mmc: Explain why we make adjacent mmc_bus_{put,get} calls during rescan.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mmc / core / core.c
blob4b1d8fb04e9b30569579be2875777deae2e5a0ff
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
27 #include <linux/mmc/card.h>
28 #include <linux/mmc/host.h>
29 #include <linux/mmc/mmc.h>
30 #include <linux/mmc/sd.h>
32 #include "core.h"
33 #include "bus.h"
34 #include "host.h"
35 #include "sdio_bus.h"
37 #include "mmc_ops.h"
38 #include "sd_ops.h"
39 #include "sdio_ops.h"
41 static struct workqueue_struct *workqueue;
44 * Enabling software CRCs on the data blocks can be a significant (30%)
45 * performance cost, and for other reasons may not always be desired.
46 * So we allow it it to be disabled.
48 int use_spi_crc = 1;
49 module_param(use_spi_crc, bool, 0);
52 * We normally treat cards as removed during suspend if they are not
53 * known to be on a non-removable bus, to avoid the risk of writing
54 * back data to a different card after resume. Allow this to be
55 * overridden if necessary.
57 #ifdef CONFIG_MMC_UNSAFE_RESUME
58 int mmc_assume_removable;
59 #else
60 int mmc_assume_removable = 1;
61 #endif
62 EXPORT_SYMBOL(mmc_assume_removable);
63 module_param_named(removable, mmc_assume_removable, bool, 0644);
64 MODULE_PARM_DESC(
65 removable,
66 "MMC/SD cards are removable and may be removed during suspend");
69 * Internal function. Schedule delayed work in the MMC work queue.
71 static int mmc_schedule_delayed_work(struct delayed_work *work,
72 unsigned long delay)
74 return queue_delayed_work(workqueue, work, delay);
78 * Internal function. Flush all scheduled work from the MMC work queue.
80 static void mmc_flush_scheduled_work(void)
82 flush_workqueue(workqueue);
85 /**
86 * mmc_request_done - finish processing an MMC request
87 * @host: MMC host which completed request
88 * @mrq: MMC request which request
90 * MMC drivers should call this function when they have completed
91 * their processing of a request.
93 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
95 struct mmc_command *cmd = mrq->cmd;
96 int err = cmd->error;
98 if (err && cmd->retries && mmc_host_is_spi(host)) {
99 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
100 cmd->retries = 0;
103 if (err && cmd->retries) {
104 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
105 mmc_hostname(host), cmd->opcode, err);
107 cmd->retries--;
108 cmd->error = 0;
109 host->ops->request(host, mrq);
110 } else {
111 led_trigger_event(host->led, LED_OFF);
113 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
114 mmc_hostname(host), cmd->opcode, err,
115 cmd->resp[0], cmd->resp[1],
116 cmd->resp[2], cmd->resp[3]);
118 if (mrq->data) {
119 pr_debug("%s: %d bytes transferred: %d\n",
120 mmc_hostname(host),
121 mrq->data->bytes_xfered, mrq->data->error);
124 if (mrq->stop) {
125 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
126 mmc_hostname(host), mrq->stop->opcode,
127 mrq->stop->error,
128 mrq->stop->resp[0], mrq->stop->resp[1],
129 mrq->stop->resp[2], mrq->stop->resp[3]);
132 if (mrq->done)
133 mrq->done(mrq);
135 mmc_host_clk_gate(host);
139 EXPORT_SYMBOL(mmc_request_done);
141 static void
142 mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
144 #ifdef CONFIG_MMC_DEBUG
145 unsigned int i, sz;
146 struct scatterlist *sg;
147 #endif
149 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
150 mmc_hostname(host), mrq->cmd->opcode,
151 mrq->cmd->arg, mrq->cmd->flags);
153 if (mrq->data) {
154 pr_debug("%s: blksz %d blocks %d flags %08x "
155 "tsac %d ms nsac %d\n",
156 mmc_hostname(host), mrq->data->blksz,
157 mrq->data->blocks, mrq->data->flags,
158 mrq->data->timeout_ns / 1000000,
159 mrq->data->timeout_clks);
162 if (mrq->stop) {
163 pr_debug("%s: CMD%u arg %08x flags %08x\n",
164 mmc_hostname(host), mrq->stop->opcode,
165 mrq->stop->arg, mrq->stop->flags);
168 WARN_ON(!host->claimed);
170 led_trigger_event(host->led, LED_FULL);
172 mrq->cmd->error = 0;
173 mrq->cmd->mrq = mrq;
174 if (mrq->data) {
175 BUG_ON(mrq->data->blksz > host->max_blk_size);
176 BUG_ON(mrq->data->blocks > host->max_blk_count);
177 BUG_ON(mrq->data->blocks * mrq->data->blksz >
178 host->max_req_size);
180 #ifdef CONFIG_MMC_DEBUG
181 sz = 0;
182 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
183 sz += sg->length;
184 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
185 #endif
187 mrq->cmd->data = mrq->data;
188 mrq->data->error = 0;
189 mrq->data->mrq = mrq;
190 if (mrq->stop) {
191 mrq->data->stop = mrq->stop;
192 mrq->stop->error = 0;
193 mrq->stop->mrq = mrq;
196 mmc_host_clk_ungate(host);
197 host->ops->request(host, mrq);
200 static void mmc_wait_done(struct mmc_request *mrq)
202 complete(mrq->done_data);
206 * mmc_wait_for_req - start a request and wait for completion
207 * @host: MMC host to start command
208 * @mrq: MMC request to start
210 * Start a new MMC custom command request for a host, and wait
211 * for the command to complete. Does not attempt to parse the
212 * response.
214 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
216 DECLARE_COMPLETION_ONSTACK(complete);
218 mrq->done_data = &complete;
219 mrq->done = mmc_wait_done;
221 mmc_start_request(host, mrq);
223 wait_for_completion(&complete);
226 EXPORT_SYMBOL(mmc_wait_for_req);
229 * mmc_wait_for_cmd - start a command and wait for completion
230 * @host: MMC host to start command
231 * @cmd: MMC command to start
232 * @retries: maximum number of retries
234 * Start a new MMC command for a host, and wait for the command
235 * to complete. Return any error that occurred while the command
236 * was executing. Do not attempt to parse the response.
