thinkpad-acpi: enhanced debugging messages for rfkill subdrivers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / aio.c
blobc1174b576f6c9ab715b2e2d86c804802a9350e06
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
20 #define DEBUG 0
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
39 #if DEBUG > 1
40 #define dprintk printk
41 #else
42 #define dprintk(x...) do { ; } while (0)
43 #endif
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr; /* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
51 static struct kmem_cache *kiocb_cachep;
52 static struct kmem_cache *kioctx_cachep;
54 static struct workqueue_struct *aio_wq;
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
66 /* aio_setup
67 * Creates the slab caches used by the aio routines, panic on
68 * failure as this is done early during the boot sequence.
70 static int __init aio_setup(void)
72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
75 aio_wq = create_workqueue("aio");
77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 return 0;
82 static void aio_free_ring(struct kioctx *ctx)
84 struct aio_ring_info *info = &ctx->ring_info;
85 long i;
87 for (i=0; i<info->nr_pages; i++)
88 put_page(info->ring_pages[i]);
90 if (info->mmap_size) {
91 down_write(&ctx->mm->mmap_sem);
92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 up_write(&ctx->mm->mmap_sem);
96 if (info->ring_pages && info->ring_pages != info->internal_pages)
97 kfree(info->ring_pages);
98 info->ring_pages = NULL;
99 info->nr = 0;
102 static int aio_setup_ring(struct kioctx *ctx)
104 struct aio_ring *ring;
105 struct aio_ring_info *info = &ctx->ring_info;
106 unsigned nr_events = ctx->max_reqs;
107 unsigned long size;
108 int nr_pages;
110 /* Compensate for the ring buffer's head/tail overlap entry */
111 nr_events += 2; /* 1 is required, 2 for good luck */
113 size = sizeof(struct aio_ring);
114 size += sizeof(struct io_event) * nr_events;
115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 if (nr_pages < 0)
118 return -EINVAL;
120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 info->nr = 0;
123 info->ring_pages = info->internal_pages;
124 if (nr_pages > AIO_RING_PAGES) {
125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 if (!info->ring_pages)
127 return -ENOMEM;
130 info->mmap_size = nr_pages * PAGE_SIZE;
131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 down_write(&ctx->mm->mmap_sem);
133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
136 if (IS_ERR((void *)info->mmap_base)) {
137 up_write(&ctx->mm->mmap_sem);
138 info->mmap_size = 0;
139 aio_free_ring(ctx);
140 return -EAGAIN;
143 dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 info->nr_pages = get_user_pages(current, ctx->mm,
145 info->mmap_base, nr_pages,
146 1, 0, info->ring_pages, NULL);
147 up_write(&ctx->mm->mmap_sem);
149 if (unlikely(info->nr_pages != nr_pages)) {
150 aio_free_ring(ctx);
151 return -EAGAIN;
154 ctx->user_id = info->mmap_base;
156 info->nr = nr_events; /* trusted copy */
158 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 ring->nr = nr_events; /* user copy */
160 ring->id = ctx->user_id;
161 ring->head = ring->tail = 0;
162 ring->magic = AIO_RING_MAGIC;
163 ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 ring->header_length = sizeof(struct aio_ring);
166 kunmap_atomic(ring, KM_USER0);
168 return 0;
172 /* aio_ring_event: returns a pointer to the event at the given index from
173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 #define aio_ring_event(info, nr, km) ({ \
180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
181 struct io_event *__event; \
182 __event = kmap_atomic( \
183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 __event += pos % AIO_EVENTS_PER_PAGE; \
185 __event; \
188 #define put_aio_ring_event(event, km) do { \
189 struct io_event *__event = (event); \
190 (void)__event; \
191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
195 /* __put_ioctx
196 * Called when the last user of an aio context has gone away,
197 * and the struct needs to be freed.
199 static void __put_ioctx(struct kioctx *ctx)
201 unsigned nr_events = ctx->max_reqs;
203 BUG_ON(ctx->reqs_active);
205 cancel_delayed_work(&ctx->wq);
206 cancel_work_sync(&ctx->wq.work);
207 aio_free_ring(ctx);
208 mmdrop(ctx->mm);
209 ctx->mm = NULL;
210 pr_debug("__put_ioctx: freeing %p\n", ctx);
211 kmem_cache_free(kioctx_cachep, ctx);
213 if (nr_events) {
214 spin_lock(&aio_nr_lock);
215 BUG_ON(aio_nr - nr_events > aio_nr);
216 aio_nr -= nr_events;
217 spin_unlock(&aio_nr_lock);
221 #define get_ioctx(kioctx) do { \
222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
223 atomic_inc(&(kioctx)->users); \
224 } while (0)
225 #define put_ioctx(kioctx) do { \
226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \
227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \
228 __put_ioctx(kioctx); \
229 } while (0)
231 /* ioctx_alloc
232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
234 static struct kioctx *ioctx_alloc(unsigned nr_events)
236 struct mm_struct *mm;
237 struct kioctx *ctx;
239 /* Prevent overflows */
240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
242 pr_debug("ENOMEM: nr_events too high\n");
243 return ERR_PTR(-EINVAL);
246 if ((unsigned long)nr_events > aio_max_nr)
247 return ERR_PTR(-EAGAIN);
249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
250 if (!ctx)
251 return ERR_PTR(-ENOMEM);
253 ctx->max_reqs = nr_events;
254 mm = ctx->mm = current->mm;
255 atomic_inc(&mm->mm_count);
257 atomic_set(&ctx->users, 1);
258 spin_lock_init(&ctx->ctx_lock);
259 spin_lock_init(&ctx->ring_info.ring_lock);
260 init_waitqueue_head(&ctx->wait);
262 INIT_LIST_HEAD(&ctx->active_reqs);
263 INIT_LIST_HEAD(&ctx->run_list);
264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
266 if (aio_setup_ring(ctx) < 0)
267 goto out_freectx;
269 /* limit the number of system wide aios */
270 spin_lock(&aio_nr_lock);
271 if (aio_nr + ctx->max_reqs > aio_max_nr ||
272 aio_nr + ctx->max_reqs < aio_nr)
273 ctx->max_reqs = 0;
274 else
275 aio_nr += ctx->max_reqs;
276 spin_unlock(&aio_nr_lock);
277 if (ctx->max_reqs == 0)
278 goto out_cleanup;
280 /* now link into global list. */
281 write_lock(&mm->ioctx_list_lock);
282 ctx->next = mm->ioctx_list;
283 mm->ioctx_list = ctx;
284 write_unlock(&mm->ioctx_list_lock);
286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 return ctx;
290 out_cleanup:
291 __put_ioctx(ctx);
292 return ERR_PTR(-EAGAIN);
294 out_freectx:
295 mmdrop(mm);
296 kmem_cache_free(kioctx_cachep, ctx);
297 ctx = ERR_PTR(-ENOMEM);
299 dprintk("aio: error allocating ioctx %p\n", ctx);
300 return ctx;
303 /* aio_cancel_all
304 * Cancels all outstanding aio requests on an aio context. Used
305 * when the processes owning a context have all exited to encourage
306 * the rapid destruction of the kioctx.
