2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate
;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct
*work
);
57 struct cpu_dbs_info_s
{
58 cputime64_t prev_cpu_idle
;
59 cputime64_t prev_cpu_wall
;
60 cputime64_t prev_cpu_nice
;
61 struct cpufreq_policy
*cur_policy
;
62 struct delayed_work work
;
63 unsigned int down_skip
;
64 unsigned int requested_freq
;
67 * percpu mutex that serializes governor limit change with
68 * do_dbs_timer invocation. We do not want do_dbs_timer to run
69 * when user is changing the governor or limits.
71 struct mutex timer_mutex
;
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, cpu_dbs_info
);
75 static unsigned int dbs_enable
; /* number of CPUs using this policy */
78 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
79 * different CPUs. It protects dbs_enable in governor start/stop.
81 static DEFINE_MUTEX(dbs_mutex
);
83 static struct workqueue_struct
*kconservative_wq
;
85 static struct dbs_tuners
{
86 unsigned int sampling_rate
;
87 unsigned int sampling_down_factor
;
88 unsigned int up_threshold
;
89 unsigned int down_threshold
;
90 unsigned int ignore_nice
;
91 unsigned int freq_step
;
93 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
94 .down_threshold
= DEF_FREQUENCY_DOWN_THRESHOLD
,
95 .sampling_down_factor
= DEF_SAMPLING_DOWN_FACTOR
,
100 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
103 cputime64_t idle_time
;
104 cputime64_t cur_wall_time
;
105 cputime64_t busy_time
;
107 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
108 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
109 kstat_cpu(cpu
).cpustat
.system
);
111 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
112 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
113 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
114 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
116 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
118 *wall
= cur_wall_time
;
123 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
125 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
127 if (idle_time
== -1ULL)
128 return get_cpu_idle_time_jiffy(cpu
, wall
);
133 /* keep track of frequency transitions */
135 dbs_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
138 struct cpufreq_freqs
*freq
= data
;
139 struct cpu_dbs_info_s
*this_dbs_info
= &per_cpu(cpu_dbs_info
,
142 struct cpufreq_policy
*policy
;
144 policy
= this_dbs_info
->cur_policy
;
147 * we only care if our internally tracked freq moves outside
148 * the 'valid' ranges of freqency available to us otherwise
149 * we do not change it
151 if (this_dbs_info
->requested_freq
> policy
->max
152 || this_dbs_info
->requested_freq
< policy
->min
)
153 this_dbs_info
->requested_freq
= freq
->new;
158 static struct notifier_block dbs_cpufreq_notifier_block
= {
159 .notifier_call
= dbs_cpufreq_notifier
162 /************************** sysfs interface ************************/
163 static ssize_t
show_sampling_rate_max(struct cpufreq_policy
*policy
, char *buf
)
165 printk_once(KERN_INFO
"CPUFREQ: conservative sampling_rate_max "
166 "sysfs file is deprecated - used by: %s\n", current
->comm
);
167 return sprintf(buf
, "%u\n", -1U);
170 static ssize_t
show_sampling_rate_min(struct cpufreq_policy
*policy
, char *buf
)
172 return sprintf(buf
, "%u\n", min_sampling_rate
);
175 #define define_one_ro(_name) \
176 static struct freq_attr _name = \
177 __ATTR(_name, 0444, show_##_name, NULL)
179 define_one_ro(sampling_rate_max
);
180 define_one_ro(sampling_rate_min
);
182 /* cpufreq_conservative Governor Tunables */
183 #define show_one(file_name, object) \
184 static ssize_t show_##file_name \
185 (struct cpufreq_policy *unused, char *buf) \
187 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
189 show_one(sampling_rate
, sampling_rate
);
190 show_one(sampling_down_factor
, sampling_down_factor
);
