thinkpad-acpi: avoid keymap pitfall
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobd4f71b01136c10d3dd82b15b9d27a1d7b949f189
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy)
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
130 static inline int task_has_rt_policy(struct task_struct *p)
132 return rt_policy(p->policy);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
151 static struct rt_bandwidth def_rt_bandwidth;
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167 if (!overrun)
168 break;
170 idle = do_sched_rt_period_timer(rt_b, overrun);
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime >= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 ktime_t now;
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 hrtimer_cancel(&rt_b->rt_period_timer);
229 #endif
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
241 struct cfs_rq;
243 static LIST_HEAD(task_groups);
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
261 struct rt_bandwidth rt_bandwidth;
262 #endif
264 struct rcu_head rcu;
265 struct list_head list;
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group.children);
286 #endif
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group;
309 #endif /* CONFIG_CGROUP_SCHED */
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
316 u64 exec_clock;
317 u64 min_vruntime;
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last;
331 unsigned int nr_spread_over;
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
344 struct list_head leaf_cfs_rq_list;
345 struct task_group *tg; /* group that "owns" this runqueue */
347 #ifdef CONFIG_SMP
349 * the part of load.weight contributed by tasks
351 unsigned long task_weight;
354 * h_load = weight * f(tg)
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
359 unsigned long h_load;
362 * this cpu's part of tg->shares
364 unsigned long shares;
367 * load.weight at the time we set shares
369 unsigned long rq_weight;
370 #endif
371 #endif
374 /* Real-Time classes' related field in a runqueue: */
375 struct rt_rq {
376 struct rt_prio_array active;
377 unsigned long rt_nr_running;
378 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
379 struct {
380 int curr; /* highest queued rt task prio */
381 #ifdef CONFIG_SMP
382 int next; /* next highest */
383 #endif
384 } highest_prio;
385 #endif
386 #ifdef CONFIG_SMP
387 unsigned long rt_nr_migratory;
388 unsigned long rt_nr_total;
389 int overloaded;
390 struct plist_head pushable_tasks;
391 #endif
392 int rt_throttled;
393 u64 rt_time;
394 u64 rt_runtime;
395 /* Nests inside the rq lock: */
396 raw_spinlock_t rt_runtime_lock;
398 #ifdef CONFIG_RT_GROUP_SCHED
399 unsigned long rt_nr_boosted;
401 struct rq *rq;
402 struct list_head leaf_rt_rq_list;
403 struct task_group *tg;
404 #endif
407 #ifdef CONFIG_SMP
410 * We add the notion of a root-domain which will be used to define per-domain
411 * variables. Each exclusive cpuset essentially defines an island domain by
412 * fully partitioning the member cpus from any other cpuset. Whenever a new
413 * exclusive cpuset is created, we also create and attach a new root-domain
414 * object.
417 struct root_domain {
418 atomic_t refcount;
419 cpumask_var_t span;
420 cpumask_var_t online;
423 * The "RT overload" flag: it gets set if a CPU has more than
424 * one runnable RT task.
426 cpumask_var_t rto_mask;
427 atomic_t rto_count;
428 #ifdef CONFIG_SMP
429 struct cpupri cpupri;
430 #endif
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
437 static struct root_domain def_root_domain;
439 #endif
442 * This is the main, per-CPU runqueue data structure.
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
448 struct rq {
449 /* runqueue lock: */
450 raw_spinlock_t lock;
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
456 unsigned long nr_running;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char in_nohz_recently;
462 #endif
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
470 struct cfs_rq cfs;
471 struct rt_rq rt;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
493 u64 clock;
495 atomic_t nr_iowait;
497 #ifdef CONFIG_SMP
498 struct root_domain *rd;
499 struct sched_domain *sd;
501 unsigned long cpu_power;
503 unsigned char idle_at_tick;
504 /* For active balancing */
505 int post_schedule;
506 int active_balance;
507 int push_cpu;
508 struct cpu_stop_work active_balance_work;
509 /* cpu of this runqueue: */
510 int cpu;
511 int online;
513 unsigned long avg_load_per_task;
515 u64 rt_avg;
516 u64 age_stamp;
517 u64 idle_stamp;
518 u64 avg_idle;
519 #endif
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
525 #ifdef CONFIG_SCHED_HRTICK
526 #ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529 #endif
530 struct hrtimer hrtick_timer;
531 #endif
533 #ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
539 /* sys_sched_yield() stats */
540 unsigned int yld_count;
542 /* schedule() stats */
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
547 /* try_to_wake_up() stats */
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
551 /* BKL stats */
552 unsigned int bkl_count;
553 #endif
556 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
558 static inline
559 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
567 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
568 rq->skip_clock_update = 1;
571 static inline int cpu_of(struct rq *rq)
573 #ifdef CONFIG_SMP
574 return rq->cpu;
575 #else
576 return 0;
577 #endif
580 #define rcu_dereference_check_sched_domain(p) \
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 #define raw_rq() (&__raw_get_cpu_var(runqueues))
601 #ifdef CONFIG_CGROUP_SCHED
604 * Return the group to which this tasks belongs.
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
611 static inline struct task_group *task_group(struct task_struct *p)
613 struct cgroup_subsys_state *css;
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
620 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626 #endif
628 #ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631 #endif
634 #else /* CONFIG_CGROUP_SCHED */
636 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637 static inline struct task_group *task_group(struct task_struct *p)
639 return NULL;
642 #endif /* CONFIG_CGROUP_SCHED */
644 inline void update_rq_clock(struct rq *rq)
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
653 #ifdef CONFIG_SCHED_DEBUG
654 # define const_debug __read_mostly
655 #else
656 # define const_debug static const
657 #endif
660 * runqueue_is_locked
661 * @cpu: the processor in question.
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
667 int runqueue_is_locked(int cpu)
669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
673 * Debugging: various feature bits
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
679 enum {
680 #include "sched_features.h"
683 #undef SCHED_FEAT
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
692 #undef SCHED_FEAT
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
703 #undef SCHED_FEAT
705 static int sched_feat_show(struct seq_file *m, void *v)
707 int i;
709 for (i = 0; sched_feat_names[i]; i++) {
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
714 seq_puts(m, "\n");
716 return 0;
719 static ssize_t
720 sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
723 char buf[64];
724 char *cmp;
725 int neg = 0;
726 int i;
728 if (cnt > 63)
729 cnt = 63;
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
734 buf[cnt] = 0;
735 cmp = strstrip(buf);
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
742 for (i = 0; sched_feat_names[i]; i++) {
743 if (strcmp(cmp, sched_feat_names[i]) == 0) {
744 if (neg)
745 sysctl_sched_features &= ~(1UL << i);
746 else
747 sysctl_sched_features |= (1UL << i);
748 break;
752 if (!sched_feat_names[i])
753 return -EINVAL;
755 *ppos += cnt;
757 return cnt;
760 static int sched_feat_open(struct inode *inode, struct file *filp)
762 return single_open(filp, sched_feat_show, NULL);
765 static const struct file_operations sched_feat_fops = {
766 .open = sched_feat_open,
767 .write = sched_feat_write,
768 .read = seq_read,
769 .llseek = seq_lseek,
770 .release = single_release,
773 static __init int sched_init_debug(void)
775 debugfs_create_file("sched_features", 0644, NULL, NULL,
776 &sched_feat_fops);
778 return 0;
780 late_initcall(sched_init_debug);
782 #endif
784 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787 * Number of tasks to iterate in a single balance run.
788 * Limited because this is done with IRQs disabled.
790 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793 * ratelimit for updating the group shares.
794 * default: 0.25ms
796 unsigned int sysctl_sched_shares_ratelimit = 250000;
797 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
800 * Inject some fuzzyness into changing the per-cpu group shares
801 * this avoids remote rq-locks at the expense of fairness.
802 * default: 4
804 unsigned int sysctl_sched_shares_thresh = 4;
807 * period over which we average the RT time consumption, measured
808 * in ms.
810 * default: 1s
812 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
815 * period over which we measure -rt task cpu usage in us.
816 * default: 1s
818 unsigned int sysctl_sched_rt_period = 1000000;
820 static __read_mostly int scheduler_running;
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
826 int sysctl_sched_rt_runtime = 950000;
828 static inline u64 global_rt_period(void)
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833 static inline u64 global_rt_runtime(void)
835 if (sysctl_sched_rt_runtime < 0)
836 return RUNTIME_INF;
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next) do { } while (0)
843 #endif
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev) do { } while (0)
846 #endif
848 static inline int task_current(struct rq *rq, struct task_struct *p)
850 return rq->curr == p;
853 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
854 static inline int task_running(struct rq *rq, struct task_struct *p)
856 return task_current(rq, p);
859 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865 #ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868 #endif
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876 raw_spin_unlock_irq(&rq->lock);
879 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
880 static inline int task_running(struct rq *rq, struct task_struct *p)
882 #ifdef CONFIG_SMP
883 return p->oncpu;
884 #else
885 return task_current(rq, p);
886 #endif
889 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 #ifdef CONFIG_SMP
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
897 next->oncpu = 1;
898 #endif
899 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 raw_spin_unlock_irq(&rq->lock);
901 #else
902 raw_spin_unlock(&rq->lock);
903 #endif
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 #ifdef CONFIG_SMP
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
914 smp_wmb();
915 prev->oncpu = 0;
916 #endif
917 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
919 #endif
921 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
924 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
925 * against ttwu().
927 static inline int task_is_waking(struct task_struct *p)
929 return unlikely(p->state == TASK_WAKING);
933 * __task_rq_lock - lock the runqueue a given task resides on.
934 * Must be called interrupts disabled.
936 static inline struct rq *__task_rq_lock(struct task_struct *p)
937 __acquires(rq->lock)
939 struct rq *rq;
941 for (;;) {
942 rq = task_rq(p);
943 raw_spin_lock(&rq->lock);
944 if (likely(rq == task_rq(p)))
945 return rq;
946 raw_spin_unlock(&rq->lock);
951 * task_rq_lock - lock the runqueue a given task resides on and disable
952 * interrupts. Note the ordering: we can safely lookup the task_rq without
953 * explicitly disabling preemption.
955 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
956 __acquires(rq->lock)
958 struct rq *rq;
960 for (;;) {
961 local_irq_save(*flags);
962 rq = task_rq(p);
963 raw_spin_lock(&rq->lock);
964 if (likely(rq == task_rq(p)))
965 return rq;
966 raw_spin_unlock_irqrestore(&rq->lock, *flags);
970 static void __task_rq_unlock(struct rq *rq)
971 __releases(rq->lock)
973 raw_spin_unlock(&rq->lock);
976 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
977 __releases(rq->lock)
979 raw_spin_unlock_irqrestore(&rq->lock, *flags);
983 * this_rq_lock - lock this runqueue and disable interrupts.
985 static struct rq *this_rq_lock(void)
986 __acquires(rq->lock)
988 struct rq *rq;
990 local_irq_disable();
991 rq = this_rq();
992 raw_spin_lock(&rq->lock);
994 return rq;
997 #ifdef CONFIG_SCHED_HRTICK
999 * Use HR-timers to deliver accurate preemption points.
1001 * Its all a bit involved since we cannot program an hrt while holding the
1002 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1003 * reschedule event.
1005 * When we get rescheduled we reprogram the hrtick_timer outside of the
1006 * rq->lock.
1010 * Use hrtick when:
1011 * - enabled by features
1012 * - hrtimer is actually high res
1014 static inline int hrtick_enabled(struct rq *rq)
1016 if (!sched_feat(HRTICK))
1017 return 0;
1018 if (!cpu_active(cpu_of(rq)))
1019 return 0;
1020 return hrtimer_is_hres_active(&rq->hrtick_timer);
1023 static void hrtick_clear(struct rq *rq)
1025 if (hrtimer_active(&rq->hrtick_timer))
1026 hrtimer_cancel(&rq->hrtick_timer);
1030 * High-resolution timer tick.
1031 * Runs from hardirq context with interrupts disabled.
1033 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039 raw_spin_lock(&rq->lock);
1040 update_rq_clock(rq);
1041 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1042 raw_spin_unlock(&rq->lock);
1044 return HRTIMER_NORESTART;
1047 #ifdef CONFIG_SMP
1049 * called from hardirq (IPI) context
1051 static void __hrtick_start(void *arg)
1053 struct rq *rq = arg;
1055 raw_spin_lock(&rq->lock);
1056 hrtimer_restart(&rq->hrtick_timer);
1057 rq->hrtick_csd_pending = 0;
1058 raw_spin_unlock(&rq->lock);
1062 * Called to set the hrtick timer state.
1064 * called with rq->lock held and irqs disabled
1066 static void hrtick_start(struct rq *rq, u64 delay)
1068 struct hrtimer *timer = &rq->hrtick_timer;
1069 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1071 hrtimer_set_expires(timer, time);
1073 if (rq == this_rq()) {
1074 hrtimer_restart(timer);
1075 } else if (!rq->hrtick_csd_pending) {
1076 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1077 rq->hrtick_csd_pending = 1;
1081 static int
1082 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084 int cpu = (int)(long)hcpu;
1086 switch (action) {
1087 case CPU_UP_CANCELED:
1088 case CPU_UP_CANCELED_FROZEN:
1089 case CPU_DOWN_PREPARE:
1090 case CPU_DOWN_PREPARE_FROZEN:
1091 case CPU_DEAD:
1092 case CPU_DEAD_FROZEN:
1093 hrtick_clear(cpu_rq(cpu));
1094 return NOTIFY_OK;
1097 return NOTIFY_DONE;
1100 static __init void init_hrtick(void)
1102 hotcpu_notifier(hotplug_hrtick, 0);
1104 #else
1106 * Called to set the hrtick timer state.
1108 * called with rq->lock held and irqs disabled
1110 static void hrtick_start(struct rq *rq, u64 delay)
1112 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1113 HRTIMER_MODE_REL_PINNED, 0);
1116 static inline void init_hrtick(void)
1119 #endif /* CONFIG_SMP */
1121 static void init_rq_hrtick(struct rq *rq)
1123 #ifdef CONFIG_SMP
1124 rq->hrtick_csd_pending = 0;
1126 rq->hrtick_csd.flags = 0;
1127 rq->hrtick_csd.func = __hrtick_start;
1128 rq->hrtick_csd.info = rq;
1129 #endif
1131 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1132 rq->hrtick_timer.function = hrtick;
1134 #else /* CONFIG_SCHED_HRTICK */
1135 static inline void hrtick_clear(struct rq *rq)
1139 static inline void init_rq_hrtick(struct rq *rq)
1143 static inline void init_hrtick(void)
1146 #endif /* CONFIG_SCHED_HRTICK */
1149 * resched_task - mark a task 'to be rescheduled now'.
1151 * On UP this means the setting of the need_resched flag, on SMP it
1152 * might also involve a cross-CPU call to trigger the scheduler on
1153 * the target CPU.
1155 #ifdef CONFIG_SMP
1157 #ifndef tsk_is_polling
1158 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1159 #endif
1161 static void resched_task(struct task_struct *p)
1163 int cpu;
1165 assert_raw_spin_locked(&task_rq(p)->lock);
1167 if (test_tsk_need_resched(p))
1168 return;
1170 set_tsk_need_resched(p);
1172 cpu = task_cpu(p);
1173 if (cpu == smp_processor_id())
1174 return;
1176 /* NEED_RESCHED must be visible before we test polling */
1177 smp_mb();
1178 if (!tsk_is_polling(p))
1179 smp_send_reschedule(cpu);
1182 static void resched_cpu(int cpu)
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long flags;
1187 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1188 return;
1189 resched_task(cpu_curr(cpu));
1190 raw_spin_unlock_irqrestore(&rq->lock, flags);
1193 #ifdef CONFIG_NO_HZ
1195 * When add_timer_on() enqueues a timer into the timer wheel of an
1196 * idle CPU then this timer might expire before the next timer event
1197 * which is scheduled to wake up that CPU. In case of a completely
1198 * idle system the next event might even be infinite time into the
1199 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1200 * leaves the inner idle loop so the newly added timer is taken into
1201 * account when the CPU goes back to idle and evaluates the timer
1202 * wheel for the next timer event.