308 static void aio_cancel_all(struct kioctx *ctx)
310 int (*cancel)(struct kiocb *, struct io_event *);
311 struct io_event res;
312 spin_lock_irq(&ctx->ctx_lock);
313 ctx->dead = 1;
314 while (!list_empty(&ctx->active_reqs)) {
315 struct list_head *pos = ctx->active_reqs.next;
316 struct kiocb *iocb = list_kiocb(pos);
317 list_del_init(&iocb->ki_list);
318 cancel = iocb->ki_cancel;
319 kiocbSetCancelled(iocb);
320 if (cancel) {
321 iocb->ki_users++;
322 spin_unlock_irq(&ctx->ctx_lock);
323 cancel(iocb, &res);
324 spin_lock_irq(&ctx->ctx_lock);
327 spin_unlock_irq(&ctx->ctx_lock);
330 static void wait_for_all_aios(struct kioctx *ctx)
332 struct task_struct *tsk = current;
333 DECLARE_WAITQUEUE(wait, tsk);
335 spin_lock_irq(&ctx->ctx_lock);
336 if (!ctx->reqs_active)
337 goto out;
339 add_wait_queue(&ctx->wait, &wait);
340 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 while (ctx->reqs_active) {
342 spin_unlock_irq(&ctx->ctx_lock);
343 io_schedule();
344 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 spin_lock_irq(&ctx->ctx_lock);
347 __set_task_state(tsk, TASK_RUNNING);
348 remove_wait_queue(&ctx->wait, &wait);
350 out:
351 spin_unlock_irq(&ctx->ctx_lock);
354 /* wait_on_sync_kiocb:
355 * Waits on the given sync kiocb to complete.
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
359 while (iocb->ki_users) {
360 set_current_state(TASK_UNINTERRUPTIBLE);
361 if (!iocb->ki_users)
362 break;
363 io_schedule();
365 __set_current_state(TASK_RUNNING);
366 return iocb->ki_user_data;
369 /* exit_aio: called when the last user of mm goes away. At this point,
370 * there is no way for any new requests to be submited or any of the
371 * io_* syscalls to be called on the context. However, there may be
372 * outstanding requests which hold references to the context; as they
373 * go away, they will call put_ioctx and release any pinned memory
374 * associated with the request (held via struct page * references).
376 void exit_aio(struct mm_struct *mm)
378 struct kioctx *ctx = mm->ioctx_list;
379 mm->ioctx_list = NULL;
380 while (ctx) {
381 struct kioctx *next = ctx->next;
382 ctx->next = NULL;
383 aio_cancel_all(ctx);
385 wait_for_all_aios(ctx);
387 * Ensure we don't leave the ctx on the aio_wq
389 cancel_work_sync(&ctx->wq.work);
391 if (1 != atomic_read(&ctx->users))
392 printk(KERN_DEBUG
393 "exit_aio:ioctx still alive: %d %d %d\n",
394 atomic_read(&ctx->users), ctx->dead,
395 ctx->reqs_active);
396 put_ioctx(ctx);
397 ctx = next;
401 /* aio_get_req
402 * Allocate a slot for an aio request. Increments the users count
403 * of the kioctx so that the kioctx stays around until all requests are
404 * complete. Returns NULL if no requests are free.
406 * Returns with kiocb->users set to 2. The io submit code path holds
407 * an extra reference while submitting the i/o.
408 * This prevents races between the aio code path referencing the
409 * req (after submitting it) and aio_complete() freeing the req.
411 static struct kiocb *__aio_get_req(struct kioctx *ctx)
413 struct kiocb *req = NULL;
414 struct aio_ring *ring;
415 int okay = 0;
417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
418 if (unlikely(!req))
419 return NULL;
421 req->ki_flags = 0;
422 req->ki_users = 2;
423 req->ki_key = 0;
424 req->ki_ctx = ctx;
425 req->ki_cancel = NULL;
426 req->ki_retry = NULL;
427 req->ki_dtor = NULL;
428 req->private = NULL;
429 req->ki_iovec = NULL;
430 INIT_LIST_HEAD(&req->ki_run_list);
431 req->ki_eventfd = NULL;
433 /* Check if the completion queue has enough free space to
434 * accept an event from this io.
436 spin_lock_irq(&ctx->ctx_lock);
437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
439 list_add(&req->ki_list, &ctx->active_reqs);
440 ctx->reqs_active++;
441 okay = 1;
443 kunmap_atomic(ring, KM_USER0);
444 spin_unlock_irq(&ctx->ctx_lock);
446 if (!okay) {
447 kmem_cache_free(kiocb_cachep, req);
448 req = NULL;
451 return req;
454 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
456 struct kiocb *req;
457 /* Handle a potential starvation case -- should be exceedingly rare as
458 * requests will be stuck on fput_head only if the aio_fput_routine is
459 * delayed and the requests were the last user of the struct file.
461 req = __aio_get_req(ctx);
462 if (unlikely(NULL == req)) {
463 aio_fput_routine(NULL);
464 req = __aio_get_req(ctx);
466 return req;
469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
471 assert_spin_locked(&ctx->ctx_lock);
473 if (req->ki_dtor)
474 req->ki_dtor(req);
475 if (req->ki_iovec != &req->ki_inline_vec)
476 kfree(req->ki_iovec);
477 kmem_cache_free(kiocb_cachep, req);
478 ctx->reqs_active--;
480 if (unlikely(!ctx->reqs_active && ctx->dead))
481 wake_up(&ctx->wait);
484 static void aio_fput_routine(struct work_struct *data)
486 spin_lock_irq(&fput_lock);
487 while (likely(!list_empty(&fput_head))) {
488 struct kiocb *req = list_kiocb(fput_head.next);
489 struct kioctx *ctx = req->ki_ctx;
491 list_del(&req->ki_list);
492 spin_unlock_irq(&fput_lock);
494 /* Complete the fput(s) */
495 if (req->ki_filp != NULL)
496 __fput(req->ki_filp);
497 if (req->ki_eventfd != NULL)
498 __fput(req->ki_eventfd);
500 /* Link the iocb into the context's free list */
501 spin_lock_irq(&ctx->ctx_lock);
502 really_put_req(ctx, req);
503 spin_unlock_irq(&ctx->ctx_lock);
505 put_ioctx(ctx);
506 spin_lock_irq(&fput_lock);
508 spin_unlock_irq(&fput_lock);
511 /* __aio_put_req
512 * Returns true if this put was the last user of the request.