191 show_one(up_threshold
, up_threshold
);
192 show_one(down_threshold
, down_threshold
);
193 show_one(ignore_nice_load
, ignore_nice
);
194 show_one(freq_step
, freq_step
);
196 static ssize_t
store_sampling_down_factor(struct cpufreq_policy
*unused
,
197 const char *buf
, size_t count
)
201 ret
= sscanf(buf
, "%u", &input
);
203 if (ret
!= 1 || input
> MAX_SAMPLING_DOWN_FACTOR
|| input
< 1)
206 mutex_lock(&dbs_mutex
);
207 dbs_tuners_ins
.sampling_down_factor
= input
;
208 mutex_unlock(&dbs_mutex
);
213 static ssize_t
store_sampling_rate(struct cpufreq_policy
*unused
,
214 const char *buf
, size_t count
)
218 ret
= sscanf(buf
, "%u", &input
);
223 mutex_lock(&dbs_mutex
);
224 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
225 mutex_unlock(&dbs_mutex
);
230 static ssize_t
store_up_threshold(struct cpufreq_policy
*unused
,
231 const char *buf
, size_t count
)
235 ret
= sscanf(buf
, "%u", &input
);
237 mutex_lock(&dbs_mutex
);
238 if (ret
!= 1 || input
> 100 ||
239 input
<= dbs_tuners_ins
.down_threshold
) {
240 mutex_unlock(&dbs_mutex
);
244 dbs_tuners_ins
.up_threshold
= input
;
245 mutex_unlock(&dbs_mutex
);
250 static ssize_t
store_down_threshold(struct cpufreq_policy
*unused
,
251 const char *buf
, size_t count
)
255 ret
= sscanf(buf
, "%u", &input
);
257 mutex_lock(&dbs_mutex
);
258 /* cannot be lower than 11 otherwise freq will not fall */
259 if (ret
!= 1 || input
< 11 || input
> 100 ||
260 input
>= dbs_tuners_ins
.up_threshold
) {
261 mutex_unlock(&dbs_mutex
);
265 dbs_tuners_ins
.down_threshold
= input
;
266 mutex_unlock(&dbs_mutex
);
271 static ssize_t
store_ignore_nice_load(struct cpufreq_policy
*policy
,
272 const char *buf
, size_t count
)
279 ret
= sscanf(buf
, "%u", &input
);
286 mutex_lock(&dbs_mutex
);
287 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
288 mutex_unlock(&dbs_mutex
);
291 dbs_tuners_ins
.ignore_nice
= input
;
293 /* we need to re-evaluate prev_cpu_idle */
294 for_each_online_cpu(j
) {
295 struct cpu_dbs_info_s
*dbs_info
;
296 dbs_info
= &per_cpu(cpu_dbs_info
, j
);
297 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
298 &dbs_info
->prev_cpu_wall
);
299 if (dbs_tuners_ins
.ignore_nice
)
300 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
302 mutex_unlock(&dbs_mutex
);
307 static ssize_t
store_freq_step(struct cpufreq_policy
*policy
,
308 const char *buf
, size_t count
)
312 ret
= sscanf(buf
, "%u", &input
);
320 /* no need to test here if freq_step is zero as the user might actually
321 * want this, they would be crazy though :) */
322 mutex_lock(&dbs_mutex
);
323 dbs_tuners_ins
.freq_step
= input
;
324 mutex_unlock(&dbs_mutex
);
329 #define define_one_rw(_name) \
330 static struct freq_attr _name = \
331 __ATTR(_name, 0644, show_##_name, store_##_name)
333 define_one_rw(sampling_rate
);
334 define_one_rw(sampling_down_factor
);
335 define_one_rw(up_threshold
);
336 define_one_rw(down_threshold
);
337 define_one_rw(ignore_nice_load
);
338 define_one_rw(freq_step
);
340 static struct attribute
*dbs_attributes
[] = {
341 &sampling_rate_max
.attr
,
342 &sampling_rate_min
.attr
,
344 &sampling_down_factor
.attr
,
346 &down_threshold
.attr
,
347 &ignore_nice_load
.attr
,
352 static struct attribute_group dbs_attr_group
= {
353 .attrs
= dbs_attributes
,
354 .name
= "conservative",
357 /************************** sysfs end ************************/
359 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
361 unsigned int load
= 0;
362 unsigned int freq_target
;
364 struct cpufreq_policy
*policy
;
367 policy
= this_dbs_info
->cur_policy
;
370 * Every sampling_rate, we check, if current idle time is less
371 * than 20% (default), then we try to increase frequency
372 * Every sampling_rate*sampling_down_factor, we check, if current
373 * idle time is more than 80%, then we try to decrease frequency
375 * Any frequency increase takes it to the maximum frequency.