1204 void wake_up_idle_cpu(int cpu)
1206 struct rq *rq = cpu_rq(cpu);
1208 if (cpu == smp_processor_id())
1209 return;
1212 * This is safe, as this function is called with the timer
1213 * wheel base lock of (cpu) held. When the CPU is on the way
1214 * to idle and has not yet set rq->curr to idle then it will
1215 * be serialized on the timer wheel base lock and take the new
1216 * timer into account automatically.
1218 if (rq->curr != rq->idle)
1219 return;
1222 * We can set TIF_RESCHED on the idle task of the other CPU
1223 * lockless. The worst case is that the other CPU runs the
1224 * idle task through an additional NOOP schedule()
1226 set_tsk_need_resched(rq->idle);
1228 /* NEED_RESCHED must be visible before we test polling */
1229 smp_mb();
1230 if (!tsk_is_polling(rq->idle))
1231 smp_send_reschedule(cpu);
1234 #endif /* CONFIG_NO_HZ */
1236 static u64 sched_avg_period(void)
1238 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1241 static void sched_avg_update(struct rq *rq)
1243 s64 period = sched_avg_period();
1245 while ((s64)(rq->clock - rq->age_stamp) > period) {
1247 * Inline assembly required to prevent the compiler
1248 * optimising this loop into a divmod call.
1249 * See __iter_div_u64_rem() for another example of this.
1251 asm("" : "+rm" (rq->age_stamp));
1252 rq->age_stamp += period;
1253 rq->rt_avg /= 2;
1257 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1259 rq->rt_avg += rt_delta;
1260 sched_avg_update(rq);
1263 #else /* !CONFIG_SMP */
1264 static void resched_task(struct task_struct *p)
1266 assert_raw_spin_locked(&task_rq(p)->lock);
1267 set_tsk_need_resched(p);
1270 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1273 #endif /* CONFIG_SMP */
1275 #if BITS_PER_LONG == 32
1276 # define WMULT_CONST (~0UL)
1277 #else
1278 # define WMULT_CONST (1UL << 32)
1279 #endif
1281 #define WMULT_SHIFT 32
1284 * Shift right and round:
1286 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1289 * delta *= weight / lw
1291 static unsigned long
1292 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1293 struct load_weight *lw)
1295 u64 tmp;
1297 if (!lw->inv_weight) {
1298 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1299 lw->inv_weight = 1;
1300 else
1301 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1302 / (lw->weight+1);
1305 tmp = (u64)delta_exec * weight;
1307 * Check whether we'd overflow the 64-bit multiplication:
1309 if (unlikely(tmp > WMULT_CONST))
1310 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1311 WMULT_SHIFT/2);
1312 else
1313 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1315 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1318 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1320 lw->weight += inc;
1321 lw->inv_weight = 0;
1324 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1326 lw->weight -= dec;
1327 lw->inv_weight = 0;
1331 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1332 * of tasks with abnormal "nice" values across CPUs the contribution that
1333 * each task makes to its run queue's load is weighted according to its
1334 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1335 * scaled version of the new time slice allocation that they receive on time
1336 * slice expiry etc.
1339 #define WEIGHT_IDLEPRIO 3
1340 #define WMULT_IDLEPRIO 1431655765
1343 * Nice levels are multiplicative, with a gentle 10% change for every
1344 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1345 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1346 * that remained on nice 0.
1348 * The "10% effect" is relative and cumulative: from _any_ nice level,
1349 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1350 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1351 * If a task goes up by ~10% and another task goes down by ~10% then
1352 * the relative distance between them is ~25%.)
1354 static const int prio_to_weight[40] = {
1355 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1356 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1357 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1358 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1359 /* 0 */ 1024, 820, 655, 526, 423,
1360 /* 5 */ 335, 272, 215, 172, 137,
1361 /* 10 */ 110, 87, 70, 56, 45,
1362 /* 15 */ 36, 29, 23, 18, 15,
1366 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1368 * In cases where the weight does not change often, we can use the
1369 * precalculated inverse to speed up arithmetics by turning divisions
1370 * into multiplications:
1372 static const u32 prio_to_wmult[40] = {
1373 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1374 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1375 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1376 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1377 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1378 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1379 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1380 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1383 /* Time spent by the tasks of the cpu accounting group executing in ... */
1384 enum cpuacct_stat_index {
1385 CPUACCT_STAT_USER, /* ... user mode */
1386 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1388 CPUACCT_STAT_NSTATS,
1391 #ifdef CONFIG_CGROUP_CPUACCT
1392 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1393 static void cpuacct_update_stats(struct task_struct *tsk,
1394 enum cpuacct_stat_index idx, cputime_t val);
1395 #else
1396 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397 static inline void cpuacct_update_stats(struct task_struct *tsk,
1398 enum cpuacct_stat_index idx, cputime_t val) {}
1399 #endif
1401 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1403 update_load_add(&rq->load, load);
1406 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1408 update_load_sub(&rq->load, load);
1411 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1412 typedef int (*tg_visitor)(struct task_group *, void *);
1415 * Iterate the full tree, calling @down when first entering a node and @up when
1416 * leaving it for the final time.
1418 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1420 struct task_group *parent, *child;
1421 int ret;
1423 rcu_read_lock();
1424 parent = &root_task_group;
1425 down:
1426 ret = (*down)(parent, data);
1427 if (ret)
1428 goto out_unlock;
1429 list_for_each_entry_rcu(child, &parent->children, siblings) {
1430 parent = child;
1431 goto down;
1434 continue;
1436 ret = (*up)(parent, data);
1437 if (ret)
1438 goto out_unlock;
1440 child = parent;
1441 parent = parent->parent;
1442 if (parent)
1443 goto up;
1444 out_unlock:
1445 rcu_read_unlock();
1447 return ret;
1450 static int tg_nop(struct task_group *tg, void *data)
1452 return 0;
1454 #endif
1456 #ifdef CONFIG_SMP
1457 /* Used instead of source_load when we know the type == 0 */
1458 static unsigned long weighted_cpuload(const int cpu)
1460 return cpu_rq(cpu)->load.weight;
1464 * Return a low guess at the load of a migration-source cpu weighted
1465 * according to the scheduling class and "nice" value.
1467 * We want to under-estimate the load of migration sources, to
1468 * balance conservatively.
1470 static unsigned long source_load(int cpu, int type)
1472 struct rq *rq = cpu_rq(cpu);
1473 unsigned long total = weighted_cpuload(cpu);
1475 if (type == 0 || !sched_feat(LB_BIAS))
1476 return total;
1478 return min(rq->cpu_load[type-1], total);
1482 * Return a high guess at the load of a migration-target cpu weighted
1483 * according to the scheduling class and "nice" value.
1485 static unsigned long target_load(int cpu, int type)
1487 struct rq *rq = cpu_rq(cpu);
1488 unsigned long total = weighted_cpuload(cpu);
1490 if (type == 0 || !sched_feat(LB_BIAS))
1491 return total;
1493 return max(rq->cpu_load[type-1], total);
1496 static unsigned long power_of(int cpu)
1498 return cpu_rq(cpu)->cpu_power;
1501 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1503 static unsigned long cpu_avg_load_per_task(int cpu)
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
1510 else
1511 rq->avg_load_per_task = 0;
1513 return rq->avg_load_per_task;
1516 #ifdef CONFIG_FAIR_GROUP_SCHED
1518 static __read_mostly unsigned long __percpu *update_shares_data;
1520 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1523 * Calculate and set the cpu's group shares.
1525 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1526 unsigned long sd_shares,
1527 unsigned long sd_rq_weight,
1528 unsigned long *usd_rq_weight)
1530 unsigned long shares, rq_weight;
1531 int boost = 0;
1533 rq_weight = usd_rq_weight[cpu];
1534 if (!rq_weight) {
1535 boost = 1;
1536 rq_weight = NICE_0_LOAD;
1540 * \Sum_j shares_j * rq_weight_i
1541 * shares_i = -----------------------------
1542 * \Sum_j rq_weight_j
1544 shares = (sd_shares * rq_weight) / sd_rq_weight;
1545 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1547 if (abs(shares - tg->se[cpu]->load.weight) >
1548 sysctl_sched_shares_thresh) {
1549 struct rq *rq = cpu_rq(cpu);
1550 unsigned long flags;
1552 raw_spin_lock_irqsave(&rq->lock, flags);
1553 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1554 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1555 __set_se_shares(tg->se[cpu], shares);
1556 raw_spin_unlock_irqrestore(&rq->lock, flags);
1561 * Re-compute the task group their per cpu shares over the given domain.
1562 * This needs to be done in a bottom-up fashion because the rq weight of a
1563 * parent group depends on the shares of its child groups.
1565 static int tg_shares_up(struct task_group *tg, void *data)
1567 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1568 unsigned long *usd_rq_weight;
1569 struct sched_domain *sd = data;
1570 unsigned long flags;
1571 int i;
1573 if (!tg->se[0])
1574 return 0;
1576 local_irq_save(flags);
1577 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1579 for_each_cpu(i, sched_domain_span(sd)) {
1580 weight = tg->cfs_rq[i]->load.weight;
1581 usd_rq_weight[i] = weight;
1583 rq_weight += weight;
1585 * If there are currently no tasks on the cpu pretend there
1586 * is one of average load so that when a new task gets to
1587 * run here it will not get delayed by group starvation.
1589 if (!weight)
1590 weight = NICE_0_LOAD;
1592 sum_weight += weight;
1593 shares += tg->cfs_rq[i]->shares;
1596 if (!rq_weight)
1597 rq_weight = sum_weight;
1599 if ((!shares && rq_weight) || shares > tg->shares)
1600 shares = tg->shares;
1602 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1603 shares = tg->shares;
1605 for_each_cpu(i, sched_domain_span(sd))
1606 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1608 local_irq_restore(flags);
1610 return 0;
1614 * Compute the cpu's hierarchical load factor for each task group.
1615 * This needs to be done in a top-down fashion because the load of a child
1616 * group is a fraction of its parents load.
1618 static int tg_load_down(struct task_group *tg, void *data)
1620 unsigned long load;
1621 long cpu = (long)data;
1623 if (!tg->parent) {
1624 load = cpu_rq(cpu)->load.weight;
1625 } else {
1626 load = tg->parent->cfs_rq[cpu]->h_load;
1627 load *= tg->cfs_rq[cpu]->shares;
1628 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1631 tg->cfs_rq[cpu]->h_load = load;
1633 return 0;
1636 static void update_shares(struct sched_domain *sd)
1638 s64 elapsed;
1639 u64 now;
1641 if (root_task_group_empty())
1642 return;
1644 now = cpu_clock(raw_smp_processor_id());
1645 elapsed = now - sd->last_update;
1647 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1648 sd->last_update = now;
1649 walk_tg_tree(tg_nop, tg_shares_up, sd);
1653 static void update_h_load(long cpu)
1655 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1658 #else
1660 static inline void update_shares(struct sched_domain *sd)
1664 #endif
1666 #ifdef CONFIG_PREEMPT
1668 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1671 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1672 * way at the expense of forcing extra atomic operations in all
1673 * invocations. This assures that the double_lock is acquired using the
1674 * same underlying policy as the spinlock_t on this architecture, which
1675 * reduces latency compared to the unfair variant below. However, it
1676 * also adds more overhead and therefore may reduce throughput.
1678 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1679 __releases(this_rq->lock)
1680 __acquires(busiest->lock)
1681 __acquires(this_rq->lock)
1683 raw_spin_unlock(&this_rq->lock);
1684 double_rq_lock(this_rq, busiest);
1686 return 1;
1689 #else
1691 * Unfair double_lock_balance: Optimizes throughput at the expense of
1692 * latency by eliminating extra atomic operations when the locks are
1693 * already in proper order on entry. This favors lower cpu-ids and will
1694 * grant the double lock to lower cpus over higher ids under contention,
1695 * regardless of entry order into the function.
1697 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1698 __releases(this_rq->lock)
1699 __acquires(busiest->lock)
1700 __acquires(this_rq->lock)
1702 int ret = 0;
1704 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1705 if (busiest < this_rq) {
1706 raw_spin_unlock(&this_rq->lock);
1707 raw_spin_lock(&busiest->lock);
1708 raw_spin_lock_nested(&this_rq->lock,
1709 SINGLE_DEPTH_NESTING);
1710 ret = 1;
1711 } else
1712 raw_spin_lock_nested(&busiest->lock,
1713 SINGLE_DEPTH_NESTING);
1715 return ret;
1718 #endif /* CONFIG_PREEMPT */
1721 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1723 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1725 if (unlikely(!irqs_disabled())) {
1726 /* printk() doesn't work good under rq->lock */
1727 raw_spin_unlock(&this_rq->lock);
1728 BUG_ON(1);
1731 return _double_lock_balance(this_rq, busiest);
1734 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1735 __releases(busiest->lock)
1737 raw_spin_unlock(&busiest->lock);
1738 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1742 * double_rq_lock - safely lock two runqueues
1744 * Note this does not disable interrupts like task_rq_lock,
1745 * you need to do so manually before calling.
1747 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1748 __acquires(rq1->lock)
1749 __acquires(rq2->lock)
1751 BUG_ON(!irqs_disabled());
1752 if (rq1 == rq2) {
1753 raw_spin_lock(&rq1->lock);
1754 __acquire(rq2->lock); /* Fake it out ;) */
1755 } else {
1756 if (rq1 < rq2) {
1757 raw_spin_lock(&rq1->lock);
1758 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1759 } else {
1760 raw_spin_lock(&rq2->lock);
1761 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1767 * double_rq_unlock - safely unlock two runqueues
1769 * Note this does not restore interrupts like task_rq_unlock,
1770 * you need to do so manually after calling.
1772 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1773 __releases(rq1->lock)
1774 __releases(rq2->lock)
1776 raw_spin_unlock(&rq1->lock);
1777 if (rq1 != rq2)
1778 raw_spin_unlock(&rq2->lock);
1779 else
1780 __release(rq2->lock);
1783 #endif
1785 #ifdef CONFIG_FAIR_GROUP_SCHED
1786 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1788 #ifdef CONFIG_SMP
1789 cfs_rq->shares = shares;
1790 #endif
1792 #endif
1794 static void calc_load_account_idle(struct rq *this_rq);
1795 static void update_sysctl(void);
1796 static int get_update_sysctl_factor(void);
1798 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1800 set_task_rq(p, cpu);
1801 #ifdef CONFIG_SMP
1803 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1804 * successfuly executed on another CPU. We must ensure that updates of
1805 * per-task data have been completed by this moment.
1807 smp_wmb();
1808 task_thread_info(p)->cpu = cpu;
1809 #endif
1812 static const struct sched_class rt_sched_class;
1814 #define sched_class_highest (&rt_sched_class)
1815 #define for_each_class(class) \
1816 for (class = sched_class_highest; class; class = class->next)
1818 #include "sched_stats.h"
1820 static void inc_nr_running(struct rq *rq)
1822 rq->nr_running++;
1825 static void dec_nr_running(struct rq *rq)
1827 rq->nr_running--;
1830 static void set_load_weight(struct task_struct *p)
1833 * SCHED_IDLE tasks get minimal weight:
1835 if (p->policy == SCHED_IDLE) {
1836 p->se.load.weight = WEIGHT_IDLEPRIO;
1837 p->se.load.inv_weight = WMULT_IDLEPRIO;
1838 return;
1841 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1842 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1845 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1847 update_rq_clock(rq);
1848 sched_info_queued(p);
1849 p->sched_class->enqueue_task(rq, p, flags);
1850 p->se.on_rq = 1;
1853 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1855 update_rq_clock(rq);
1856 sched_info_dequeued(p);
1857 p->sched_class->dequeue_task(rq, p, flags);
1858 p->se.on_rq = 0;
1862 * activate_task - move a task to the runqueue.