514 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
516 int schedule_putreq = 0;
518 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
519 req, atomic_long_read(&req->ki_filp->f_count));
521 assert_spin_locked(&ctx->ctx_lock);
523 req->ki_users--;
524 BUG_ON(req->ki_users < 0);
525 if (likely(req->ki_users))
526 return 0;
527 list_del(&req->ki_list); /* remove from active_reqs */
528 req->ki_cancel = NULL;
529 req->ki_retry = NULL;
532 * Try to optimize the aio and eventfd file* puts, by avoiding to
533 * schedule work in case it is not __fput() time. In normal cases,
534 * we would not be holding the last reference to the file*, so
535 * this function will be executed w/out any aio kthread wakeup.
537 if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count)))
538 schedule_putreq++;
539 else
540 req->ki_filp = NULL;
541 if (req->ki_eventfd != NULL) {
542 if (unlikely(atomic_long_dec_and_test(&req->ki_eventfd->f_count)))
543 schedule_putreq++;
544 else
545 req->ki_eventfd = NULL;
547 if (unlikely(schedule_putreq)) {
548 get_ioctx(ctx);
549 spin_lock(&fput_lock);
550 list_add(&req->ki_list, &fput_head);
551 spin_unlock(&fput_lock);
552 queue_work(aio_wq, &fput_work);
553 } else
554 really_put_req(ctx, req);
555 return 1;
558 /* aio_put_req
559 * Returns true if this put was the last user of the kiocb,
560 * false if the request is still in use.
562 int aio_put_req(struct kiocb *req)
564 struct kioctx *ctx = req->ki_ctx;
565 int ret;
566 spin_lock_irq(&ctx->ctx_lock);
567 ret = __aio_put_req(ctx, req);
568 spin_unlock_irq(&ctx->ctx_lock);
569 return ret;
572 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
574 struct kioctx *ioctx;
575 struct mm_struct *mm;
577 mm = current->mm;
578 read_lock(&mm->ioctx_list_lock);
579 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
580 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
581 get_ioctx(ioctx);
582 break;
584 read_unlock(&mm->ioctx_list_lock);
586 return ioctx;
590 * use_mm
591 * Makes the calling kernel thread take on the specified
592 * mm context.
593 * Called by the retry thread execute retries within the
594 * iocb issuer's mm context, so that copy_from/to_user
595 * operations work seamlessly for aio.
596 * (Note: this routine is intended to be called only
597 * from a kernel thread context)
599 static void use_mm(struct mm_struct *mm)
601 struct mm_struct *active_mm;
602 struct task_struct *tsk = current;
604 task_lock(tsk);
605 active_mm = tsk->active_mm;
606 atomic_inc(&mm->mm_count);
607 tsk->mm = mm;
608 tsk->active_mm = mm;
609 switch_mm(active_mm, mm, tsk);
610 task_unlock(tsk);
612 mmdrop(active_mm);
616 * unuse_mm
617 * Reverses the effect of use_mm, i.e. releases the
618 * specified mm context which was earlier taken on
619 * by the calling kernel thread
620 * (Note: this routine is intended to be called only
621 * from a kernel thread context)
623 static void unuse_mm(struct mm_struct *mm)
625 struct task_struct *tsk = current;
627 task_lock(tsk);
628 tsk->mm = NULL;
629 /* active_mm is still 'mm' */
630 enter_lazy_tlb(mm, tsk);
631 task_unlock(tsk);
635 * Queue up a kiocb to be retried. Assumes that the kiocb
636 * has already been marked as kicked, and places it on
637 * the retry run list for the corresponding ioctx, if it
638 * isn't already queued. Returns 1 if it actually queued
639 * the kiocb (to tell the caller to activate the work
640 * queue to process it), or 0, if it found that it was
641 * already queued.
643 static inline int __queue_kicked_iocb(struct kiocb *iocb)
645 struct kioctx *ctx = iocb->ki_ctx;
647 assert_spin_locked(&ctx->ctx_lock);
649 if (list_empty(&iocb->ki_run_list)) {
650 list_add_tail(&iocb->ki_run_list,
651 &ctx->run_list);
652 return 1;
654 return 0;
657 /* aio_run_iocb
658 * This is the core aio execution routine. It is
659 * invoked both for initial i/o submission and
660 * subsequent retries via the aio_kick_handler.
661 * Expects to be invoked with iocb->ki_ctx->lock
662 * already held. The lock is released and reacquired
663 * as needed during processing.
665 * Calls the iocb retry method (already setup for the
666 * iocb on initial submission) for operation specific
667 * handling, but takes care of most of common retry
668 * execution details for a given iocb. The retry method
669 * needs to be non-blocking as far as possible, to avoid
670 * holding up other iocbs waiting to be serviced by the
671 * retry kernel thread.
673 * The trickier parts in this code have to do with
674 * ensuring that only one retry instance is in progress
675 * for a given iocb at any time. Providing that guarantee
676 * simplifies the coding of individual aio operations as
677 * it avoids various potential races.
679 static ssize_t aio_run_iocb(struct kiocb *iocb)
681 struct kioctx *ctx = iocb->ki_ctx;
682 ssize_t (*retry)(struct kiocb *);
683 ssize_t ret;
685 if (!(retry = iocb->ki_retry)) {
686 printk("aio_run_iocb: iocb->ki_retry = NULL\n");
687 return 0;
691 * We don't want the next retry iteration for this
692 * operation to start until this one has returned and
693 * updated the iocb state. However, wait_queue functions
694 * can trigger a kick_iocb from interrupt context in the
695 * meantime, indicating that data is available for the next
696 * iteration. We want to remember that and enable the
697 * next retry iteration _after_ we are through with
698 * this one.
700 * So, in order to be able to register a "kick", but
701 * prevent it from being queued now, we clear the kick
702 * flag, but make the kick code *think* that the iocb is
703 * still on the run list until we are actually done.
704 * When we are done with this iteration, we check if
705 * the iocb was kicked in the meantime and if so, queue
706 * it up afresh.
