2 * arch/sparc64/mm/init.c
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
31 #include <asm/system.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
42 #include <asm/starfire.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
47 #include <asm/hypervisor.h>
49 #include <asm/sstate.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
54 #define MAX_PHYS_ADDRESS (1UL << 42UL)
55 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
56 #define KPTE_BITMAP_BYTES \
57 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
59 unsigned long kern_linear_pte_xor
[2] __read_mostly
;
61 /* A bitmap, one bit for every 256MB of physical memory. If the bit
62 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
63 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
65 unsigned long kpte_linear_bitmap
[KPTE_BITMAP_BYTES
/ sizeof(unsigned long)];
67 #ifndef CONFIG_DEBUG_PAGEALLOC
68 /* A special kernel TSB for 4MB and 256MB linear mappings.
69 * Space is allocated for this right after the trap table
70 * in arch/sparc64/kernel/head.S
72 extern struct tsb swapper_4m_tsb
[KERNEL_TSB4M_NENTRIES
];
77 static struct linux_prom64_registers pavail
[MAX_BANKS
] __initdata
;
78 static int pavail_ents __initdata
;
80 static int cmp_p64(const void *a
, const void *b
)
82 const struct linux_prom64_registers
*x
= a
, *y
= b
;
84 if (x
->phys_addr
> y
->phys_addr
)
86 if (x
->phys_addr
< y
->phys_addr
)
91 static void __init
read_obp_memory(const char *property
,
92 struct linux_prom64_registers
*regs
,
95 int node
= prom_finddevice("/memory");
96 int prop_size
= prom_getproplen(node
, property
);
99 ents
= prop_size
/ sizeof(struct linux_prom64_registers
);
100 if (ents
> MAX_BANKS
) {
101 prom_printf("The machine has more %s property entries than "
102 "this kernel can support (%d).\n",
103 property
, MAX_BANKS
);
107 ret
= prom_getproperty(node
, property
, (char *) regs
, prop_size
);
109 prom_printf("Couldn't get %s property from /memory.\n");
113 /* Sanitize what we got from the firmware, by page aligning
116 for (i
= 0; i
< ents
; i
++) {
117 unsigned long base
, size
;
119 base
= regs
[i
].phys_addr
;
120 size
= regs
[i
].reg_size
;
123 if (base
& ~PAGE_MASK
) {
124 unsigned long new_base
= PAGE_ALIGN(base
);
126 size
-= new_base
- base
;
127 if ((long) size
< 0L)
132 /* If it is empty, simply get rid of it.
133 * This simplifies the logic of the other
134 * functions that process these arrays.
136 memmove(®s
[i
], ®s
[i
+ 1],
137 (ents
- i
- 1) * sizeof(regs
[0]));
142 regs
[i
].phys_addr
= base
;
143 regs
[i
].reg_size
= size
;
148 sort(regs
, ents
, sizeof(struct linux_prom64_registers
),
152 unsigned long *sparc64_valid_addr_bitmap __read_mostly
;
154 /* Kernel physical address base and size in bytes. */
155 unsigned long kern_base __read_mostly
;
156 unsigned long kern_size __read_mostly
;
158 /* Initial ramdisk setup */
159 extern unsigned long sparc_ramdisk_image64
;
160 extern unsigned int sparc_ramdisk_image
;
161 extern unsigned int sparc_ramdisk_size
;
163 struct page
*mem_map_zero __read_mostly
;
164 EXPORT_SYMBOL(mem_map_zero
);
166 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly
;
168 unsigned long sparc64_kern_pri_context __read_mostly
;
169 unsigned long sparc64_kern_pri_nuc_bits __read_mostly
;
170 unsigned long sparc64_kern_sec_context __read_mostly
;
172 int num_kernel_image_mappings
;
174 #ifdef CONFIG_DEBUG_DCFLUSH
175 atomic_t dcpage_flushes
= ATOMIC_INIT(0);
177 atomic_t dcpage_flushes_xcall
= ATOMIC_INIT(0);
181 inline void flush_dcache_page_impl(struct page
*page
)
183 BUG_ON(tlb_type
== hypervisor
);
184 #ifdef CONFIG_DEBUG_DCFLUSH
185 atomic_inc(&dcpage_flushes
);
188 #ifdef DCACHE_ALIASING_POSSIBLE
189 __flush_dcache_page(page_address(page
),
190 ((tlb_type
== spitfire
) &&
191 page_mapping(page
) != NULL
));
193 if (page_mapping(page
) != NULL
&&
194 tlb_type
== spitfire
)
195 __flush_icache_page(__pa(page_address(page
)));
199 #define PG_dcache_dirty PG_arch_1
200 #define PG_dcache_cpu_shift 32UL
201 #define PG_dcache_cpu_mask \
202 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
204 #define dcache_dirty_cpu(page) \
205 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
207 static inline void set_dcache_dirty(struct page
*page
, int this_cpu
)
209 unsigned long mask
= this_cpu
;
210 unsigned long non_cpu_bits
;
212 non_cpu_bits
= ~(PG_dcache_cpu_mask
<< PG_dcache_cpu_shift
);
213 mask
= (mask
<< PG_dcache_cpu_shift
) | (1UL << PG_dcache_dirty
);
215 __asm__
__volatile__("1:\n\t"
217 "and %%g7, %1, %%g1\n\t"
218 "or %%g1, %0, %%g1\n\t"
219 "casx [%2], %%g7, %%g1\n\t"
221 "membar #StoreLoad | #StoreStore\n\t"
222 "bne,pn %%xcc, 1b\n\t"
225 : "r" (mask
), "r" (non_cpu_bits
), "r" (&page
->flags
)
229 static inline void clear_dcache_dirty_cpu(struct page
*page
, unsigned long cpu
)
231 unsigned long mask
= (1UL << PG_dcache_dirty
);
233 __asm__
__volatile__("! test_and_clear_dcache_dirty\n"
236 "srlx %%g7, %4, %%g1\n\t"
237 "and %%g1, %3, %%g1\n\t"
239 "bne,pn %%icc, 2f\n\t"
240 " andn %%g7, %1, %%g1\n\t"
241 "casx [%2], %%g7, %%g1\n\t"
243 "membar #StoreLoad | #StoreStore\n\t"
244 "bne,pn %%xcc, 1b\n\t"
248 : "r" (cpu
), "r" (mask
), "r" (&page
->flags
),
249 "i" (PG_dcache_cpu_mask
),
250 "i" (PG_dcache_cpu_shift
)
254 static inline void tsb_insert(struct tsb
*ent
, unsigned long tag
, unsigned long pte
)
256 unsigned long tsb_addr
= (unsigned long) ent
;
258 if (tlb_type
== cheetah_plus
|| tlb_type
== hypervisor
)
259 tsb_addr
= __pa(tsb_addr
);
261 __tsb_insert(tsb_addr
, tag
, pte
);
264 unsigned long _PAGE_ALL_SZ_BITS __read_mostly
;
265 unsigned long _PAGE_SZBITS __read_mostly
;
267 void update_mmu_cache(struct vm_area_struct
*vma
, unsigned long address
, pte_t pte
)
269 struct mm_struct
*mm
;
271 unsigned long tag
, flags
;
272 unsigned long tsb_index
, tsb_hash_shift
;
274 if (tlb_type
!= hypervisor
) {
275 unsigned long pfn
= pte_pfn(pte
);
276 unsigned long pg_flags
;
279 if (pfn_valid(pfn
) &&
280 (page
= pfn_to_page(pfn
), page_mapping(page
)) &&
281 ((pg_flags
= page
->flags
) & (1UL << PG_dcache_dirty
))) {
282 int cpu
= ((pg_flags
>> PG_dcache_cpu_shift
) &
284 int this_cpu
= get_cpu();
286 /* This is just to optimize away some function calls
290 flush_dcache_page_impl(page
);
292 smp_flush_dcache_page_impl(page
, cpu
);
294 clear_dcache_dirty_cpu(page
, cpu
);
302 tsb_index
= MM_TSB_BASE
;
303 tsb_hash_shift
= PAGE_SHIFT
;
305 spin_lock_irqsave(&mm
->context
.lock
, flags
);
307 #ifdef CONFIG_HUGETLB_PAGE
308 if (mm
->context
.tsb_block
[MM_TSB_HUGE
].tsb
!= NULL
) {
309 if ((tlb_type
== hypervisor
&&
310 (pte_val(pte
) & _PAGE_SZALL_4V
) == _PAGE_SZHUGE_4V
) ||
311 (tlb_type
!= hypervisor
&&
312 (pte_val(pte
) & _PAGE_SZALL_4U
) == _PAGE_SZHUGE_4U
)) {
313 tsb_index
= MM_TSB_HUGE
;
314 tsb_hash_shift
= HPAGE_SHIFT
;
319 tsb
= mm
->context
.tsb_block
[tsb_index
].tsb
;
320 tsb
+= ((address
>> tsb_hash_shift
) &
321 (mm
->context
.tsb_block
[tsb_index
].tsb_nentries
- 1UL));
322 tag
= (address
>> 22UL);
323 tsb_insert(tsb
, tag
, pte_val(pte
));
325 spin_unlock_irqrestore(&mm
->context
.lock
, flags
);
328 void flush_dcache_page(struct page
*page
)
330 struct address_space
*mapping
;
333 if (tlb_type
== hypervisor
)
336 /* Do not bother with the expensive D-cache flush if it
337 * is merely the zero page. The 'bigcore' testcase in GDB
338 * causes this case to run millions of times.