376 * Frequency reduction happens at minimum steps of
377 * 5% (default) of maximum frequency
380 /* Get Absolute Load */
381 for_each_cpu(j
, policy
->cpus
) {
382 struct cpu_dbs_info_s
*j_dbs_info
;
383 cputime64_t cur_wall_time
, cur_idle_time
;
384 unsigned int idle_time
, wall_time
;
386 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
388 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
390 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
391 j_dbs_info
->prev_cpu_wall
);
392 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
394 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
395 j_dbs_info
->prev_cpu_idle
);
396 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
398 if (dbs_tuners_ins
.ignore_nice
) {
399 cputime64_t cur_nice
;
400 unsigned long cur_nice_jiffies
;
402 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
403 j_dbs_info
->prev_cpu_nice
);
405 * Assumption: nice time between sampling periods will
406 * be less than 2^32 jiffies for 32 bit sys
408 cur_nice_jiffies
= (unsigned long)
409 cputime64_to_jiffies64(cur_nice
);
411 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
412 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
415 if (unlikely(!wall_time
|| wall_time
< idle_time
))
418 load
= 100 * (wall_time
- idle_time
) / wall_time
;
422 * break out if we 'cannot' reduce the speed as the user might
423 * want freq_step to be zero
425 if (dbs_tuners_ins
.freq_step
== 0)
428 /* Check for frequency increase */
429 if (load
> dbs_tuners_ins
.up_threshold
) {
430 this_dbs_info
->down_skip
= 0;
432 /* if we are already at full speed then break out early */
433 if (this_dbs_info
->requested_freq
== policy
->max
)
436 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
438 /* max freq cannot be less than 100. But who knows.... */
439 if (unlikely(freq_target
== 0))
442 this_dbs_info
->requested_freq
+= freq_target
;
443 if (this_dbs_info
->requested_freq
> policy
->max
)
444 this_dbs_info
->requested_freq
= policy
->max
;
446 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
452 * The optimal frequency is the frequency that is the lowest that
453 * can support the current CPU usage without triggering the up
454 * policy. To be safe, we focus 10 points under the threshold.
456 if (load
< (dbs_tuners_ins
.down_threshold
- 10)) {
457 freq_target
= (dbs_tuners_ins
.freq_step
* policy
->max
) / 100;
459 this_dbs_info
->requested_freq
-= freq_target
;
460 if (this_dbs_info
->requested_freq
< policy
->min
)
461 this_dbs_info
->requested_freq
= policy
->min
;
464 * if we cannot reduce the frequency anymore, break out early
466 if (policy
->cur
== policy
->min
)
469 __cpufreq_driver_target(policy
, this_dbs_info
->requested_freq
,
475 static void do_dbs_timer(struct work_struct
*work
)
477 struct cpu_dbs_info_s
*dbs_info
=
478 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
479 unsigned int cpu
= dbs_info
->cpu
;
481 /* We want all CPUs to do sampling nearly on same jiffy */
482 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
484 delay
-= jiffies
% delay
;
486 mutex_lock(&dbs_info
->timer_mutex
);
488 dbs_check_cpu(dbs_info
);
490 queue_delayed_work_on(cpu
, kconservative_wq
, &dbs_info
->work
, delay
);
491 mutex_unlock(&dbs_info
->timer_mutex
);
494 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
496 /* We want all CPUs to do sampling nearly on same jiffy */
497 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
498 delay
-= jiffies
% delay
;
500 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
501 queue_delayed_work_on(dbs_info
->cpu
, kconservative_wq
, &dbs_info
->work
,
505 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
507 cancel_delayed_work_sync(&dbs_info
->work
);
