(find_get_page);
609 * find_lock_page - locate, pin and lock a pagecache page
610 * @mapping: the address_space to search
611 * @offset: the page index
613 * Locates the desired pagecache page, locks it, increments its reference
614 * count and returns its address.
616 * Returns zero if the page was not present. find_lock_page() may sleep.
618 struct page *find_lock_page(struct address_space *mapping,
619 unsigned long offset)
621 struct page *page;
623 read_lock_irq(&mapping->tree_lock);
624 repeat:
625 page = radix_tree_lookup(&mapping->page_tree, offset);
626 if (page) {
627 page_cache_get(page);
628 if (TestSetPageLocked(page)) {
629 read_unlock_irq(&mapping->tree_lock);
630 __lock_page(page);
631 read_lock_irq(&mapping->tree_lock);
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping ||
635 page->index != offset)) {
636 unlock_page(page);
637 page_cache_release(page);
638 goto repeat;
642 read_unlock_irq(&mapping->tree_lock);
643 return page;
645 EXPORT_SYMBOL(find_lock_page);
648 * find_or_create_page - locate or add a pagecache page
649 * @mapping: the page's address_space
650 * @index: the page's index into the mapping
651 * @gfp_mask: page allocation mode
653 * Locates a page in the pagecache. If the page is not present, a new page
654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655 * LRU list. The returned page is locked and has its reference count
656 * incremented.
658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659 * allocation!
661 * find_or_create_page() returns the desired page's address, or zero on
662 * memory exhaustion.
664 struct page *find_or_create_page(struct address_space *mapping,
665 unsigned long index, gfp_t gfp_mask)
667 struct page *page, *cached_page = NULL;
668 int err;
669 repeat:
670 page = find_lock_page(mapping, index);
671 if (!page) {
672 if (!cached_page) {
673 cached_page = alloc_page(gfp_mask);
674 if (!cached_page)
675 return NULL;
677 err = add_to_page_cache_lru(cached_page, mapping,
678 index, gfp_mask);
679 if (!err) {
680 page = cached_page;
681 cached_page = NULL;
682 } else if (err == -EEXIST)
683 goto repeat;
685 if (cached_page)
686 page_cache_release(cached_page);
687 return page;
689 EXPORT_SYMBOL(find_or_create_page);
692 * find_get_pages - gang pagecache lookup
693 * @mapping: The address_space to search
694 * @start: The starting page index
695 * @nr_pages: The maximum number of pages
696 * @pages: Where the resulting pages are placed
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping. The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes. There may be holes in the indices due to not-present pages.
705 * find_get_pages() returns the number of pages which were found.
707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708 unsigned int nr_pages, struct page **pages)
710 unsigned int i;
711 unsigned int ret;
713 read_lock_irq(&mapping->tree_lock);
714 ret = radix_tree_gang_lookup(&mapping->page_tree,
715 (void **)pages, start, nr_pages);
716 for (i = 0; i < ret; i++)
717 page_cache_get(pages[i]);
718 read_unlock_irq(&mapping->tree_lock);
719 return ret;
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping: The address_space to search
725 * @index: The starting page index
726 * @nr_pages: The maximum number of pages
727 * @pages: Where the resulting pages are placed
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
732 * find_get_pages_contig() returns the number of pages which were found.
734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735 unsigned int nr_pages, struct page **pages)
737 unsigned int i;
738 unsigned int ret;
740 read_lock_irq(&mapping->tree_lock);
741 ret = radix_tree_gang_lookup(&mapping->page_tree,
742 (void **)pages, index, nr_pages);
743 for (i = 0; i < ret; i++) {
744 if (pages[i]->mapping == NULL || pages[i]->index != index)
745 break;
747 page_cache_get(pages[i]);
748 index++;
750 read_unlock_irq(&mapping->tree_lock);
751 return i;
753 EXPORT_SYMBOL(find_get_pages_contig);
756 * find_get_pages_tag - find and return pages that match @tag
757 * @mapping: the address_space to search
758 * @index: the starting page index
759 * @tag: the tag index
760 * @nr_pages: the maximum number of pages
761 * @pages: where the resulting pages are placed
763 * Like find_get_pages, except we only return pages which are tagged with
764 * @tag. We update @index to index the next page for the traversal.
766 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
767 int tag, unsigned int nr_pages, struct page **pages)
769 unsigned int i;
770 unsigned int ret;
772 read_lock_irq(&mapping->tree_lock);
773 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
774 (void **)pages, *index, nr_pages, tag);
775 for (i = 0; i < ret; i++)
776 page_cache_get(pages[i]);
777 if (ret)
778 *index = pages[ret - 1]->index + 1;
779 read_unlock_irq(&mapping->tree_lock);
780 return ret;
782 EXPORT_SYMBOL(find_get_pages_tag);
785 * grab_cache_page_nowait - returns locked page at given index in given cache
786 * @mapping: target address_space
787 * @index: the page index
789 * Same as grab_cache_page(), but do not wait if the page is unavailable.
790 * This is intended for speculative data generators, where the data can
791 * be regenerated if the page couldn't be grabbed. This routine should
792 * be safe to call while holding the lock for another page.
794 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
795 * and deadlock against the caller's locked page.
797 struct page *
798 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
800 struct page *page = find_get_page(mapping, index);
802 if (page) {
803 if (!TestSetPageLocked(page))
804 return page;
805 page_cache_release(page);
806 return NULL;
808 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
809 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
810 page_cache_release(page);
811 page = NULL;
813 return page;
815 EXPORT_SYMBOL(grab_cache_page_nowait);
818 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
819 * a _large_ part of the i/o request. Imagine the worst scenario:
821 * ---R__________________________________________B__________
822 * ^ reading here ^ bad block(assume 4k)
824 * read(R) => miss => readahead(R...B) => media error => frustrating retries
825 * => failing the whole request => read(R) => read(R+1) =>
826 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
827 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
828 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
830 * It is going insane. Fix it by quickly scaling down the readahead size.
832 static void shrink_readahead_size_eio(struct file *filp,
833 struct file_ra_state *ra)
835 if (!ra->ra_pages)
836 return;
838 ra->ra_pages /= 4;
842 * do_generic_mapping_read - generic file read routine
843 * @mapping: address_space to be read
844 * @_ra: file's readahead state
845 * @filp: the file to read
846 * @ppos: current file position
847 * @desc: read_descriptor
848 * @actor: read method
850 * This is a generic file read routine, and uses the
851 * mapping->a_ops->readpage() function for the actual low-level stuff.