1864 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1866 if (task_contributes_to_load(p))
1867 rq->nr_uninterruptible--;
1869 enqueue_task(rq, p, flags);
1870 inc_nr_running(rq);
1874 * deactivate_task - remove a task from the runqueue.
1876 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1878 if (task_contributes_to_load(p))
1879 rq->nr_uninterruptible++;
1881 dequeue_task(rq, p, flags);
1882 dec_nr_running(rq);
1885 #include "sched_idletask.c"
1886 #include "sched_fair.c"
1887 #include "sched_rt.c"
1888 #ifdef CONFIG_SCHED_DEBUG
1889 # include "sched_debug.c"
1890 #endif
1893 * __normal_prio - return the priority that is based on the static prio
1895 static inline int __normal_prio(struct task_struct *p)
1897 return p->static_prio;
1901 * Calculate the expected normal priority: i.e. priority
1902 * without taking RT-inheritance into account. Might be
1903 * boosted by interactivity modifiers. Changes upon fork,
1904 * setprio syscalls, and whenever the interactivity
1905 * estimator recalculates.
1907 static inline int normal_prio(struct task_struct *p)
1909 int prio;
1911 if (task_has_rt_policy(p))
1912 prio = MAX_RT_PRIO-1 - p->rt_priority;
1913 else
1914 prio = __normal_prio(p);
1915 return prio;
1919 * Calculate the current priority, i.e. the priority
1920 * taken into account by the scheduler. This value might
1921 * be boosted by RT tasks, or might be boosted by
1922 * interactivity modifiers. Will be RT if the task got
1923 * RT-boosted. If not then it returns p->normal_prio.
1925 static int effective_prio(struct task_struct *p)
1927 p->normal_prio = normal_prio(p);
1929 * If we are RT tasks or we were boosted to RT priority,
1930 * keep the priority unchanged. Otherwise, update priority
1931 * to the normal priority:
1933 if (!rt_prio(p->prio))
1934 return p->normal_prio;
1935 return p->prio;
1939 * task_curr - is this task currently executing on a CPU?
1940 * @p: the task in question.
1942 inline int task_curr(const struct task_struct *p)
1944 return cpu_curr(task_cpu(p)) == p;
1947 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1948 const struct sched_class *prev_class,
1949 int oldprio, int running)
1951 if (prev_class != p->sched_class) {
1952 if (prev_class->switched_from)
1953 prev_class->switched_from(rq, p, running);
1954 p->sched_class->switched_to(rq, p, running);
1955 } else
1956 p->sched_class->prio_changed(rq, p, oldprio, running);
1959 #ifdef CONFIG_SMP
1961 * Is this task likely cache-hot:
1963 static int
1964 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1966 s64 delta;
1968 if (p->sched_class != &fair_sched_class)
1969 return 0;
1972 * Buddy candidates are cache hot:
1974 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
1975 (&p->se == cfs_rq_of(&p->se)->next ||
1976 &p->se == cfs_rq_of(&p->se)->last))
1977 return 1;
1979 if (sysctl_sched_migration_cost == -1)
1980 return 1;
1981 if (sysctl_sched_migration_cost == 0)
1982 return 0;
1984 delta = now - p->se.exec_start;
1986 return delta < (s64)sysctl_sched_migration_cost;
1989 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1991 #ifdef CONFIG_SCHED_DEBUG
1993 * We should never call set_task_cpu() on a blocked task,
1994 * ttwu() will sort out the placement.
1996 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1997 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
1998 #endif
2000 trace_sched_migrate_task(p, new_cpu);
2002 if (task_cpu(p) != new_cpu) {
2003 p->se.nr_migrations++;
2004 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2007 __set_task_cpu(p, new_cpu);
2010 struct migration_arg {
2011 struct task_struct *task;
2012 int dest_cpu;
2015 static int migration_cpu_stop(void *data);
2018 * The task's runqueue lock must be held.
2019 * Returns true if you have to wait for migration thread.
2021 static bool migrate_task(struct task_struct *p, int dest_cpu)
2023 struct rq *rq = task_rq(p);
2026 * If the task is not on a runqueue (and not running), then
2027 * the next wake-up will properly place the task.
2029 return p->se.on_rq || task_running(rq, p);
2033 * wait_task_inactive - wait for a thread to unschedule.
2035 * If @match_state is nonzero, it's the @p->state value just checked and
2036 * not expected to change. If it changes, i.e. @p might have woken up,
2037 * then return zero. When we succeed in waiting for @p to be off its CPU,
2038 * we return a positive number (its total switch count). If a second call
2039 * a short while later returns the same number, the caller can be sure that
2040 * @p has remained unscheduled the whole time.
2042 * The caller must ensure that the task *will* unschedule sometime soon,
2043 * else this function might spin for a *long* time. This function can't
2044 * be called with interrupts off, or it may introduce deadlock with
2045 * smp_call_function() if an IPI is sent by the same process we are
2046 * waiting to become inactive.
2048 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2050 unsigned long flags;
2051 int running, on_rq;
2052 unsigned long ncsw;
2053 struct rq *rq;
2055 for (;;) {
2057 * We do the initial early heuristics without holding
2058 * any task-queue locks at all. We'll only try to get
2059 * the runqueue lock when things look like they will
2060 * work out!
2062 rq = task_rq(p);
2065 * If the task is actively running on another CPU
2066 * still, just relax and busy-wait without holding
2067 * any locks.
2069 * NOTE! Since we don't hold any locks, it's not
2070 * even sure that "rq" stays as the right runqueue!
2071 * But we don't care, since "task_running()" will
2072 * return false if the runqueue has changed and p
2073 * is actually now running somewhere else!
2075 while (task_running(rq, p)) {
2076 if (match_state && unlikely(p->state != match_state))
2077 return 0;
2078 cpu_relax();
2082 * Ok, time to look more closely! We need the rq
2083 * lock now, to be *sure*. If we're wrong, we'll
2084 * just go back and repeat.
2086 rq = task_rq_lock(p, &flags);
2087 trace_sched_wait_task(p);
2088 running = task_running(rq, p);
2089 on_rq = p->se.on_rq;
2090 ncsw = 0;
2091 if (!match_state || p->state == match_state)
2092 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2093 task_rq_unlock(rq, &flags);
2096 * If it changed from the expected state, bail out now.
2098 if (unlikely(!ncsw))
2099 break;
2102 * Was it really running after all now that we
2103 * checked with the proper locks actually held?
2105 * Oops. Go back and try again..
2107 if (unlikely(running)) {
2108 cpu_relax();
2109 continue;
2113 * It's not enough that it's not actively running,
2114 * it must be off the runqueue _entirely_, and not
2115 * preempted!
2117 * So if it was still runnable (but just not actively
2118 * running right now), it's preempted, and we should
2119 * yield - it could be a while.
2121 if (unlikely(on_rq)) {
2122 schedule_timeout_uninterruptible(1);
2123 continue;
2127 * Ahh, all good. It wasn't running, and it wasn't
2128 * runnable, which means that it will never become
2129 * running in the future either. We're all done!
2131 break;
2134 return ncsw;
2137 /***
2138 * kick_process - kick a running thread to enter/exit the kernel
2139 * @p: the to-be-kicked thread
2141 * Cause a process which is running on another CPU to enter
2142 * kernel-mode, without any delay. (to get signals handled.)
2144 * NOTE: this function doesnt have to take the runqueue lock,
2145 * because all it wants to ensure is that the remote task enters
2146 * the kernel. If the IPI races and the task has been migrated
2147 * to another CPU then no harm is done and the purpose has been
2148 * achieved as well.
2150 void kick_process(struct task_struct *p)
2152 int cpu;
2154 preempt_disable();
2155 cpu = task_cpu(p);
2156 if ((cpu != smp_processor_id()) && task_curr(p))
2157 smp_send_reschedule(cpu);
2158 preempt_enable();
2160 EXPORT_SYMBOL_GPL(kick_process);
2161 #endif /* CONFIG_SMP */
2164 * task_oncpu_function_call - call a function on the cpu on which a task runs
2165 * @p: the task to evaluate
2166 * @func: the function to be called
2167 * @info: the function call argument
2169 * Calls the function @func when the task is currently running. This might
2170 * be on the current CPU, which just calls the function directly
2172 void task_oncpu_function_call(struct task_struct *p,
2173 void (*func) (void *info), void *info)
2175 int cpu;
2177 preempt_disable();
2178 cpu = task_cpu(p);
2179 if (task_curr(p))
2180 smp_call_function_single(cpu, func, info, 1);
2181 preempt_enable();
2184 #ifdef CONFIG_SMP
2186 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2188 static int select_fallback_rq(int cpu, struct task_struct *p)
2190 int dest_cpu;
2191 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2193 /* Look for allowed, online CPU in same node. */
2194 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2195 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2196 return dest_cpu;
2198 /* Any allowed, online CPU? */
2199 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2200 if (dest_cpu < nr_cpu_ids)
2201 return dest_cpu;
2203 /* No more Mr. Nice Guy. */
2204 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2205 dest_cpu = cpuset_cpus_allowed_fallback(p);
2207 * Don't tell them about moving exiting tasks or
2208 * kernel threads (both mm NULL), since they never
2209 * leave kernel.
2211 if (p->mm && printk_ratelimit()) {
2212 printk(KERN_INFO "process %d (%s) no "
2213 "longer affine to cpu%d\n",
2214 task_pid_nr(p), p->comm, cpu);
2218 return dest_cpu;
2222 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2224 static inline
2225 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2227 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2230 * In order not to call set_task_cpu() on a blocking task we need
2231 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2232 * cpu.
2234 * Since this is common to all placement strategies, this lives here.
2236 * [ this allows ->select_task() to simply return task_cpu(p) and
2237 * not worry about this generic constraint ]
2239 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2240 !cpu_online(cpu)))
2241 cpu = select_fallback_rq(task_cpu(p), p);
2243 return cpu;
2246 static void update_avg(u64 *avg, u64 sample)
2248 s64 diff = sample - *avg;
2249 *avg += diff >> 3;
2251 #endif
2253 /***
2254 * try_to_wake_up - wake up a thread
2255 * @p: the to-be-woken-up thread
2256 * @state: the mask of task states that can be woken
2257 * @sync: do a synchronous wakeup?
2259 * Put it on the run-queue if it's not already there. The "current"
2260 * thread is always on the run-queue (except when the actual
2261 * re-schedule is in progress), and as such you're allowed to do
2262 * the simpler "current->state = TASK_RUNNING" to mark yourself
2263 * runnable without the overhead of this.
2265 * returns failure only if the task is already active.
2267 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2268 int wake_flags)
2270 int cpu, orig_cpu, this_cpu, success = 0;
2271 unsigned long flags;
2272 unsigned long en_flags = ENQUEUE_WAKEUP;
2273 struct rq *rq;
2275 this_cpu = get_cpu();
2277 smp_wmb();
2278 rq = task_rq_lock(p, &flags);
2279 if (!(p->state & state))
2280 goto out;
2282 if (p->se.on_rq)
2283 goto out_running;
2285 cpu = task_cpu(p);
2286 orig_cpu = cpu;
2288 #ifdef CONFIG_SMP
2289 if (unlikely(task_running(rq, p)))
2290 goto out_activate;
2293 * In order to handle concurrent wakeups and release the rq->lock
2294 * we put the task in TASK_WAKING state.
2296 * First fix up the nr_uninterruptible count:
2298 if (task_contributes_to_load(p)) {
2299 if (likely(cpu_online(orig_cpu)))
2300 rq->nr_uninterruptible--;
2301 else
2302 this_rq()->nr_uninterruptible--;
2304 p->state = TASK_WAKING;
2306 if (p->sched_class->task_waking) {
2307 p->sched_class->task_waking(rq, p);
2308 en_flags |= ENQUEUE_WAKING;
2311 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2312 if (cpu != orig_cpu)
2313 set_task_cpu(p, cpu);
2314 __task_rq_unlock(rq);
2316 rq = cpu_rq(cpu);
2317 raw_spin_lock(&rq->lock);
2320 * We migrated the task without holding either rq->lock, however
2321 * since the task is not on the task list itself, nobody else
2322 * will try and migrate the task, hence the rq should match the
2323 * cpu we just moved it to.
2325 WARN_ON(task_cpu(p) != cpu);
2326 WARN_ON(p->state != TASK_WAKING);
2328 #ifdef CONFIG_SCHEDSTATS
2329 schedstat_inc(rq, ttwu_count);
2330 if (cpu == this_cpu)
2331 schedstat_inc(rq, ttwu_local);
2332 else {
2333 struct sched_domain *sd;
2334 for_each_domain(this_cpu, sd) {
2335 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2336 schedstat_inc(sd, ttwu_wake_remote);
2337 break;
2341 #endif /* CONFIG_SCHEDSTATS */
2343 out_activate:
2344 #endif /* CONFIG_SMP */
2345 schedstat_inc(p, se.statistics.nr_wakeups);
2346 if (wake_flags & WF_SYNC)
2347 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2348 if (orig_cpu != cpu)
2349 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2350 if (cpu == this_cpu)
2351 schedstat_inc(p, se.statistics.nr_wakeups_local);
2352 else
2353 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2354 activate_task(rq, p, en_flags);
2355 success = 1;
2357 out_running:
2358 trace_sched_wakeup(p, success);
2359 check_preempt_curr(rq, p, wake_flags);
2361 p->state = TASK_RUNNING;
2362 #ifdef CONFIG_SMP
2363 if (p->sched_class->task_woken)
2364 p->sched_class->task_woken(rq, p);
2366 if (unlikely(rq->idle_stamp)) {
2367 u64 delta = rq->clock - rq->idle_stamp;
2368 u64 max = 2*sysctl_sched_migration_cost;
2370 if (delta > max)
2371 rq->avg_idle = max;
2372 else
2373 update_avg(&rq->avg_idle, delta);
2374 rq->idle_stamp = 0;
2376 #endif
2377 out:
2378 task_rq_unlock(rq, &flags);
2379 put_cpu();
2381 return success;
2385 * wake_up_process - Wake up a specific process
2386 * @p: The process to be woken up.
2388 * Attempt to wake up the nominated process and move it to the set of runnable
2389 * processes. Returns 1 if the process was woken up, 0 if it was already
2390 * running.
2392 * It may be assumed that this function implies a write memory barrier before
2393 * changing the task state if and only if any tasks are woken up.
2395 int wake_up_process(struct task_struct *p)
2397 return try_to_wake_up(p, TASK_ALL, 0);
2399 EXPORT_SYMBOL(wake_up_process);
2401 int wake_up_state(struct task_struct *p, unsigned int state)
2403 return try_to_wake_up(p, state, 0);
2407 * Perform scheduler related setup for a newly forked process p.
2408 * p is forked by current.
2410 * __sched_fork() is basic setup used by init_idle() too:
2412 static void __sched_fork(struct task_struct *p)
2414 p->se.exec_start = 0;
2415 p->se.sum_exec_runtime = 0;
2416 p->se.prev_sum_exec_runtime = 0;
2417 p->se.nr_migrations = 0;
2419 #ifdef CONFIG_SCHEDSTATS
2420 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2421 #endif
2423 INIT_LIST_HEAD(&p->rt.run_list);
2424 p->se.on_rq = 0;
2425 INIT_LIST_HEAD(&p->se.group_node);
2427 #ifdef CONFIG_PREEMPT_NOTIFIERS
2428 INIT_HLIST_HEAD(&p->preempt_notifiers);
2429 #endif
2433 * fork()/clone()-time setup:
2435 void sched_fork(struct task_struct *p, int clone_flags)
2437 int cpu = get_cpu();
2439 __sched_fork(p);
2441 * We mark the process as running here. This guarantees that
2442 * nobody will actually run it, and a signal or other external
2443 * event cannot wake it up and insert it on the runqueue either.