510 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
513 unsigned int cpu
= policy
->cpu
;
514 struct cpu_dbs_info_s
*this_dbs_info
;
518 this_dbs_info
= &per_cpu(cpu_dbs_info
, cpu
);
521 case CPUFREQ_GOV_START
:
522 if ((!cpu_online(cpu
)) || (!policy
->cur
))
525 mutex_lock(&dbs_mutex
);
527 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group
);
529 mutex_unlock(&dbs_mutex
);
533 for_each_cpu(j
, policy
->cpus
) {
534 struct cpu_dbs_info_s
*j_dbs_info
;
535 j_dbs_info
= &per_cpu(cpu_dbs_info
, j
);
536 j_dbs_info
->cur_policy
= policy
;
538 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
539 &j_dbs_info
->prev_cpu_wall
);
540 if (dbs_tuners_ins
.ignore_nice
) {
541 j_dbs_info
->prev_cpu_nice
=
542 kstat_cpu(j
).cpustat
.nice
;
545 this_dbs_info
->down_skip
= 0;
546 this_dbs_info
->requested_freq
= policy
->cur
;
548 mutex_init(&this_dbs_info
->timer_mutex
);
551 * Start the timerschedule work, when this governor
552 * is used for first time
554 if (dbs_enable
== 1) {
555 unsigned int latency
;
556 /* policy latency is in nS. Convert it to uS first */
557 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
562 * conservative does not implement micro like ondemand
563 * governor, thus we are bound to jiffes/HZ
566 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
567 /* Bring kernel and HW constraints together */
568 min_sampling_rate
= max(min_sampling_rate
,
569 MIN_LATENCY_MULTIPLIER
* latency
);
570 dbs_tuners_ins
.sampling_rate
=
571 max(min_sampling_rate
,
572 latency
* LATENCY_MULTIPLIER
);
574 cpufreq_register_notifier(
575 &dbs_cpufreq_notifier_block
,
576 CPUFREQ_TRANSITION_NOTIFIER
);
578 mutex_unlock(&dbs_mutex
);
580 dbs_timer_init(this_dbs_info
);
584 case CPUFREQ_GOV_STOP
:
585 dbs_timer_exit(this_dbs_info
);
587 mutex_lock(&dbs_mutex
);
588 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group
);
590 mutex_destroy(&this_dbs_info
->timer_mutex
);
593 * Stop the timerschedule work, when this governor
594 * is used for first time
597 cpufreq_unregister_notifier(
598 &dbs_cpufreq_notifier_block
,
599 CPUFREQ_TRANSITION_NOTIFIER
);
601 mutex_unlock(&dbs_mutex
);
605 case CPUFREQ_GOV_LIMITS
:
606 mutex_lock(&this_dbs_info
->timer_mutex
);
607 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
608 __cpufreq_driver_target(
609 this_dbs_info
->cur_policy
,
610 policy
->max
, CPUFREQ_RELATION_H
);
611 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
612 __cpufreq_driver_target(
613 this_dbs_info
->cur_policy
,
614 policy
->min
, CPUFREQ_RELATION_L
);
615 mutex_unlock(&this_dbs_info
->timer_mutex
);
622 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
625 struct cpufreq_governor cpufreq_gov_conservative
= {
626 .name
= "conservative",
627 .governor
= cpufreq_governor_dbs
,
628 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
629 .owner
= THIS_MODULE
,
632 static int __init
cpufreq_gov_dbs_init(void)
636 kconservative_wq
= create_workqueue("kconservative");
637 if (!kconservative_wq
) {
638 printk(KERN_ERR
"Creation of kconservative failed\n");
642 err
= cpufreq_register_governor(&cpufreq_gov_conservative
);
644 destroy_workqueue(kconservative_wq
);
649 static void __exit
cpufreq_gov_dbs_exit(void)
651 cpufreq_unregister_governor(&cpufreq_gov_conservative
);
652 destroy_workqueue(kconservative_wq
);
656 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
657 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
658 "Low Latency Frequency Transition capable processors "
659 "optimised for use in a battery environment");
660 MODULE_LICENSE("GPL");
662 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
663 fs_initcall(cpufreq_gov_dbs_init
);
665 module_init(cpufreq_gov_dbs_init
);
667 module_exit(cpufreq_gov_dbs_exit
);