853 * This is really ugly. But the goto's actually try to clarify some
854 * of the logic when it comes to error handling etc.
856 * Note the struct file* is only passed for the use of readpage.
857 * It may be NULL.
859 void do_generic_mapping_read(struct address_space *mapping,
860 struct file_ra_state *_ra,
861 struct file *filp,
862 loff_t *ppos,
863 read_descriptor_t *desc,
864 read_actor_t actor)
866 struct inode *inode = mapping->host;
867 unsigned long index;
868 unsigned long end_index;
869 unsigned long offset;
870 unsigned long last_index;
871 unsigned long next_index;
872 unsigned long prev_index;
873 unsigned int prev_offset;
874 loff_t isize;
875 struct page *cached_page;
876 int error;
877 struct file_ra_state ra = *_ra;
879 cached_page = NULL;
880 index = *ppos >> PAGE_CACHE_SHIFT;
881 next_index = index;
882 prev_index = ra.prev_index;
883 prev_offset = ra.prev_offset;
884 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885 offset = *ppos & ~PAGE_CACHE_MASK;
887 isize = i_size_read(inode);
888 if (!isize)
889 goto out;
891 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
892 for (;;) {
893 struct page *page;
894 unsigned long nr, ret;
896 /* nr is the maximum number of bytes to copy from this page */
897 nr = PAGE_CACHE_SIZE;
898 if (index >= end_index) {
899 if (index > end_index)
900 goto out;
901 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
902 if (nr <= offset) {
903 goto out;
906 nr = nr - offset;
908 cond_resched();
909 if (index == next_index)
910 next_index = page_cache_readahead(mapping, &ra, filp,
911 index, last_index - index);
913 find_page:
914 page = find_get_page(mapping, index);
915 if (unlikely(page == NULL)) {
916 handle_ra_miss(mapping, &ra, index);
917 goto no_cached_page;
919 if (!PageUptodate(page))
920 goto page_not_up_to_date;
921 page_ok:
923 /* If users can be writing to this page using arbitrary
924 * virtual addresses, take care about potential aliasing
925 * before reading the page on the kernel side.
927 if (mapping_writably_mapped(mapping))
928 flush_dcache_page(page);
931 * When a sequential read accesses a page several times,
932 * only mark it as accessed the first time.
934 if (prev_index != index || offset != prev_offset)
935 mark_page_accessed(page);
936 prev_index = index;
939 * Ok, we have the page, and it's up-to-date, so
940 * now we can copy it to user space...
942 * The actor routine returns how many bytes were actually used..
943 * NOTE! This may not be the same as how much of a user buffer
944 * we filled up (we may be padding etc), so we can only update
945 * "pos" here (the actor routine has to update the user buffer
946 * pointers and the remaining count).
948 ret = actor(desc, page, offset, nr);
949 offset += ret;
950 index += offset >> PAGE_CACHE_SHIFT;
951 offset &= ~PAGE_CACHE_MASK;
952 prev_offset = offset;
953 ra.prev_offset = offset;
955 page_cache_release(page);
956 if (ret == nr && desc->count)
957 continue;
958 goto out;
960 page_not_up_to_date:
961 /* Get exclusive access to the page ... */
962 lock_page(page);
964 /* Did it get truncated before we got the lock? */
965 if (!page->mapping) {
966 unlock_page(page);
967 page_cache_release(page);
968 continue;
971 /* Did somebody else fill it already? */
972 if (PageUptodate(page)) {
973 unlock_page(page);
974 goto page_ok;
977 readpage:
978 /* Start the actual read. The read will unlock the page. */
979 error = mapping->a_ops->readpage(filp, page);
981 if (unlikely(error)) {
982 if (error == AOP_TRUNCATED_PAGE) {
983 page_cache_release(page);
984 goto find_page;
986 goto readpage_error;
989 if (!PageUptodate(page)) {
990 lock_page(page);
991 if (!PageUptodate(page)) {
992 if (page->mapping == NULL) {
994 * invalidate_inode_pages got it
996 unlock_page(page);
997 page_cache_release(page);
998 goto find_page;
1000 unlock_page(page);
1001 error = -EIO;
1002 shrink_readahead_size_eio(filp, &ra);
1003 goto readpage_error;
1005 unlock_page(page);
1009 * i_size must be checked after we have done ->readpage.
1011 * Checking i_size after the readpage allows us to calculate
1012 * the correct value for "nr", which means the zero-filled
1013 * part of the page is not copied back to userspace (unless
1014 * another truncate extends the file - this is desired though).
1016 isize = i_size_read(inode);
1017 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1018 if (unlikely(!isize || index > end_index)) {
1019 page_cache_release(page);
1020 goto out;
1023 /* nr is the maximum number of bytes to copy from this page */
1024 nr = PAGE_CACHE_SIZE;
1025 if (index == end_index) {
1026 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1027 if (nr <= offset) {
1028 page_cache_release(page);
1029 goto out;
1032 nr = nr - offset;
1033 goto page_ok;
1035 readpage_error:
1036 /* UHHUH! A synchronous read error occurred. Report it */
1037 desc->error = error;
1038 page_cache_release(page);
1039 goto out;
1041 no_cached_page:
1043 * Ok, it wasn't cached, so we need to create a new
1044 * page..
1046 if (!cached_page) {
1047 cached_page = page_cache_alloc_cold(mapping);
1048 if (!cached_page) {
1049 desc->error = -ENOMEM;
1050 goto out;
1053 error = add_to_page_cache_lru(cached_page, mapping,
1054 index, GFP_KERNEL);
1055 if (error) {
1056 if (error == -EEXIST)
1057 goto find_page;
1058 desc->error = error;
1059 goto out;
1061 page = cached_page;
1062 cached_page = NULL;
1063 goto readpage;
1066 out:
1067 *_ra = ra;
1069 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1070 if (cached_page)
1071 page_cache_release(cached_page);
1072 if (filp)
1073 file_accessed(filp);
1075 EXPORT_SYMBOL(do_generic_mapping_read);
1077 int file_read_actor(read_descriptor_t *desc, struct page *page,
1078 unsigned long offset, unsigned long size)
1080 char *kaddr;
1081 unsigned long left, count = desc->count;
1083 if (size > count)
1084 size = count;
1087 * Faults on the destination of a read are common, so do it before
1088 * taking the kmap.