2445 p->state = TASK_RUNNING;
2448 * Revert to default priority/policy on fork if requested.
2450 if (unlikely(p->sched_reset_on_fork)) {
2451 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2452 p->policy = SCHED_NORMAL;
2453 p->normal_prio = p->static_prio;
2456 if (PRIO_TO_NICE(p->static_prio) < 0) {
2457 p->static_prio = NICE_TO_PRIO(0);
2458 p->normal_prio = p->static_prio;
2459 set_load_weight(p);
2463 * We don't need the reset flag anymore after the fork. It has
2464 * fulfilled its duty:
2466 p->sched_reset_on_fork = 0;
2470 * Make sure we do not leak PI boosting priority to the child.
2472 p->prio = current->normal_prio;
2474 if (!rt_prio(p->prio))
2475 p->sched_class = &fair_sched_class;
2477 if (p->sched_class->task_fork)
2478 p->sched_class->task_fork(p);
2481 * The child is not yet in the pid-hash so no cgroup attach races,
2482 * and the cgroup is pinned to this child due to cgroup_fork()
2483 * is ran before sched_fork().
2485 * Silence PROVE_RCU.
2487 rcu_read_lock();
2488 set_task_cpu(p, cpu);
2489 rcu_read_unlock();
2491 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2492 if (likely(sched_info_on()))
2493 memset(&p->sched_info, 0, sizeof(p->sched_info));
2494 #endif
2495 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2496 p->oncpu = 0;
2497 #endif
2498 #ifdef CONFIG_PREEMPT
2499 /* Want to start with kernel preemption disabled. */
2500 task_thread_info(p)->preempt_count = 1;
2501 #endif
2502 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2504 put_cpu();
2508 * wake_up_new_task - wake up a newly created task for the first time.
2510 * This function will do some initial scheduler statistics housekeeping
2511 * that must be done for every newly created context, then puts the task
2512 * on the runqueue and wakes it.
2514 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2516 unsigned long flags;
2517 struct rq *rq;
2518 int cpu __maybe_unused = get_cpu();
2520 #ifdef CONFIG_SMP
2521 rq = task_rq_lock(p, &flags);
2522 p->state = TASK_WAKING;
2525 * Fork balancing, do it here and not earlier because:
2526 * - cpus_allowed can change in the fork path
2527 * - any previously selected cpu might disappear through hotplug
2529 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2530 * without people poking at ->cpus_allowed.
2532 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2533 set_task_cpu(p, cpu);
2535 p->state = TASK_RUNNING;
2536 task_rq_unlock(rq, &flags);
2537 #endif
2539 rq = task_rq_lock(p, &flags);
2540 activate_task(rq, p, 0);
2541 trace_sched_wakeup_new(p, 1);
2542 check_preempt_curr(rq, p, WF_FORK);
2543 #ifdef CONFIG_SMP
2544 if (p->sched_class->task_woken)
2545 p->sched_class->task_woken(rq, p);
2546 #endif
2547 task_rq_unlock(rq, &flags);
2548 put_cpu();
2551 #ifdef CONFIG_PREEMPT_NOTIFIERS
2554 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2555 * @notifier: notifier struct to register
2557 void preempt_notifier_register(struct preempt_notifier *notifier)
2559 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2561 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2564 * preempt_notifier_unregister - no longer interested in preemption notifications
2565 * @notifier: notifier struct to unregister
2567 * This is safe to call from within a preemption notifier.
2569 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2571 hlist_del(&notifier->link);
2573 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2575 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2577 struct preempt_notifier *notifier;
2578 struct hlist_node *node;
2580 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2581 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2584 static void
2585 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2586 struct task_struct *next)
2588 struct preempt_notifier *notifier;
2589 struct hlist_node *node;
2591 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2592 notifier->ops->sched_out(notifier, next);
2595 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2597 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2601 static void
2602 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2603 struct task_struct *next)
2607 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2610 * prepare_task_switch - prepare to switch tasks
2611 * @rq: the runqueue preparing to switch
2612 * @prev: the current task that is being switched out
2613 * @next: the task we are going to switch to.
2615 * This is called with the rq lock held and interrupts off. It must
2616 * be paired with a subsequent finish_task_switch after the context
2617 * switch.
2619 * prepare_task_switch sets up locking and calls architecture specific
2620 * hooks.
2622 static inline void
2623 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2624 struct task_struct *next)
2626 fire_sched_out_preempt_notifiers(prev, next);
2627 prepare_lock_switch(rq, next);
2628 prepare_arch_switch(next);
2632 * finish_task_switch - clean up after a task-switch
2633 * @rq: runqueue associated with task-switch
2634 * @prev: the thread we just switched away from.
2636 * finish_task_switch must be called after the context switch, paired
2637 * with a prepare_task_switch call before the context switch.
2638 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2639 * and do any other architecture-specific cleanup actions.
2641 * Note that we may have delayed dropping an mm in context_switch(). If
2642 * so, we finish that here outside of the runqueue lock. (Doing it
2643 * with the lock held can cause deadlocks; see schedule() for
2644 * details.)
2646 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2647 __releases(rq->lock)
2649 struct mm_struct *mm = rq->prev_mm;
2650 long prev_state;
2652 rq->prev_mm = NULL;
2655 * A task struct has one reference for the use as "current".
2656 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2657 * schedule one last time. The schedule call will never return, and
2658 * the scheduled task must drop that reference.
2659 * The test for TASK_DEAD must occur while the runqueue locks are
2660 * still held, otherwise prev could be scheduled on another cpu, die
2661 * there before we look at prev->state, and then the reference would
2662 * be dropped twice.
2663 * Manfred Spraul <manfred@colorfullife.com>
2665 prev_state = prev->state;
2666 finish_arch_switch(prev);
2667 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2668 local_irq_disable();
2669 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2670 perf_event_task_sched_in(current);
2671 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2672 local_irq_enable();
2673 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2674 finish_lock_switch(rq, prev);
2676 fire_sched_in_preempt_notifiers(current);
2677 if (mm)
2678 mmdrop(mm);
2679 if (unlikely(prev_state == TASK_DEAD)) {
2681 * Remove function-return probe instances associated with this
2682 * task and put them back on the free list.
2684 kprobe_flush_task(prev);
2685 put_task_struct(prev);
2689 #ifdef CONFIG_SMP
2691 /* assumes rq->lock is held */
2692 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2694 if (prev->sched_class->pre_schedule)
2695 prev->sched_class->pre_schedule(rq, prev);
2698 /* rq->lock is NOT held, but preemption is disabled */
2699 static inline void post_schedule(struct rq *rq)
2701 if (rq->post_schedule) {
2702 unsigned long flags;
2704 raw_spin_lock_irqsave(&rq->lock, flags);
2705 if (rq->curr->sched_class->post_schedule)
2706 rq->curr->sched_class->post_schedule(rq);
2707 raw_spin_unlock_irqrestore(&rq->lock, flags);
2709 rq->post_schedule = 0;
2713 #else
2715 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2719 static inline void post_schedule(struct rq *rq)
2723 #endif
2726 * schedule_tail - first thing a freshly forked thread must call.
2727 * @prev: the thread we just switched away from.
2729 asmlinkage void schedule_tail(struct task_struct *prev)
2730 __releases(rq->lock)
2732 struct rq *rq = this_rq();
2734 finish_task_switch(rq, prev);
2737 * FIXME: do we need to worry about rq being invalidated by the
2738 * task_switch?
2740 post_schedule(rq);
2742 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2743 /* In this case, finish_task_switch does not reenable preemption */
2744 preempt_enable();
2745 #endif
2746 if (current->set_child_tid)
2747 put_user(task_pid_vnr(current), current->set_child_tid);
2751 * context_switch - switch to the new MM and the new
2752 * thread's register state.
2754 static inline void
2755 context_switch(struct rq *rq, struct task_struct *prev,
2756 struct task_struct *next)
2758 struct mm_struct *mm, *oldmm;
2760 prepare_task_switch(rq, prev, next);
2761 trace_sched_switch(prev, next);
2762 mm = next->mm;
2763 oldmm = prev->active_mm;
2765 * For paravirt, this is coupled with an exit in switch_to to
2766 * combine the page table reload and the switch backend into
2767 * one hypercall.
2769 arch_start_context_switch(prev);
2771 if (likely(!mm)) {
2772 next->active_mm = oldmm;
2773 atomic_inc(&oldmm->mm_count);
2774 enter_lazy_tlb(oldmm, next);
2775 } else
2776 switch_mm(oldmm, mm, next);
2778 if (likely(!prev->mm)) {
2779 prev->active_mm = NULL;
2780 rq->prev_mm = oldmm;
2783 * Since the runqueue lock will be released by the next
2784 * task (which is an invalid locking op but in the case
2785 * of the scheduler it's an obvious special-case), so we
2786 * do an early lockdep release here:
2788 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2790 #endif
2792 /* Here we just switch the register state and the stack. */
2793 switch_to(prev, next, prev);
2795 barrier();
2797 * this_rq must be evaluated again because prev may have moved
2798 * CPUs since it called schedule(), thus the 'rq' on its stack
2799 * frame will be invalid.
2801 finish_task_switch(this_rq(), prev);
2805 * nr_running, nr_uninterruptible and nr_context_switches:
2807 * externally visible scheduler statistics: current number of runnable
2808 * threads, current number of uninterruptible-sleeping threads, total
2809 * number of context switches performed since bootup.
2811 unsigned long nr_running(void)
2813 unsigned long i, sum = 0;
2815 for_each_online_cpu(i)
2816 sum += cpu_rq(i)->nr_running;
2818 return sum;
2821 unsigned long nr_uninterruptible(void)
2823 unsigned long i, sum = 0;
2825 for_each_possible_cpu(i)
2826 sum += cpu_rq(i)->nr_uninterruptible;
2829 * Since we read the counters lockless, it might be slightly
2830 * inaccurate. Do not allow it to go below zero though:
2832 if (unlikely((long)sum < 0))
2833 sum = 0;
2835 return sum;
2838 unsigned long long nr_context_switches(void)
2840 int i;
2841 unsigned long long sum = 0;
2843 for_each_possible_cpu(i)
2844 sum += cpu_rq(i)->nr_switches;
2846 return sum;
2849 unsigned long nr_iowait(void)
2851 unsigned long i, sum = 0;
2853 for_each_possible_cpu(i)
2854 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2856 return sum;
2859 unsigned long nr_iowait_cpu(int cpu)
2861 struct rq *this = cpu_rq(cpu);
2862 return atomic_read(&this->nr_iowait);
2865 unsigned long this_cpu_load(void)
2867 struct rq *this = this_rq();
2868 return this->cpu_load[0];
2872 /* Variables and functions for calc_load */
2873 static atomic_long_t calc_load_tasks;
2874 static unsigned long calc_load_update;
2875 unsigned long avenrun[3];
2876 EXPORT_SYMBOL(avenrun);
2878 static long calc_load_fold_active(struct rq *this_rq)
2880 long nr_active, delta = 0;
2882 nr_active = this_rq->nr_running;
2883 nr_active += (long) this_rq->nr_uninterruptible;
2885 if (nr_active != this_rq->calc_load_active) {
2886 delta = nr_active - this_rq->calc_load_active;
2887 this_rq->calc_load_active = nr_active;
2890 return delta;
2893 static unsigned long
2894 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2896 load *= exp;
2897 load += active * (FIXED_1 - exp);
2898 load += 1UL << (FSHIFT - 1);
2899 return load >> FSHIFT;
2902 #ifdef CONFIG_NO_HZ
2904 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2906 * When making the ILB scale, we should try to pull this in as well.
2908 static atomic_long_t calc_load_tasks_idle;
2910 static void calc_load_account_idle(struct rq *this_rq)
2912 long delta;
2914 delta = calc_load_fold_active(this_rq);
2915 if (delta)
2916 atomic_long_add(delta, &calc_load_tasks_idle);
2919 static long calc_load_fold_idle(void)
2921 long delta = 0;
2924 * Its got a race, we don't care...
2926 if (atomic_long_read(&calc_load_tasks_idle))
2927 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2929 return delta;
2933 * fixed_power_int - compute: x^n, in O(log n) time
2935 * @x: base of the power
2936 * @frac_bits: fractional bits of @x
2937 * @n: power to raise @x to.
2939 * By exploiting the relation between the definition of the natural power
2940 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2941 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2942 * (where: n_i \elem {0, 1}, the binary vector representing n),
2943 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2944 * of course trivially computable in O(log_2 n), the length of our binary
2945 * vector.
2947 static unsigned long
2948 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2950 unsigned long result = 1UL << frac_bits;
2952 if (n) for (;;) {
2953 if (n & 1) {
2954 result *= x;
2955 result += 1UL << (frac_bits - 1);
2956 result >>= frac_bits;
2958 n >>= 1;
2959 if (!n)
2960 break;
2961 x *= x;
2962 x += 1UL << (frac_bits - 1);
2963 x >>= frac_bits;
2966 return result;
2970 * a1 = a0 * e + a * (1 - e)
2972 * a2 = a1 * e + a * (1 - e)
2973 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2974 * = a0 * e^2 + a * (1 - e) * (1 + e)
2976 * a3 = a2 * e + a * (1 - e)
2977 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2978 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2980 * ...
2982 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2983 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2984 * = a0 * e^n + a * (1 - e^n)
2986 * [1] application of the geometric series:
2988 * n 1 - x^(n+1)
2989 * S_n := \Sum x^i = -------------
2990 * i=0 1 - x
2992 static unsigned long
2993 calc_load_n(unsigned long load, unsigned long exp,
2994 unsigned long active, unsigned int n)
2997 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3001 * NO_HZ can leave us missing all per-cpu ticks calling
3002 * calc_load_account_active(), but since an idle CPU folds its delta into
3003 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3004 * in the pending idle delta if our idle period crossed a load cycle boundary.
3006 * Once we've updated the global active value, we need to apply the exponential
3007 * weights adjusted to the number of cycles missed.
3009 static void calc_global_nohz(unsigned long ticks)
3011 long delta, active, n;
3013 if (time_before(jiffies, calc_load_update))
3014 return;
3017 * If we crossed a calc_load_update boundary, make sure to fold
3018 * any pending idle changes, the respective CPUs might have
3019 * missed the tick driven calc_load_account_active() update
3020 * due to NO_HZ.
3022 delta = calc_load_fold_idle();
3023 if (delta)
3024 atomic_long_add(delta, &calc_load_tasks);
3027 * If we were idle for multiple load cycles, apply them.
3029 if (ticks >= LOAD_FREQ) {
3030 n = ticks / LOAD_FREQ;
3032 active = atomic_long_read(&calc_load_tasks);
3033 active = active > 0 ? active * FIXED_1 : 0;
3035 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3036 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3037 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3039 calc_load_update += n * LOAD_FREQ;
3043 * Its possible the remainder of the above division also crosses
3044 * a LOAD_FREQ period, the regular check in calc_global_load()
3045 * which comes after this will take care of that.
3047 * Consider us being 11 ticks before a cycle completion, and us
3048 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3049 * age us 4 cycles, and the test in calc_global_load() will
3050 * pick up the final one.
3053 #else
3054 static void calc_load_account_idle(struct rq *this_rq)
3058 static inline long calc_load_fold_idle(void)
3060 return 0;
3063 static void calc_global_nohz(unsigned long ticks)
3066 #endif
3069 * get_avenrun - get the load average array
3070 * @loads: pointer to dest load array
3071 * @offset: offset to add
3072 * @shift: shift count to shift the result left
3074 * These values are estimates at best, so no need for locking.
3076 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3078 loads[0] = (avenrun[0] + offset) << shift;
3079 loads[1] = (avenrun[1] + offset) << shift;
3080 loads[2] = (avenrun[2] + offset) << shift;
3084 * calc_load - update the avenrun load estimates 10 ticks after the
3085 * CPUs have updated calc_load_tasks.