238 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
240 struct mmc_request mrq;
242 WARN_ON(!host->claimed);
244 memset(&mrq, 0, sizeof(struct mmc_request));
246 memset(cmd->resp, 0, sizeof(cmd->resp));
247 cmd->retries = retries;
249 mrq.cmd = cmd;
250 cmd->data = NULL;
252 mmc_wait_for_req(host, &mrq);
254 return cmd->error;
257 EXPORT_SYMBOL(mmc_wait_for_cmd);
260 * mmc_set_data_timeout - set the timeout for a data command
261 * @data: data phase for command
262 * @card: the MMC card associated with the data transfer
264 * Computes the data timeout parameters according to the
265 * correct algorithm given the card type.
267 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
269 unsigned int mult;
272 * SDIO cards only define an upper 1 s limit on access.
274 if (mmc_card_sdio(card)) {
275 data->timeout_ns = 1000000000;
276 data->timeout_clks = 0;
277 return;
281 * SD cards use a 100 multiplier rather than 10
283 mult = mmc_card_sd(card) ? 100 : 10;
286 * Scale up the multiplier (and therefore the timeout) by
287 * the r2w factor for writes.
289 if (data->flags & MMC_DATA_WRITE)
290 mult <<= card->csd.r2w_factor;
292 data->timeout_ns = card->csd.tacc_ns * mult;
293 data->timeout_clks = card->csd.tacc_clks * mult;
296 * SD cards also have an upper limit on the timeout.
298 if (mmc_card_sd(card)) {
299 unsigned int timeout_us, limit_us;
301 timeout_us = data->timeout_ns / 1000;
302 timeout_us += data->timeout_clks * 1000 /
303 (mmc_host_clk_rate(card->host) / 1000);
305 if (data->flags & MMC_DATA_WRITE)
307 * The limit is really 250 ms, but that is
308 * insufficient for some crappy cards.
310 limit_us = 300000;
311 else
312 limit_us = 100000;
315 * SDHC cards always use these fixed values.
317 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
318 data->timeout_ns = limit_us * 1000;
319 data->timeout_clks = 0;
323 * Some cards need very high timeouts if driven in SPI mode.
324 * The worst observed timeout was 900ms after writing a
325 * continuous stream of data until the internal logic
326 * overflowed.
328 if (mmc_host_is_spi(card->host)) {
329 if (data->flags & MMC_DATA_WRITE) {
330 if (data->timeout_ns < 1000000000)
331 data->timeout_ns = 1000000000; /* 1s */
332 } else {
333 if (data->timeout_ns < 100000000)
334 data->timeout_ns = 100000000; /* 100ms */
338 EXPORT_SYMBOL(mmc_set_data_timeout);
341 * mmc_align_data_size - pads a transfer size to a more optimal value
342 * @card: the MMC card associated with the data transfer
343 * @sz: original transfer size
345 * Pads the original data size with a number of extra bytes in
346 * order to avoid controller bugs and/or performance hits
347 * (e.g. some controllers revert to PIO for certain sizes).
349 * Returns the improved size, which might be unmodified.
351 * Note that this function is only relevant when issuing a
352 * single scatter gather entry.
354 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
357 * FIXME: We don't have a system for the controller to tell
358 * the core about its problems yet, so for now we just 32-bit
359 * align the size.
361 sz = ((sz + 3) / 4) * 4;
363 return sz;
365 EXPORT_SYMBOL(mmc_align_data_size);
368 * mmc_host_enable - enable a host.
369 * @host: mmc host to enable
371 * Hosts that support power saving can use the 'enable' and 'disable'
372 * methods to exit and enter power saving states. For more information
373 * see comments for struct mmc_host_ops.
375 int mmc_host_enable(struct mmc_host *host)
377 if (!(host->caps & MMC_CAP_DISABLE))
378 return 0;
380 if (host->en_dis_recurs)
381 return 0;
383 if (host->nesting_cnt++)
384 return 0;
386 cancel_delayed_work_sync(&host->disable);
388 if (host->enabled)
389 return 0;
391 if (host->ops->enable) {
392 int err;
394 host->en_dis_recurs = 1;
395 err = host->ops->enable(host);
396 host->en_dis_recurs = 0;
398 if (err) {
399 pr_debug("%s: enable error %d\n",
400 mmc_hostname(host), err);
401 return err;
404 host->enabled = 1;
405 return 0;
407 EXPORT_SYMBOL(mmc_host_enable);
409 static int mmc_host_do_disable(struct mmc_host *host, int lazy)
411 if (host->ops->disable) {
412 int err;
414 host->en_dis_recurs = 1;
415 err = host->ops->disable(host, lazy);
416 host->en_dis_recurs = 0;
418 if (err < 0) {
419 pr_debug("%s: disable error %d\n",
420 mmc_hostname(host), err);
421 return err;
423 if (err > 0) {
424 unsigned long delay = msecs_to_jiffies(err);
426 mmc_schedule_delayed_work(&host->disable, delay);
429 host->enabled = 0;
430 return 0;
434 * mmc_host_disable - disable a host.
435 * @host: mmc host to disable
437 * Hosts that support power saving can use the 'enable' and 'disable'
438 * methods to exit and enter power saving states. For more information
439 * see comments for struct mmc_host_ops.
441 int mmc_host_disable(struct mmc_host *host)
443 int err;
445 if (!(host->caps & MMC_CAP_DISABLE))
446 return 0;
448 if (host->en_dis_recurs)
449 return 0;
451 if (--host->nesting_cnt)
452 return 0;
454 if (!host->enabled)
455 return 0;
457 err = mmc_host_do_disable(host, 0);
458 return err;
460 EXPORT_SYMBOL(mmc_host_disable);
463 * __mmc_claim_host - exclusively claim a host
464 * @host: mmc host to claim
465 * @abort: whether or not the operation should be aborted
467 * Claim a host for a set of operations. If @abort is non null and
468 * dereference a non-zero value then this will return prematurely with
469 * that non-zero value without acquiring the lock. Returns zero
470 * with the lock held otherwise.