1090 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1091 kaddr = kmap_atomic(page, KM_USER0);
1092 left = __copy_to_user_inatomic(desc->arg.buf,
1093 kaddr + offset, size);
1094 kunmap_atomic(kaddr, KM_USER0);
1095 if (left == 0)
1096 goto success;
1099 /* Do it the slow way */
1100 kaddr = kmap(page);
1101 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1102 kunmap(page);
1104 if (left) {
1105 size -= left;
1106 desc->error = -EFAULT;
1108 success:
1109 desc->count = count - size;
1110 desc->written += size;
1111 desc->arg.buf += size;
1112 return size;
1116 * Performs necessary checks before doing a write
1117 * @iov: io vector request
1118 * @nr_segs: number of segments in the iovec
1119 * @count: number of bytes to write
1120 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1122 * Adjust number of segments and amount of bytes to write (nr_segs should be
1123 * properly initialized first). Returns appropriate error code that caller
1124 * should return or zero in case that write should be allowed.
1126 int generic_segment_checks(const struct iovec *iov,
1127 unsigned long *nr_segs, size_t *count, int access_flags)
1129 unsigned long seg;
1130 size_t cnt = 0;
1131 for (seg = 0; seg < *nr_segs; seg++) {
1132 const struct iovec *iv = &iov[seg];
1135 * If any segment has a negative length, or the cumulative
1136 * length ever wraps negative then return -EINVAL.
1138 cnt += iv->iov_len;
1139 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1140 return -EINVAL;
1141 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1142 continue;
1143 if (seg == 0)
1144 return -EFAULT;
1145 *nr_segs = seg;
1146 cnt -= iv->iov_len; /* This segment is no good */
1147 break;
1149 *count = cnt;
1150 return 0;
1152 EXPORT_SYMBOL(generic_segment_checks);
1155 * generic_file_aio_read - generic filesystem read routine
1156 * @iocb: kernel I/O control block
1157 * @iov: io vector request
1158 * @nr_segs: number of segments in the iovec
1159 * @pos: current file position
1161 * This is the "read()" routine for all filesystems
1162 * that can use the page cache directly.
1164 ssize_t
1165 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1166 unsigned long nr_segs, loff_t pos)
1168 struct file *filp = iocb->ki_filp;
1169 ssize_t retval;
1170 unsigned long seg;
1171 size_t count;
1172 loff_t *ppos = &iocb->ki_pos;
1174 count = 0;
1175 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1176 if (retval)
1177 return retval;
1179 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1180 if (filp->f_flags & O_DIRECT) {
1181 loff_t size;
1182 struct address_space *mapping;
1183 struct inode *inode;
1185 mapping = filp->f_mapping;
1186 inode = mapping->host;
1187 retval = 0;
1188 if (!count)
1189 goto out; /* skip atime */
1190 size = i_size_read(inode);
1191 if (pos < size) {
1192 retval = generic_file_direct_IO(READ, iocb,
1193 iov, pos, nr_segs);
1194 if (retval > 0)
1195 *ppos = pos + retval;
1197 if (likely(retval != 0)) {
1198 file_accessed(filp);
1199 goto out;
1203 retval = 0;
1204 if (count) {
1205 for (seg = 0; seg < nr_segs; seg++) {
1206 read_descriptor_t desc;
1208 desc.written = 0;
1209 desc.arg.buf = iov[seg].iov_base;
1210 desc.count = iov[seg].iov_len;
1211 if (desc.count == 0)
1212 continue;
1213 desc.error = 0;
1214 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1215 retval += desc.written;
1216 if (desc.error) {
1217 retval = retval ?: desc.error;
1218 break;
1222 out:
1223 return retval;
1225 EXPORT_SYMBOL(generic_file_aio_read);
1227 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1229 ssize_t written;
1230 unsigned long count = desc->count;
1231 struct file *file = desc->arg.data;
1233 if (size > count)
1234 size = count;
1236 written = file->f_op->sendpage(file, page, offset,
1237 size, &file->f_pos, size<count);
1238 if (written < 0) {
1239 desc->error = written;
1240 written = 0;
1242 desc->count = count - written;
1243 desc->written += written;
1244 return written;
1247 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1248 size_t count, read_actor_t actor, void *target)
1250 read_descriptor_t desc;
1252 if (!count)
1253 return 0;
1255 desc.written = 0;
1256 desc.count = count;
1257 desc.arg.data = target;
1258 desc.error = 0;
1260 do_generic_file_read(in_file, ppos, &desc, actor);
1261 if (desc.written)
1262 return desc.written;
1263 return desc.error;
1265 EXPORT_SYMBOL(generic_file_sendfile);
1267 static ssize_t
1268 do_readahead(struct address_space *mapping, struct file *filp,
1269 unsigned long index, unsigned long nr)
1271 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1272 return -EINVAL;
1274 force_page_cache_readahead(mapping, filp, index,
1275 max_sane_readahead(nr));
1276 return 0;
1279 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1281 ssize_t ret;
1282 struct file *file;
1284 ret = -EBADF;
1285 file = fget(fd);
1286 if (file) {
1287 if (file->f_mode & FMODE_READ) {
1288 struct address_space *mapping = file->f_mapping;
1289 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1290 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1291 unsigned long len = end - start + 1;
1292 ret = do_readahead(mapping, file, start, len);
1294 fput(file);
1296 return ret;
1299 #ifdef CONFIG_MMU
1300 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1302 * page_cache_read - adds requested page to the page cache if not already there
1303 * @file: file to read
1304 * @offset: page index
1306 * This adds the requested page to the page cache if it isn't already there,
1307 * and schedules an I/O to read in its contents from disk.