709 kiocbClearKicked(iocb);
712 * This is so that aio_complete knows it doesn't need to
713 * pull the iocb off the run list (We can't just call
714 * INIT_LIST_HEAD because we don't want a kick_iocb to
715 * queue this on the run list yet)
717 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
718 spin_unlock_irq(&ctx->ctx_lock);
720 /* Quit retrying if the i/o has been cancelled */
721 if (kiocbIsCancelled(iocb)) {
722 ret = -EINTR;
723 aio_complete(iocb, ret, 0);
724 /* must not access the iocb after this */
725 goto out;
729 * Now we are all set to call the retry method in async
730 * context.
732 ret = retry(iocb);
734 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
735 BUG_ON(!list_empty(&iocb->ki_wait.task_list));
736 aio_complete(iocb, ret, 0);
738 out:
739 spin_lock_irq(&ctx->ctx_lock);
741 if (-EIOCBRETRY == ret) {
743 * OK, now that we are done with this iteration
744 * and know that there is more left to go,
745 * this is where we let go so that a subsequent
746 * "kick" can start the next iteration
749 /* will make __queue_kicked_iocb succeed from here on */
750 INIT_LIST_HEAD(&iocb->ki_run_list);
751 /* we must queue the next iteration ourselves, if it
752 * has already been kicked */
753 if (kiocbIsKicked(iocb)) {
754 __queue_kicked_iocb(iocb);
757 * __queue_kicked_iocb will always return 1 here, because
758 * iocb->ki_run_list is empty at this point so it should
759 * be safe to unconditionally queue the context into the
760 * work queue.
762 aio_queue_work(ctx);
765 return ret;
769 * __aio_run_iocbs:
770 * Process all pending retries queued on the ioctx
771 * run list.
772 * Assumes it is operating within the aio issuer's mm
773 * context.
775 static int __aio_run_iocbs(struct kioctx *ctx)
777 struct kiocb *iocb;
778 struct list_head run_list;
780 assert_spin_locked(&ctx->ctx_lock);
782 list_replace_init(&ctx->run_list, &run_list);
783 while (!list_empty(&run_list)) {
784 iocb = list_entry(run_list.next, struct kiocb,
785 ki_run_list);
786 list_del(&iocb->ki_run_list);
788 * Hold an extra reference while retrying i/o.
790 iocb->ki_users++; /* grab extra reference */
791 aio_run_iocb(iocb);
792 __aio_put_req(ctx, iocb);
794 if (!list_empty(&ctx->run_list))
795 return 1;
796 return 0;
799 static void aio_queue_work(struct kioctx * ctx)
801 unsigned long timeout;
803 * if someone is waiting, get the work started right
804 * away, otherwise, use a longer delay
806 smp_mb();
807 if (waitqueue_active(&ctx->wait))
808 timeout = 1;
809 else
810 timeout = HZ/10;
811 queue_delayed_work(aio_wq, &ctx->wq, timeout);
816 * aio_run_iocbs:
817 * Process all pending retries queued on the ioctx
818 * run list.
819 * Assumes it is operating within the aio issuer's mm
820 * context.
822 static inline void aio_run_iocbs(struct kioctx *ctx)
824 int requeue;
826 spin_lock_irq(&ctx->ctx_lock);
828 requeue = __aio_run_iocbs(ctx);
829 spin_unlock_irq(&ctx->ctx_lock);
830 if (requeue)
831 aio_queue_work(ctx);
835 * just like aio_run_iocbs, but keeps running them until
836 * the list stays empty
838 static inline void aio_run_all_iocbs(struct kioctx *ctx)
840 spin_lock_irq(&ctx->ctx_lock);
841 while (__aio_run_iocbs(ctx))
843 spin_unlock_irq(&ctx->ctx_lock);
847 * aio_kick_handler:
848 * Work queue handler triggered to process pending
849 * retries on an ioctx. Takes on the aio issuer's
850 * mm context before running the iocbs, so that
851 * copy_xxx_user operates on the issuer's address
852 * space.
853 * Run on aiod's context.
855 static void aio_kick_handler(struct work_struct *work)
857 struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
858 mm_segment_t oldfs = get_fs();
859 struct mm_struct *mm;
860 int requeue;
862 set_fs(USER_DS);
863 use_mm(ctx->mm);
864 spin_lock_irq(&ctx->ctx_lock);
865 requeue =__aio_run_iocbs(ctx);
866 mm = ctx->mm;
867 spin_unlock_irq(&ctx->ctx_lock);
868 unuse_mm(mm);
869 set_fs(oldfs);
871 * we're in a worker thread already, don't use queue_delayed_work,
873 if (requeue)
874 queue_delayed_work(aio_wq, &ctx->wq, 0);
879 * Called by kick_iocb to queue the kiocb for retry
880 * and if required activate the aio work queue to process
881 * it
883 static void try_queue_kicked_iocb(struct kiocb *iocb)
885 struct kioctx *ctx = iocb->ki_ctx;
886 unsigned long flags;
887 int run = 0;
889 /* We're supposed to be the only path putting the iocb back on the run
890 * list. If we find that the iocb is *back* on a wait queue already
891 * than retry has happened before we could queue the iocb. This also
892 * means that the retry could have completed and freed our iocb, no
893 * good. */
894 BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
896 spin_lock_irqsave(&ctx->ctx_lock, flags);
897 /* set this inside the lock so that we can't race with aio_run_iocb()
898 * testing it and putting the iocb on the run list under the lock */
899 if (!kiocbTryKick(iocb))
900 run = __queue_kicked_iocb(iocb);
901 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
902 if (run)
903 aio_queue_work(ctx);
907 * kick_iocb:
908 * Called typically from a wait queue callback context
909 * (aio_wake_function) to trigger a retry of the iocb.
910 * The retry is usually executed by aio workqueue
911 * threads (See aio_kick_handler).
913 void kick_iocb(struct kiocb *iocb)
915 /* sync iocbs are easy: they can only ever be executing from a
916 * single context. */
917 if (is_sync_kiocb(iocb)) {
918 kiocbSetKicked(iocb);
919 wake_up_process(iocb->ki_obj.tsk);
920 return;
923 try_queue_kicked_iocb(iocb);
925 EXPORT_SYMBOL(kick_iocb);
927 /* aio_complete
928 * Called when the io request on the given iocb is complete.
929 * Returns true if this is the last user of the request. The
930 * only other user of the request can be the cancellation code.