472 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
474 DECLARE_WAITQUEUE(wait, current);
475 unsigned long flags;
476 int stop;
478 might_sleep();
480 add_wait_queue(&host->wq, &wait);
481 spin_lock_irqsave(&host->lock, flags);
482 while (1) {
483 set_current_state(TASK_UNINTERRUPTIBLE);
484 stop = abort ? atomic_read(abort) : 0;
485 if (stop || !host->claimed || host->claimer == current)
486 break;
487 spin_unlock_irqrestore(&host->lock, flags);
488 schedule();
489 spin_lock_irqsave(&host->lock, flags);
491 set_current_state(TASK_RUNNING);
492 if (!stop) {
493 host->claimed = 1;
494 host->claimer = current;
495 host->claim_cnt += 1;
496 } else
497 wake_up(&host->wq);
498 spin_unlock_irqrestore(&host->lock, flags);
499 remove_wait_queue(&host->wq, &wait);
500 if (!stop)
501 mmc_host_enable(host);
502 return stop;
505 EXPORT_SYMBOL(__mmc_claim_host);
508 * mmc_try_claim_host - try exclusively to claim a host
509 * @host: mmc host to claim
511 * Returns %1 if the host is claimed, %0 otherwise.
513 int mmc_try_claim_host(struct mmc_host *host)
515 int claimed_host = 0;
516 unsigned long flags;
518 spin_lock_irqsave(&host->lock, flags);
519 if (!host->claimed || host->claimer == current) {
520 host->claimed = 1;
521 host->claimer = current;
522 host->claim_cnt += 1;
523 claimed_host = 1;
525 spin_unlock_irqrestore(&host->lock, flags);
526 return claimed_host;
528 EXPORT_SYMBOL(mmc_try_claim_host);
530 static void mmc_do_release_host(struct mmc_host *host)
532 unsigned long flags;
534 spin_lock_irqsave(&host->lock, flags);
535 if (--host->claim_cnt) {
536 /* Release for nested claim */
537 spin_unlock_irqrestore(&host->lock, flags);
538 } else {
539 host->claimed = 0;
540 host->claimer = NULL;
541 spin_unlock_irqrestore(&host->lock, flags);
542 wake_up(&host->wq);
546 void mmc_host_deeper_disable(struct work_struct *work)
548 struct mmc_host *host =
549 container_of(work, struct mmc_host, disable.work);
551 /* If the host is claimed then we do not want to disable it anymore */
552 if (!mmc_try_claim_host(host))
553 return;
554 mmc_host_do_disable(host, 1);
555 mmc_do_release_host(host);
559 * mmc_host_lazy_disable - lazily disable a host.
560 * @host: mmc host to disable
562 * Hosts that support power saving can use the 'enable' and 'disable'
563 * methods to exit and enter power saving states. For more information
564 * see comments for struct mmc_host_ops.
566 int mmc_host_lazy_disable(struct mmc_host *host)
568 if (!(host->caps & MMC_CAP_DISABLE))
569 return 0;
571 if (host->en_dis_recurs)
572 return 0;
574 if (--host->nesting_cnt)
575 return 0;
577 if (!host->enabled)
578 return 0;
580 if (host->disable_delay) {
581 mmc_schedule_delayed_work(&host->disable,
582 msecs_to_jiffies(host->disable_delay));
583 return 0;
584 } else
585 return mmc_host_do_disable(host, 1);
587 EXPORT_SYMBOL(mmc_host_lazy_disable);
590 * mmc_release_host - release a host
591 * @host: mmc host to release
593 * Release a MMC host, allowing others to claim the host
594 * for their operations.
596 void mmc_release_host(struct mmc_host *host)
598 WARN_ON(!host->claimed);
600 mmc_host_lazy_disable(host);
602 mmc_do_release_host(host);
605 EXPORT_SYMBOL(mmc_release_host);
608 * Internal function that does the actual ios call to the host driver,
609 * optionally printing some debug output.
611 static inline void mmc_set_ios(struct mmc_host *host)
613 struct mmc_ios *ios = &host->ios;
615 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
616 "width %u timing %u\n",
617 mmc_hostname(host), ios->clock, ios->bus_mode,
618 ios->power_mode, ios->chip_select, ios->vdd,
619 ios->bus_width, ios->timing);
621 if (ios->clock > 0)
622 mmc_set_ungated(host);
623 host->ops->set_ios(host, ios);
627 * Control chip select pin on a host.
629 void mmc_set_chip_select(struct mmc_host *host, int mode)
631 host->ios.chip_select = mode;
632 mmc_set_ios(host);
636 * Sets the host clock to the highest possible frequency that
637 * is below "hz".
639 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
641 WARN_ON(hz < host->f_min);
643 if (hz > host->f_max)
644 hz = host->f_max;
646 host->ios.clock = hz;
647 mmc_set_ios(host);
650 #ifdef CONFIG_MMC_CLKGATE
652 * This gates the clock by setting it to 0 Hz.
654 void mmc_gate_clock(struct mmc_host *host)
656 unsigned long flags;
658 spin_lock_irqsave(&host->clk_lock, flags);
659 host->clk_old = host->ios.clock;
660 host->ios.clock = 0;
661 host->clk_gated = true;
662 spin_unlock_irqrestore(&host->clk_lock, flags);
663 mmc_set_ios(host);
667 * This restores the clock from gating by using the cached
668 * clock value.
670 void mmc_ungate_clock(struct mmc_host *host)
673 * We should previously have gated the clock, so the clock shall
674 * be 0 here! The clock may however be 0 during initialization,
675 * when some request operations are performed before setting
676 * the frequency. When ungate is requested in that situation
677 * we just ignore the call.
679 if (host->clk_old) {
680 BUG_ON(host->ios.clock);
681 /* This call will also set host->clk_gated to false */
682 mmc_set_clock(host, host->clk_old);
686 void mmc_set_ungated(struct mmc_host *host)
688 unsigned long flags;
691 * We've been given a new frequency while the clock is gated,
692 * so make sure we regard this as ungating it.
694 spin_lock_irqsave(&host->clk_lock, flags);
695 host->clk_gated = false;
696 spin_unlock_irqrestore(&host->clk_lock, flags);
699 #else
700 void mmc_set_ungated(struct mmc_host *host)
703 #endif
706 * Change the bus mode (open drain/push-pull) of a host.
708 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
710 host->ios.bus_mode = mode;
711 mmc_set_ios(host);
715 * Change data bus width and DDR mode of a host.
717 void mmc_set_bus_width_ddr(struct mmc_host *host, unsigned int width,
718 unsigned int ddr)
720 host->ios.bus_width = width;
721 host->ios.ddr = ddr;
722 mmc_set_ios(host);
726 * Change data bus width of a host.