3087 void calc_global_load(unsigned long ticks)
3089 long active;
3091 calc_global_nohz(ticks);
3093 if (time_before(jiffies, calc_load_update + 10))
3094 return;
3096 active = atomic_long_read(&calc_load_tasks);
3097 active = active > 0 ? active * FIXED_1 : 0;
3099 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3100 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3101 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3103 calc_load_update += LOAD_FREQ;
3107 * Called from update_cpu_load() to periodically update this CPU's
3108 * active count.
3110 static void calc_load_account_active(struct rq *this_rq)
3112 long delta;
3114 if (time_before(jiffies, this_rq->calc_load_update))
3115 return;
3117 delta = calc_load_fold_active(this_rq);
3118 delta += calc_load_fold_idle();
3119 if (delta)
3120 atomic_long_add(delta, &calc_load_tasks);
3122 this_rq->calc_load_update += LOAD_FREQ;
3126 * Update rq->cpu_load[] statistics. This function is usually called every
3127 * scheduler tick (TICK_NSEC).
3129 static void update_cpu_load(struct rq *this_rq)
3131 unsigned long this_load = this_rq->load.weight;
3132 int i, scale;
3134 this_rq->nr_load_updates++;
3136 /* Update our load: */
3137 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3138 unsigned long old_load, new_load;
3140 /* scale is effectively 1 << i now, and >> i divides by scale */
3142 old_load = this_rq->cpu_load[i];
3143 new_load = this_load;
3145 * Round up the averaging division if load is increasing. This
3146 * prevents us from getting stuck on 9 if the load is 10, for
3147 * example.
3149 if (new_load > old_load)
3150 new_load += scale-1;
3151 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3154 calc_load_account_active(this_rq);
3157 #ifdef CONFIG_SMP
3160 * sched_exec - execve() is a valuable balancing opportunity, because at
3161 * this point the task has the smallest effective memory and cache footprint.
3163 void sched_exec(void)
3165 struct task_struct *p = current;
3166 unsigned long flags;
3167 struct rq *rq;
3168 int dest_cpu;
3170 rq = task_rq_lock(p, &flags);
3171 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3172 if (dest_cpu == smp_processor_id())
3173 goto unlock;
3176 * select_task_rq() can race against ->cpus_allowed
3178 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3179 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3180 struct migration_arg arg = { p, dest_cpu };
3182 task_rq_unlock(rq, &flags);
3183 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3184 return;
3186 unlock:
3187 task_rq_unlock(rq, &flags);
3190 #endif
3192 DEFINE_PER_CPU(struct kernel_stat, kstat);
3194 EXPORT_PER_CPU_SYMBOL(kstat);
3197 * Return any ns on the sched_clock that have not yet been accounted in
3198 * @p in case that task is currently running.
3200 * Called with task_rq_lock() held on @rq.
3202 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3204 u64 ns = 0;
3206 if (task_current(rq, p)) {
3207 update_rq_clock(rq);
3208 ns = rq->clock - p->se.exec_start;
3209 if ((s64)ns < 0)
3210 ns = 0;
3213 return ns;
3216 unsigned long long task_delta_exec(struct task_struct *p)
3218 unsigned long flags;
3219 struct rq *rq;
3220 u64 ns = 0;
3222 rq = task_rq_lock(p, &flags);
3223 ns = do_task_delta_exec(p, rq);
3224 task_rq_unlock(rq, &flags);
3226 return ns;
3230 * Return accounted runtime for the task.
3231 * In case the task is currently running, return the runtime plus current's
3232 * pending runtime that have not been accounted yet.
3234 unsigned long long task_sched_runtime(struct task_struct *p)
3236 unsigned long flags;
3237 struct rq *rq;
3238 u64 ns = 0;
3240 rq = task_rq_lock(p, &flags);
3241 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3242 task_rq_unlock(rq, &flags);
3244 return ns;
3248 * Return sum_exec_runtime for the thread group.
3249 * In case the task is currently running, return the sum plus current's
3250 * pending runtime that have not been accounted yet.
3252 * Note that the thread group might have other running tasks as well,
3253 * so the return value not includes other pending runtime that other
3254 * running tasks might have.
3256 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3258 struct task_cputime totals;
3259 unsigned long flags;
3260 struct rq *rq;
3261 u64 ns;
3263 rq = task_rq_lock(p, &flags);
3264 thread_group_cputime(p, &totals);
3265 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3266 task_rq_unlock(rq, &flags);
3268 return ns;
3272 * Account user cpu time to a process.
3273 * @p: the process that the cpu time gets accounted to
3274 * @cputime: the cpu time spent in user space since the last update
3275 * @cputime_scaled: cputime scaled by cpu frequency
3277 void account_user_time(struct task_struct *p, cputime_t cputime,
3278 cputime_t cputime_scaled)
3280 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3281 cputime64_t tmp;
3283 /* Add user time to process. */
3284 p->utime = cputime_add(p->utime, cputime);
3285 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3286 account_group_user_time(p, cputime);
3288 /* Add user time to cpustat. */
3289 tmp = cputime_to_cputime64(cputime);
3290 if (TASK_NICE(p) > 0)
3291 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3292 else
3293 cpustat->user = cputime64_add(cpustat->user, tmp);
3295 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3296 /* Account for user time used */
3297 acct_update_integrals(p);
3301 * Account guest cpu time to a process.
3302 * @p: the process that the cpu time gets accounted to
3303 * @cputime: the cpu time spent in virtual machine since the last update
3304 * @cputime_scaled: cputime scaled by cpu frequency
3306 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3307 cputime_t cputime_scaled)
3309 cputime64_t tmp;
3310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3312 tmp = cputime_to_cputime64(cputime);
3314 /* Add guest time to process. */
3315 p->utime = cputime_add(p->utime, cputime);
3316 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3317 account_group_user_time(p, cputime);
3318 p->gtime = cputime_add(p->gtime, cputime);
3320 /* Add guest time to cpustat. */
3321 if (TASK_NICE(p) > 0) {
3322 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3323 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3324 } else {
3325 cpustat->user = cputime64_add(cpustat->user, tmp);
3326 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3331 * Account system cpu time to a process.
3332 * @p: the process that the cpu time gets accounted to
3333 * @hardirq_offset: the offset to subtract from hardirq_count()
3334 * @cputime: the cpu time spent in kernel space since the last update
3335 * @cputime_scaled: cputime scaled by cpu frequency
3337 void account_system_time(struct task_struct *p, int hardirq_offset,
3338 cputime_t cputime, cputime_t cputime_scaled)
3340 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3341 cputime64_t tmp;
3343 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3344 account_guest_time(p, cputime, cputime_scaled);
3345 return;
3348 /* Add system time to process. */
3349 p->stime = cputime_add(p->stime, cputime);
3350 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3351 account_group_system_time(p, cputime);
3353 /* Add system time to cpustat. */
3354 tmp = cputime_to_cputime64(cputime);
3355 if (hardirq_count() - hardirq_offset)
3356 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3357 else if (softirq_count())
3358 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3359 else
3360 cpustat->system = cputime64_add(cpustat->system, tmp);
3362 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3364 /* Account for system time used */
3365 acct_update_integrals(p);
3369 * Account for involuntary wait time.
3370 * @steal: the cpu time spent in involuntary wait
3372 void account_steal_time(cputime_t cputime)
3374 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3375 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3377 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3381 * Account for idle time.
3382 * @cputime: the cpu time spent in idle wait
3384 void account_idle_time(cputime_t cputime)
3386 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3387 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3388 struct rq *rq = this_rq();
3390 if (atomic_read(&rq->nr_iowait) > 0)
3391 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3392 else
3393 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3396 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3399 * Account a single tick of cpu time.
3400 * @p: the process that the cpu time gets accounted to
3401 * @user_tick: indicates if the tick is a user or a system tick
3403 void account_process_tick(struct task_struct *p, int user_tick)
3405 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3406 struct rq *rq = this_rq();
3408 if (user_tick)
3409 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3410 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3411 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3412 one_jiffy_scaled);
3413 else
3414 account_idle_time(cputime_one_jiffy);
3418 * Account multiple ticks of steal time.
3419 * @p: the process from which the cpu time has been stolen
3420 * @ticks: number of stolen ticks
3422 void account_steal_ticks(unsigned long ticks)
3424 account_steal_time(jiffies_to_cputime(ticks));
3428 * Account multiple ticks of idle time.
3429 * @ticks: number of stolen ticks
3431 void account_idle_ticks(unsigned long ticks)
3433 account_idle_time(jiffies_to_cputime(ticks));
3436 #endif
3439 * Use precise platform statistics if available:
3441 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3442 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3444 *ut = p->utime;
3445 *st = p->stime;
3448 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3450 struct task_cputime cputime;
3452 thread_group_cputime(p, &cputime);
3454 *ut = cputime.utime;
3455 *st = cputime.stime;
3457 #else
3459 #ifndef nsecs_to_cputime
3460 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3461 #endif
3463 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3465 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3468 * Use CFS's precise accounting:
3470 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3472 if (total) {
3473 u64 temp = rtime;
3475 temp *= utime;
3476 do_div(temp, total);
3477 utime = (cputime_t)temp;
3478 } else
3479 utime = rtime;
3482 * Compare with previous values, to keep monotonicity:
3484 p->prev_utime = max(p->prev_utime, utime);
3485 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3487 *ut = p->prev_utime;
3488 *st = p->prev_stime;
3492 * Must be called with siglock held.
3494 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3496 struct signal_struct *sig = p->signal;
3497 struct task_cputime cputime;
3498 cputime_t rtime, utime, total;
3500 thread_group_cputime(p, &cputime);
3502 total = cputime_add(cputime.utime, cputime.stime);
3503 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3505 if (total) {
3506 u64 temp = rtime;
3508 temp *= cputime.utime;
3509 do_div(temp, total);
3510 utime = (cputime_t)temp;
3511 } else
3512 utime = rtime;
3514 sig->prev_utime = max(sig->prev_utime, utime);
3515 sig->prev_stime = max(sig->prev_stime,
3516 cputime_sub(rtime, sig->prev_utime));
3518 *ut = sig->prev_utime;
3519 *st = sig->prev_stime;
3521 #endif
3524 * This function gets called by the timer code, with HZ frequency.
3525 * We call it with interrupts disabled.
3527 * It also gets called by the fork code, when changing the parent's
3528 * timeslices.
3530 void scheduler_tick(void)
3532 int cpu = smp_processor_id();
3533 struct rq *rq = cpu_rq(cpu);
3534 struct task_struct *curr = rq->curr;
3536 sched_clock_tick();
3538 raw_spin_lock(&rq->lock);
3539 update_rq_clock(rq);
3540 update_cpu_load(rq);
3541 curr->sched_class->task_tick(rq, curr, 0);
3542 raw_spin_unlock(&rq->lock);
3544 perf_event_task_tick(curr);
3546 #ifdef CONFIG_SMP
3547 rq->idle_at_tick = idle_cpu(cpu);
3548 trigger_load_balance(rq, cpu);
3549 #endif
3552 notrace unsigned long get_parent_ip(unsigned long addr)
3554 if (in_lock_functions(addr)) {
3555 addr = CALLER_ADDR2;
3556 if (in_lock_functions(addr))
3557 addr = CALLER_ADDR3;
3559 return addr;
3562 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3563 defined(CONFIG_PREEMPT_TRACER))
3565 void __kprobes add_preempt_count(int val)
3567 #ifdef CONFIG_DEBUG_PREEMPT
3569 * Underflow?
3571 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3572 return;
3573 #endif
3574 preempt_count() += val;
3575 #ifdef CONFIG_DEBUG_PREEMPT
3577 * Spinlock count overflowing soon?
3579 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3580 PREEMPT_MASK - 10);
3581 #endif
3582 if (preempt_count() == val)
3583 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3585 EXPORT_SYMBOL(add_preempt_count);
3587 void __kprobes sub_preempt_count(int val)
3589 #ifdef CONFIG_DEBUG_PREEMPT
3591 * Underflow?
3593 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3594 return;
3596 * Is the spinlock portion underflowing?
3598 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3599 !(preempt_count() & PREEMPT_MASK)))
3600 return;
3601 #endif
3603 if (preempt_count() == val)
3604 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3605 preempt_count() -= val;
3607 EXPORT_SYMBOL(sub_preempt_count);
3609 #endif
3612 * Print scheduling while atomic bug:
3614 static noinline void __schedule_bug(struct task_struct *prev)
3616 struct pt_regs *regs = get_irq_regs();
3618 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3619 prev->comm, prev->pid, preempt_count());
3621 debug_show_held_locks(prev);
3622 print_modules();
3623 if (irqs_disabled())
3624 print_irqtrace_events(prev);
3626 if (regs)
3627 show_regs(regs);
3628 else
3629 dump_stack();
3633 * Various schedule()-time debugging checks and statistics:
3635 static inline void schedule_debug(struct task_struct *prev)
3638 * Test if we are atomic. Since do_exit() needs to call into
3639 * schedule() atomically, we ignore that path for now.
3640 * Otherwise, whine if we are scheduling when we should not be.
3642 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3643 __schedule_bug(prev);
3645 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3647 schedstat_inc(this_rq(), sched_count);
3648 #ifdef CONFIG_SCHEDSTATS
3649 if (unlikely(prev->lock_depth >= 0)) {
3650 schedstat_inc(this_rq(), bkl_count);
3651 schedstat_inc(prev, sched_info.bkl_count);
3653 #endif
3656 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3658 if (prev->se.on_rq)
3659 update_rq_clock(rq);
3660 prev->sched_class->put_prev_task(rq, prev);
3664 * Pick up the highest-prio task:
3666 static inline struct task_struct *
3667 pick_next_task(struct rq *rq)
3669 const struct sched_class *class;
3670 struct task_struct *p;
3673 * Optimization: we know that if all tasks are in
3674 * the fair class we can call that function directly:
3676 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3677 p = fair_sched_class.pick_next_task(rq);
3678 if (likely(p))
3679 return p;
3682 class = sched_class_highest;
3683 for ( ; ; ) {
3684 p = class->pick_next_task(rq);
3685 if (p)
3686 return p;
3688 * Will never be NULL as the idle class always
3689 * returns a non-NULL p:
3691 class = class->next;
3696 * schedule() is the main scheduler function.
3698 asmlinkage void __sched schedule(void)
3700 struct task_struct *prev, *next;
3701 unsigned long *switch_count;
3702 struct rq *rq;
3703 int cpu;
3705 need_resched:
3706 preempt_disable();
3707 cpu = smp_processor_id();
3708 rq = cpu_rq(cpu);
3709 rcu_note_context_switch(cpu);
3710 prev = rq->curr;
3711 switch_count = &prev->nivcsw;
3713 release_kernel_lock(prev);
3714 need_resched_nonpreemptible:
3716 schedule_debug(prev);
3718 if (sched_feat(HRTICK))
3719 hrtick_clear(rq);
3721 raw_spin_lock_irq(&rq->lock);
3723 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3724 if (unlikely(signal_pending_state(prev->state, prev)))
3725 prev->state = TASK_RUNNING;
3726 else
3727 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3728 switch_count = &prev->nvcsw;
3731 pre_schedule(rq, prev);
3733 if (unlikely(!rq->nr_running))
3734 idle_balance(cpu, rq);
3736 put_prev_task(rq, prev);
3737 next = pick_next_task(rq);
3738 clear_tsk_need_resched(prev);
3739 rq->skip_clock_update = 0;
3741 if (likely(prev != next)) {
3742 sched_info_switch(prev, next);
3743 perf_event_task_sched_out(prev, next);
3745 rq->nr_switches++;
3746 rq->curr = next;
3747 ++*switch_count;
3749 context_switch(rq, prev, next); /* unlocks the rq */
3751 * the context switch might have flipped the stack from under
3752 * us, hence refresh the local variables.