1309 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1311 struct address_space *mapping = file->f_mapping;
1312 struct page *page;
1313 int ret;
1315 do {
1316 page = page_cache_alloc_cold(mapping);
1317 if (!page)
1318 return -ENOMEM;
1320 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1321 if (ret == 0)
1322 ret = mapping->a_ops->readpage(file, page);
1323 else if (ret == -EEXIST)
1324 ret = 0; /* losing race to add is OK */
1326 page_cache_release(page);
1328 } while (ret == AOP_TRUNCATED_PAGE);
1330 return ret;
1333 #define MMAP_LOTSAMISS (100)
1336 * filemap_nopage - read in file data for page fault handling
1337 * @area: the applicable vm_area
1338 * @address: target address to read in
1339 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1341 * filemap_nopage() is invoked via the vma operations vector for a
1342 * mapped memory region to read in file data during a page fault.
1344 * The goto's are kind of ugly, but this streamlines the normal case of having
1345 * it in the page cache, and handles the special cases reasonably without
1346 * having a lot of duplicated code.
1348 struct page *filemap_nopage(struct vm_area_struct *area,
1349 unsigned long address, int *type)
1351 int error;
1352 struct file *file = area->vm_file;
1353 struct address_space *mapping = file->f_mapping;
1354 struct file_ra_state *ra = &file->f_ra;
1355 struct inode *inode = mapping->host;
1356 struct page *page;
1357 unsigned long size, pgoff;
1358 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1360 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1362 retry_all:
1363 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1364 if (pgoff >= size)
1365 goto outside_data_content;
1367 /* If we don't want any read-ahead, don't bother */
1368 if (VM_RandomReadHint(area))
1369 goto no_cached_page;
1372 * The readahead code wants to be told about each and every page
1373 * so it can build and shrink its windows appropriately
1375 * For sequential accesses, we use the generic readahead logic.
1377 if (VM_SequentialReadHint(area))
1378 page_cache_readahead(mapping, ra, file, pgoff, 1);
1381 * Do we have something in the page cache already?
1383 retry_find:
1384 page = find_get_page(mapping, pgoff);
1385 if (!page) {
1386 unsigned long ra_pages;
1388 if (VM_SequentialReadHint(area)) {
1389 handle_ra_miss(mapping, ra, pgoff);
1390 goto no_cached_page;
1392 ra->mmap_miss++;
1395 * Do we miss much more than hit in this file? If so,
1396 * stop bothering with read-ahead. It will only hurt.
1398 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1399 goto no_cached_page;
1402 * To keep the pgmajfault counter straight, we need to
1403 * check did_readaround, as this is an inner loop.
1405 if (!did_readaround) {
1406 majmin = VM_FAULT_MAJOR;
1407 count_vm_event(PGMAJFAULT);
1409 did_readaround = 1;
1410 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1411 if (ra_pages) {
1412 pgoff_t start = 0;
1414 if (pgoff > ra_pages / 2)
1415 start = pgoff - ra_pages / 2;
1416 do_page_cache_readahead(mapping, file, start, ra_pages);
1418 page = find_get_page(mapping, pgoff);
1419 if (!page)
1420 goto no_cached_page;
1423 if (!did_readaround)
1424 ra->mmap_hit++;
1427 * Ok, found a page in the page cache, now we need to check
1428 * that it's up-to-date.
1430 if (!PageUptodate(page))
1431 goto page_not_uptodate;
1433 success:
1435 * Found the page and have a reference on it.
1437 mark_page_accessed(page);
1438 if (type)
1439 *type = majmin;
1440 return page;
1442 outside_data_content:
1444 * An external ptracer can access pages that normally aren't
1445 * accessible..
1447 if (area->vm_mm == current->mm)
1448 return NOPAGE_SIGBUS;
1449 /* Fall through to the non-read-ahead case */
1450 no_cached_page:
1452 * We're only likely to ever get here if MADV_RANDOM is in
1453 * effect.
1455 error = page_cache_read(file, pgoff);
1458 * The page we want has now been added to the page cache.
1459 * In the unlikely event that someone removed it in the
1460 * meantime, we'll just come back here and read it again.
1462 if (error >= 0)
1463 goto retry_find;
1466 * An error return from page_cache_read can result if the
1467 * system is low on memory, or a problem occurs while trying
1468 * to schedule I/O.
1470 if (error == -ENOMEM)
1471 return NOPAGE_OOM;
1472 return NOPAGE_SIGBUS;
1474 page_not_uptodate:
1475 if (!did_readaround) {
1476 majmin = VM_FAULT_MAJOR;
1477 count_vm_event(PGMAJFAULT);
1481 * Umm, take care of errors if the page isn't up-to-date.
1482 * Try to re-read it _once_. We do this synchronously,
1483 * because there really aren't any performance issues here
1484 * and we need to check for errors.
1486 lock_page(page);
1488 /* Somebody truncated the page on us? */
1489 if (!page->mapping) {
1490 unlock_page(page);
1491 page_cache_release(page);
1492 goto retry_all;
1495 /* Somebody else successfully read it in? */
1496 if (PageUptodate(page)) {
1497 unlock_page(page);
1498 goto success;
1500 ClearPageError(page);
1501 error = mapping->a_ops->readpage(file, page);
1502 if (!error) {
1503 wait_on_page_locked(page);
1504 if (PageUptodate(page))
1505 goto success;
1506 } else if (error == AOP_TRUNCATED_PAGE) {
1507 page_cache_release(page);
1508 goto retry_find;
1512 * Things didn't work out. Return zero to tell the
1513 * mm layer so, possibly freeing the page cache page first.
1515 shrink_readahead_size_eio(file, ra);
1516 page_cache_release(page);
1517 return NOPAGE_SIGBUS;
1519 EXPORT_SYMBOL(filemap_nopage);
1521 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1522 int nonblock)
1524 struct address_space *mapping = file->f_mapping;
1525 struct page *page;
1526 int error;
1529 * Do we have something in the page cache already?
1531 retry_find:
1532 page = find_get_page(mapping, pgoff);
1533 if (!page) {
1534 if (nonblock)
1535 return NULL;
1536 goto no_cached_page;
1540 * Ok, found a page in the page cache, now we need to check
1541 * that it's up-to-date.
1543 if (!PageUptodate(page)) {
1544 if (nonblock) {
1545 page_cache_release(page);
1546 return NULL;
1548 goto page_not_uptodate;
1551 success:
1553 * Found the page and have a reference on it.
1555 mark_page_accessed(page);
1556 return page;
1558 no_cached_page:
1559 error = page_cache_read(file, pgoff);
1562 * The page we want has now been added to the page cache.