932 int aio_complete(struct kiocb *iocb, long res, long res2)
934 struct kioctx *ctx = iocb->ki_ctx;
935 struct aio_ring_info *info;
936 struct aio_ring *ring;
937 struct io_event *event;
938 unsigned long flags;
939 unsigned long tail;
940 int ret;
943 * Special case handling for sync iocbs:
944 * - events go directly into the iocb for fast handling
945 * - the sync task with the iocb in its stack holds the single iocb
946 * ref, no other paths have a way to get another ref
947 * - the sync task helpfully left a reference to itself in the iocb
949 if (is_sync_kiocb(iocb)) {
950 BUG_ON(iocb->ki_users != 1);
951 iocb->ki_user_data = res;
952 iocb->ki_users = 0;
953 wake_up_process(iocb->ki_obj.tsk);
954 return 1;
957 info = &ctx->ring_info;
959 /* add a completion event to the ring buffer.
960 * must be done holding ctx->ctx_lock to prevent
961 * other code from messing with the tail
962 * pointer since we might be called from irq
963 * context.
965 spin_lock_irqsave(&ctx->ctx_lock, flags);
967 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
968 list_del_init(&iocb->ki_run_list);
971 * cancelled requests don't get events, userland was given one
972 * when the event got cancelled.
974 if (kiocbIsCancelled(iocb))
975 goto put_rq;
977 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
979 tail = info->tail;
980 event = aio_ring_event(info, tail, KM_IRQ0);
981 if (++tail >= info->nr)
982 tail = 0;
984 event->obj = (u64)(unsigned long)iocb->ki_obj.user;
985 event->data = iocb->ki_user_data;
986 event->res = res;
987 event->res2 = res2;
989 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
990 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
991 res, res2);
993 /* after flagging the request as done, we
994 * must never even look at it again
996 smp_wmb(); /* make event visible before updating tail */
998 info->tail = tail;
999 ring->tail = tail;
1001 put_aio_ring_event(event, KM_IRQ0);
1002 kunmap_atomic(ring, KM_IRQ1);
1004 pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1007 * Check if the user asked us to deliver the result through an
1008 * eventfd. The eventfd_signal() function is safe to be called
1009 * from IRQ context.
1011 if (iocb->ki_eventfd != NULL)
1012 eventfd_signal(iocb->ki_eventfd, 1);
1014 put_rq:
1015 /* everything turned out well, dispose of the aiocb. */
1016 ret = __aio_put_req(ctx, iocb);
1019 * We have to order our ring_info tail store above and test
1020 * of the wait list below outside the wait lock. This is
1021 * like in wake_up_bit() where clearing a bit has to be
1022 * ordered with the unlocked test.
1024 smp_mb();
1026 if (waitqueue_active(&ctx->wait))
1027 wake_up(&ctx->wait);
1029 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1030 return ret;
1033 /* aio_read_evt
1034 * Pull an event off of the ioctx's event ring. Returns the number of
1035 * events fetched (0 or 1 ;-)
1036 * FIXME: make this use cmpxchg.
1037 * TODO: make the ringbuffer user mmap()able (requires FIXME).
1039 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1041 struct aio_ring_info *info = &ioctx->ring_info;
1042 struct aio_ring *ring;
1043 unsigned long head;
1044 int ret = 0;
1046 ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1047 dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1048 (unsigned long)ring->head, (unsigned long)ring->tail,
1049 (unsigned long)ring->nr);
1051 if (ring->head == ring->tail)
1052 goto out;
1054 spin_lock(&info->ring_lock);
1056 head = ring->head % info->nr;
1057 if (head != ring->tail) {
1058 struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1059 *ent = *evp;
1060 head = (head + 1) % info->nr;
1061 smp_mb(); /* finish reading the event before updatng the head */
1062 ring->head = head;
1063 ret = 1;
1064 put_aio_ring_event(evp, KM_USER1);
1066 spin_unlock(&info->ring_lock);
1068 out:
1069 kunmap_atomic(ring, KM_USER0);
1070 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
1071 (unsigned long)ring->head, (unsigned long)ring->tail);
1072 return ret;
1075 struct aio_timeout {
1076 struct timer_list timer;
1077 int timed_out;
1078 struct task_struct *p;
1081 static void timeout_func(unsigned long data)
1083 struct aio_timeout *to = (struct aio_timeout *)data;
1085 to->timed_out = 1;
1086 wake_up_process(to->p);
1089 static inline void init_timeout(struct aio_timeout *to)
1091 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1092 to->timed_out = 0;
1093 to->p = current;
1096 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1097 const struct timespec *ts)
1099 to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1100 if (time_after(to->timer.expires, jiffies))
1101 add_timer(&to->timer);
1102 else
1103 to->timed_out = 1;
1106 static inline void clear_timeout(struct aio_timeout *to)
1108 del_singleshot_timer_sync(&to->timer);
1111 static int read_events(struct kioctx *ctx,
1112 long min_nr, long nr,
1113 struct io_event __user *event,
1114 struct timespec __user *timeout)
1116 long start_jiffies = jiffies;
1117 struct task_struct *tsk = current;
1118 DECLARE_WAITQUEUE(wait, tsk);
1119 int ret;
1120 int i = 0;
1121 struct io_event ent;
1122 struct aio_timeout to;
1123 int retry = 0;
1125 /* needed to zero any padding within an entry (there shouldn't be
1126 * any, but C is fun!