3754 cpu = smp_processor_id();
3755 rq = cpu_rq(cpu);
3756 } else
3757 raw_spin_unlock_irq(&rq->lock);
3759 post_schedule(rq);
3761 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3762 prev = rq->curr;
3763 switch_count = &prev->nivcsw;
3764 goto need_resched_nonpreemptible;
3767 preempt_enable_no_resched();
3768 if (need_resched())
3769 goto need_resched;
3771 EXPORT_SYMBOL(schedule);
3773 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3775 * Look out! "owner" is an entirely speculative pointer
3776 * access and not reliable.
3778 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3780 unsigned int cpu;
3781 struct rq *rq;
3783 if (!sched_feat(OWNER_SPIN))
3784 return 0;
3786 #ifdef CONFIG_DEBUG_PAGEALLOC
3788 * Need to access the cpu field knowing that
3789 * DEBUG_PAGEALLOC could have unmapped it if
3790 * the mutex owner just released it and exited.
3792 if (probe_kernel_address(&owner->cpu, cpu))
3793 return 0;
3794 #else
3795 cpu = owner->cpu;
3796 #endif
3799 * Even if the access succeeded (likely case),
3800 * the cpu field may no longer be valid.
3802 if (cpu >= nr_cpumask_bits)
3803 return 0;
3806 * We need to validate that we can do a
3807 * get_cpu() and that we have the percpu area.
3809 if (!cpu_online(cpu))
3810 return 0;
3812 rq = cpu_rq(cpu);
3814 for (;;) {
3816 * Owner changed, break to re-assess state.
3818 if (lock->owner != owner) {
3820 * If the lock has switched to a different owner,
3821 * we likely have heavy contention. Return 0 to quit
3822 * optimistic spinning and not contend further:
3824 if (lock->owner)
3825 return 0;
3826 break;
3830 * Is that owner really running on that cpu?
3832 if (task_thread_info(rq->curr) != owner || need_resched())
3833 return 0;
3835 cpu_relax();
3838 return 1;
3840 #endif
3842 #ifdef CONFIG_PREEMPT
3844 * this is the entry point to schedule() from in-kernel preemption
3845 * off of preempt_enable. Kernel preemptions off return from interrupt
3846 * occur there and call schedule directly.
3848 asmlinkage void __sched preempt_schedule(void)
3850 struct thread_info *ti = current_thread_info();
3853 * If there is a non-zero preempt_count or interrupts are disabled,
3854 * we do not want to preempt the current task. Just return..
3856 if (likely(ti->preempt_count || irqs_disabled()))
3857 return;
3859 do {
3860 add_preempt_count(PREEMPT_ACTIVE);
3861 schedule();
3862 sub_preempt_count(PREEMPT_ACTIVE);
3865 * Check again in case we missed a preemption opportunity
3866 * between schedule and now.
3868 barrier();
3869 } while (need_resched());
3871 EXPORT_SYMBOL(preempt_schedule);
3874 * this is the entry point to schedule() from kernel preemption
3875 * off of irq context.
3876 * Note, that this is called and return with irqs disabled. This will
3877 * protect us against recursive calling from irq.
3879 asmlinkage void __sched preempt_schedule_irq(void)
3881 struct thread_info *ti = current_thread_info();
3883 /* Catch callers which need to be fixed */
3884 BUG_ON(ti->preempt_count || !irqs_disabled());
3886 do {
3887 add_preempt_count(PREEMPT_ACTIVE);
3888 local_irq_enable();
3889 schedule();
3890 local_irq_disable();
3891 sub_preempt_count(PREEMPT_ACTIVE);
3894 * Check again in case we missed a preemption opportunity
3895 * between schedule and now.
3897 barrier();
3898 } while (need_resched());
3901 #endif /* CONFIG_PREEMPT */
3903 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3904 void *key)
3906 return try_to_wake_up(curr->private, mode, wake_flags);
3908 EXPORT_SYMBOL(default_wake_function);
3911 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3912 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3913 * number) then we wake all the non-exclusive tasks and one exclusive task.
3915 * There are circumstances in which we can try to wake a task which has already
3916 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3917 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3919 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3920 int nr_exclusive, int wake_flags, void *key)
3922 wait_queue_t *curr, *next;
3924 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3925 unsigned flags = curr->flags;
3927 if (curr->func(curr, mode, wake_flags, key) &&
3928 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3929 break;
3934 * __wake_up - wake up threads blocked on a waitqueue.
3935 * @q: the waitqueue
3936 * @mode: which threads
3937 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3938 * @key: is directly passed to the wakeup function
3940 * It may be assumed that this function implies a write memory barrier before
3941 * changing the task state if and only if any tasks are woken up.
3943 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3944 int nr_exclusive, void *key)
3946 unsigned long flags;
3948 spin_lock_irqsave(&q->lock, flags);
3949 __wake_up_common(q, mode, nr_exclusive, 0, key);
3950 spin_unlock_irqrestore(&q->lock, flags);
3952 EXPORT_SYMBOL(__wake_up);
3955 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3957 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3959 __wake_up_common(q, mode, 1, 0, NULL);
3961 EXPORT_SYMBOL_GPL(__wake_up_locked);
3963 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3965 __wake_up_common(q, mode, 1, 0, key);
3969 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3970 * @q: the waitqueue
3971 * @mode: which threads
3972 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3973 * @key: opaque value to be passed to wakeup targets
3975 * The sync wakeup differs that the waker knows that it will schedule
3976 * away soon, so while the target thread will be woken up, it will not
3977 * be migrated to another CPU - ie. the two threads are 'synchronized'
3978 * with each other. This can prevent needless bouncing between CPUs.
3980 * On UP it can prevent extra preemption.
3982 * It may be assumed that this function implies a write memory barrier before
3983 * changing the task state if and only if any tasks are woken up.
3985 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3986 int nr_exclusive, void *key)
3988 unsigned long flags;
3989 int wake_flags = WF_SYNC;
3991 if (unlikely(!q))
3992 return;
3994 if (unlikely(!nr_exclusive))
3995 wake_flags = 0;
3997 spin_lock_irqsave(&q->lock, flags);
3998 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3999 spin_unlock_irqrestore(&q->lock, flags);
4001 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4004 * __wake_up_sync - see __wake_up_sync_key()
4006 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4008 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4010 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4013 * complete: - signals a single thread waiting on this completion
4014 * @x: holds the state of this particular completion
4016 * This will wake up a single thread waiting on this completion. Threads will be
4017 * awakened in the same order in which they were queued.
4019 * See also complete_all(), wait_for_completion() and related routines.
4021 * It may be assumed that this function implies a write memory barrier before
4022 * changing the task state if and only if any tasks are woken up.
4024 void complete(struct completion *x)
4026 unsigned long flags;
4028 spin_lock_irqsave(&x->wait.lock, flags);
4029 x->done++;
4030 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4031 spin_unlock_irqrestore(&x->wait.lock, flags);
4033 EXPORT_SYMBOL(complete);
4036 * complete_all: - signals all threads waiting on this completion
4037 * @x: holds the state of this particular completion
4039 * This will wake up all threads waiting on this particular completion event.
4041 * It may be assumed that this function implies a write memory barrier before
4042 * changing the task state if and only if any tasks are woken up.
4044 void complete_all(struct completion *x)
4046 unsigned long flags;
4048 spin_lock_irqsave(&x->wait.lock, flags);
4049 x->done += UINT_MAX/2;
4050 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4051 spin_unlock_irqrestore(&x->wait.lock, flags);
4053 EXPORT_SYMBOL(complete_all);
4055 static inline long __sched
4056 do_wait_for_common(struct completion *x, long timeout, int state)
4058 if (!x->done) {
4059 DECLARE_WAITQUEUE(wait, current);
4061 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4062 do {
4063 if (signal_pending_state(state, current)) {
4064 timeout = -ERESTARTSYS;
4065 break;
4067 __set_current_state(state);
4068 spin_unlock_irq(&x->wait.lock);
4069 timeout = schedule_timeout(timeout);
4070 spin_lock_irq(&x->wait.lock);
4071 } while (!x->done && timeout);
4072 __remove_wait_queue(&x->wait, &wait);
4073 if (!x->done)
4074 return timeout;
4076 x->done--;
4077 return timeout ?: 1;
4080 static long __sched
4081 wait_for_common(struct completion *x, long timeout, int state)
4083 might_sleep();
4085 spin_lock_irq(&x->wait.lock);
4086 timeout = do_wait_for_common(x, timeout, state);
4087 spin_unlock_irq(&x->wait.lock);
4088 return timeout;
4092 * wait_for_completion: - waits for completion of a task
4093 * @x: holds the state of this particular completion
4095 * This waits to be signaled for completion of a specific task. It is NOT
4096 * interruptible and there is no timeout.
4098 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4099 * and interrupt capability. Also see complete().
4101 void __sched wait_for_completion(struct completion *x)
4103 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4105 EXPORT_SYMBOL(wait_for_completion);
4108 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4109 * @x: holds the state of this particular completion
4110 * @timeout: timeout value in jiffies
4112 * This waits for either a completion of a specific task to be signaled or for a
4113 * specified timeout to expire. The timeout is in jiffies. It is not
4114 * interruptible.
4116 unsigned long __sched
4117 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4119 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4121 EXPORT_SYMBOL(wait_for_completion_timeout);
4124 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4125 * @x: holds the state of this particular completion
4127 * This waits for completion of a specific task to be signaled. It is
4128 * interruptible.
4130 int __sched wait_for_completion_interruptible(struct completion *x)
4132 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4133 if (t == -ERESTARTSYS)
4134 return t;
4135 return 0;
4137 EXPORT_SYMBOL(wait_for_completion_interruptible);
4140 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4141 * @x: holds the state of this particular completion
4142 * @timeout: timeout value in jiffies
4144 * This waits for either a completion of a specific task to be signaled or for a
4145 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4147 unsigned long __sched
4148 wait_for_completion_interruptible_timeout(struct completion *x,
4149 unsigned long timeout)
4151 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4153 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4156 * wait_for_completion_killable: - waits for completion of a task (killable)
4157 * @x: holds the state of this particular completion
4159 * This waits to be signaled for completion of a specific task. It can be
4160 * interrupted by a kill signal.
4162 int __sched wait_for_completion_killable(struct completion *x)
4164 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4165 if (t == -ERESTARTSYS)
4166 return t;
4167 return 0;
4169 EXPORT_SYMBOL(wait_for_completion_killable);
4172 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4173 * @x: holds the state of this particular completion
4174 * @timeout: timeout value in jiffies
4176 * This waits for either a completion of a specific task to be
4177 * signaled or for a specified timeout to expire. It can be
4178 * interrupted by a kill signal. The timeout is in jiffies.
4180 unsigned long __sched
4181 wait_for_completion_killable_timeout(struct completion *x,
4182 unsigned long timeout)
4184 return wait_for_common(x, timeout, TASK_KILLABLE);
4186 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4189 * try_wait_for_completion - try to decrement a completion without blocking
4190 * @x: completion structure
4192 * Returns: 0 if a decrement cannot be done without blocking
4193 * 1 if a decrement succeeded.
4195 * If a completion is being used as a counting completion,
4196 * attempt to decrement the counter without blocking. This
4197 * enables us to avoid waiting if the resource the completion
4198 * is protecting is not available.
4200 bool try_wait_for_completion(struct completion *x)
4202 unsigned long flags;
4203 int ret = 1;
4205 spin_lock_irqsave(&x->wait.lock, flags);
4206 if (!x->done)
4207 ret = 0;
4208 else
4209 x->done--;
4210 spin_unlock_irqrestore(&x->wait.lock, flags);
4211 return ret;
4213 EXPORT_SYMBOL(try_wait_for_completion);
4216 * completion_done - Test to see if a completion has any waiters
4217 * @x: completion structure
4219 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4220 * 1 if there are no waiters.
4223 bool completion_done(struct completion *x)
4225 unsigned long flags;
4226 int ret = 1;
4228 spin_lock_irqsave(&x->wait.lock, flags);
4229 if (!x->done)
4230 ret = 0;
4231 spin_unlock_irqrestore(&x->wait.lock, flags);
4232 return ret;
4234 EXPORT_SYMBOL(completion_done);
4236 static long __sched
4237 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4239 unsigned long flags;
4240 wait_queue_t wait;
4242 init_waitqueue_entry(&wait, current);
4244 __set_current_state(state);
4246 spin_lock_irqsave(&q->lock, flags);
4247 __add_wait_queue(q, &wait);
4248 spin_unlock(&q->lock);
4249 timeout = schedule_timeout(timeout);
4250 spin_lock_irq(&q->lock);
4251 __remove_wait_queue(q, &wait);
4252 spin_unlock_irqrestore(&q->lock, flags);
4254 return timeout;
4257 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4259 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4261 EXPORT_SYMBOL(interruptible_sleep_on);
4263 long __sched
4264 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4266 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4268 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4270 void __sched sleep_on(wait_queue_head_t *q)
4272 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4274 EXPORT_SYMBOL(sleep_on);
4276 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4278 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4280 EXPORT_SYMBOL(sleep_on_timeout);
4282 #ifdef CONFIG_RT_MUTEXES
4285 * rt_mutex_setprio - set the current priority of a task
4286 * @p: task
4287 * @prio: prio value (kernel-internal form)
4289 * This function changes the 'effective' priority of a task. It does
4290 * not touch ->normal_prio like __setscheduler().
4292 * Used by the rt_mutex code to implement priority inheritance logic.
4294 void rt_mutex_setprio(struct task_struct *p, int prio)
4296 unsigned long flags;
4297 int oldprio, on_rq, running;
4298 struct rq *rq;
4299 const struct sched_class *prev_class;
4301 BUG_ON(prio < 0 || prio > MAX_PRIO);
4303 rq = task_rq_lock(p, &flags);
4305 oldprio = p->prio;
4306 prev_class = p->sched_class;
4307 on_rq = p->se.on_rq;
4308 running = task_current(rq, p);
4309 if (on_rq)
4310 dequeue_task(rq, p, 0);
4311 if (running)
4312 p->sched_class->put_prev_task(rq, p);
4314 if (rt_prio(prio))
4315 p->sched_class = &rt_sched_class;
4316 else
4317 p->sched_class = &fair_sched_class;
4319 p->prio = prio;
4321 if (running)
4322 p->sched_class->set_curr_task(rq);
4323 if (on_rq) {
4324 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4326 check_class_changed(rq, p, prev_class, oldprio, running);
4328 task_rq_unlock(rq, &flags);
4331 #endif
4333 void set_user_nice(struct task_struct *p, long nice)
4335 int old_prio, delta, on_rq;
4336 unsigned long flags;
4337 struct rq *rq;
4339 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4340 return;
4342 * We have to be careful, if called from sys_setpriority(),
4343 * the task might be in the middle of scheduling on another CPU.
4345 rq = task_rq_lock(p, &flags);
4347 * The RT priorities are set via sched_setscheduler(), but we still
4348 * allow the 'normal' nice value to be set - but as expected
4349 * it wont have any effect on scheduling until the task is
4350 * SCHED_FIFO/SCHED_RR:
4352 if (task_has_rt_policy(p)) {
4353 p->static_prio = NICE_TO_PRIO(nice);
4354 goto out_unlock;
4356 on_rq = p->se.on_rq;
4357 if (on_rq)
4358 dequeue_task(rq, p, 0);
4360 p->static_prio = NICE_TO_PRIO(nice);
4361 set_load_weight(p);
4362 old_prio = p->prio;
4363 p->prio = effective_prio(p);
4364 delta = p->prio - old_prio;
4366 if (on_rq) {
4367 enqueue_task(rq, p, 0);
4369 * If the task increased its priority or is running and
4370 * lowered its priority, then reschedule its CPU:
4372 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4373 resched_task(rq->curr);
4375 out_unlock:
4376 task_rq_unlock(rq, &flags);
4378 EXPORT_SYMBOL(set_user_nice);
4381 * can_nice - check if a task can reduce its nice value
4382 * @p: task
4383 * @nice: nice value
4385 int can_nice(const struct task_struct *p, const int nice)
4387 /* convert nice value [19,-20] to rlimit style value [1,40] */
4388 int nice_rlim = 20 - nice;
4390 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4391 capable(CAP_SYS_NICE));
4394 #ifdef __ARCH_WANT_SYS_NICE
4397 * sys_nice - change the priority of the current process.