1563 * In the unlikely event that someone removed it in the
1564 * meantime, we'll just come back here and read it again.
1566 if (error >= 0)
1567 goto retry_find;
1570 * An error return from page_cache_read can result if the
1571 * system is low on memory, or a problem occurs while trying
1572 * to schedule I/O.
1574 return NULL;
1576 page_not_uptodate:
1577 lock_page(page);
1579 /* Did it get truncated while we waited for it? */
1580 if (!page->mapping) {
1581 unlock_page(page);
1582 goto err;
1585 /* Did somebody else get it up-to-date? */
1586 if (PageUptodate(page)) {
1587 unlock_page(page);
1588 goto success;
1591 error = mapping->a_ops->readpage(file, page);
1592 if (!error) {
1593 wait_on_page_locked(page);
1594 if (PageUptodate(page))
1595 goto success;
1596 } else if (error == AOP_TRUNCATED_PAGE) {
1597 page_cache_release(page);
1598 goto retry_find;
1602 * Umm, take care of errors if the page isn't up-to-date.
1603 * Try to re-read it _once_. We do this synchronously,
1604 * because there really aren't any performance issues here
1605 * and we need to check for errors.
1607 lock_page(page);
1609 /* Somebody truncated the page on us? */
1610 if (!page->mapping) {
1611 unlock_page(page);
1612 goto err;
1614 /* Somebody else successfully read it in? */
1615 if (PageUptodate(page)) {
1616 unlock_page(page);
1617 goto success;
1620 ClearPageError(page);
1621 error = mapping->a_ops->readpage(file, page);
1622 if (!error) {
1623 wait_on_page_locked(page);
1624 if (PageUptodate(page))
1625 goto success;
1626 } else if (error == AOP_TRUNCATED_PAGE) {
1627 page_cache_release(page);
1628 goto retry_find;
1632 * Things didn't work out. Return zero to tell the
1633 * mm layer so, possibly freeing the page cache page first.
1635 err:
1636 page_cache_release(page);
1638 return NULL;
1641 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1642 unsigned long len, pgprot_t prot, unsigned long pgoff,
1643 int nonblock)
1645 struct file *file = vma->vm_file;
1646 struct address_space *mapping = file->f_mapping;
1647 struct inode *inode = mapping->host;
1648 unsigned long size;
1649 struct mm_struct *mm = vma->vm_mm;
1650 struct page *page;
1651 int err;
1653 if (!nonblock)
1654 force_page_cache_readahead(mapping, vma->vm_file,
1655 pgoff, len >> PAGE_CACHE_SHIFT);
1657 repeat:
1658 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1659 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1660 return -EINVAL;
1662 page = filemap_getpage(file, pgoff, nonblock);
1664 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1665 * done in shmem_populate calling shmem_getpage */
1666 if (!page && !nonblock)
1667 return -ENOMEM;
1669 if (page) {
1670 err = install_page(mm, vma, addr, page, prot);
1671 if (err) {
1672 page_cache_release(page);
1673 return err;
1675 } else if (vma->vm_flags & VM_NONLINEAR) {
1676 /* No page was found just because we can't read it in now (being
1677 * here implies nonblock != 0), but the page may exist, so set
1678 * the PTE to fault it in later. */
1679 err = install_file_pte(mm, vma, addr, pgoff, prot);
1680 if (err)
1681 return err;
1684 len -= PAGE_SIZE;
1685 addr += PAGE_SIZE;
1686 pgoff++;
1687 if (len)
1688 goto repeat;
1690 return 0;
1692 EXPORT_SYMBOL(filemap_populate);
1694 struct vm_operations_struct generic_file_vm_ops = {
1695 .nopage = filemap_nopage,
1696 .populate = filemap_populate,
1699 /* This is used for a general mmap of a disk file */
1701 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1703 struct address_space *mapping = file->f_mapping;
1705 if (!mapping->a_ops->readpage)
1706 return -ENOEXEC;
1707 file_accessed(file);
1708 vma->vm_ops = &generic_file_vm_ops;
1709 return 0;
1713 * This is for filesystems which do not implement ->writepage.
1715 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1717 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1718 return -EINVAL;
1719 return generic_file_mmap(file, vma);
1721 #else
1722 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1724 return -ENOSYS;
1726 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1728 return -ENOSYS;
1730 #endif /* CONFIG_MMU */
1732 EXPORT_SYMBOL(generic_file_mmap);
1733 EXPORT_SYMBOL(generic_file_readonly_mmap);
1735 static struct page *__read_cache_page(struct address_space *mapping,
1736 unsigned long index,
1737 int (*filler)(void *,struct page*),
1738 void *data)
1740 struct page *page, *cached_page = NULL;
1741 int err;
1742 repeat:
1743 page = find_get_page(mapping, index);
1744 if (!page) {
1745 if (!cached_page) {
1746 cached_page = page_cache_alloc_cold(mapping);
1747 if (!cached_page)
1748 return ERR_PTR(-ENOMEM);
1750 err = add_to_page_cache_lru(cached_page, mapping,
1751 index, GFP_KERNEL);
1752 if (err == -EEXIST)
1753 goto repeat;
1754 if (err < 0) {
1755 /* Presumably ENOMEM for radix tree node */
1756 page_cache_release(cached_page);
1757 return ERR_PTR(err);
1759 page = cached_page;
1760 cached_page = NULL;
1761 err = filler(data, page);
1762 if (err < 0) {
1763 page_cache_release(page);
1764 page = ERR_PTR(err);
1767 if (cached_page)
1768 page_cache_release(cached_page);
1769 return page;
1773 * Same as read_cache_page, but don't wait for page to become unlocked
1774 * after submitting it to the filler.
1776 struct page *read_cache_page_async(struct address_space *mapping,
1777 unsigned long index,
1778 int (*filler)(void *,struct page*),
1779 void *data)
1781 struct page *page;
1782 int err;
1784 retry:
1785 page = __read_cache_page(mapping, index, filler, data);
1786 if (IS_ERR(page))
1787 return page;
1788 mark_page_accessed(page);
1789 if (PageUptodate(page))
1790 goto out;
1792 lock_page(page);
1793 if (!page->mapping) {
1794 unlock_page(page);
1795 page_cache_release(page);
1796 goto retry;
1798 if (PageUptodate(page)) {
1799 unlock_page(page);
1800 goto out;
1802 err = filler(data, page);
1803 if (err < 0) {
1804 page_cache_release(page);
1805 return ERR_PTR(err);
1807 out:
1808 mark_page_accessed(page);
1809 return page;
1811 EXPORT_SYMBOL(read_cache_page_async);
1814 * read_cache_page - read into page cache, fill it if needed
1815 * @mapping: the page's address_space
1816 * @index: the page index
1817 * @filler: function to perform the read
1818 * @data: destination for read data
1820 * Read into the page cache. If a page already exists, and PageUptodate() is
1821 * not set, try to fill the page then wait for it to become unlocked.