340 if (page
== ZERO_PAGE(0))
343 this_cpu
= get_cpu();
345 mapping
= page_mapping(page
);
346 if (mapping
&& !mapping_mapped(mapping
)) {
347 int dirty
= test_bit(PG_dcache_dirty
, &page
->flags
);
349 int dirty_cpu
= dcache_dirty_cpu(page
);
351 if (dirty_cpu
== this_cpu
)
353 smp_flush_dcache_page_impl(page
, dirty_cpu
);
355 set_dcache_dirty(page
, this_cpu
);
357 /* We could delay the flush for the !page_mapping
358 * case too. But that case is for exec env/arg
359 * pages and those are %99 certainly going to get
360 * faulted into the tlb (and thus flushed) anyways.
362 flush_dcache_page_impl(page
);
369 void __kprobes
flush_icache_range(unsigned long start
, unsigned long end
)
371 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
372 if (tlb_type
== spitfire
) {
375 /* This code only runs on Spitfire cpus so this is
376 * why we can assume _PAGE_PADDR_4U.
378 for (kaddr
= start
; kaddr
< end
; kaddr
+= PAGE_SIZE
) {
379 unsigned long paddr
, mask
= _PAGE_PADDR_4U
;
381 if (kaddr
>= PAGE_OFFSET
)
382 paddr
= kaddr
& mask
;
384 pgd_t
*pgdp
= pgd_offset_k(kaddr
);
385 pud_t
*pudp
= pud_offset(pgdp
, kaddr
);
386 pmd_t
*pmdp
= pmd_offset(pudp
, kaddr
);
387 pte_t
*ptep
= pte_offset_kernel(pmdp
, kaddr
);
389 paddr
= pte_val(*ptep
) & mask
;
391 __flush_icache_page(paddr
);
398 unsigned long total
= 0, reserved
= 0;
399 unsigned long shared
= 0, cached
= 0;
402 printk(KERN_INFO
"Mem-info:\n");
404 printk(KERN_INFO
"Free swap: %6ldkB\n",
405 nr_swap_pages
<< (PAGE_SHIFT
-10));
406 for_each_online_pgdat(pgdat
) {
407 unsigned long i
, flags
;
409 pgdat_resize_lock(pgdat
, &flags
);
410 for (i
= 0; i
< pgdat
->node_spanned_pages
; i
++) {
411 struct page
*page
= pgdat_page_nr(pgdat
, i
);
413 if (PageReserved(page
))
415 else if (PageSwapCache(page
))
417 else if (page_count(page
))
418 shared
+= page_count(page
) - 1;
420 pgdat_resize_unlock(pgdat
, &flags
);
423 printk(KERN_INFO
"%lu pages of RAM\n", total
);
424 printk(KERN_INFO
"%lu reserved pages\n", reserved
);
425 printk(KERN_INFO
"%lu pages shared\n", shared
);
426 printk(KERN_INFO
"%lu pages swap cached\n", cached
);
428 printk(KERN_INFO
"%lu pages dirty\n",
429 global_page_state(NR_FILE_DIRTY
));
430 printk(KERN_INFO
"%lu pages writeback\n",
431 global_page_state(NR_WRITEBACK
));
432 printk(KERN_INFO
"%lu pages mapped\n",
433 global_page_state(NR_FILE_MAPPED
));
434 printk(KERN_INFO
"%lu pages slab\n",
435 global_page_state(NR_SLAB_RECLAIMABLE
) +
436 global_page_state(NR_SLAB_UNRECLAIMABLE
));
437 printk(KERN_INFO
"%lu pages pagetables\n",
438 global_page_state(NR_PAGETABLE
));
441 void mmu_info(struct seq_file
*m
)
443 if (tlb_type
== cheetah
)
444 seq_printf(m
, "MMU Type\t: Cheetah\n");
445 else if (tlb_type
== cheetah_plus
)
446 seq_printf(m
, "MMU Type\t: Cheetah+\n");
447 else if (tlb_type
== spitfire
)
448 seq_printf(m
, "MMU Type\t: Spitfire\n");
449 else if (tlb_type
== hypervisor
)
450 seq_printf(m
, "MMU Type\t: Hypervisor (sun4v)\n");
452 seq_printf(m
, "MMU Type\t: ???\n");
454 #ifdef CONFIG_DEBUG_DCFLUSH
455 seq_printf(m
, "DCPageFlushes\t: %d\n",
456 atomic_read(&dcpage_flushes
));
458 seq_printf(m
, "DCPageFlushesXC\t: %d\n",
459 atomic_read(&dcpage_flushes_xcall
));
460 #endif /* CONFIG_SMP */
461 #endif /* CONFIG_DEBUG_DCFLUSH */
464 struct linux_prom_translation
{
470 /* Exported for kernel TLB miss handling in ktlb.S */
471 struct linux_prom_translation prom_trans
[512] __read_mostly
;
472 unsigned int prom_trans_ents __read_mostly
;
474 /* Exported for SMP bootup purposes. */
475 unsigned long kern_locked_tte_data
;
477 /* The obp translations are saved based on 8k pagesize, since obp can
478 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
479 * HI_OBP_ADDRESS range are handled in ktlb.S.
481 static inline int in_obp_range(unsigned long vaddr
)
483 return (vaddr
>= LOW_OBP_ADDRESS
&&
484 vaddr
< HI_OBP_ADDRESS
);
487 static int cmp_ptrans(const void *a
, const void *b
)
489 const struct linux_prom_translation
*x
= a
, *y
= b
;
491 if (x
->virt
> y
->virt
)
493 if (x
->virt
< y
->virt
)
498 /* Read OBP translations property into 'prom_trans[]'. */
499 static void __init
read_obp_translations(void)
501 int n
, node
, ents
, first
, last
, i
;
503 node
= prom_finddevice("/virtual-memory");
504 n
= prom_getproplen(node
, "translations");
505 if (unlikely(n
== 0 || n
== -1)) {
506 prom_printf("prom_mappings: Couldn't get size.\n");
509 if (unlikely(n
> sizeof(prom_trans
))) {
510 prom_printf("prom_mappings: Size %Zd is too big.\n", n
);
514 if ((n
= prom_getproperty(node
, "translations",
515 (char *)&prom_trans
[0],
516 sizeof(prom_trans
))) == -1) {
517 prom_printf("prom_mappings: Couldn't get property.\n");
521 n
= n
/ sizeof(struct linux_prom_translation
);
525 sort(prom_trans
, ents
, sizeof(struct linux_prom_translation
),
528 /* Now kick out all the non-OBP entries. */
529 for (i
= 0; i
< ents
; i
++) {
530 if (in_obp_range(prom_trans
[i
].virt
))
534 for (; i
< ents
; i
++) {
535 if (!in_obp_range(prom_trans
[i
].virt
))
540 for (i
= 0; i
< (last
- first
); i
++) {
541 struct linux_prom_translation
*src
= &prom_trans
[i
+ first
];
542 struct linux_prom_translation
*dest
= &prom_trans
[i
];
546 for (; i
< ents
; i
++) {
547 struct linux_prom_translation
*dest
= &prom_trans
[i
];
548 dest
->virt
= dest
->size
= dest
->data
= 0x0UL
;
551 prom_trans_ents
= last
- first
;
553 if (tlb_type
== spitfire
) {
554 /* Clear diag TTE bits. */
555 for (i
= 0; i
< prom_trans_ents
; i
++)
556 prom_trans
[i
].data
&= ~0x0003fe0000000000UL
;
560 static void __init
hypervisor_tlb_lock(unsigned long vaddr
,
564 unsigned long ret
= sun4v_mmu_map_perm_addr(vaddr
, 0, pte
, mmu
);
567 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
568 "errors with %lx\n", vaddr
, 0, pte
, mmu
, ret
);
573 static unsigned long kern_large_tte(unsigned long paddr
);
575 static void __init
remap_kernel(void)
577 unsigned long phys_page
, tte_vaddr
, tte_data
;
578 int i
, tlb_ent
= sparc64_highest_locked_tlbent();
580 tte_vaddr
= (unsigned long) KERNBASE
;
581 phys_page
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
582 tte_data
= kern_large_tte(phys_page
);
584 kern_locked_tte_data
= tte_data
;
586 /* Now lock us into the TLBs via Hypervisor or OBP. */
587 if (tlb_type
== hypervisor
) {
588 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
589 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_DMMU
);
590 hypervisor_tlb_lock(tte_vaddr
, tte_data
, HV_MMU_IMMU
);
591 tte_vaddr
+= 0x400000;
592 tte_data
+= 0x400000;
595 for (i
= 0; i
< num_kernel_image_mappings
; i
++) {
596 prom_dtlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
597 prom_itlb_load(tlb_ent
- i
, tte_data
, tte_vaddr
);
598 tte_vaddr
+= 0x400000;
599 tte_data
+= 0x400000;
601 sparc64_highest_unlocked_tlb_ent
= tlb_ent
- i
;
603 if (tlb_type
== cheetah_plus
) {
604 sparc64_kern_pri_context
= (CTX_CHEETAH_PLUS_CTX0
|
605 CTX_CHEETAH_PLUS_NUC
);
606 sparc64_kern_pri_nuc_bits
= CTX_CHEETAH_PLUS_NUC
;
607 sparc64_kern_sec_context
= CTX_CHEETAH_PLUS_CTX0
;
612 static void __init
inherit_prom_mappings(void)
614 /* Now fixup OBP's idea about where we really are mapped. */
615 printk("Remapping the kernel... ");
620 void prom_world(int enter
)
623 set_fs((mm_segment_t
) { get_thread_current_ds() });
625 __asm__
__volatile__("flushw");
628 void __flush_dcache_range(unsigned long start
, unsigned long end
)
632 if (tlb_type
== spitfire
) {
635 for (va
= start
; va
< end
; va
+= 32) {
636 spitfire_put_dcache_tag(va
& 0x3fe0, 0x0);
640 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
643 for (va
= start
; va
< end
; va
+= 32)
644 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
648 "i" (ASI_DCACHE_INVALIDATE
));
652 /* get_new_mmu_context() uses "cache + 1". */
653 DEFINE_SPINLOCK(ctx_alloc_lock
);
654 unsigned long tlb_context_cache
= CTX_FIRST_VERSION
- 1;
655 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
656 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
657 DECLARE_BITMAP(mmu_context_bmap
, MAX_CTX_NR
);
659 /* Caller does TLB context flushing on local CPU if necessary.