1128 memset(&ent, 0, sizeof(ent));
1129 retry:
1130 ret = 0;
1131 while (likely(i < nr)) {
1132 ret = aio_read_evt(ctx, &ent);
1133 if (unlikely(ret <= 0))
1134 break;
1136 dprintk("read event: %Lx %Lx %Lx %Lx\n",
1137 ent.data, ent.obj, ent.res, ent.res2);
1139 /* Could we split the check in two? */
1140 ret = -EFAULT;
1141 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1142 dprintk("aio: lost an event due to EFAULT.\n");
1143 break;
1145 ret = 0;
1147 /* Good, event copied to userland, update counts. */
1148 event ++;
1149 i ++;
1152 if (min_nr <= i)
1153 return i;
1154 if (ret)
1155 return ret;
1157 /* End fast path */
1159 /* racey check, but it gets redone */
1160 if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1161 retry = 1;
1162 aio_run_all_iocbs(ctx);
1163 goto retry;
1166 init_timeout(&to);
1167 if (timeout) {
1168 struct timespec ts;
1169 ret = -EFAULT;
1170 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1171 goto out;
1173 set_timeout(start_jiffies, &to, &ts);
1176 while (likely(i < nr)) {
1177 add_wait_queue_exclusive(&ctx->wait, &wait);
1178 do {
1179 set_task_state(tsk, TASK_INTERRUPTIBLE);
1180 ret = aio_read_evt(ctx, &ent);
1181 if (ret)
1182 break;
1183 if (min_nr <= i)
1184 break;
1185 if (unlikely(ctx->dead)) {
1186 ret = -EINVAL;
1187 break;
1189 if (to.timed_out) /* Only check after read evt */
1190 break;
1191 /* Try to only show up in io wait if there are ops
1192 * in flight */
1193 if (ctx->reqs_active)
1194 io_schedule();
1195 else
1196 schedule();
1197 if (signal_pending(tsk)) {
1198 ret = -EINTR;
1199 break;
1201 /*ret = aio_read_evt(ctx, &ent);*/
1202 } while (1) ;
1204 set_task_state(tsk, TASK_RUNNING);
1205 remove_wait_queue(&ctx->wait, &wait);
1207 if (unlikely(ret <= 0))
1208 break;
1210 ret = -EFAULT;
1211 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1212 dprintk("aio: lost an event due to EFAULT.\n");
1213 break;
1216 /* Good, event copied to userland, update counts. */
1217 event ++;
1218 i ++;
1221 if (timeout)
1222 clear_timeout(&to);
1223 out:
1224 destroy_timer_on_stack(&to.timer);
1225 return i ? i : ret;
1228 /* Take an ioctx and remove it from the list of ioctx's. Protects
1229 * against races with itself via ->dead.
1231 static void io_destroy(struct kioctx *ioctx)
1233 struct mm_struct *mm = current->mm;
1234 struct kioctx **tmp;
1235 int was_dead;
1237 /* delete the entry from the list is someone else hasn't already */
1238 write_lock(&mm->ioctx_list_lock);
1239 was_dead = ioctx->dead;
1240 ioctx->dead = 1;
1241 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1242 tmp = &(*tmp)->next)
1244 if (*tmp)
1245 *tmp = ioctx->next;
1246 write_unlock(&mm->ioctx_list_lock);
1248 dprintk("aio_release(%p)\n", ioctx);
1249 if (likely(!was_dead))
1250 put_ioctx(ioctx); /* twice for the list */
1252 aio_cancel_all(ioctx);
1253 wait_for_all_aios(ioctx);
1256 * Wake up any waiters. The setting of ctx->dead must be seen
1257 * by other CPUs at this point. Right now, we rely on the
1258 * locking done by the above calls to ensure this consistency.
1260 wake_up(&ioctx->wait);
1261 put_ioctx(ioctx); /* once for the lookup */
1264 /* sys_io_setup:
1265 * Create an aio_context capable of receiving at least nr_events.
1266 * ctxp must not point to an aio_context that already exists, and
1267 * must be initialized to 0 prior to the call. On successful
1268 * creation of the aio_context, *ctxp is filled in with the resulting
1269 * handle. May fail with -EINVAL if *ctxp is not initialized,
1270 * if the specified nr_events exceeds internal limits. May fail
1271 * with -EAGAIN if the specified nr_events exceeds the user's limit
1272 * of available events. May fail with -ENOMEM if insufficient kernel
1273 * resources are available. May fail with -EFAULT if an invalid
1274 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1275 * implemented.
1277 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1279 struct kioctx *ioctx = NULL;
1280 unsigned long ctx;
1281 long ret;
1283 ret = get_user(ctx, ctxp);
1284 if (unlikely(ret))
1285 goto out;
1287 ret = -EINVAL;
1288 if (unlikely(ctx || nr_events == 0)) {
1289 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1290 ctx, nr_events);
1291 goto out;
1294 ioctx = ioctx_alloc(nr_events);
1295 ret = PTR_ERR(ioctx);
1296 if (!IS_ERR(ioctx)) {
1297 ret = put_user(ioctx->user_id, ctxp);
1298 if (!ret)
1299 return 0;
1301 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1302 io_destroy(ioctx);
1305 out:
1306 return ret;
1309 /* sys_io_destroy:
1310 * Destroy the aio_context specified. May cancel any outstanding
1311 * AIOs and block on completion. Will fail with -ENOSYS if not
1312 * implemented. May fail with -EFAULT if the context pointed to
1313 * is invalid.
1315 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1317 struct kioctx *ioctx = lookup_ioctx(ctx);
1318 if (likely(NULL != ioctx)) {
1319 io_destroy(ioctx);
1320 return 0;
1322 pr_debug("EINVAL: io_destroy: invalid context id\n");
1323 return -EINVAL;
1326 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1328 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1330 BUG_ON(ret <= 0);
1332 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1333 ssize_t this = min((ssize_t)iov->iov_len, ret);
1334 iov->iov_base += this;
1335 iov->iov_len -= this;
1336 iocb->ki_left -= this;
1337 ret -= this;
1338 if (iov->iov_len == 0) {
1339 iocb->ki_cur_seg++;
1340 iov++;
1344 /* the caller should not have done more io than what fit in
1345 * the remaining iovecs */
1346 BUG_ON(ret > 0 && iocb->ki_left == 0);
1349 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1351 struct file *file = iocb->ki_filp;
1352 struct address_space *mapping = file->f_mapping;
1353 struct inode *inode = mapping->host;
1354 ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1355 unsigned long, loff_t);
1356 ssize_t ret = 0;
1357 unsigned short opcode;
1359 if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1360 (iocb->ki_opcode == IOCB_CMD_PREAD)) {
1361 rw_op = file->f_op->aio_read;
1362 opcode = IOCB_CMD_PREADV;
1363 } else {
1364 rw_op = file->f_op->aio_write;
1365 opcode = IOCB_CMD_PWRITEV;
1368 /* This matches the pread()/pwrite() logic */
1369 if (iocb->ki_pos < 0)
1370 return -EINVAL;
1372 do {
1373 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1374 iocb->ki_nr_segs - iocb->ki_cur_seg,
1375 iocb->ki_pos);
1376 if (ret > 0)
1377 aio_advance_iovec(iocb, ret);
1379 /* retry all partial writes. retry partial reads as long as its a
1380 * regular file. */
1381 } while (ret > 0 && iocb->ki_left > 0 &&
1382 (opcode == IOCB_CMD_PWRITEV ||
1383 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1385 /* This means we must have transferred all that we could */
1386 /* No need to retry anymore */
1387 if ((ret == 0) || (iocb->ki_left == 0))
1388 ret = iocb->ki_nbytes - iocb->ki_left;
1390 /* If we managed to write some out we return that, rather than
1391 * the eventual error. */
1392 if (opcode == IOCB_CMD_PWRITEV
1393 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1394 && iocb->ki_nbytes - iocb->ki_left)
1395 ret = iocb->ki_nbytes - iocb->ki_left;
1397 return ret;
1400 static ssize_t aio_fdsync(struct kiocb *iocb)
1402 struct file *file = iocb->ki_filp;
1403 ssize_t ret = -EINVAL;
1405 if (file->f_op->aio_fsync)
1406 ret = file->f_op->aio_fsync(iocb, 1);
1407 return ret;
1410 static ssize_t aio_fsync(struct kiocb *iocb)
1412 struct file *file = iocb->ki_filp;
1413 ssize_t ret = -EINVAL;
1415 if (file->f_op->aio_fsync)
1416 ret = file->f_op->aio_fsync(iocb, 0);
1417 return ret;
1420 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1422 ssize_t ret;
1424 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1425 kiocb->ki_nbytes, 1,
1426 &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1427 if (ret < 0)
1428 goto out;
1430 kiocb->ki_nr_segs = kiocb->ki_nbytes;
1431 kiocb->ki_cur_seg = 0;
1432 /* ki_nbytes/left now reflect bytes instead of segs */
1433 kiocb->ki_nbytes = ret;
1434 kiocb->ki_left = ret;
1436 ret = 0;
1437 out:
1438 return ret;
1441 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1443 kiocb->ki_iovec = &kiocb->ki_inline_vec;
1444 kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1445 kiocb->ki_iovec->iov_len = kiocb->ki_left;
1446 kiocb->ki_nr_segs = 1;
1447 kiocb->ki_cur_seg = 0;
1448 return 0;
1452 * aio_setup_iocb:
1453 * Performs the initial checks and aio retry method
1454 * setup for the kiocb at the time of io submission.