728 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
730 mmc_set_bus_width_ddr(host, width, MMC_SDR_MODE);
734 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
735 * @vdd: voltage (mV)
736 * @low_bits: prefer low bits in boundary cases
738 * This function returns the OCR bit number according to the provided @vdd
739 * value. If conversion is not possible a negative errno value returned.
741 * Depending on the @low_bits flag the function prefers low or high OCR bits
742 * on boundary voltages. For example,
743 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
744 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
746 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
748 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
750 const int max_bit = ilog2(MMC_VDD_35_36);
751 int bit;
753 if (vdd < 1650 || vdd > 3600)
754 return -EINVAL;
756 if (vdd >= 1650 && vdd <= 1950)
757 return ilog2(MMC_VDD_165_195);
759 if (low_bits)
760 vdd -= 1;
762 /* Base 2000 mV, step 100 mV, bit's base 8. */
763 bit = (vdd - 2000) / 100 + 8;
764 if (bit > max_bit)
765 return max_bit;
766 return bit;
770 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
771 * @vdd_min: minimum voltage value (mV)
772 * @vdd_max: maximum voltage value (mV)
774 * This function returns the OCR mask bits according to the provided @vdd_min
775 * and @vdd_max values. If conversion is not possible the function returns 0.
777 * Notes wrt boundary cases:
778 * This function sets the OCR bits for all boundary voltages, for example
779 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
780 * MMC_VDD_34_35 mask.
782 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
784 u32 mask = 0;
786 if (vdd_max < vdd_min)
787 return 0;
789 /* Prefer high bits for the boundary vdd_max values. */
790 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
791 if (vdd_max < 0)
792 return 0;
794 /* Prefer low bits for the boundary vdd_min values. */
795 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
796 if (vdd_min < 0)
797 return 0;
799 /* Fill the mask, from max bit to min bit. */
800 while (vdd_max >= vdd_min)
801 mask |= 1 << vdd_max--;
803 return mask;
805 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
807 #ifdef CONFIG_REGULATOR
810 * mmc_regulator_get_ocrmask - return mask of supported voltages
811 * @supply: regulator to use
813 * This returns either a negative errno, or a mask of voltages that
814 * can be provided to MMC/SD/SDIO devices using the specified voltage
815 * regulator. This would normally be called before registering the
816 * MMC host adapter.
818 int mmc_regulator_get_ocrmask(struct regulator *supply)
820 int result = 0;
821 int count;
822 int i;
824 count = regulator_count_voltages(supply);
825 if (count < 0)
826 return count;
828 for (i = 0; i < count; i++) {
829 int vdd_uV;
830 int vdd_mV;
832 vdd_uV = regulator_list_voltage(supply, i);
833 if (vdd_uV <= 0)
834 continue;
836 vdd_mV = vdd_uV / 1000;
837 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
840 return result;
842 EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
845 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
846 * @mmc: the host to regulate
847 * @supply: regulator to use
848 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
850 * Returns zero on success, else negative errno.
852 * MMC host drivers may use this to enable or disable a regulator using
853 * a particular supply voltage. This would normally be called from the
854 * set_ios() method.
856 int mmc_regulator_set_ocr(struct mmc_host *mmc,
857 struct regulator *supply,
858 unsigned short vdd_bit)
860 int result = 0;
861 int min_uV, max_uV;
863 if (vdd_bit) {
864 int tmp;
865 int voltage;
867 /* REVISIT mmc_vddrange_to_ocrmask() may have set some
868 * bits this regulator doesn't quite support ... don't
869 * be too picky, most cards and regulators are OK with
870 * a 0.1V range goof (it's a small error percentage).
872 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
873 if (tmp == 0) {
874 min_uV = 1650 * 1000;
875 max_uV = 1950 * 1000;
876 } else {
877 min_uV = 1900 * 1000 + tmp * 100 * 1000;
878 max_uV = min_uV + 100 * 1000;
881 /* avoid needless changes to this voltage; the regulator
882 * might not allow this operation
884 voltage = regulator_get_voltage(supply);
885 if (voltage < 0)
886 result = voltage;
887 else if (voltage < min_uV || voltage > max_uV)
888 result = regulator_set_voltage(supply, min_uV, max_uV);
889 else
890 result = 0;
892 if (result == 0 && !mmc->regulator_enabled) {
893 result = regulator_enable(supply);
894 if (!result)
895 mmc->regulator_enabled = true;
897 } else if (mmc->regulator_enabled) {
898 result = regulator_disable(supply);
899 if (result == 0)
900 mmc->regulator_enabled = false;
903 if (result)
904 dev_err(mmc_dev(mmc),
905 "could not set regulator OCR (%d)\n", result);
906 return result;
908 EXPORT_SYMBOL(mmc_regulator_set_ocr);
910 #endif /* CONFIG_REGULATOR */
913 * Mask off any voltages we don't support and select
914 * the lowest voltage
916 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
918 int bit;
920 ocr &= host->ocr_avail;
922 bit = ffs(ocr);
923 if (bit) {
924 bit -= 1;
926 ocr &= 3 << bit;
928 host->ios.vdd = bit;
929 mmc_set_ios(host);
930 } else {
931 pr_warning("%s: host doesn't support card's voltages\n",
932 mmc_hostname(host));
933 ocr = 0;
936 return ocr;
940 * Select timing parameters for host.
942 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
944 host->ios.timing = timing;
945 mmc_set_ios(host);
949 * Apply power to the MMC stack. This is a two-stage process.
950 * First, we enable power to the card without the clock running.
951 * We then wait a bit for the power to stabilise. Finally,
952 * enable the bus drivers and clock to the card.
954 * We must _NOT_ enable the clock prior to power stablising.
956 * If a host does all the power sequencing itself, ignore the
957 * initial MMC_POWER_UP stage.
959 static void mmc_power_up(struct mmc_host *host)
961 int bit;
963 /* If ocr is set, we use it */
964 if (host->ocr)
965 bit = ffs(host->ocr) - 1;
966 else
967 bit = fls(host->ocr_avail) - 1;
969 host->ios.vdd = bit;
970 if (mmc_host_is_spi(host)) {
971 host->ios.chip_select = MMC_CS_HIGH;
972 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
973 } else {
974 host->ios.chip_select = MMC_CS_DONTCARE;
975 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
977 host->ios.power_mode = MMC_POWER_UP;
978 host->ios.bus_width = MMC_BUS_WIDTH_1;
979 host->ios.timing = MMC_TIMING_LEGACY;
980 mmc_set_ios(host);
983 * This delay should be sufficient to allow the power supply
984 * to reach the minimum voltage.