660 * The caller also ensures that CTX_VALID(mm->context) is false.
662 * We must be careful about boundary cases so that we never
663 * let the user have CTX 0 (nucleus) or we ever use a CTX
664 * version of zero (and thus NO_CONTEXT would not be caught
665 * by version mis-match tests in mmu_context.h).
667 * Always invoked with interrupts disabled.
669 void get_new_mmu_context(struct mm_struct
*mm
)
671 unsigned long ctx
, new_ctx
;
672 unsigned long orig_pgsz_bits
;
676 spin_lock_irqsave(&ctx_alloc_lock
, flags
);
677 orig_pgsz_bits
= (mm
->context
.sparc64_ctx_val
& CTX_PGSZ_MASK
);
678 ctx
= (tlb_context_cache
+ 1) & CTX_NR_MASK
;
679 new_ctx
= find_next_zero_bit(mmu_context_bmap
, 1 << CTX_NR_BITS
, ctx
);
681 if (new_ctx
>= (1 << CTX_NR_BITS
)) {
682 new_ctx
= find_next_zero_bit(mmu_context_bmap
, ctx
, 1);
683 if (new_ctx
>= ctx
) {
685 new_ctx
= (tlb_context_cache
& CTX_VERSION_MASK
) +
688 new_ctx
= CTX_FIRST_VERSION
;
690 /* Don't call memset, for 16 entries that's just
693 mmu_context_bmap
[0] = 3;
694 mmu_context_bmap
[1] = 0;
695 mmu_context_bmap
[2] = 0;
696 mmu_context_bmap
[3] = 0;
697 for (i
= 4; i
< CTX_BMAP_SLOTS
; i
+= 4) {
698 mmu_context_bmap
[i
+ 0] = 0;
699 mmu_context_bmap
[i
+ 1] = 0;
700 mmu_context_bmap
[i
+ 2] = 0;
701 mmu_context_bmap
[i
+ 3] = 0;
707 mmu_context_bmap
[new_ctx
>>6] |= (1UL << (new_ctx
& 63));
708 new_ctx
|= (tlb_context_cache
& CTX_VERSION_MASK
);
710 tlb_context_cache
= new_ctx
;
711 mm
->context
.sparc64_ctx_val
= new_ctx
| orig_pgsz_bits
;
712 spin_unlock_irqrestore(&ctx_alloc_lock
, flags
);
714 if (unlikely(new_version
))
715 smp_new_mmu_context_version();
718 static int numa_enabled
= 1;
719 static int numa_debug
;
721 static int __init
early_numa(char *p
)
726 if (strstr(p
, "off"))
729 if (strstr(p
, "debug"))
734 early_param("numa", early_numa
);
736 #define numadbg(f, a...) \
737 do { if (numa_debug) \
738 printk(KERN_INFO f, ## a); \
741 static void __init
find_ramdisk(unsigned long phys_base
)
743 #ifdef CONFIG_BLK_DEV_INITRD
744 if (sparc_ramdisk_image
|| sparc_ramdisk_image64
) {
745 unsigned long ramdisk_image
;
747 /* Older versions of the bootloader only supported a
748 * 32-bit physical address for the ramdisk image
749 * location, stored at sparc_ramdisk_image. Newer
750 * SILO versions set sparc_ramdisk_image to zero and
751 * provide a full 64-bit physical address at
752 * sparc_ramdisk_image64.
754 ramdisk_image
= sparc_ramdisk_image
;
756 ramdisk_image
= sparc_ramdisk_image64
;
758 /* Another bootloader quirk. The bootloader normalizes
759 * the physical address to KERNBASE, so we have to
760 * factor that back out and add in the lowest valid
761 * physical page address to get the true physical address.
763 ramdisk_image
-= KERNBASE
;
764 ramdisk_image
+= phys_base
;
766 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
767 ramdisk_image
, sparc_ramdisk_size
);
769 initrd_start
= ramdisk_image
;
770 initrd_end
= ramdisk_image
+ sparc_ramdisk_size
;
772 lmb_reserve(initrd_start
, sparc_ramdisk_size
);
774 initrd_start
+= PAGE_OFFSET
;
775 initrd_end
+= PAGE_OFFSET
;
780 struct node_mem_mask
{
783 unsigned long bootmem_paddr
;
785 static struct node_mem_mask node_masks
[MAX_NUMNODES
];
786 static int num_node_masks
;
788 int numa_cpu_lookup_table
[NR_CPUS
];
789 cpumask_t numa_cpumask_lookup_table
[MAX_NUMNODES
];
791 #ifdef CONFIG_NEED_MULTIPLE_NODES
792 static bootmem_data_t plat_node_bdata
[MAX_NUMNODES
];
794 struct mdesc_mblock
{
797 u64 offset
; /* RA-to-PA */
799 static struct mdesc_mblock
*mblocks
;
800 static int num_mblocks
;
802 static unsigned long ra_to_pa(unsigned long addr
)
806 for (i
= 0; i
< num_mblocks
; i
++) {
807 struct mdesc_mblock
*m
= &mblocks
[i
];
809 if (addr
>= m
->base
&&
810 addr
< (m
->base
+ m
->size
)) {
818 static int find_node(unsigned long addr
)
822 addr
= ra_to_pa(addr
);
823 for (i
= 0; i
< num_node_masks
; i
++) {
824 struct node_mem_mask
*p
= &node_masks
[i
];
826 if ((addr
& p
->mask
) == p
->val
)
832 static unsigned long nid_range(unsigned long start
, unsigned long end
,
835 *nid
= find_node(start
);
837 while (start
< end
) {
838 int n
= find_node(start
);
851 static unsigned long nid_range(unsigned long start
, unsigned long end
,
859 /* This must be invoked after performing all of the necessary
860 * add_active_range() calls for 'nid'. We need to be able to get
861 * correct data from get_pfn_range_for_nid().