1823 * If the page does not get brought uptodate, return -EIO.
1825 struct page *read_cache_page(struct address_space *mapping,
1826 unsigned long index,
1827 int (*filler)(void *,struct page*),
1828 void *data)
1830 struct page *page;
1832 page = read_cache_page_async(mapping, index, filler, data);
1833 if (IS_ERR(page))
1834 goto out;
1835 wait_on_page_locked(page);
1836 if (!PageUptodate(page)) {
1837 page_cache_release(page);
1838 page = ERR_PTR(-EIO);
1840 out:
1841 return page;
1843 EXPORT_SYMBOL(read_cache_page);
1846 * If the page was newly created, increment its refcount and add it to the
1847 * caller's lru-buffering pagevec. This function is specifically for
1848 * generic_file_write().
1850 static inline struct page *
1851 __grab_cache_page(struct address_space *mapping, unsigned long index,
1852 struct page **cached_page, struct pagevec *lru_pvec)
1854 int err;
1855 struct page *page;
1856 repeat:
1857 page = find_lock_page(mapping, index);
1858 if (!page) {
1859 if (!*cached_page) {
1860 *cached_page = page_cache_alloc(mapping);
1861 if (!*cached_page)
1862 return NULL;
1864 err = add_to_page_cache(*cached_page, mapping,
1865 index, GFP_KERNEL);
1866 if (err == -EEXIST)
1867 goto repeat;
1868 if (err == 0) {
1869 page = *cached_page;
1870 page_cache_get(page);
1871 if (!pagevec_add(lru_pvec, page))
1872 __pagevec_lru_add(lru_pvec);
1873 *cached_page = NULL;
1876 return page;
1880 * The logic we want is
1882 * if suid or (sgid and xgrp)
1883 * remove privs
1885 int should_remove_suid(struct dentry *dentry)
1887 mode_t mode = dentry->d_inode->i_mode;
1888 int kill = 0;
1890 /* suid always must be killed */
1891 if (unlikely(mode & S_ISUID))
1892 kill = ATTR_KILL_SUID;
1895 * sgid without any exec bits is just a mandatory locking mark; leave
1896 * it alone. If some exec bits are set, it's a real sgid; kill it.
1898 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1899 kill |= ATTR_KILL_SGID;
1901 if (unlikely(kill && !capable(CAP_FSETID)))
1902 return kill;
1904 return 0;
1906 EXPORT_SYMBOL(should_remove_suid);
1908 int __remove_suid(struct dentry *dentry, int kill)
1910 struct iattr newattrs;
1912 newattrs.ia_valid = ATTR_FORCE | kill;
1913 return notify_change(dentry, &newattrs);
1916 int remove_suid(struct dentry *dentry)
1918 int kill = should_remove_suid(dentry);
1920 if (unlikely(kill))
1921 return __remove_suid(dentry, kill);
1923 return 0;
1925 EXPORT_SYMBOL(remove_suid);
1927 size_t
1928 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1929 const struct iovec *iov, size_t base, size_t bytes)
1931 size_t copied = 0, left = 0;
1933 while (bytes) {
1934 char __user *buf = iov->iov_base + base;
1935 int copy = min(bytes, iov->iov_len - base);
1937 base = 0;
1938 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1939 copied += copy;
1940 bytes -= copy;
1941 vaddr += copy;
1942 iov++;
1944 if (unlikely(left))
1945 break;
1947 return copied - left;
1951 * Performs necessary checks before doing a write
1953 * Can adjust writing position or amount of bytes to write.
1954 * Returns appropriate error code that caller should return or
1955 * zero in case that write should be allowed.
1957 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1959 struct inode *inode = file->f_mapping->host;
1960 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1962 if (unlikely(*pos < 0))
1963 return -EINVAL;
1965 if (!isblk) {
1966 /* FIXME: this is for backwards compatibility with 2.4 */
1967 if (file->f_flags & O_APPEND)
1968 *pos = i_size_read(inode);
1970 if (limit != RLIM_INFINITY) {
1971 if (*pos >= limit) {
1972 send_sig(SIGXFSZ, current, 0);
1973 return -EFBIG;
1975 if (*count > limit - (typeof(limit))*pos) {
1976 *count = limit - (typeof(limit))*pos;
1982 * LFS rule
1984 if (unlikely(*pos + *count > MAX_NON_LFS &&
1985 !(file->f_flags & O_LARGEFILE))) {
1986 if (*pos >= MAX_NON_LFS) {
1987 send_sig(SIGXFSZ, current, 0);
1988 return -EFBIG;
1990 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1991 *count = MAX_NON_LFS - (unsigned long)*pos;
1996 * Are we about to exceed the fs block limit ?
1998 * If we have written data it becomes a short write. If we have
1999 * exceeded without writing data we send a signal and return EFBIG.
2000 * Linus frestrict idea will clean these up nicely..
2002 if (likely(!isblk)) {
2003 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2004 if (*count || *pos > inode->i_sb->s_maxbytes) {
2005 send_sig(SIGXFSZ, current, 0);
2006 return -EFBIG;
2008 /* zero-length writes at ->s_maxbytes are OK */
2011 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2012 *count = inode->i_sb->s_maxbytes - *pos;
2013 } else {
2014 #ifdef CONFIG_BLOCK
2015 loff_t isize;
2016 if (bdev_read_only(I_BDEV(inode)))
2017 return -EPERM;
2018 isize = i_size_read(inode);
2019 if (*pos >= isize) {
2020 if (*count || *pos > isize)
2021 return -ENOSPC;
2024 if (*pos + *count > isize)
2025 *count = isize - *pos;
2026 #else
2027 return -EPERM;
2028 #endif
2030 return 0;
2032 EXPORT_SYMBOL(generic_write_checks);
2034 ssize_t
2035 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2036 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2037 size_t count, size_t ocount)
2039 struct file *file = iocb->ki_filp;
2040 struct address_space *mapping = file->f_mapping;
2041 struct inode *inode = mapping->host;
2042 ssize_t written;
2044 if (count != ocount)
2045 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2047 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2048 if (written > 0) {
2049 loff_t end = pos + written;
2050 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2051 i_size_write(inode, end);
2052 mark_inode_dirty(inode);
2054 *ppos = end;
2058 * Sync the fs metadata but not the minor inode changes and
2059 * of course not the data as we did direct DMA for the IO.