4398 * @increment: priority increment
4400 * sys_setpriority is a more generic, but much slower function that
4401 * does similar things.
4403 SYSCALL_DEFINE1(nice, int, increment)
4405 long nice, retval;
4408 * Setpriority might change our priority at the same moment.
4409 * We don't have to worry. Conceptually one call occurs first
4410 * and we have a single winner.
4412 if (increment < -40)
4413 increment = -40;
4414 if (increment > 40)
4415 increment = 40;
4417 nice = TASK_NICE(current) + increment;
4418 if (nice < -20)
4419 nice = -20;
4420 if (nice > 19)
4421 nice = 19;
4423 if (increment < 0 && !can_nice(current, nice))
4424 return -EPERM;
4426 retval = security_task_setnice(current, nice);
4427 if (retval)
4428 return retval;
4430 set_user_nice(current, nice);
4431 return 0;
4434 #endif
4437 * task_prio - return the priority value of a given task.
4438 * @p: the task in question.
4440 * This is the priority value as seen by users in /proc.
4441 * RT tasks are offset by -200. Normal tasks are centered
4442 * around 0, value goes from -16 to +15.
4444 int task_prio(const struct task_struct *p)
4446 return p->prio - MAX_RT_PRIO;
4450 * task_nice - return the nice value of a given task.
4451 * @p: the task in question.
4453 int task_nice(const struct task_struct *p)
4455 return TASK_NICE(p);
4457 EXPORT_SYMBOL(task_nice);
4460 * idle_cpu - is a given cpu idle currently?
4461 * @cpu: the processor in question.
4463 int idle_cpu(int cpu)
4465 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4469 * idle_task - return the idle task for a given cpu.
4470 * @cpu: the processor in question.
4472 struct task_struct *idle_task(int cpu)
4474 return cpu_rq(cpu)->idle;
4478 * find_process_by_pid - find a process with a matching PID value.
4479 * @pid: the pid in question.
4481 static struct task_struct *find_process_by_pid(pid_t pid)
4483 return pid ? find_task_by_vpid(pid) : current;
4486 /* Actually do priority change: must hold rq lock. */
4487 static void
4488 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4490 BUG_ON(p->se.on_rq);
4492 p->policy = policy;
4493 p->rt_priority = prio;
4494 p->normal_prio = normal_prio(p);
4495 /* we are holding p->pi_lock already */
4496 p->prio = rt_mutex_getprio(p);
4497 if (rt_prio(p->prio))
4498 p->sched_class = &rt_sched_class;
4499 else
4500 p->sched_class = &fair_sched_class;
4501 set_load_weight(p);
4505 * check the target process has a UID that matches the current process's
4507 static bool check_same_owner(struct task_struct *p)
4509 const struct cred *cred = current_cred(), *pcred;
4510 bool match;
4512 rcu_read_lock();
4513 pcred = __task_cred(p);
4514 match = (cred->euid == pcred->euid ||
4515 cred->euid == pcred->uid);
4516 rcu_read_unlock();
4517 return match;
4520 static int __sched_setscheduler(struct task_struct *p, int policy,
4521 struct sched_param *param, bool user)
4523 int retval, oldprio, oldpolicy = -1, on_rq, running;
4524 unsigned long flags;
4525 const struct sched_class *prev_class;
4526 struct rq *rq;
4527 int reset_on_fork;
4529 /* may grab non-irq protected spin_locks */
4530 BUG_ON(in_interrupt());
4531 recheck:
4532 /* double check policy once rq lock held */
4533 if (policy < 0) {
4534 reset_on_fork = p->sched_reset_on_fork;
4535 policy = oldpolicy = p->policy;
4536 } else {
4537 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4538 policy &= ~SCHED_RESET_ON_FORK;
4540 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4541 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4542 policy != SCHED_IDLE)
4543 return -EINVAL;
4547 * Valid priorities for SCHED_FIFO and SCHED_RR are
4548 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4549 * SCHED_BATCH and SCHED_IDLE is 0.
4551 if (param->sched_priority < 0 ||
4552 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4553 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4554 return -EINVAL;
4555 if (rt_policy(policy) != (param->sched_priority != 0))
4556 return -EINVAL;
4559 * Allow unprivileged RT tasks to decrease priority:
4561 if (user && !capable(CAP_SYS_NICE)) {
4562 if (rt_policy(policy)) {
4563 unsigned long rlim_rtprio;
4565 if (!lock_task_sighand(p, &flags))
4566 return -ESRCH;
4567 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4568 unlock_task_sighand(p, &flags);
4570 /* can't set/change the rt policy */
4571 if (policy != p->policy && !rlim_rtprio)
4572 return -EPERM;
4574 /* can't increase priority */
4575 if (param->sched_priority > p->rt_priority &&
4576 param->sched_priority > rlim_rtprio)
4577 return -EPERM;
4580 * Like positive nice levels, dont allow tasks to
4581 * move out of SCHED_IDLE either:
4583 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4584 return -EPERM;
4586 /* can't change other user's priorities */
4587 if (!check_same_owner(p))
4588 return -EPERM;
4590 /* Normal users shall not reset the sched_reset_on_fork flag */
4591 if (p->sched_reset_on_fork && !reset_on_fork)
4592 return -EPERM;
4595 if (user) {
4596 retval = security_task_setscheduler(p, policy, param);
4597 if (retval)
4598 return retval;
4602 * make sure no PI-waiters arrive (or leave) while we are
4603 * changing the priority of the task:
4605 raw_spin_lock_irqsave(&p->pi_lock, flags);
4607 * To be able to change p->policy safely, the apropriate
4608 * runqueue lock must be held.
4610 rq = __task_rq_lock(p);
4612 #ifdef CONFIG_RT_GROUP_SCHED
4613 if (user) {
4615 * Do not allow realtime tasks into groups that have no runtime
4616 * assigned.
4618 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4619 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4620 __task_rq_unlock(rq);
4621 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4622 return -EPERM;
4625 #endif
4627 /* recheck policy now with rq lock held */
4628 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4629 policy = oldpolicy = -1;
4630 __task_rq_unlock(rq);
4631 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4632 goto recheck;
4634 on_rq = p->se.on_rq;
4635 running = task_current(rq, p);
4636 if (on_rq)
4637 deactivate_task(rq, p, 0);
4638 if (running)
4639 p->sched_class->put_prev_task(rq, p);
4641 p->sched_reset_on_fork = reset_on_fork;
4643 oldprio = p->prio;
4644 prev_class = p->sched_class;
4645 __setscheduler(rq, p, policy, param->sched_priority);
4647 if (running)
4648 p->sched_class->set_curr_task(rq);
4649 if (on_rq) {
4650 activate_task(rq, p, 0);
4652 check_class_changed(rq, p, prev_class, oldprio, running);
4654 __task_rq_unlock(rq);
4655 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4657 rt_mutex_adjust_pi(p);
4659 return 0;
4663 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4664 * @p: the task in question.
4665 * @policy: new policy.
4666 * @param: structure containing the new RT priority.
4668 * NOTE that the task may be already dead.
4670 int sched_setscheduler(struct task_struct *p, int policy,
4671 struct sched_param *param)
4673 return __sched_setscheduler(p, policy, param, true);
4675 EXPORT_SYMBOL_GPL(sched_setscheduler);
4678 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4679 * @p: the task in question.
4680 * @policy: new policy.
4681 * @param: structure containing the new RT priority.
4683 * Just like sched_setscheduler, only don't bother checking if the
4684 * current context has permission. For example, this is needed in
4685 * stop_machine(): we create temporary high priority worker threads,
4686 * but our caller might not have that capability.
4688 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4689 struct sched_param *param)
4691 return __sched_setscheduler(p, policy, param, false);
4694 static int
4695 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4697 struct sched_param lparam;
4698 struct task_struct *p;
4699 int retval;
4701 if (!param || pid < 0)
4702 return -EINVAL;
4703 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4704 return -EFAULT;
4706 rcu_read_lock();
4707 retval = -ESRCH;
4708 p = find_process_by_pid(pid);
4709 if (p != NULL)
4710 retval = sched_setscheduler(p, policy, &lparam);
4711 rcu_read_unlock();
4713 return retval;
4717 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4718 * @pid: the pid in question.
4719 * @policy: new policy.
4720 * @param: structure containing the new RT priority.
4722 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4723 struct sched_param __user *, param)
4725 /* negative values for policy are not valid */
4726 if (policy < 0)
4727 return -EINVAL;
4729 return do_sched_setscheduler(pid, policy, param);
4733 * sys_sched_setparam - set/change the RT priority of a thread
4734 * @pid: the pid in question.
4735 * @param: structure containing the new RT priority.
4737 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4739 return do_sched_setscheduler(pid, -1, param);
4743 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4744 * @pid: the pid in question.
4746 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4748 struct task_struct *p;
4749 int retval;
4751 if (pid < 0)
4752 return -EINVAL;
4754 retval = -ESRCH;
4755 rcu_read_lock();
4756 p = find_process_by_pid(pid);
4757 if (p) {
4758 retval = security_task_getscheduler(p);
4759 if (!retval)
4760 retval = p->policy
4761 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4763 rcu_read_unlock();
4764 return retval;
4768 * sys_sched_getparam - get the RT priority of a thread
4769 * @pid: the pid in question.
4770 * @param: structure containing the RT priority.
4772 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4774 struct sched_param lp;
4775 struct task_struct *p;
4776 int retval;
4778 if (!param || pid < 0)
4779 return -EINVAL;
4781 rcu_read_lock();
4782 p = find_process_by_pid(pid);
4783 retval = -ESRCH;
4784 if (!p)
4785 goto out_unlock;
4787 retval = security_task_getscheduler(p);
4788 if (retval)
4789 goto out_unlock;
4791 lp.sched_priority = p->rt_priority;
4792 rcu_read_unlock();
4795 * This one might sleep, we cannot do it with a spinlock held ...
4797 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4799 return retval;
4801 out_unlock:
4802 rcu_read_unlock();
4803 return retval;
4806 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4808 cpumask_var_t cpus_allowed, new_mask;
4809 struct task_struct *p;
4810 int retval;
4812 get_online_cpus();
4813 rcu_read_lock();
4815 p = find_process_by_pid(pid);
4816 if (!p) {
4817 rcu_read_unlock();
4818 put_online_cpus();
4819 return -ESRCH;
4822 /* Prevent p going away */
4823 get_task_struct(p);
4824 rcu_read_unlock();
4826 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4827 retval = -ENOMEM;
4828 goto out_put_task;
4830 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4831 retval = -ENOMEM;
4832 goto out_free_cpus_allowed;
4834 retval = -EPERM;
4835 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4836 goto out_unlock;
4838 retval = security_task_setscheduler(p, 0, NULL);
4839 if (retval)
4840 goto out_unlock;
4842 cpuset_cpus_allowed(p, cpus_allowed);
4843 cpumask_and(new_mask, in_mask, cpus_allowed);
4844 again:
4845 retval = set_cpus_allowed_ptr(p, new_mask);
4847 if (!retval) {
4848 cpuset_cpus_allowed(p, cpus_allowed);
4849 if (!cpumask_subset(new_mask, cpus_allowed)) {
4851 * We must have raced with a concurrent cpuset
4852 * update. Just reset the cpus_allowed to the
4853 * cpuset's cpus_allowed
4855 cpumask_copy(new_mask, cpus_allowed);
4856 goto again;
4859 out_unlock:
4860 free_cpumask_var(new_mask);
4861 out_free_cpus_allowed:
4862 free_cpumask_var(cpus_allowed);
4863 out_put_task:
4864 put_task_struct(p);
4865 put_online_cpus();
4866 return retval;
4869 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4870 struct cpumask *new_mask)
4872 if (len < cpumask_size())
4873 cpumask_clear(new_mask);
4874 else if (len > cpumask_size())
4875 len = cpumask_size();
4877 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4881 * sys_sched_setaffinity - set the cpu affinity of a process
4882 * @pid: pid of the process
4883 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4884 * @user_mask_ptr: user-space pointer to the new cpu mask
4886 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4887 unsigned long __user *, user_mask_ptr)
4889 cpumask_var_t new_mask;
4890 int retval;
4892 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4893 return -ENOMEM;
4895 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4896 if (retval == 0)
4897 retval = sched_setaffinity(pid, new_mask);
4898 free_cpumask_var(new_mask);
4899 return retval;
4902 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4904 struct task_struct *p;
4905 unsigned long flags;
4906 struct rq *rq;
4907 int retval;
4909 get_online_cpus();
4910 rcu_read_lock();
4912 retval = -ESRCH;
4913 p = find_process_by_pid(pid);
4914 if (!p)
4915 goto out_unlock;
4917 retval = security_task_getscheduler(p);
4918 if (retval)
4919 goto out_unlock;
4921 rq = task_rq_lock(p, &flags);
4922 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4923 task_rq_unlock(rq, &flags);
4925 out_unlock:
4926 rcu_read_unlock();
4927 put_online_cpus();
4929 return retval;
4933 * sys_sched_getaffinity - get the cpu affinity of a process
4934 * @pid: pid of the process
4935 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4936 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4938 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4939 unsigned long __user *, user_mask_ptr)
4941 int ret;
4942 cpumask_var_t mask;
4944 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4945 return -EINVAL;
4946 if (len & (sizeof(unsigned long)-1))
4947 return -EINVAL;
4949 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4950 return -ENOMEM;
4952 ret = sched_getaffinity(pid, mask);
4953 if (ret == 0) {
4954 size_t retlen = min_t(size_t, len, cpumask_size());
4956 if (copy_to_user(user_mask_ptr, mask, retlen))
4957 ret = -EFAULT;
4958 else
4959 ret = retlen;
4961 free_cpumask_var(mask);
4963 return ret;
4967 * sys_sched_yield - yield the current processor to other threads.
4969 * This function yields the current CPU to other tasks. If there are no
4970 * other threads running on this CPU then this function will return.
4972 SYSCALL_DEFINE0(sched_yield)
4974 struct rq *rq = this_rq_lock();
4976 schedstat_inc(rq, yld_count);
4977 current->sched_class->yield_task(rq);
4980 * Since we are going to call schedule() anyway, there's
4981 * no need to preempt or enable interrupts:
4983 __release(rq->lock);
4984 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4985 do_raw_spin_unlock(&rq->lock);
4986 preempt_enable_no_resched();
4988 schedule();
4990 return 0;
4993 static inline int should_resched(void)
4995 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4998 static void __cond_resched(void)
5000 add_preempt_count(PREEMPT_ACTIVE);
5001 schedule();
5002 sub_preempt_count(PREEMPT_ACTIVE);
5005 int __sched _cond_resched(void)
5007 if (should_resched()) {
5008 __cond_resched();
5009 return 1;
5011 return 0;
5013 EXPORT_SYMBOL(_cond_resched);
5016 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5017 * call schedule, and on return reacquire the lock.
5019 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5020 * operations here to prevent schedule() from being called twice (once via
5021 * spin_unlock(), once by hand).
5023 int __cond_resched_lock(spinlock_t *lock)
5025 int resched = should_resched();
5026 int ret = 0;
5028 lockdep_assert_held(lock);
5030 if (spin_needbreak(lock) || resched) {
5031 spin_unlock(lock);
5032 if (resched)
5033 __cond_resched();
5034 else
5035 cpu_relax();
5036 ret = 1;
5037 spin_lock(lock);
5039 return ret;
5041 EXPORT_SYMBOL(__cond_resched_lock);
5043 int __sched __cond_resched_softirq(void)
5045 BUG_ON(!in_softirq());
5047 if (should_resched()) {
5048 local_bh_enable();
5049 __cond_resched();
5050 local_bh_disable();
5051 return 1;
5053 return 0;
5055 EXPORT_SYMBOL(__cond_resched_softirq);
5058 * yield - yield the current processor to other threads.