986 mmc_delay(10);
988 host->ios.clock = host->f_init;
990 host->ios.power_mode = MMC_POWER_ON;
991 mmc_set_ios(host);
994 * This delay must be at least 74 clock sizes, or 1 ms, or the
995 * time required to reach a stable voltage.
997 mmc_delay(10);
1000 static void mmc_power_off(struct mmc_host *host)
1002 host->ios.clock = 0;
1003 host->ios.vdd = 0;
1004 if (!mmc_host_is_spi(host)) {
1005 host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1006 host->ios.chip_select = MMC_CS_DONTCARE;
1008 host->ios.power_mode = MMC_POWER_OFF;
1009 host->ios.bus_width = MMC_BUS_WIDTH_1;
1010 host->ios.timing = MMC_TIMING_LEGACY;
1011 mmc_set_ios(host);
1015 * Cleanup when the last reference to the bus operator is dropped.
1017 static void __mmc_release_bus(struct mmc_host *host)
1019 BUG_ON(!host);
1020 BUG_ON(host->bus_refs);
1021 BUG_ON(!host->bus_dead);
1023 host->bus_ops = NULL;
1027 * Increase reference count of bus operator
1029 static inline void mmc_bus_get(struct mmc_host *host)
1031 unsigned long flags;
1033 spin_lock_irqsave(&host->lock, flags);
1034 host->bus_refs++;
1035 spin_unlock_irqrestore(&host->lock, flags);
1039 * Decrease reference count of bus operator and free it if
1040 * it is the last reference.
1042 static inline void mmc_bus_put(struct mmc_host *host)
1044 unsigned long flags;
1046 spin_lock_irqsave(&host->lock, flags);
1047 host->bus_refs--;
1048 if ((host->bus_refs == 0) && host->bus_ops)
1049 __mmc_release_bus(host);
1050 spin_unlock_irqrestore(&host->lock, flags);
1054 * Assign a mmc bus handler to a host. Only one bus handler may control a
1055 * host at any given time.
1057 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1059 unsigned long flags;
1061 BUG_ON(!host);
1062 BUG_ON(!ops);
1064 WARN_ON(!host->claimed);
1066 spin_lock_irqsave(&host->lock, flags);
1068 BUG_ON(host->bus_ops);
1069 BUG_ON(host->bus_refs);
1071 host->bus_ops = ops;
1072 host->bus_refs = 1;
1073 host->bus_dead = 0;
1075 spin_unlock_irqrestore(&host->lock, flags);
1079 * Remove the current bus handler from a host. Assumes that there are
1080 * no interesting cards left, so the bus is powered down.
1082 void mmc_detach_bus(struct mmc_host *host)
1084 unsigned long flags;
1086 BUG_ON(!host);
1088 WARN_ON(!host->claimed);
1089 WARN_ON(!host->bus_ops);
1091 spin_lock_irqsave(&host->lock, flags);
1093 host->bus_dead = 1;
1095 spin_unlock_irqrestore(&host->lock, flags);
1097 mmc_power_off(host);
1099 mmc_bus_put(host);
1103 * mmc_detect_change - process change of state on a MMC socket
1104 * @host: host which changed state.
1105 * @delay: optional delay to wait before detection (jiffies)
1107 * MMC drivers should call this when they detect a card has been
1108 * inserted or removed. The MMC layer will confirm that any
1109 * present card is still functional, and initialize any newly
1110 * inserted.
1112 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1114 #ifdef CONFIG_MMC_DEBUG
1115 unsigned long flags;
1116 spin_lock_irqsave(&host->lock, flags);
1117 WARN_ON(host->removed);
1118 spin_unlock_irqrestore(&host->lock, flags);
1119 #endif
1121 mmc_schedule_delayed_work(&host->detect, delay);
1124 EXPORT_SYMBOL(mmc_detect_change);
1126 void mmc_init_erase(struct mmc_card *card)
1128 unsigned int sz;
1130 if (is_power_of_2(card->erase_size))
1131 card->erase_shift = ffs(card->erase_size) - 1;
1132 else
1133 card->erase_shift = 0;
1136 * It is possible to erase an arbitrarily large area of an SD or MMC
1137 * card. That is not desirable because it can take a long time
1138 * (minutes) potentially delaying more important I/O, and also the
1139 * timeout calculations become increasingly hugely over-estimated.
1140 * Consequently, 'pref_erase' is defined as a guide to limit erases
1141 * to that size and alignment.
1143 * For SD cards that define Allocation Unit size, limit erases to one
1144 * Allocation Unit at a time. For MMC cards that define High Capacity
1145 * Erase Size, whether it is switched on or not, limit to that size.
1146 * Otherwise just have a stab at a good value. For modern cards it
1147 * will end up being 4MiB. Note that if the value is too small, it
1148 * can end up taking longer to erase.
1150 if (mmc_card_sd(card) && card->ssr.au) {
1151 card->pref_erase = card->ssr.au;
1152 card->erase_shift = ffs(card->ssr.au) - 1;
1153 } else if (card->ext_csd.hc_erase_size) {
1154 card->pref_erase = card->ext_csd.hc_erase_size;
1155 } else {
1156 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1157 if (sz < 128)
1158 card->pref_erase = 512 * 1024 / 512;
1159 else if (sz < 512)
1160 card->pref_erase = 1024 * 1024 / 512;
1161 else if (sz < 1024)
1162 card->pref_erase = 2 * 1024 * 1024 / 512;
1163 else
1164 card->pref_erase = 4 * 1024 * 1024 / 512;
1165 if (card->pref_erase < card->erase_size)
1166 card->pref_erase = card->erase_size;
1167 else {
1168 sz = card->pref_erase % card->erase_size;
1169 if (sz)
1170 card->pref_erase += card->erase_size - sz;
1175 static void mmc_set_mmc_erase_timeout(struct mmc_card *card,
1176 struct mmc_command *cmd,
1177 unsigned int arg, unsigned int qty)
1179 unsigned int erase_timeout;
1181 if (card->ext_csd.erase_group_def & 1) {
1182 /* High Capacity Erase Group Size uses HC timeouts */
1183 if (arg == MMC_TRIM_ARG)
1184 erase_timeout = card->ext_csd.trim_timeout;
1185 else
1186 erase_timeout = card->ext_csd.hc_erase_timeout;
1187 } else {
1188 /* CSD Erase Group Size uses write timeout */
1189 unsigned int mult = (10 << card->csd.r2w_factor);
1190 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1191 unsigned int timeout_us;
1193 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1194 if (card->csd.tacc_ns < 1000000)
1195 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1196 else
1197 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1200 * ios.clock is only a target. The real clock rate might be
1201 * less but not that much less, so fudge it by multiplying by 2.