1456 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1458 struct file *file = kiocb->ki_filp;
1459 ssize_t ret = 0;
1461 switch (kiocb->ki_opcode) {
1462 case IOCB_CMD_PREAD:
1463 ret = -EBADF;
1464 if (unlikely(!(file->f_mode & FMODE_READ)))
1465 break;
1466 ret = -EFAULT;
1467 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1468 kiocb->ki_left)))
1469 break;
1470 ret = security_file_permission(file, MAY_READ);
1471 if (unlikely(ret))
1472 break;
1473 ret = aio_setup_single_vector(kiocb);
1474 if (ret)
1475 break;
1476 ret = -EINVAL;
1477 if (file->f_op->aio_read)
1478 kiocb->ki_retry = aio_rw_vect_retry;
1479 break;
1480 case IOCB_CMD_PWRITE:
1481 ret = -EBADF;
1482 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1483 break;
1484 ret = -EFAULT;
1485 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1486 kiocb->ki_left)))
1487 break;
1488 ret = security_file_permission(file, MAY_WRITE);
1489 if (unlikely(ret))
1490 break;
1491 ret = aio_setup_single_vector(kiocb);
1492 if (ret)
1493 break;
1494 ret = -EINVAL;
1495 if (file->f_op->aio_write)
1496 kiocb->ki_retry = aio_rw_vect_retry;
1497 break;
1498 case IOCB_CMD_PREADV:
1499 ret = -EBADF;
1500 if (unlikely(!(file->f_mode & FMODE_READ)))
1501 break;
1502 ret = security_file_permission(file, MAY_READ);
1503 if (unlikely(ret))
1504 break;
1505 ret = aio_setup_vectored_rw(READ, kiocb);
1506 if (ret)
1507 break;
1508 ret = -EINVAL;
1509 if (file->f_op->aio_read)
1510 kiocb->ki_retry = aio_rw_vect_retry;
1511 break;
1512 case IOCB_CMD_PWRITEV:
1513 ret = -EBADF;
1514 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1515 break;
1516 ret = security_file_permission(file, MAY_WRITE);
1517 if (unlikely(ret))
1518 break;
1519 ret = aio_setup_vectored_rw(WRITE, kiocb);
1520 if (ret)
1521 break;
1522 ret = -EINVAL;
1523 if (file->f_op->aio_write)
1524 kiocb->ki_retry = aio_rw_vect_retry;
1525 break;
1526 case IOCB_CMD_FDSYNC:
1527 ret = -EINVAL;
1528 if (file->f_op->aio_fsync)
1529 kiocb->ki_retry = aio_fdsync;
1530 break;
1531 case IOCB_CMD_FSYNC:
1532 ret = -EINVAL;
1533 if (file->f_op->aio_fsync)
1534 kiocb->ki_retry = aio_fsync;
1535 break;
1536 default:
1537 dprintk("EINVAL: io_submit: no operation provided\n");
1538 ret = -EINVAL;
1541 if (!kiocb->ki_retry)
1542 return ret;
1544 return 0;
1548 * aio_wake_function:
1549 * wait queue callback function for aio notification,
1550 * Simply triggers a retry of the operation via kick_iocb.
1552 * This callback is specified in the wait queue entry in
1553 * a kiocb.
1555 * Note:
1556 * This routine is executed with the wait queue lock held.
1557 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1558 * the ioctx lock inside the wait queue lock. This is safe
1559 * because this callback isn't used for wait queues which
1560 * are nested inside ioctx lock (i.e. ctx->wait)
1562 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1563 int sync, void *key)
1565 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1567 list_del_init(&wait->task_list);
1568 kick_iocb(iocb);
1569 return 1;
1572 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1573 struct iocb *iocb)
1575 struct kiocb *req;
1576 struct file *file;
1577 ssize_t ret;
1579 /* enforce forwards compatibility on users */
1580 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1581 pr_debug("EINVAL: io_submit: reserve field set\n");
1582 return -EINVAL;
1585 /* prevent overflows */
1586 if (unlikely(
1587 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1588 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1589 ((ssize_t)iocb->aio_nbytes < 0)
1590 )) {
1591 pr_debug("EINVAL: io_submit: overflow check\n");
1592 return -EINVAL;
1595 file = fget(iocb->aio_fildes);
1596 if (unlikely(!file))
1597 return -EBADF;
1599 req = aio_get_req(ctx); /* returns with 2 references to req */
1600 if (unlikely(!req)) {
1601 fput(file);
1602 return -EAGAIN;
1604 req->ki_filp = file;
1605 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1607 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1608 * instance of the file* now. The file descriptor must be
1609 * an eventfd() fd, and will be signaled for each completed
1610 * event using the eventfd_signal() function.