863 static void __init
allocate_node_data(int nid
)
865 unsigned long paddr
, num_pages
, start_pfn
, end_pfn
;
866 struct pglist_data
*p
;
868 #ifdef CONFIG_NEED_MULTIPLE_NODES
869 paddr
= lmb_alloc_nid(sizeof(struct pglist_data
),
870 SMP_CACHE_BYTES
, nid
, nid_range
);
872 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid
);
875 NODE_DATA(nid
) = __va(paddr
);
876 memset(NODE_DATA(nid
), 0, sizeof(struct pglist_data
));
878 NODE_DATA(nid
)->bdata
= &plat_node_bdata
[nid
];
883 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
884 p
->node_start_pfn
= start_pfn
;
885 p
->node_spanned_pages
= end_pfn
- start_pfn
;
887 if (p
->node_spanned_pages
) {
888 num_pages
= bootmem_bootmap_pages(p
->node_spanned_pages
);
890 paddr
= lmb_alloc_nid(num_pages
<< PAGE_SHIFT
, PAGE_SIZE
, nid
,
893 prom_printf("Cannot allocate bootmap for nid[%d]\n",
897 node_masks
[nid
].bootmem_paddr
= paddr
;
901 static void init_node_masks_nonnuma(void)
905 numadbg("Initializing tables for non-numa.\n");
907 node_masks
[0].mask
= node_masks
[0].val
= 0;
910 for (i
= 0; i
< NR_CPUS
; i
++)
911 numa_cpu_lookup_table
[i
] = 0;
913 numa_cpumask_lookup_table
[0] = CPU_MASK_ALL
;
916 #ifdef CONFIG_NEED_MULTIPLE_NODES
917 struct pglist_data
*node_data
[MAX_NUMNODES
];
919 EXPORT_SYMBOL(numa_cpu_lookup_table
);
920 EXPORT_SYMBOL(numa_cpumask_lookup_table
);
921 EXPORT_SYMBOL(node_data
);
923 struct mdesc_mlgroup
{
929 static struct mdesc_mlgroup
*mlgroups
;
930 static int num_mlgroups
;
932 static int scan_pio_for_cfg_handle(struct mdesc_handle
*md
, u64 pio
,
937 mdesc_for_each_arc(arc
, md
, pio
, MDESC_ARC_TYPE_FWD
) {
938 u64 target
= mdesc_arc_target(md
, arc
);
941 val
= mdesc_get_property(md
, target
,
943 if (val
&& *val
== cfg_handle
)
949 static int scan_arcs_for_cfg_handle(struct mdesc_handle
*md
, u64 grp
,
952 u64 arc
, candidate
, best_latency
= ~(u64
)0;
954 candidate
= MDESC_NODE_NULL
;
955 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
956 u64 target
= mdesc_arc_target(md
, arc
);
957 const char *name
= mdesc_node_name(md
, target
);
960 if (strcmp(name
, "pio-latency-group"))
963 val
= mdesc_get_property(md
, target
, "latency", NULL
);
967 if (*val
< best_latency
) {
973 if (candidate
== MDESC_NODE_NULL
)
976 return scan_pio_for_cfg_handle(md
, candidate
, cfg_handle
);
979 int of_node_to_nid(struct device_node
*dp
)
981 const struct linux_prom64_registers
*regs
;
982 struct mdesc_handle
*md
;
990 regs
= of_get_property(dp
, "reg", NULL
);
994 cfg_handle
= (regs
->phys_addr
>> 32UL) & 0x0fffffff;
1000 mdesc_for_each_node_by_name(md
, grp
, "group") {
1001 if (!scan_arcs_for_cfg_handle(md
, grp
, cfg_handle
)) {
1013 static void add_node_ranges(void)
1017 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
1018 unsigned long size
= lmb_size_bytes(&lmb
.memory
, i
);
1019 unsigned long start
, end
;
1021 start
= lmb
.memory
.region
[i
].base
;
1023 while (start
< end
) {
1024 unsigned long this_end
;
1027 this_end
= nid_range(start
, end
, &nid
);
1029 numadbg("Adding active range nid[%d] "
1030 "start[%lx] end[%lx]\n",
1031 nid
, start
, this_end
);
1033 add_active_range(nid
,
1034 start
>> PAGE_SHIFT
,
1035 this_end
>> PAGE_SHIFT
);
1042 static int __init
grab_mlgroups(struct mdesc_handle
*md
)
1044 unsigned long paddr
;
1048 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group")
1053 paddr
= lmb_alloc(count
* sizeof(struct mdesc_mlgroup
),
1058 mlgroups
= __va(paddr
);
1059 num_mlgroups
= count
;
1062 mdesc_for_each_node_by_name(md
, node
, "memory-latency-group") {
1063 struct mdesc_mlgroup
*m
= &mlgroups
[count
++];
1068 val
= mdesc_get_property(md
, node
, "latency", NULL
);
1070 val
= mdesc_get_property(md
, node
, "address-match", NULL
);
1072 val
= mdesc_get_property(md
, node
, "address-mask", NULL
);
1075 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1076 "match[%lx] mask[%lx]\n",
1077 count
- 1, m
->node
, m
->latency
, m
->match
, m
->mask
);
1083 static int __init
grab_mblocks(struct mdesc_handle
*md
)
1085 unsigned long paddr
;
1089 mdesc_for_each_node_by_name(md
, node
, "mblock")
1094 paddr
= lmb_alloc(count
* sizeof(struct mdesc_mblock
),
1099 mblocks
= __va(paddr
);
1100 num_mblocks
= count
;
1103 mdesc_for_each_node_by_name(md
, node
, "mblock") {
1104 struct mdesc_mblock
*m
= &mblocks
[count
++];
1107 val
= mdesc_get_property(md
, node
, "base", NULL
);
1109 val
= mdesc_get_property(md
, node
, "size", NULL
);
1111 val
= mdesc_get_property(md
, node
,
1112 "address-congruence-offset", NULL
);
1115 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1116 count
- 1, m
->base
, m
->size
, m
->offset
);
1122 static void __init
numa_parse_mdesc_group_cpus(struct mdesc_handle
*md
,
1123 u64 grp
, cpumask_t
*mask
)
1129 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_BACK
) {
1130 u64 target
= mdesc_arc_target(md
, arc
);
1131 const char *name
= mdesc_node_name(md
, target
);
1134 if (strcmp(name
, "cpu"))
1136 id
= mdesc_get_property(md
, target
, "id", NULL
);
1138 cpu_set(*id
, *mask
);
1142 static struct mdesc_mlgroup
* __init
find_mlgroup(u64 node
)
1146 for (i
= 0; i
< num_mlgroups
; i
++) {
1147 struct mdesc_mlgroup
*m
= &mlgroups
[i
];
1148 if (m
->node
== node
)
1154 static int __init
numa_attach_mlgroup(struct mdesc_handle
*md
, u64 grp
,
1157 struct mdesc_mlgroup
*candidate
= NULL
;
1158 u64 arc
, best_latency
= ~(u64
)0;
1159 struct node_mem_mask
*n
;
1161 mdesc_for_each_arc(arc
, md
, grp
, MDESC_ARC_TYPE_FWD
) {
1162 u64 target
= mdesc_arc_target(md
, arc
);
1163 struct mdesc_mlgroup
*m
= find_mlgroup(target
);
1166 if (m
->latency
< best_latency
) {
1168 best_latency
= m
->latency
;
1174 if (num_node_masks
!= index
) {
1175 printk(KERN_ERR
"Inconsistent NUMA state, "
1176 "index[%d] != num_node_masks[%d]\n",
1177 index
, num_node_masks
);
1181 n
= &node_masks
[num_node_masks
++];
1183 n
->mask
= candidate
->mask
;
1184 n
->val
= candidate
->match
;
1186 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1187 index
, n
->mask
, n
->val
, candidate
->latency
);
1192 static int __init
numa_parse_mdesc_group(struct mdesc_handle
*md
, u64 grp
,
1198 numa_parse_mdesc_group_cpus(md
, grp
, &mask
);
1200 for_each_cpu_mask(cpu
, mask
)
1201 numa_cpu_lookup_table
[cpu
] = index
;
1202 numa_cpumask_lookup_table
[index
] = mask
;
1205 printk(KERN_INFO
"NUMA GROUP[%d]: cpus [ ", index
);
1206 for_each_cpu_mask(cpu
, mask
)
1211 return numa_attach_mlgroup(md
, grp
, index
);
1214 static int __init
numa_parse_mdesc(void)
1216 struct mdesc_handle
*md
= mdesc_grab();
1220 node
= mdesc_node_by_name(md
, MDESC_NODE_NULL
, "latency-groups");
1221 if (node
== MDESC_NODE_NULL