1203 timeout_clks <<= 1;
1204 timeout_us += (timeout_clks * 1000) /
1205 (card->host->ios.clock / 1000);
1207 erase_timeout = timeout_us / 1000;
1210 * Theoretically, the calculation could underflow so round up
1211 * to 1ms in that case.
1213 if (!erase_timeout)
1214 erase_timeout = 1;
1217 /* Multiplier for secure operations */
1218 if (arg & MMC_SECURE_ARGS) {
1219 if (arg == MMC_SECURE_ERASE_ARG)
1220 erase_timeout *= card->ext_csd.sec_erase_mult;
1221 else
1222 erase_timeout *= card->ext_csd.sec_trim_mult;
1225 erase_timeout *= qty;
1228 * Ensure at least a 1 second timeout for SPI as per
1229 * 'mmc_set_data_timeout()'
1231 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1232 erase_timeout = 1000;
1234 cmd->erase_timeout = erase_timeout;
1237 static void mmc_set_sd_erase_timeout(struct mmc_card *card,
1238 struct mmc_command *cmd, unsigned int arg,
1239 unsigned int qty)
1241 if (card->ssr.erase_timeout) {
1242 /* Erase timeout specified in SD Status Register (SSR) */
1243 cmd->erase_timeout = card->ssr.erase_timeout * qty +
1244 card->ssr.erase_offset;
1245 } else {
1247 * Erase timeout not specified in SD Status Register (SSR) so
1248 * use 250ms per write block.
1250 cmd->erase_timeout = 250 * qty;
1253 /* Must not be less than 1 second */
1254 if (cmd->erase_timeout < 1000)
1255 cmd->erase_timeout = 1000;
1258 static void mmc_set_erase_timeout(struct mmc_card *card,
1259 struct mmc_command *cmd, unsigned int arg,
1260 unsigned int qty)
1262 if (mmc_card_sd(card))
1263 mmc_set_sd_erase_timeout(card, cmd, arg, qty);
1264 else
1265 mmc_set_mmc_erase_timeout(card, cmd, arg, qty);
1268 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1269 unsigned int to, unsigned int arg)
1271 struct mmc_command cmd;
1272 unsigned int qty = 0;
1273 int err;
1276 * qty is used to calculate the erase timeout which depends on how many
1277 * erase groups (or allocation units in SD terminology) are affected.
1278 * We count erasing part of an erase group as one erase group.
1279 * For SD, the allocation units are always a power of 2. For MMC, the
1280 * erase group size is almost certainly also power of 2, but it does not
1281 * seem to insist on that in the JEDEC standard, so we fall back to
1282 * division in that case. SD may not specify an allocation unit size,
1283 * in which case the timeout is based on the number of write blocks.
1285 * Note that the timeout for secure trim 2 will only be correct if the
1286 * number of erase groups specified is the same as the total of all
1287 * preceding secure trim 1 commands. Since the power may have been
1288 * lost since the secure trim 1 commands occurred, it is generally
1289 * impossible to calculate the secure trim 2 timeout correctly.
1291 if (card->erase_shift)
1292 qty += ((to >> card->erase_shift) -
1293 (from >> card->erase_shift)) + 1;
1294 else if (mmc_card_sd(card))
1295 qty += to - from + 1;
1296 else
1297 qty += ((to / card->erase_size) -
1298 (from / card->erase_size)) + 1;
1300 if (!mmc_card_blockaddr(card)) {
1301 from <<= 9;
1302 to <<= 9;
1305 memset(&cmd, 0, sizeof(struct mmc_command));
1306 if (mmc_card_sd(card))
1307 cmd.opcode = SD_ERASE_WR_BLK_START;
1308 else
1309 cmd.opcode = MMC_ERASE_GROUP_START;
1310 cmd.arg = from;
1311 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1312 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1313 if (err) {
1314 printk(KERN_ERR "mmc_erase: group start error %d, "
1315 "status %#x\n", err, cmd.resp[0]);
1316 err = -EINVAL;
1317 goto out;
1320 memset(&cmd, 0, sizeof(struct mmc_command));
1321 if (mmc_card_sd(card))
1322 cmd.opcode = SD_ERASE_WR_BLK_END;
1323 else
1324 cmd.opcode = MMC_ERASE_GROUP_END;
1325 cmd.arg = to;
1326 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1327 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1328 if (err) {
1329 printk(KERN_ERR "mmc_erase: group end error %d, status %#x\n",
1330 err, cmd.resp[0]);
1331 err = -EINVAL;
1332 goto out;
1335 memset(&cmd, 0, sizeof(struct mmc_command));
1336 cmd.opcode = MMC_ERASE;
1337 cmd.arg = arg;
1338 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1339 mmc_set_erase_timeout(card, &cmd, arg, qty);
1340 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1341 if (err) {
1342 printk(KERN_ERR "mmc_erase: erase error %d, status %#x\n",
1343 err, cmd.resp[0]);
1344 err = -EIO;
1345 goto out;
1348 if (mmc_host_is_spi(card->host))
1349 goto out;
1351 do {
1352 memset(&cmd, 0, sizeof(struct mmc_command));
1353 cmd.opcode = MMC_SEND_STATUS;
1354 cmd.arg = card->rca << 16;
1355 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1356 /* Do not retry else we can't see errors */
1357 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1358 if (err || (cmd.resp[0] & 0xFDF92000)) {
1359 printk(KERN_ERR "error %d requesting status %#x\n",
1360 err, cmd.resp[0]);
1361 err = -EIO;
1362 goto out;
1364 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1365 R1_CURRENT_STATE(cmd.resp[0]) == 7);
1366 out:
1367 return err;
1371 * mmc_erase - erase sectors.
1372 * @card: card to erase
1373 * @from: first sector to erase
1374 * @nr: number of sectors to erase
1375 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1377 * Caller must claim host before calling this function.