1612 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1613 if (IS_ERR(req->ki_eventfd)) {
1614 ret = PTR_ERR(req->ki_eventfd);
1615 req->ki_eventfd = NULL;
1616 goto out_put_req;
1620 ret = put_user(req->ki_key, &user_iocb->aio_key);
1621 if (unlikely(ret)) {
1622 dprintk("EFAULT: aio_key\n");
1623 goto out_put_req;
1626 req->ki_obj.user = user_iocb;
1627 req->ki_user_data = iocb->aio_data;
1628 req->ki_pos = iocb->aio_offset;
1630 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1631 req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1632 req->ki_opcode = iocb->aio_lio_opcode;
1633 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1634 INIT_LIST_HEAD(&req->ki_wait.task_list);
1636 ret = aio_setup_iocb(req);
1638 if (ret)
1639 goto out_put_req;
1641 spin_lock_irq(&ctx->ctx_lock);
1642 aio_run_iocb(req);
1643 if (!list_empty(&ctx->run_list)) {
1644 /* drain the run list */
1645 while (__aio_run_iocbs(ctx))
1648 spin_unlock_irq(&ctx->ctx_lock);
1649 aio_put_req(req); /* drop extra ref to req */
1650 return 0;
1652 out_put_req:
1653 aio_put_req(req); /* drop extra ref to req */
1654 aio_put_req(req); /* drop i/o ref to req */
1655 return ret;
1658 /* sys_io_submit:
1659 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1660 * the number of iocbs queued. May return -EINVAL if the aio_context
1661 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1662 * *iocbpp[0] is not properly initialized, if the operation specified
1663 * is invalid for the file descriptor in the iocb. May fail with
1664 * -EFAULT if any of the data structures point to invalid data. May
1665 * fail with -EBADF if the file descriptor specified in the first
1666 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1667 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1668 * fail with -ENOSYS if not implemented.
1670 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1671 struct iocb __user * __user *, iocbpp)
1673 struct kioctx *ctx;
1674 long ret = 0;
1675 int i;
1677 if (unlikely(nr < 0))
1678 return -EINVAL;
1680 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1681 return -EFAULT;
1683 ctx = lookup_ioctx(ctx_id);
1684 if (unlikely(!ctx)) {
1685 pr_debug("EINVAL: io_submit: invalid context id\n");
1686 return -EINVAL;
1690 * AKPM: should this return a partial result if some of the IOs were
1691 * successfully submitted?
1693 for (i=0; i<nr; i++) {
1694 struct iocb __user *user_iocb;
1695 struct iocb tmp;
1697 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1698 ret = -EFAULT;
1699 break;
1702 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1703 ret = -EFAULT;
1704 break;
1707 ret = io_submit_one(ctx, user_iocb, &tmp);
1708 if (ret)
1709 break;
1712 put_ioctx(ctx);
1713 return i ? i : ret;
1716 /* lookup_kiocb
1717 * Finds a given iocb for cancellation.
1719 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1720 u32 key)
1722 struct list_head *pos;
1724 assert_spin_locked(&ctx->ctx_lock);
1726 /* TODO: use a hash or array, this sucks. */
1727 list_for_each(pos, &ctx->active_reqs) {
1728 struct kiocb *kiocb = list_kiocb(pos);
1729 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1730 return kiocb;
1732 return NULL;
1735 /* sys_io_cancel:
1736 * Attempts to cancel an iocb previously passed to io_submit. If
1737 * the operation is successfully cancelled, the resulting event is
1738 * copied into the memory pointed to by result without being placed
1739 * into the completion queue and 0 is returned. May fail with
1740 * -EFAULT if any of the data structures pointed to are invalid.
1741 * May fail with -EINVAL if aio_context specified by ctx_id is
1742 * invalid. May fail with -EAGAIN if the iocb specified was not
1743 * cancelled. Will fail with -ENOSYS if not implemented.
1745 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1746 struct io_event __user *, result)
1748 int (*cancel)(struct kiocb *iocb, struct io_event *res);
1749 struct kioctx *ctx;
1750 struct kiocb *kiocb;
1751 u32 key;
1752 int ret;
1754 ret = get_user(key, &iocb->aio_key);
1755 if (unlikely(ret))
1756 return -EFAULT;
1758 ctx = lookup_ioctx(ctx_id);
1759 if (unlikely(!ctx))
1760 return -EINVAL;
1762 spin_lock_irq(&ctx->ctx_lock);
1763 ret = -EAGAIN;
1764 kiocb = lookup_kiocb(ctx, iocb, key);
1765 if (kiocb && kiocb->ki_cancel) {
1766 cancel = kiocb->ki_cancel;
1767 kiocb->ki_users ++;
1768 kiocbSetCancelled(kiocb);
1769 } else
1770 cancel = NULL;
1771 spin_unlock_irq(&ctx->ctx_lock);
1773 if (NULL != cancel) {
1774 struct io_event tmp;
1775 pr_debug("calling cancel\n");
1776 memset(&tmp, 0, sizeof(tmp));
1777 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1778 tmp.data = kiocb->ki_user_data;
1779 ret = cancel(kiocb, &tmp);
1780 if (!ret) {
1781 /* Cancellation succeeded -- copy the result
1782 * into the user's buffer.
1784 if (copy_to_user(result, &tmp, sizeof(tmp)))
1785 ret = -EFAULT;
1787 } else
1788 ret = -EINVAL;
1790 put_ioctx(ctx);
1792 return ret;
1795 /* io_getevents:
1796 * Attempts to read at least min_nr events and up to nr events from
1797 * the completion queue for the aio_context specified by ctx_id. May
1798 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1799 * if nr is out of range, if when is out of range. May fail with
1800 * -EFAULT if any of the memory specified to is invalid. May return
1801 * 0 or < min_nr if no events are available and the timeout specified
1802 * by when has elapsed, where when == NULL specifies an infinite
1803 * timeout. Note that the timeout pointed to by when is relative and
1804 * will be updated if not NULL and the operation blocks. Will fail
1805 * with -ENOSYS if not implemented.
1807 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1808 long, min_nr,
1809 long, nr,
1810 struct io_event __user *, events,
1811 struct timespec __user *, timeout)
1813 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1814 long ret = -EINVAL;
1816 if (likely(ioctx)) {
1817 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1818 ret = read_events(ioctx, min_nr, nr, events, timeout);
1819 put_ioctx(ioctx);
1822 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1823 return ret;
1826 __initcall(aio_setup);
1828 EXPORT_SYMBOL(aio_complete);
1829 EXPORT_SYMBOL(aio_put_req);
1830 EXPORT_SYMBOL(wait_on_sync_kiocb);