) {
1226 err
= grab_mblocks(md
);
1230 err
= grab_mlgroups(md
);
1235 mdesc_for_each_node_by_name(md
, node
, "group") {
1236 err
= numa_parse_mdesc_group(md
, node
, count
);
1244 for (i
= 0; i
< num_node_masks
; i
++) {
1245 allocate_node_data(i
);
1255 static int __init
numa_parse_sun4u(void)
1260 static int __init
bootmem_init_numa(void)
1264 numadbg("bootmem_init_numa()\n");
1267 if (tlb_type
== hypervisor
)
1268 err
= numa_parse_mdesc();
1270 err
= numa_parse_sun4u();
1277 static int bootmem_init_numa(void)
1284 static void __init
bootmem_init_nonnuma(void)
1286 unsigned long top_of_ram
= lmb_end_of_DRAM();
1287 unsigned long total_ram
= lmb_phys_mem_size();
1290 numadbg("bootmem_init_nonnuma()\n");
1292 printk(KERN_INFO
"Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1293 top_of_ram
, total_ram
);
1294 printk(KERN_INFO
"Memory hole size: %ldMB\n",
1295 (top_of_ram
- total_ram
) >> 20);
1297 init_node_masks_nonnuma();
1299 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
1300 unsigned long size
= lmb_size_bytes(&lmb
.memory
, i
);
1301 unsigned long start_pfn
, end_pfn
;
1306 start_pfn
= lmb
.memory
.region
[i
].base
>> PAGE_SHIFT
;
1307 end_pfn
= start_pfn
+ lmb_size_pages(&lmb
.memory
, i
);
1308 add_active_range(0, start_pfn
, end_pfn
);
1311 allocate_node_data(0);
1316 static void __init
reserve_range_in_node(int nid
, unsigned long start
,
1319 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1321 while (start
< end
) {
1322 unsigned long this_end
;
1325 this_end
= nid_range(start
, end
, &n
);
1327 numadbg(" MATCH reserving range [%lx:%lx]\n",
1329 reserve_bootmem_node(NODE_DATA(nid
), start
,
1330 (this_end
- start
), BOOTMEM_DEFAULT
);
1332 numadbg(" NO MATCH, advancing start to %lx\n",
1339 static void __init
trim_reserved_in_node(int nid
)
1343 numadbg(" trim_reserved_in_node(%d)\n", nid
);
1345 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++) {
1346 unsigned long start
= lmb
.reserved
.region
[i
].base
;
1347 unsigned long size
= lmb_size_bytes(&lmb
.reserved
, i
);
1348 unsigned long end
= start
+ size
;
1350 reserve_range_in_node(nid
, start
, end
);
1354 static void __init
bootmem_init_one_node(int nid
)
1356 struct pglist_data
*p
;
1358 numadbg("bootmem_init_one_node(%d)\n", nid
);
1362 if (p
->node_spanned_pages
) {
1363 unsigned long paddr
= node_masks
[nid
].bootmem_paddr
;
1364 unsigned long end_pfn
;
1366 end_pfn
= p
->node_start_pfn
+ p
->node_spanned_pages
;
1368 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1369 nid
, paddr
>> PAGE_SHIFT
, p
->node_start_pfn
, end_pfn
);
1371 init_bootmem_node(p
, paddr
>> PAGE_SHIFT
,
1372 p
->node_start_pfn
, end_pfn
);
1374 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1376 free_bootmem_with_active_regions(nid
, end_pfn
);
1378 trim_reserved_in_node(nid
);
1380 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1382 sparse_memory_present_with_active_regions(nid
);
1386 static unsigned long __init
bootmem_init(unsigned long phys_base
)
1388 unsigned long end_pfn
;
1391 end_pfn
= lmb_end_of_DRAM() >> PAGE_SHIFT
;
1392 max_pfn
= max_low_pfn
= end_pfn
;
1393 min_low_pfn
= (phys_base
>> PAGE_SHIFT
);
1395 if (bootmem_init_numa() < 0)
1396 bootmem_init_nonnuma();
1398 /* XXX cpu notifier XXX */
1400 for_each_online_node(nid
)
1401 bootmem_init_one_node(nid
);
1408 static struct linux_prom64_registers pall
[MAX_BANKS
] __initdata
;
1409 static int pall_ents __initdata
;
1411 #ifdef CONFIG_DEBUG_PAGEALLOC
1412 static unsigned long __ref
kernel_map_range(unsigned long pstart
,
1413 unsigned long pend
, pgprot_t prot
)
1415 unsigned long vstart
= PAGE_OFFSET
+ pstart
;
1416 unsigned long vend
= PAGE_OFFSET
+ pend
;
1417 unsigned long alloc_bytes
= 0UL;
1419 if ((vstart
& ~PAGE_MASK
) || (vend
& ~PAGE_MASK
)) {
1420 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1425 while (vstart
< vend
) {
1426 unsigned long this_end
, paddr
= __pa(vstart
);
1427 pgd_t
*pgd
= pgd_offset_k(vstart
);
1432 pud
= pud_offset(pgd
, vstart
);
1433 if (pud_none(*pud
)) {
1436 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1437 alloc_bytes
+= PAGE_SIZE
;
1438 pud_populate(&init_mm
, pud
, new);
1441 pmd
= pmd_offset(pud
, vstart
);
1442 if (!pmd_present(*pmd
)) {
1445 new = __alloc_bootmem(PAGE_SIZE
, PAGE_SIZE
, PAGE_SIZE
);
1446 alloc_bytes
+= PAGE_SIZE
;
1447 pmd_populate_kernel(&init_mm
, pmd
, new);
1450 pte
= pte_offset_kernel(pmd
, vstart
);
1451 this_end
= (vstart
+ PMD_SIZE
) & PMD_MASK
;
1452 if (this_end
> vend
)
1455 while (vstart
< this_end
) {
1456 pte_val(*pte
) = (paddr
| pgprot_val(prot
));
1458 vstart
+= PAGE_SIZE
;
1467 extern unsigned int kvmap_linear_patch
[1];
1468 #endif /* CONFIG_DEBUG_PAGEALLOC */
1470 static void __init
mark_kpte_bitmap(unsigned long start
, unsigned long end
)
1472 const unsigned long shift_256MB
= 28;
1473 const unsigned long mask_256MB
= ((1UL << shift_256MB
) - 1UL);
1474 const unsigned long size_256MB
= (1UL << shift_256MB
);
1476 while (start
< end
) {
1479 remains
= end
- start
;
1480 if (remains
< size_256MB
)
1483 if (start
& mask_256MB
) {
1484 start
= (start
+ size_256MB
) & ~mask_256MB
;
1488 while (remains
>= size_256MB
) {
1489 unsigned long index
= start
>> shift_256MB
;
1491 __set_bit(index
, kpte_linear_bitmap
);
1493 start
+= size_256MB
;
1494 remains
-= size_256MB
;
1499 static void __init
init_kpte_bitmap(void)
1503 for (i
= 0; i
< pall_ents
; i
++) {
1504 unsigned long phys_start
, phys_end
;
1506 phys_start
= pall
[i
].phys_addr
;
1507 phys_end
= phys_start
+ pall
[i
].reg_size
;
1509 mark_kpte_bitmap(phys_start
, phys_end
);
1513 static void __init
kernel_physical_mapping_init(void)
1515 #ifdef CONFIG_DEBUG_PAGEALLOC
1516 unsigned long i
, mem_alloced
= 0UL;
1518 for (i
= 0; i
< pall_ents
; i
++) {
1519 unsigned long phys_start
, phys_end
;
1521 phys_start
= pall
[i
].phys_addr
;
1522 phys_end
= phys_start
+ pall
[i
].reg_size
;
1524 mem_alloced
+= kernel_map_range(phys_start
, phys_end
,
1528 printk("Allocated %ld bytes for kernel page tables.\n",
1531 kvmap_linear_patch
[0] = 0x01000000; /* nop */
1532 flushi(&kvmap_linear_patch
[0]);
1538 #ifdef CONFIG_DEBUG_PAGEALLOC
1539 void kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1541 unsigned long phys_start
= page_to_pfn(page
) << PAGE_SHIFT
;
1542 unsigned long phys_end
= phys_start
+ (numpages
* PAGE_SIZE
);
1544 kernel_map_range(phys_start
, phys_end
,
1545 (enable
? PAGE_KERNEL
: __pgprot(0)));
1547 flush_tsb_kernel_range(PAGE_OFFSET
+ phys_start
,
1548 PAGE_OFFSET
+ phys_end
);
1550 /* we should perform an IPI and flush all tlbs,
1551 * but that can deadlock->flush only current cpu.