1379 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1380 unsigned int arg)
1382 unsigned int rem, to = from + nr;
1384 if (!(card->host->caps & MMC_CAP_ERASE) ||
1385 !(card->csd.cmdclass & CCC_ERASE))
1386 return -EOPNOTSUPP;
1388 if (!card->erase_size)
1389 return -EOPNOTSUPP;
1391 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1392 return -EOPNOTSUPP;
1394 if ((arg & MMC_SECURE_ARGS) &&
1395 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1396 return -EOPNOTSUPP;
1398 if ((arg & MMC_TRIM_ARGS) &&
1399 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1400 return -EOPNOTSUPP;
1402 if (arg == MMC_SECURE_ERASE_ARG) {
1403 if (from % card->erase_size || nr % card->erase_size)
1404 return -EINVAL;
1407 if (arg == MMC_ERASE_ARG) {
1408 rem = from % card->erase_size;
1409 if (rem) {
1410 rem = card->erase_size - rem;
1411 from += rem;
1412 if (nr > rem)
1413 nr -= rem;
1414 else
1415 return 0;
1417 rem = nr % card->erase_size;
1418 if (rem)
1419 nr -= rem;
1422 if (nr == 0)
1423 return 0;
1425 to = from + nr;
1427 if (to <= from)
1428 return -EINVAL;
1430 /* 'from' and 'to' are inclusive */
1431 to -= 1;
1433 return mmc_do_erase(card, from, to, arg);
1435 EXPORT_SYMBOL(mmc_erase);
1437 int mmc_can_erase(struct mmc_card *card)
1439 if ((card->host->caps & MMC_CAP_ERASE) &&
1440 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1441 return 1;
1442 return 0;
1444 EXPORT_SYMBOL(mmc_can_erase);
1446 int mmc_can_trim(struct mmc_card *card)
1448 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
1449 return 1;
1450 return 0;
1452 EXPORT_SYMBOL(mmc_can_trim);
1454 int mmc_can_secure_erase_trim(struct mmc_card *card)
1456 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
1457 return 1;
1458 return 0;
1460 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1462 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1463 unsigned int nr)
1465 if (!card->erase_size)
1466 return 0;
1467 if (from % card->erase_size || nr % card->erase_size)
1468 return 0;
1469 return 1;
1471 EXPORT_SYMBOL(mmc_erase_group_aligned);
1473 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1475 struct mmc_command cmd;
1477 if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1478 return 0;
1480 memset(&cmd, 0, sizeof(struct mmc_command));
1481 cmd.opcode = MMC_SET_BLOCKLEN;
1482 cmd.arg = blocklen;
1483 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1484 return mmc_wait_for_cmd(card->host, &cmd, 5);
1486 EXPORT_SYMBOL(mmc_set_blocklen);
1488 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1490 host->f_init = freq;
1492 #ifdef CONFIG_MMC_DEBUG
1493 pr_info("%s: %s: trying to init card at %u Hz\n",
1494 mmc_hostname(host), __func__, host->f_init);
1495 #endif
1496 mmc_power_up(host);
1497 sdio_reset(host);
1498 mmc_go_idle(host);
1500 mmc_send_if_cond(host, host->ocr_avail);
1502 /* Order's important: probe SDIO, then SD, then MMC */
1503 if (!mmc_attach_sdio(host))
1504 return 0;
1505 if (!mmc_attach_sd(host))
1506 return 0;
1507 if (!mmc_attach_mmc(host))
1508 return 0;
1510 mmc_power_off(host);
1511 return -EIO;
1514 void mmc_rescan(struct work_struct *work)
1516 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
1517 struct mmc_host *host =
1518 container_of(work, struct mmc_host, detect.work);
1519 int i;
1521 if (host->rescan_disable)
1522 return;
1524 mmc_bus_get(host);
1527 * if there is a _removable_ card registered, check whether it is
1528 * still present
1530 if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
1531 && mmc_card_is_removable(host))
1532 host->bus_ops->detect(host);
1535 * Let mmc_bus_put() free the bus/bus_ops if we've found that
1536 * the card is no longer present.
1538 mmc_bus_put(host);
1539 mmc_bus_get(host);
1541 /* if there still is a card present, stop here */
1542 if (host->bus_ops != NULL) {
1543 mmc_bus_put(host);
1544 goto out;
1548 * Only we can add a new handler, so it's safe to
1549 * release the lock here.
1551 mmc_bus_put(host);
1553 if (host->ops->get_cd && host->ops->get_cd(host) == 0)
1554 goto out;
1556 mmc_claim_host(host);
1557 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
1558 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
1559 break;
1560 if (freqs[i] < host->f_min)
1561 break;
1563 mmc_release_host(host);
1565 out:
1566 if (host->caps & MMC_CAP_NEEDS_POLL)
1567 mmc_schedule_delayed_work(&host->detect, HZ);
1570 void mmc_start_host(struct mmc_host *host)
1572 mmc_power_off(host);
1573 mmc_detect_change(host, 0);
1576 void mmc_stop_host(struct mmc_host *host)
1578 #ifdef CONFIG_MMC_DEBUG
1579 unsigned long flags;
1580 spin_lock_irqsave(&host->lock, flags);
1581 host->removed = 1;
1582 spin_unlock_irqrestore(&host->lock, flags);
1583 #endif
1585 if (host->caps & MMC_CAP_DISABLE)
1586 cancel_delayed_work(&host->disable);
1587 cancel_delayed_work_sync(&host->detect);
1588 mmc_flush_scheduled_work();
1590 /* clear pm flags now and let card drivers set them as needed */
1591 host->pm_flags = 0;
1593 mmc_bus_get(host);
1594 if (host->bus_ops && !host->bus_dead) {
1595 if (host->bus_ops->remove)
1596 host->bus_ops->remove(host);
1598 mmc_claim_host(host);
1599 mmc_detach_bus(host);
1600 mmc_release_host(host);
1601 mmc_bus_put(host);
1602 return;
1604 mmc_bus_put(host);
1606 BUG_ON(host->card);
1608 mmc_power_off(host);
1611 int mmc_power_save_host(struct mmc_host *host)
1613 int ret = 0;
1615 mmc_bus_get(host);