2060 * i_mutex is held, which protects generic_osync_inode() from
2061 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2063 if ((written >= 0 || written == -EIOCBQUEUED) &&
2064 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2065 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2066 if (err < 0)
2067 written = err;
2069 return written;
2071 EXPORT_SYMBOL(generic_file_direct_write);
2073 ssize_t
2074 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2075 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2076 size_t count, ssize_t written)
2078 struct file *file = iocb->ki_filp;
2079 struct address_space * mapping = file->f_mapping;
2080 const struct address_space_operations *a_ops = mapping->a_ops;
2081 struct inode *inode = mapping->host;
2082 long status = 0;
2083 struct page *page;
2084 struct page *cached_page = NULL;
2085 size_t bytes;
2086 struct pagevec lru_pvec;
2087 const struct iovec *cur_iov = iov; /* current iovec */
2088 size_t iov_base = 0; /* offset in the current iovec */
2089 char __user *buf;
2091 pagevec_init(&lru_pvec, 0);
2094 * handle partial DIO write. Adjust cur_iov if needed.
2096 if (likely(nr_segs == 1))
2097 buf = iov->iov_base + written;
2098 else {
2099 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2100 buf = cur_iov->iov_base + iov_base;
2103 do {
2104 unsigned long index;
2105 unsigned long offset;
2106 size_t copied;
2108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2109 index = pos >> PAGE_CACHE_SHIFT;
2110 bytes = PAGE_CACHE_SIZE - offset;
2112 /* Limit the size of the copy to the caller's write size */
2113 bytes = min(bytes, count);
2115 /* We only need to worry about prefaulting when writes are from
2116 * user-space. NFSd uses vfs_writev with several non-aligned
2117 * segments in the vector, and limiting to one segment a time is
2118 * a noticeable performance for re-write
2120 if (!segment_eq(get_fs(), KERNEL_DS)) {
2122 * Limit the size of the copy to that of the current
2123 * segment, because fault_in_pages_readable() doesn't
2124 * know how to walk segments.
2126 bytes = min(bytes, cur_iov->iov_len - iov_base);
2129 * Bring in the user page that we will copy from
2130 * _first_. Otherwise there's a nasty deadlock on
2131 * copying from the same page as we're writing to,
2132 * without it being marked up-to-date.
2134 fault_in_pages_readable(buf, bytes);
2136 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2137 if (!page) {
2138 status = -ENOMEM;
2139 break;
2142 if (unlikely(bytes == 0)) {
2143 status = 0;
2144 copied = 0;
2145 goto zero_length_segment;
2148 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2149 if (unlikely(status)) {
2150 loff_t isize = i_size_read(inode);
2152 if (status != AOP_TRUNCATED_PAGE)
2153 unlock_page(page);
2154 page_cache_release(page);
2155 if (status == AOP_TRUNCATED_PAGE)
2156 continue;
2158 * prepare_write() may have instantiated a few blocks
2159 * outside i_size. Trim these off again.
2161 if (pos + bytes > isize)
2162 vmtruncate(inode, isize);
2163 break;
2165 if (likely(nr_segs == 1))
2166 copied = filemap_copy_from_user(page, offset,
2167 buf, bytes);
2168 else
2169 copied = filemap_copy_from_user_iovec(page, offset,
2170 cur_iov, iov_base, bytes);
2171 flush_dcache_page(page);
2172 status = a_ops->commit_write(file, page, offset, offset+bytes);
2173 if (status == AOP_TRUNCATED_PAGE) {
2174 page_cache_release(page);
2175 continue;
2177 zero_length_segment:
2178 if (likely(copied >= 0)) {
2179 if (!status)
2180 status = copied;
2182 if (status >= 0) {
2183 written += status;
2184 count -= status;
2185 pos += status;
2186 buf += status;
2187 if (unlikely(nr_segs > 1)) {
2188 filemap_set_next_iovec(&cur_iov,
2189 &iov_base, status);
2190 if (count)
2191 buf = cur_iov->iov_base +
2192 iov_base;
2193 } else {
2194 iov_base += status;
2198 if (unlikely(copied != bytes))
2199 if (status >= 0)
2200 status = -EFAULT;
2201 unlock_page(page);
2202 mark_page_accessed(page);
2203 page_cache_release(page);
2204 if (status < 0)
2205 break;
2206 balance_dirty_pages_ratelimited(mapping);
2207 cond_resched();
2208 } while (count);
2209 *ppos = pos;
2211 if (cached_page)
2212 page_cache_release(cached_page);
2215 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2217 if (likely(status >= 0)) {
2218 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2219 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2220 status = generic_osync_inode(inode, mapping,
2221 OSYNC_METADATA|OSYNC_DATA);
2226 * If we get here for O_DIRECT writes then we must have fallen through
2227 * to buffered writes (block instantiation inside i_size). So we sync
2228 * the file data here, to try to honour O_DIRECT expectations.