1553 __flush_tlb_kernel_range(PAGE_OFFSET
+ phys_start
,
1554 PAGE_OFFSET
+ phys_end
);
1558 unsigned long __init
find_ecache_flush_span(unsigned long size
)
1562 for (i
= 0; i
< pavail_ents
; i
++) {
1563 if (pavail
[i
].reg_size
>= size
)
1564 return pavail
[i
].phys_addr
;
1570 static void __init
tsb_phys_patch(void)
1572 struct tsb_ldquad_phys_patch_entry
*pquad
;
1573 struct tsb_phys_patch_entry
*p
;
1575 pquad
= &__tsb_ldquad_phys_patch
;
1576 while (pquad
< &__tsb_ldquad_phys_patch_end
) {
1577 unsigned long addr
= pquad
->addr
;
1579 if (tlb_type
== hypervisor
)
1580 *(unsigned int *) addr
= pquad
->sun4v_insn
;
1582 *(unsigned int *) addr
= pquad
->sun4u_insn
;
1584 __asm__
__volatile__("flush %0"
1591 p
= &__tsb_phys_patch
;
1592 while (p
< &__tsb_phys_patch_end
) {
1593 unsigned long addr
= p
->addr
;
1595 *(unsigned int *) addr
= p
->insn
;
1597 __asm__
__volatile__("flush %0"
1605 /* Don't mark as init, we give this to the Hypervisor. */
1606 #ifndef CONFIG_DEBUG_PAGEALLOC
1607 #define NUM_KTSB_DESCR 2
1609 #define NUM_KTSB_DESCR 1
1611 static struct hv_tsb_descr ktsb_descr
[NUM_KTSB_DESCR
];
1612 extern struct tsb swapper_tsb
[KERNEL_TSB_NENTRIES
];
1614 static void __init
sun4v_ktsb_init(void)
1616 unsigned long ktsb_pa
;
1618 /* First KTSB for PAGE_SIZE mappings. */
1619 ktsb_pa
= kern_base
+ ((unsigned long)&swapper_tsb
[0] - KERNBASE
);
1621 switch (PAGE_SIZE
) {
1624 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_8K
;
1625 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_8K
;
1629 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_64K
;
1630 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_64K
;
1634 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_512K
;
1635 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_512K
;
1638 case 4 * 1024 * 1024:
1639 ktsb_descr
[0].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1640 ktsb_descr
[0].pgsz_mask
= HV_PGSZ_MASK_4MB
;
1644 ktsb_descr
[0].assoc
= 1;
1645 ktsb_descr
[0].num_ttes
= KERNEL_TSB_NENTRIES
;
1646 ktsb_descr
[0].ctx_idx
= 0;
1647 ktsb_descr
[0].tsb_base
= ktsb_pa
;
1648 ktsb_descr
[0].resv
= 0;
1650 #ifndef CONFIG_DEBUG_PAGEALLOC
1651 /* Second KTSB for 4MB/256MB mappings. */
1652 ktsb_pa
= (kern_base
+
1653 ((unsigned long)&swapper_4m_tsb
[0] - KERNBASE
));
1655 ktsb_descr
[1].pgsz_idx
= HV_PGSZ_IDX_4MB
;
1656 ktsb_descr
[1].pgsz_mask
= (HV_PGSZ_MASK_4MB
|
1657 HV_PGSZ_MASK_256MB
);
1658 ktsb_descr
[1].assoc
= 1;
1659 ktsb_descr
[1].num_ttes
= KERNEL_TSB4M_NENTRIES
;
1660 ktsb_descr
[1].ctx_idx
= 0;
1661 ktsb_descr
[1].tsb_base
= ktsb_pa
;
1662 ktsb_descr
[1].resv
= 0;
1666 void __cpuinit
sun4v_ktsb_register(void)
1668 unsigned long pa
, ret
;
1670 pa
= kern_base
+ ((unsigned long)&ktsb_descr
[0] - KERNBASE
);
1672 ret
= sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR
, pa
);
1674 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1675 "errors with %lx\n", pa
, ret
);
1680 /* paging_init() sets up the page tables */
1682 extern void central_probe(void);
1684 static unsigned long last_valid_pfn
;
1685 pgd_t swapper_pg_dir
[2048];
1687 static void sun4u_pgprot_init(void);
1688 static void sun4v_pgprot_init(void);
1690 /* Dummy function */
1691 void __init
setup_per_cpu_areas(void)
1695 void __init
paging_init(void)
1697 unsigned long end_pfn
, shift
, phys_base
;
1698 unsigned long real_end
, i
;
1700 /* These build time checkes make sure that the dcache_dirty_cpu()
1701 * page->flags usage will work.
1703 * When a page gets marked as dcache-dirty, we store the
1704 * cpu number starting at bit 32 in the page->flags. Also,
1705 * functions like clear_dcache_dirty_cpu use the cpu mask
1706 * in 13-bit signed-immediate instruction fields.
1710 * Page flags must not reach into upper 32 bits that are used
1711 * for the cpu number
1713 BUILD_BUG_ON(NR_PAGEFLAGS
> 32);
1716 * The bit fields placed in the high range must not reach below
1717 * the 32 bit boundary. Otherwise we cannot place the cpu field
1718 * at the 32 bit boundary.
1720 BUILD_BUG_ON(SECTIONS_WIDTH
+ NODES_WIDTH
+ ZONES_WIDTH
+
1721 ilog2(roundup_pow_of_two(NR_CPUS
)) > 32);
1723 BUILD_BUG_ON(NR_CPUS
> 4096);
1725 kern_base
= (prom_boot_mapping_phys_low
>> 22UL) << 22UL;
1726 kern_size
= (unsigned long)&_end
- (unsigned long)KERNBASE
;
1730 /* Invalidate both kernel TSBs. */
1731 memset(swapper_tsb
, 0x40, sizeof(swapper_tsb
));
1732 #ifndef CONFIG_DEBUG_PAGEALLOC
1733 memset(swapper_4m_tsb
, 0x40, sizeof(swapper_4m_tsb
));
1736 if (tlb_type
== hypervisor
)
1737 sun4v_pgprot_init();
1739 sun4u_pgprot_init();
1741 if (tlb_type
== cheetah_plus
||
1742 tlb_type
== hypervisor
)
1745 if (tlb_type
== hypervisor
) {
1746 sun4v_patch_tlb_handlers();
1752 /* Find available physical memory...
1754 * Read it twice in order to work around a bug in openfirmware.
1755 * The call to grab this table itself can cause openfirmware to
1756 * allocate memory, which in turn can take away some space from
1757 * the list of available memory. Reading it twice makes sure
1758 * we really do get the final value.
1760 read_obp_translations();
1761 read_obp_memory("reg", &pall
[0], &pall_ents
);
1762 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1763 read_obp_memory("available", &pavail
[0], &pavail_ents
);
1765 phys_base
= 0xffffffffffffffffUL
;
1766 for (i
= 0; i
< pavail_ents
; i
++) {
1767 phys_base
= min(phys_base
, pavail
[i
].phys_addr
);
1768 lmb_add(pavail
[i
].phys_addr
, pavail
[i
].reg_size
);
1771 lmb_reserve(kern_base
, kern_size
);
1773 find_ramdisk(phys_base
);
1775 lmb_enforce_memory_limit(cmdline_memory_size
);
1780 set_bit(0, mmu_context_bmap
);
1782 shift
= kern_base
+ PAGE_OFFSET
- ((unsigned long)KERNBASE
);
1784 real_end
= (unsigned long)_end
;
1785 num_kernel_image_mappings
= DIV_ROUND_UP(real_end
- KERNBASE
, 1 << 22);
1786 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1787 num_kernel_image_mappings
);
1789 /* Set kernel pgd to upper alias so physical page computations
1792 init_mm
.pgd
+= ((shift
) / (sizeof(pgd_t
)));
1794 memset(swapper_low_pmd_dir
, 0, sizeof(swapper_low_pmd_dir
));
1796 /* Now can init the kernel/bad page tables. */
1797 pud_set(pud_offset(&swapper_pg_dir
[0], 0),
1798 swapper_low_pmd_dir
+ (shift
/ sizeof(pgd_t
)));
1800 inherit_prom_mappings();
1804 /* Ok, we can use our TLB miss and window trap handlers safely. */
1809 if (tlb_type
== hypervisor
)
1810 sun4v_ktsb_register();
1812 /* We must setup the per-cpu areas before we pull in the
1813 * PROM and the MDESC. The code there fills in cpu and
1814 * other information into per-cpu data structures.
1816 real_setup_per_cpu_areas();
1818 prom_build_devicetree();
1820 if (tlb_type
== hypervisor
)
1823 /* Once the OF device tree and MDESC have been setup, we know
1824 * the list of possible cpus. Therefore we can allocate the
1827 for_each_possible_cpu(i
) {
1828 /* XXX Use node local allocations... XXX */
1829 softirq_stack
[i
] = __va(lmb_alloc(THREAD_SIZE
, THREAD_SIZE
));
1830 hardirq_stack
[i
] = __va(lmb_alloc(THREAD_SIZE
, THREAD_SIZE
));
1833 /* Setup bootmem... */
1834 last_valid_pfn
= end_pfn
= bootmem_init(phys_base
);
1836 #ifndef CONFIG_NEED_MULTIPLE_NODES
1837 max_mapnr
= last_valid_pfn
;
1839 kernel_physical_mapping_init();
1842 unsigned long max_zone_pfns
[MAX_NR_ZONES
];
1844 memset(max_zone_pfns
, 0, sizeof(max_zone_pfns
));
1846 max_zone_pfns
[ZONE_NORMAL
] = end_pfn
;
1848 free_area_init_nodes(max_zone_pfns
);
1851 printk("Booting Linux...\n");
1857 int __init
page_in_phys_avail(unsigned long paddr
)
1863 for (i
= 0; i
< pavail_ents
; i
++) {
1864 unsigned long start
, end
;
1866 start
= pavail
[i
].phys_addr
;
1867 end
= start
+ pavail
[i
].reg_size
;
1869 if (paddr
>= start
&& paddr
< end
)
1872 if (paddr
>= kern_base
&& paddr
< (kern_base
+ kern_size
))
1874 #ifdef CONFIG_BLK_DEV_INITRD
1875 if (paddr
>= __pa(initrd_start
) &&
1876 paddr
< __pa(PAGE_ALIGN(initrd_end
)))
1883 static struct linux_prom64_registers pavail_rescan
[MAX_BANKS
] __initdata
;
1884 static int pavail_rescan_ents __initdata
;
1886 /* Certain OBP calls, such as fetching "available" properties, can
1887 * claim physical memory. So, along with initializing the valid
1888 * address bitmap, what we do here is refetch the physical available
1889 * memory list again, and make sure it provides at least as much
1890 * memory as 'pavail' does.