1617 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1618 mmc_bus_put(host);
1619 return -EINVAL;
1622 if (host->bus_ops->power_save)
1623 ret = host->bus_ops->power_save(host);
1625 mmc_bus_put(host);
1627 mmc_power_off(host);
1629 return ret;
1631 EXPORT_SYMBOL(mmc_power_save_host);
1633 int mmc_power_restore_host(struct mmc_host *host)
1635 int ret;
1637 mmc_bus_get(host);
1639 if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
1640 mmc_bus_put(host);
1641 return -EINVAL;
1644 mmc_power_up(host);
1645 ret = host->bus_ops->power_restore(host);
1647 mmc_bus_put(host);
1649 return ret;
1651 EXPORT_SYMBOL(mmc_power_restore_host);
1653 int mmc_card_awake(struct mmc_host *host)
1655 int err = -ENOSYS;
1657 mmc_bus_get(host);
1659 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1660 err = host->bus_ops->awake(host);
1662 mmc_bus_put(host);
1664 return err;
1666 EXPORT_SYMBOL(mmc_card_awake);
1668 int mmc_card_sleep(struct mmc_host *host)
1670 int err = -ENOSYS;
1672 mmc_bus_get(host);
1674 if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
1675 err = host->bus_ops->sleep(host);
1677 mmc_bus_put(host);
1679 return err;
1681 EXPORT_SYMBOL(mmc_card_sleep);
1683 int mmc_card_can_sleep(struct mmc_host *host)
1685 struct mmc_card *card = host->card;
1687 if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
1688 return 1;
1689 return 0;
1691 EXPORT_SYMBOL(mmc_card_can_sleep);
1693 #ifdef CONFIG_PM
1696 * mmc_suspend_host - suspend a host
1697 * @host: mmc host
1699 int mmc_suspend_host(struct mmc_host *host)
1701 int err = 0;
1703 if (host->caps & MMC_CAP_DISABLE)
1704 cancel_delayed_work(&host->disable);
1705 cancel_delayed_work(&host->detect);
1706 mmc_flush_scheduled_work();
1708 mmc_bus_get(host);
1709 if (host->bus_ops && !host->bus_dead) {
1710 if (host->bus_ops->suspend)
1711 err = host->bus_ops->suspend(host);
1712 if (err == -ENOSYS || !host->bus_ops->resume) {
1714 * We simply "remove" the card in this case.
1715 * It will be redetected on resume.
1717 if (host->bus_ops->remove)
1718 host->bus_ops->remove(host);
1719 mmc_claim_host(host);
1720 mmc_detach_bus(host);
1721 mmc_release_host(host);
1722 host->pm_flags = 0;
1723 err = 0;
1726 mmc_bus_put(host);
1728 if (!err && !(host->pm_flags & MMC_PM_KEEP_POWER))
1729 mmc_power_off(host);
1731 return err;
1734 EXPORT_SYMBOL(mmc_suspend_host);
1737 * mmc_resume_host - resume a previously suspended host
1738 * @host: mmc host
1740 int mmc_resume_host(struct mmc_host *host)
1742 int err = 0;
1744 mmc_bus_get(host);
1745 if (host->bus_ops && !host->bus_dead) {
1746 if (!(host->pm_flags & MMC_PM_KEEP_POWER)) {
1747 mmc_power_up(host);
1748 mmc_select_voltage(host, host->ocr);
1750 * Tell runtime PM core we just powered up the card,
1751 * since it still believes the card is powered off.
1752 * Note that currently runtime PM is only enabled
1753 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
1755 if (mmc_card_sdio(host->card) &&
1756 (host->caps & MMC_CAP_POWER_OFF_CARD)) {
1757 pm_runtime_disable(&host->card->dev);
1758 pm_runtime_set_active(&host->card->dev);
1759 pm_runtime_enable(&host->card->dev);
1762 BUG_ON(!host->bus_ops->resume);
1763 err = host->bus_ops->resume(host);
1764 if (err) {
1765 printk(KERN_WARNING "%s: error %d during resume "
1766 "(card was removed?)\n",
1767 mmc_hostname(host), err);
1768 err = 0;
1771 mmc_bus_put(host);
1773 return err;
1775 EXPORT_SYMBOL(mmc_resume_host);
1777 /* Do the card removal on suspend if card is assumed removeable
1778 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
1779 to sync the card.
1781 int mmc_pm_notify(struct notifier_block *notify_block,
1782 unsigned long mode, void *unused)
1784 struct mmc_host *host = container_of(
1785 notify_block, struct mmc_host, pm_notify);
1786 unsigned long flags;
1789 switch (mode) {
1790 case PM_HIBERNATION_PREPARE:
1791 case PM_SUSPEND_PREPARE:
1793 spin_lock_irqsave(&host->lock, flags);
1794 host->rescan_disable = 1;
1795 spin_unlock_irqrestore(&host->lock, flags);
1796 cancel_delayed_work_sync(&host->detect);
1798 if (!host->bus_ops || host->bus_ops->suspend)
1799 break;
1801 mmc_claim_host(host);
1803 if (host->bus_ops->remove)
1804 host->bus_ops->remove(host);
1806 mmc_detach_bus(host);
1807 mmc_release_host(host);
1808 host->pm_flags = 0;
1809 break;
1811 case PM_POST_SUSPEND:
1812 case PM_POST_HIBERNATION:
1813 case PM_POST_RESTORE:
1815 spin_lock_irqsave(&host->lock, flags);
1816 host->rescan_disable = 0;
1817 spin_unlock_irqrestore(&host->lock, flags);
1818 mmc_detect_change(host, 0);
1822 return 0;
1824 #endif
1826 static int __init mmc_init(void)
1828 int ret;
1830 workqueue = alloc_ordered_workqueue("kmmcd", 0);
1831 if (!workqueue)
1832 return -ENOMEM;
1834 ret = mmc_register_bus();
1835 if (ret)
1836 goto destroy_workqueue;
1838 ret = mmc_register_host_class();
1839 if (ret)
1840 goto unregister_bus;
1842 ret = sdio_register_bus();
1843 if (ret)
1844 goto unregister_host_class;
1846 return 0;
1848 unregister_host_class:
1849 mmc_unregister_host_class();
1850 unregister_bus:
1851 mmc_unregister_bus();
1852 destroy_workqueue:
1853 destroy_workqueue(workqueue);
1855 return ret;
1858 static void __exit mmc_exit(void)
1860 sdio_unregister_bus();
1861 mmc_unregister_host_class();
1862 mmc_unregister_bus();
1863 destroy_workqueue(workqueue);
1866 subsys_initcall(mmc_init);
1867 module_exit(mmc_exit);
1869 MODULE_LICENSE("GPL");