2230 if (unlikely(file->f_flags & O_DIRECT) && written)
2231 status = filemap_write_and_wait(mapping);
2233 pagevec_lru_add(&lru_pvec);
2234 return written ? written : status;
2236 EXPORT_SYMBOL(generic_file_buffered_write);
2238 static ssize_t
2239 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2240 unsigned long nr_segs, loff_t *ppos)
2242 struct file *file = iocb->ki_filp;
2243 struct address_space * mapping = file->f_mapping;
2244 size_t ocount; /* original count */
2245 size_t count; /* after file limit checks */
2246 struct inode *inode = mapping->host;
2247 loff_t pos;
2248 ssize_t written;
2249 ssize_t err;
2251 ocount = 0;
2252 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2253 if (err)
2254 return err;
2256 count = ocount;
2257 pos = *ppos;
2259 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2261 /* We can write back this queue in page reclaim */
2262 current->backing_dev_info = mapping->backing_dev_info;
2263 written = 0;
2265 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2266 if (err)
2267 goto out;
2269 if (count == 0)
2270 goto out;
2272 err = remove_suid(file->f_path.dentry);
2273 if (err)
2274 goto out;
2276 file_update_time(file);
2278 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2279 if (unlikely(file->f_flags & O_DIRECT)) {
2280 loff_t endbyte;
2281 ssize_t written_buffered;
2283 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2284 ppos, count, ocount);
2285 if (written < 0 || written == count)
2286 goto out;
2288 * direct-io write to a hole: fall through to buffered I/O
2289 * for completing the rest of the request.
2291 pos += written;
2292 count -= written;
2293 written_buffered = generic_file_buffered_write(iocb, iov,
2294 nr_segs, pos, ppos, count,
2295 written);
2297 * If generic_file_buffered_write() retuned a synchronous error
2298 * then we want to return the number of bytes which were
2299 * direct-written, or the error code if that was zero. Note
2300 * that this differs from normal direct-io semantics, which
2301 * will return -EFOO even if some bytes were written.
2303 if (written_buffered < 0) {
2304 err = written_buffered;
2305 goto out;
2309 * We need to ensure that the page cache pages are written to
2310 * disk and invalidated to preserve the expected O_DIRECT
2311 * semantics.
2313 endbyte = pos + written_buffered - written - 1;
2314 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2315 SYNC_FILE_RANGE_WAIT_BEFORE|
2316 SYNC_FILE_RANGE_WRITE|
2317 SYNC_FILE_RANGE_WAIT_AFTER);
2318 if (err == 0) {
2319 written = written_buffered;
2320 invalidate_mapping_pages(mapping,
2321 pos >> PAGE_CACHE_SHIFT,
2322 endbyte >> PAGE_CACHE_SHIFT);
2323 } else {
2325 * We don't know how much we wrote, so just return
2326 * the number of bytes which were direct-written
2329 } else {
2330 written = generic_file_buffered_write(iocb, iov, nr_segs,
2331 pos, ppos, count, written);
2333 out:
2334 current->backing_dev_info = NULL;
2335 return written ? written : err;
2338 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2339 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2341 struct file *file = iocb->ki_filp;
2342 struct address_space *mapping = file->f_mapping;
2343 struct inode *inode = mapping->host;
2344 ssize_t ret;
2346 BUG_ON(iocb->ki_pos != pos);
2348 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2349 &iocb->ki_pos);
2351 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2352 ssize_t err;
2354 err = sync_page_range_nolock(inode, mapping, pos, ret);
2355 if (err < 0)
2356 ret = err;
2358 return ret;
2360 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2362 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2363 unsigned long nr_segs, loff_t pos)
2365 struct file *file = iocb->ki_filp;
2366 struct address_space *mapping = file->f_mapping;
2367 struct inode *inode = mapping->host;
2368 ssize_t ret;
2370 BUG_ON(iocb->ki_pos != pos);
2372 mutex_lock(&inode->i_mutex);
2373 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2374 &iocb->ki_pos);
2375 mutex_unlock(&inode->i_mutex);
2377 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2378 ssize_t err;
2380 err = sync_page_range(inode, mapping, pos, ret);
2381 if (err < 0)
2382 ret = err;
2384 return ret;
2386 EXPORT_SYMBOL(generic_file_aio_write);
2389 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2390 * went wrong during pagecache shootdown.
2392 static ssize_t
2393 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2394 loff_t offset, unsigned long nr_segs)
2396 struct file *file = iocb->ki_filp;
2397 struct address_space *mapping = file->f_mapping;
2398 ssize_t retval;
2399 size_t write_len;
2400 pgoff_t end = 0; /* silence gcc */
2403 * If it's a write, unmap all mmappings of the file up-front. This
2404 * will cause any pte dirty bits to be propagated into the pageframes
2405 * for the subsequent filemap_write_and_wait().
2407 if (rw == WRITE) {
2408 write_len = iov_length(iov, nr_segs);
2409 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2410 if (mapping_mapped(mapping))
2411 unmap_mapping_range(mapping, offset, write_len, 0);
2414 retval = filemap_write_and_wait(mapping);
2415 if (retval)
2416 goto out;
2419 * After a write we want buffered reads to be sure to go to disk to get
2420 * the new data. We invalidate clean cached page from the region we're
2421 * about to write. We do this *before* the write so that we can return
2422 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2424 if (rw == WRITE && mapping->nrpages) {
2425 retval = invalidate_inode_pages2_range(mapping,
2426 offset >> PAGE_CACHE_SHIFT, end);
2427 if (retval)
2428 goto out;
2431 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2432 if (retval)
2433 goto out;
2436 * Finally, try again to invalidate clean pages which might have been
2437 * faulted in by get_user_pages() if the source of the write was an
2438 * mmap()ed region of the file we're writing. That's a pretty crazy
2439 * thing to do, so we don't support it 100%. If this invalidation
2440 * fails and we have -EIOCBQUEUED we ignore the failure.
2442 if (rw == WRITE && mapping->nrpages) {
2443 int err = invalidate_inode_pages2_range(mapping,
2444 offset >> PAGE_CACHE_SHIFT, end);
2445 if (err && retval >= 0)
2446 retval = err;
2448 out:
2449 return retval;
2453 * try_to_release_page() - release old fs-specific metadata on a page
2455 * @page: the page which the kernel is trying to free
2456 * @gfp_mask: memory allocation flags (and I/O mode)
2458 * The address_space is to try to release any data against the page
2459 * (presumably at page->private). If the release was successful, return `1'.
2460 * Otherwise return zero.
2462 * The @gfp_mask argument specifies whether I/O may be performed to release
2463 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2465 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2467 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2469 struct address_space * const mapping = page->mapping;
2471 BUG_ON(!PageLocked(page));
2472 if (PageWriteback(page))
2473 return 0;
2475 if (mapping && mapping->a_ops->releasepage)
2476 return mapping->a_ops->releasepage(page, gfp_mask);
2477 return try_to_free_buffers(page);
2480 EXPORT_SYMBOL(try_to_release_page);