1892 static void setup_valid_addr_bitmap_from_pavail(void)
1896 read_obp_memory("available", &pavail_rescan
[0], &pavail_rescan_ents
);
1898 for (i
= 0; i
< pavail_ents
; i
++) {
1899 unsigned long old_start
, old_end
;
1901 old_start
= pavail
[i
].phys_addr
;
1902 old_end
= old_start
+ pavail
[i
].reg_size
;
1903 while (old_start
< old_end
) {
1906 for (n
= 0; n
< pavail_rescan_ents
; n
++) {
1907 unsigned long new_start
, new_end
;
1909 new_start
= pavail_rescan
[n
].phys_addr
;
1910 new_end
= new_start
+
1911 pavail_rescan
[n
].reg_size
;
1913 if (new_start
<= old_start
&&
1914 new_end
>= (old_start
+ PAGE_SIZE
)) {
1915 set_bit(old_start
>> 22,
1916 sparc64_valid_addr_bitmap
);
1921 prom_printf("mem_init: Lost memory in pavail\n");
1922 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1923 pavail
[i
].phys_addr
,
1924 pavail
[i
].reg_size
);
1925 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1926 pavail_rescan
[i
].phys_addr
,
1927 pavail_rescan
[i
].reg_size
);
1928 prom_printf("mem_init: Cannot continue, aborting.\n");
1932 old_start
+= PAGE_SIZE
;
1937 void __init
mem_init(void)
1939 unsigned long codepages
, datapages
, initpages
;
1940 unsigned long addr
, last
;
1943 i
= last_valid_pfn
>> ((22 - PAGE_SHIFT
) + 6);
1945 sparc64_valid_addr_bitmap
= (unsigned long *) alloc_bootmem(i
<< 3);
1946 if (sparc64_valid_addr_bitmap
== NULL
) {
1947 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1950 memset(sparc64_valid_addr_bitmap
, 0, i
<< 3);
1952 addr
= PAGE_OFFSET
+ kern_base
;
1953 last
= PAGE_ALIGN(kern_size
) + addr
;
1954 while (addr
< last
) {
1955 set_bit(__pa(addr
) >> 22, sparc64_valid_addr_bitmap
);
1959 setup_valid_addr_bitmap_from_pavail();
1961 high_memory
= __va(last_valid_pfn
<< PAGE_SHIFT
);
1963 #ifdef CONFIG_NEED_MULTIPLE_NODES
1964 for_each_online_node(i
) {
1965 if (NODE_DATA(i
)->node_spanned_pages
!= 0) {
1967 free_all_bootmem_node(NODE_DATA(i
));
1971 totalram_pages
= free_all_bootmem();
1974 /* We subtract one to account for the mem_map_zero page
1977 totalram_pages
-= 1;
1978 num_physpages
= totalram_pages
;
1981 * Set up the zero page, mark it reserved, so that page count
1982 * is not manipulated when freeing the page from user ptes.
1984 mem_map_zero
= alloc_pages(GFP_KERNEL
|__GFP_ZERO
, 0);
1985 if (mem_map_zero
== NULL
) {
1986 prom_printf("paging_init: Cannot alloc zero page.\n");
1989 SetPageReserved(mem_map_zero
);
1991 codepages
= (((unsigned long) _etext
) - ((unsigned long) _start
));
1992 codepages
= PAGE_ALIGN(codepages
) >> PAGE_SHIFT
;
1993 datapages
= (((unsigned long) _edata
) - ((unsigned long) _etext
));
1994 datapages
= PAGE_ALIGN(datapages
) >> PAGE_SHIFT
;
1995 initpages
= (((unsigned long) __init_end
) - ((unsigned long) __init_begin
));
1996 initpages
= PAGE_ALIGN(initpages
) >> PAGE_SHIFT
;
1998 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1999 nr_free_pages() << (PAGE_SHIFT
-10),
2000 codepages
<< (PAGE_SHIFT
-10),
2001 datapages
<< (PAGE_SHIFT
-10),
2002 initpages
<< (PAGE_SHIFT
-10),
2003 PAGE_OFFSET
, (last_valid_pfn
<< PAGE_SHIFT
));
2005 if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
)
2006 cheetah_ecache_flush_init();
2009 void free_initmem(void)
2011 unsigned long addr
, initend
;
2014 /* If the physical memory maps were trimmed by kernel command
2015 * line options, don't even try freeing this initmem stuff up.
2016 * The kernel image could have been in the trimmed out region
2017 * and if so the freeing below will free invalid page structs.
2019 if (cmdline_memory_size
)
2023 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2025 addr
= PAGE_ALIGN((unsigned long)(__init_begin
));
2026 initend
= (unsigned long)(__init_end
) & PAGE_MASK
;
2027 for (; addr
< initend
; addr
+= PAGE_SIZE
) {
2032 ((unsigned long) __va(kern_base
)) -
2033 ((unsigned long) KERNBASE
));
2034 memset((void *)addr
, POISON_FREE_INITMEM
, PAGE_SIZE
);
2037 p
= virt_to_page(page
);
2039 ClearPageReserved(p
);
2048 #ifdef CONFIG_BLK_DEV_INITRD
2049 void free_initrd_mem(unsigned long start
, unsigned long end
)
2052 printk ("Freeing initrd memory: %ldk freed\n", (end
- start
) >> 10);
2053 for (; start
< end
; start
+= PAGE_SIZE
) {
2054 struct page
*p
= virt_to_page(start
);
2056 ClearPageReserved(p
);
2065 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2066 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2067 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2068 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2069 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2070 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2072 pgprot_t PAGE_KERNEL __read_mostly
;
2073 EXPORT_SYMBOL(PAGE_KERNEL
);
2075 pgprot_t PAGE_KERNEL_LOCKED __read_mostly
;
2076 pgprot_t PAGE_COPY __read_mostly
;
2078 pgprot_t PAGE_SHARED __read_mostly
;
2079 EXPORT_SYMBOL(PAGE_SHARED
);
2081 pgprot_t PAGE_EXEC __read_mostly
;
2082 unsigned long pg_iobits __read_mostly
;
2084 unsigned long _PAGE_IE __read_mostly
;
2085 EXPORT_SYMBOL(_PAGE_IE
);
2087 unsigned long _PAGE_E __read_mostly
;
2088 EXPORT_SYMBOL(_PAGE_E
);
2090 unsigned long _PAGE_CACHE __read_mostly
;
2091 EXPORT_SYMBOL(_PAGE_CACHE
);
2093 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2095 #define VMEMMAP_CHUNK_SHIFT 22
2096 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
2097 #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
2098 #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
2100 #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
2101 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
2102 unsigned long vmemmap_table
[VMEMMAP_SIZE
];
2104 int __meminit
vmemmap_populate(struct page
*start
, unsigned long nr
, int node
)
2106 unsigned long vstart
= (unsigned long) start
;
2107 unsigned long vend
= (unsigned long) (start
+ nr
);
2108 unsigned long phys_start
= (vstart
- VMEMMAP_BASE
);
2109 unsigned long phys_end
= (vend
- VMEMMAP_BASE
);
2110 unsigned long addr
= phys_start
& VMEMMAP_CHUNK_MASK
;
2111 unsigned long end
= VMEMMAP_ALIGN(phys_end
);
2112 unsigned long pte_base
;
2114 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2115 _PAGE_CP_4U
| _PAGE_CV_4U
|
2116 _PAGE_P_4U
| _PAGE_W_4U
);
2117 if (tlb_type
== hypervisor
)
2118 pte_base
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2119 _PAGE_CP_4V
| _PAGE_CV_4V
|
2120 _PAGE_P_4V
| _PAGE_W_4V
);
2122 for (; addr
< end
; addr
+= VMEMMAP_CHUNK
) {
2123 unsigned long *vmem_pp
=
2124 vmemmap_table
+ (addr
>> VMEMMAP_CHUNK_SHIFT
);
2127 if (!(*vmem_pp
& _PAGE_VALID
)) {
2128 block
= vmemmap_alloc_block(1UL << 22, node
);
2132 *vmem_pp
= pte_base
| __pa(block
);
2134 printk(KERN_INFO
"[%p-%p] page_structs=%lu "
2135 "node=%d entry=%lu/%lu\n", start
, block
, nr
,
2137 addr
>> VMEMMAP_CHUNK_SHIFT
,
2138 VMEMMAP_SIZE
>> VMEMMAP_CHUNK_SHIFT
);
2143 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2145 static void prot_init_common(unsigned long page_none
,
2146 unsigned long page_shared
,
2147 unsigned long page_copy
,
2148 unsigned long page_readonly
,
2149 unsigned long page_exec_bit
)
2151 PAGE_COPY
= __pgprot(page_copy
);
2152 PAGE_SHARED
= __pgprot(page_shared
);
2154 protection_map
[0x0] = __pgprot(page_none
);
2155 protection_map
[0x1] = __pgprot(page_readonly
& ~page_exec_bit
);
2156 protection_map
[0x2] = __pgprot(page_copy
& ~page_exec_bit
);
2157 protection_map
[0x3] = __pgprot(page_copy
& ~page_exec_bit
);
2158 protection_map
[0x4] = __pgprot(page_readonly
);
2159 protection_map
[0x5] = __pgprot(page_readonly
);
2160 protection_map
[0x6] = __pgprot(page_copy
);
2161 protection_map
[0x7] = __pgprot(page_copy
);
2162 protection_map
[0x8] = __pgprot(page_none
);
2163 protection_map
[0x9] = __pgprot(page_readonly
& ~page_exec_bit
);
2164 protection_map
[0xa] = __pgprot(page_shared
& ~page_exec_bit
);
2165 protection_map
[0xb] = __pgprot(page_shared
& ~page_exec_bit
);
2166 protection_map
[0xc] = __pgprot(page_readonly
);
2167 protection_map
[0xd] = __pgprot(page_readonly
);
2168 protection_map
[0xe] = __pgprot(page_shared
);
2169 protection_map
[0xf] = __pgprot(page_shared
);
2172 static void __init
sun4u_pgprot_init(void)
2174 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2175 unsigned long page_exec_bit
;
2177 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2178 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2179 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2181 PAGE_KERNEL_LOCKED
= __pgprot (_PAGE_PRESENT_4U
| _PAGE_VALID
|
2182 _PAGE_CACHE_4U
| _PAGE_P_4U
|
2183 __ACCESS_BITS_4U
| __DIRTY_BITS_4U
|
2184 _PAGE_EXEC_4U
| _PAGE_L_4U
);
2185 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4U
);
2187 _PAGE_IE
= _PAGE_IE_4U
;
2188 _PAGE_E
= _PAGE_E_4U
;
2189 _PAGE_CACHE
= _PAGE_CACHE_4U
;
2191 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| __DIRTY_BITS_4U
|
2192 __ACCESS_BITS_4U
| _PAGE_E_4U
);
2194 #ifdef CONFIG_DEBUG_PAGEALLOC
2195 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4U
) ^
2198 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4U
) ^
2201 kern_linear_pte_xor
[0] |= (_PAGE_CP_4U
| _PAGE_CV_4U
|
2202 _PAGE_P_4U
| _PAGE_W_4U
);
2204 /* XXX Should use 256MB on Panther. XXX */
2205 kern_linear_pte_xor
[1] = kern_linear_pte_xor
[0];
2207 _PAGE_SZBITS
= _PAGE_SZBITS_4U
;
2208 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ4MB_4U
| _PAGE_SZ512K_4U
|
2209 _PAGE_SZ64K_4U
| _PAGE_SZ8K_4U
|
2210 _PAGE_SZ32MB_4U
| _PAGE_SZ256MB_4U
);
2213 page_none
= _PAGE_PRESENT_4U
| _PAGE_ACCESSED_4U
| _PAGE_CACHE_4U
;
2214 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2215 __ACCESS_BITS_4U
| _PAGE_WRITE_4U
| _PAGE_EXEC_4U
);
2216 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2217 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2218 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4U
| _PAGE_CACHE_4U
|
2219 __ACCESS_BITS_4U
| _PAGE_EXEC_4U
);
2221 page_exec_bit
= _PAGE_EXEC_4U
;
2223 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2227 static void __init
sun4v_pgprot_init(void)
2229 unsigned long page_none
, page_shared
, page_copy
, page_readonly
;
2230 unsigned long page_exec_bit
;
2232 PAGE_KERNEL
= __pgprot (_PAGE_PRESENT_4V
| _PAGE_VALID
|
2233 _PAGE_CACHE_4V
| _PAGE_P_4V
|
2234 __ACCESS_BITS_4V
| __DIRTY_BITS_4V
|
2236 PAGE_KERNEL_LOCKED
= PAGE_KERNEL
;
2237 PAGE_EXEC
= __pgprot(_PAGE_EXEC_4V
);
2239 _PAGE_IE
= _PAGE_IE_4V
;
2240 _PAGE_E
= _PAGE_E_4V
;
2241 _PAGE_CACHE
= _PAGE_CACHE_4V
;
2243 #ifdef CONFIG_DEBUG_PAGEALLOC
2244 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2247 kern_linear_pte_xor
[0] = (_PAGE_VALID
| _PAGE_SZ4MB_4V
) ^
2250 kern_linear_pte_xor
[0] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2251 _PAGE_P_4V
| _PAGE_W_4V
);
2253 #ifdef CONFIG_DEBUG_PAGEALLOC
2254 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZBITS_4V
) ^
2257 kern_linear_pte_xor
[1] = (_PAGE_VALID
| _PAGE_SZ256MB_4V
) ^
2260 kern_linear_pte_xor
[1] |= (_PAGE_CP_4V
| _PAGE_CV_4V
|
2261 _PAGE_P_4V
| _PAGE_W_4V
);
2263 pg_iobits
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| __DIRTY_BITS_4V
|
2264 __ACCESS_BITS_4V
| _PAGE_E_4V
);
2266 _PAGE_SZBITS
= _PAGE_SZBITS_4V
;
2267 _PAGE_ALL_SZ_BITS
= (_PAGE_SZ16GB_4V
| _PAGE_SZ2GB_4V
|
2268 _PAGE_SZ256MB_4V
| _PAGE_SZ32MB_4V
|
2269 _PAGE_SZ4MB_4V
| _PAGE_SZ512K_4V
|
2270 _PAGE_SZ64K_4V
| _PAGE_SZ8K_4V
);
2272 page_none
= _PAGE_PRESENT_4V
| _PAGE_ACCESSED_4V
| _PAGE_CACHE_4V
;
2273 page_shared
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2274 __ACCESS_BITS_4V
| _PAGE_WRITE_4V
| _PAGE_EXEC_4V
);
2275 page_copy
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2276 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2277 page_readonly
= (_PAGE_VALID
| _PAGE_PRESENT_4V
| _PAGE_CACHE_4V
|
2278 __ACCESS_BITS_4V
| _PAGE_EXEC_4V
);
2280 page_exec_bit
= _PAGE_EXEC_4V
;
2282 prot_init_common(page_none
, page_shared
, page_copy
, page_readonly
,
2286 unsigned long pte_sz_bits(unsigned long sz
)
2288 if (tlb_type
== hypervisor
) {
2292 return _PAGE_SZ8K_4V
;
2294 return _PAGE_SZ64K_4V
;
2296 return _PAGE_SZ512K_4V
;
2297 case 4 * 1024 * 1024:
2298 return _PAGE_SZ4MB_4V
;
2304 return _PAGE_SZ8K_4U
;
2306 return _PAGE_SZ64K_4U
;
2308 return _PAGE_SZ512K_4U
;
2309 case 4 * 1024 * 1024:
2310 return _PAGE_SZ4MB_4U
;
2315 pte_t
mk_pte_io(unsigned long page
, pgprot_t prot
, int space
, unsigned long page_size
)
2319 pte_val(pte
) = page
| pgprot_val(pgprot_noncached(prot
));
2320 pte_val(pte
) |= (((unsigned long)space
) << 32);
2321 pte_val(pte
) |= pte_sz_bits(page_size
);
2326 static unsigned long kern_large_tte(unsigned long paddr
)
2330 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4U
|
2331 _PAGE_CP_4U
| _PAGE_CV_4U
| _PAGE_P_4U
|
2332 _PAGE_EXEC_4U
| _PAGE_L_4U
| _PAGE_W_4U
);
2333 if (tlb_type
== hypervisor
)
2334 val
= (_PAGE_VALID
| _PAGE_SZ4MB_4V
|
2335 _PAGE_CP_4V
| _PAGE_CV_4V
| _PAGE_P_4V
|
2336 _PAGE_EXEC_4V
| _PAGE_W_4V
);
2341 /* If not locked, zap it. */
2342 void __flush_tlb_all(void)
2344 unsigned long pstate
;
2347 __asm__
__volatile__("flushw\n\t"
2348 "rdpr %%pstate, %0\n\t"
2349 "wrpr %0, %1, %%pstate"
2352 if (tlb_type
== hypervisor
) {
2353 sun4v_mmu_demap_all();
2354 } else if (tlb_type
== spitfire
) {
2355 for (i
= 0; i
< 64; i
++) {
2356 /* Spitfire Errata #32 workaround */
2357 /* NOTE: Always runs on spitfire, so no
2358 * cheetah+ page size encodings.
2360 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2364 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2366 if (!(spitfire_get_dtlb_data(i
) & _PAGE_L_4U
)) {
2367 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2370 : "r" (TLB_TAG_ACCESS
), "i" (ASI_DMMU
));
2371 spitfire_put_dtlb_data(i
, 0x0UL
);
2374 /* Spitfire Errata #32 workaround */
2375 /* NOTE: Always runs on spitfire, so no
2376 * cheetah+ page size encodings.
2378 __asm__
__volatile__("stxa %0, [%1] %2\n\t"
2382 "r" (PRIMARY_CONTEXT
), "i" (ASI_DMMU
));
2384 if (!(spitfire_get_itlb_data(i
) & _PAGE_L_4U
)) {
2385 __asm__
__volatile__("stxa %%g0, [%0] %1\n\t"
2388 : "r" (TLB_TAG_ACCESS
), "i" (ASI_IMMU
));
2389 spitfire_put_itlb_data(i
, 0x0UL
);
2392 } else if (tlb_type
== cheetah
|| tlb_type
== cheetah_plus
) {
2393 cheetah_flush_dtlb_all();
2394 cheetah_flush_itlb_all();
2396 __asm__
__volatile__("wrpr %0, 0, %%pstate"