5060 * This is a shortcut for kernel-space yielding - it marks the
5061 * thread runnable and calls sys_sched_yield().
5063 void __sched yield(void)
5065 set_current_state(TASK_RUNNING);
5066 sys_sched_yield();
5068 EXPORT_SYMBOL(yield);
5071 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5072 * that process accounting knows that this is a task in IO wait state.
5074 void __sched io_schedule(void)
5076 struct rq *rq = raw_rq();
5078 delayacct_blkio_start();
5079 atomic_inc(&rq->nr_iowait);
5080 current->in_iowait = 1;
5081 schedule();
5082 current->in_iowait = 0;
5083 atomic_dec(&rq->nr_iowait);
5084 delayacct_blkio_end();
5086 EXPORT_SYMBOL(io_schedule);
5088 long __sched io_schedule_timeout(long timeout)
5090 struct rq *rq = raw_rq();
5091 long ret;
5093 delayacct_blkio_start();
5094 atomic_inc(&rq->nr_iowait);
5095 current->in_iowait = 1;
5096 ret = schedule_timeout(timeout);
5097 current->in_iowait = 0;
5098 atomic_dec(&rq->nr_iowait);
5099 delayacct_blkio_end();
5100 return ret;
5104 * sys_sched_get_priority_max - return maximum RT priority.
5105 * @policy: scheduling class.
5107 * this syscall returns the maximum rt_priority that can be used
5108 * by a given scheduling class.
5110 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5112 int ret = -EINVAL;
5114 switch (policy) {
5115 case SCHED_FIFO:
5116 case SCHED_RR:
5117 ret = MAX_USER_RT_PRIO-1;
5118 break;
5119 case SCHED_NORMAL:
5120 case SCHED_BATCH:
5121 case SCHED_IDLE:
5122 ret = 0;
5123 break;
5125 return ret;
5129 * sys_sched_get_priority_min - return minimum RT priority.
5130 * @policy: scheduling class.
5132 * this syscall returns the minimum rt_priority that can be used
5133 * by a given scheduling class.
5135 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5137 int ret = -EINVAL;
5139 switch (policy) {
5140 case SCHED_FIFO:
5141 case SCHED_RR:
5142 ret = 1;
5143 break;
5144 case SCHED_NORMAL:
5145 case SCHED_BATCH:
5146 case SCHED_IDLE:
5147 ret = 0;
5149 return ret;
5153 * sys_sched_rr_get_interval - return the default timeslice of a process.
5154 * @pid: pid of the process.
5155 * @interval: userspace pointer to the timeslice value.
5157 * this syscall writes the default timeslice value of a given process
5158 * into the user-space timespec buffer. A value of '0' means infinity.
5160 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5161 struct timespec __user *, interval)
5163 struct task_struct *p;
5164 unsigned int time_slice;
5165 unsigned long flags;
5166 struct rq *rq;
5167 int retval;
5168 struct timespec t;
5170 if (pid < 0)
5171 return -EINVAL;
5173 retval = -ESRCH;
5174 rcu_read_lock();
5175 p = find_process_by_pid(pid);
5176 if (!p)
5177 goto out_unlock;
5179 retval = security_task_getscheduler(p);
5180 if (retval)
5181 goto out_unlock;
5183 rq = task_rq_lock(p, &flags);
5184 time_slice = p->sched_class->get_rr_interval(rq, p);
5185 task_rq_unlock(rq, &flags);
5187 rcu_read_unlock();
5188 jiffies_to_timespec(time_slice, &t);
5189 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5190 return retval;
5192 out_unlock:
5193 rcu_read_unlock();
5194 return retval;
5197 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5199 void sched_show_task(struct task_struct *p)
5201 unsigned long free = 0;
5202 unsigned state;
5204 state = p->state ? __ffs(p->state) + 1 : 0;
5205 printk(KERN_INFO "%-13.13s %c", p->comm,
5206 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5207 #if BITS_PER_LONG == 32
5208 if (state == TASK_RUNNING)
5209 printk(KERN_CONT " running ");
5210 else
5211 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5212 #else
5213 if (state == TASK_RUNNING)
5214 printk(KERN_CONT " running task ");
5215 else
5216 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5217 #endif
5218 #ifdef CONFIG_DEBUG_STACK_USAGE
5219 free = stack_not_used(p);
5220 #endif
5221 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5222 task_pid_nr(p), task_pid_nr(p->real_parent),
5223 (unsigned long)task_thread_info(p)->flags);
5225 show_stack(p, NULL);
5228 void show_state_filter(unsigned long state_filter)
5230 struct task_struct *g, *p;
5232 #if BITS_PER_LONG == 32
5233 printk(KERN_INFO
5234 " task PC stack pid father\n");
5235 #else
5236 printk(KERN_INFO
5237 " task PC stack pid father\n");
5238 #endif
5239 read_lock(&tasklist_lock);
5240 do_each_thread(g, p) {
5242 * reset the NMI-timeout, listing all files on a slow
5243 * console might take alot of time:
5245 touch_nmi_watchdog();
5246 if (!state_filter || (p->state & state_filter))
5247 sched_show_task(p);
5248 } while_each_thread(g, p);
5250 touch_all_softlockup_watchdogs();
5252 #ifdef CONFIG_SCHED_DEBUG
5253 sysrq_sched_debug_show();
5254 #endif
5255 read_unlock(&tasklist_lock);
5257 * Only show locks if all tasks are dumped:
5259 if (!state_filter)
5260 debug_show_all_locks();
5263 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5265 idle->sched_class = &idle_sched_class;
5269 * init_idle - set up an idle thread for a given CPU
5270 * @idle: task in question
5271 * @cpu: cpu the idle task belongs to
5273 * NOTE: this function does not set the idle thread's NEED_RESCHED
5274 * flag, to make booting more robust.
5276 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5278 struct rq *rq = cpu_rq(cpu);
5279 unsigned long flags;
5281 raw_spin_lock_irqsave(&rq->lock, flags);
5283 __sched_fork(idle);
5284 idle->state = TASK_RUNNING;
5285 idle->se.exec_start = sched_clock();
5287 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5289 * We're having a chicken and egg problem, even though we are
5290 * holding rq->lock, the cpu isn't yet set to this cpu so the
5291 * lockdep check in task_group() will fail.
5293 * Similar case to sched_fork(). / Alternatively we could
5294 * use task_rq_lock() here and obtain the other rq->lock.
5296 * Silence PROVE_RCU
5298 rcu_read_lock();
5299 __set_task_cpu(idle, cpu);
5300 rcu_read_unlock();
5302 rq->curr = rq->idle = idle;
5303 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5304 idle->oncpu = 1;
5305 #endif
5306 raw_spin_unlock_irqrestore(&rq->lock, flags);
5308 /* Set the preempt count _outside_ the spinlocks! */
5309 #if defined(CONFIG_PREEMPT)
5310 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5311 #else
5312 task_thread_info(idle)->preempt_count = 0;
5313 #endif
5315 * The idle tasks have their own, simple scheduling class:
5317 idle->sched_class = &idle_sched_class;
5318 ftrace_graph_init_task(idle);
5322 * In a system that switches off the HZ timer nohz_cpu_mask
5323 * indicates which cpus entered this state. This is used
5324 * in the rcu update to wait only for active cpus. For system
5325 * which do not switch off the HZ timer nohz_cpu_mask should
5326 * always be CPU_BITS_NONE.
5328 cpumask_var_t nohz_cpu_mask;
5331 * Increase the granularity value when there are more CPUs,
5332 * because with more CPUs the 'effective latency' as visible
5333 * to users decreases. But the relationship is not linear,
5334 * so pick a second-best guess by going with the log2 of the
5335 * number of CPUs.
5337 * This idea comes from the SD scheduler of Con Kolivas:
5339 static int get_update_sysctl_factor(void)
5341 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5342 unsigned int factor;
5344 switch (sysctl_sched_tunable_scaling) {
5345 case SCHED_TUNABLESCALING_NONE:
5346 factor = 1;
5347 break;
5348 case SCHED_TUNABLESCALING_LINEAR:
5349 factor = cpus;
5350 break;
5351 case SCHED_TUNABLESCALING_LOG:
5352 default:
5353 factor = 1 + ilog2(cpus);
5354 break;
5357 return factor;
5360 static void update_sysctl(void)
5362 unsigned int factor = get_update_sysctl_factor();
5364 #define SET_SYSCTL(name) \
5365 (sysctl_##name = (factor) * normalized_sysctl_##name)
5366 SET_SYSCTL(sched_min_granularity);
5367 SET_SYSCTL(sched_latency);
5368 SET_SYSCTL(sched_wakeup_granularity);
5369 SET_SYSCTL(sched_shares_ratelimit);
5370 #undef SET_SYSCTL
5373 static inline void sched_init_granularity(void)
5375 update_sysctl();
5378 #ifdef CONFIG_SMP
5380 * This is how migration works:
5382 * 1) we invoke migration_cpu_stop() on the target CPU using
5383 * stop_one_cpu().
5384 * 2) stopper starts to run (implicitly forcing the migrated thread
5385 * off the CPU)
5386 * 3) it checks whether the migrated task is still in the wrong runqueue.
5387 * 4) if it's in the wrong runqueue then the migration thread removes
5388 * it and puts it into the right queue.
5389 * 5) stopper completes and stop_one_cpu() returns and the migration
5390 * is done.
5394 * Change a given task's CPU affinity. Migrate the thread to a
5395 * proper CPU and schedule it away if the CPU it's executing on
5396 * is removed from the allowed bitmask.
5398 * NOTE: the caller must have a valid reference to the task, the
5399 * task must not exit() & deallocate itself prematurely. The
5400 * call is not atomic; no spinlocks may be held.
5402 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5404 unsigned long flags;
5405 struct rq *rq;
5406 unsigned int dest_cpu;
5407 int ret = 0;
5410 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5411 * drop the rq->lock and still rely on ->cpus_allowed.
5413 again:
5414 while (task_is_waking(p))
5415 cpu_relax();
5416 rq = task_rq_lock(p, &flags);
5417 if (task_is_waking(p)) {
5418 task_rq_unlock(rq, &flags);
5419 goto again;
5422 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5423 ret = -EINVAL;
5424 goto out;
5427 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5428 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5429 ret = -EINVAL;
5430 goto out;
5433 if (p->sched_class->set_cpus_allowed)
5434 p->sched_class->set_cpus_allowed(p, new_mask);
5435 else {
5436 cpumask_copy(&p->cpus_allowed, new_mask);
5437 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5440 /* Can the task run on the task's current CPU? If so, we're done */
5441 if (cpumask_test_cpu(task_cpu(p), new_mask))
5442 goto out;
5444 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5445 if (migrate_task(p, dest_cpu)) {
5446 struct migration_arg arg = { p, dest_cpu };
5447 /* Need help from migration thread: drop lock and wait. */
5448 task_rq_unlock(rq, &flags);
5449 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5450 tlb_migrate_finish(p->mm);
5451 return 0;
5453 out:
5454 task_rq_unlock(rq, &flags);
5456 return ret;
5458 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5461 * Move (not current) task off this cpu, onto dest cpu. We're doing
5462 * this because either it can't run here any more (set_cpus_allowed()
5463 * away from this CPU, or CPU going down), or because we're
5464 * attempting to rebalance this task on exec (sched_exec).
5466 * So we race with normal scheduler movements, but that's OK, as long
5467 * as the task is no longer on this CPU.
5469 * Returns non-zero if task was successfully migrated.
5471 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5473 struct rq *rq_dest, *rq_src;
5474 int ret = 0;
5476 if (unlikely(!cpu_active(dest_cpu)))
5477 return ret;
5479 rq_src = cpu_rq(src_cpu);
5480 rq_dest = cpu_rq(dest_cpu);
5482 double_rq_lock(rq_src, rq_dest);
5483 /* Already moved. */
5484 if (task_cpu(p) != src_cpu)
5485 goto done;
5486 /* Affinity changed (again). */
5487 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5488 goto fail;
5491 * If we're not on a rq, the next wake-up will ensure we're
5492 * placed properly.
5494 if (p->se.on_rq) {
5495 deactivate_task(rq_src, p, 0);
5496 set_task_cpu(p, dest_cpu);
5497 activate_task(rq_dest, p, 0);
5498 check_preempt_curr(rq_dest, p, 0);
5500 done:
5501 ret = 1;
5502 fail:
5503 double_rq_unlock(rq_src, rq_dest);
5504 return ret;
5508 * migration_cpu_stop - this will be executed by a highprio stopper thread
5509 * and performs thread migration by bumping thread off CPU then
5510 * 'pushing' onto another runqueue.
5512 static int migration_cpu_stop(void *data)
5514 struct migration_arg *arg = data;
5517 * The original target cpu might have gone down and we might
5518 * be on another cpu but it doesn't matter.
5520 local_irq_disable();
5521 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5522 local_irq_enable();
5523 return 0;
5526 #ifdef CONFIG_HOTPLUG_CPU
5528 * Figure out where task on dead CPU should go, use force if necessary.
5530 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5532 struct rq *rq = cpu_rq(dead_cpu);
5533 int needs_cpu, uninitialized_var(dest_cpu);
5534 unsigned long flags;
5536 local_irq_save(flags);
5538 raw_spin_lock(&rq->lock);
5539 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5540 if (needs_cpu)
5541 dest_cpu = select_fallback_rq(dead_cpu, p);
5542 raw_spin_unlock(&rq->lock);
5544 * It can only fail if we race with set_cpus_allowed(),
5545 * in the racer should migrate the task anyway.
5547 if (needs_cpu)
5548 __migrate_task(p, dead_cpu, dest_cpu);
5549 local_irq_restore(flags);
5553 * While a dead CPU has no uninterruptible tasks queued at this point,
5554 * it might still have a nonzero ->nr_uninterruptible counter, because
5555 * for performance reasons the counter is not stricly tracking tasks to
5556 * their home CPUs. So we just add the counter to another CPU's counter,
5557 * to keep the global sum constant after CPU-down:
5559 static void migrate_nr_uninterruptible(struct rq *rq_src)
5561 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5562 unsigned long flags;
5564 local_irq_save(flags);
5565 double_rq_lock(rq_src, rq_dest);
5566 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5567 rq_src->nr_uninterruptible = 0;
5568 double_rq_unlock(rq_src, rq_dest);
5569 local_irq_restore(flags);
5572 /* Run through task list and migrate tasks from the dead cpu. */
5573 static void migrate_live_tasks(int src_cpu)
5575 struct task_struct *p, *t;
5577 read_lock(&tasklist_lock);
5579 do_each_thread(t, p) {
5580 if (p == current)
5581 continue;
5583 if (task_cpu(p) == src_cpu)
5584 move_task_off_dead_cpu(src_cpu, p);
5585 } while_each_thread(t, p);
5587 read_unlock(&tasklist_lock);
5591 * Schedules idle task to be the next runnable task on current CPU.
5592 * It does so by boosting its priority to highest possible.
5593 * Used by CPU offline code.
5595 void sched_idle_next(void)
5597 int this_cpu = smp_processor_id();
5598 struct rq *rq = cpu_rq(this_cpu);
5599 struct task_struct *p = rq->idle;
5600 unsigned long flags;
5602 /* cpu has to be offline */
5603 BUG_ON(cpu_online(this_cpu));
5606 * Strictly not necessary since rest of the CPUs are stopped by now
5607 * and interrupts disabled on the current cpu.
5609 raw_spin_lock_irqsave(&rq->lock, flags);
5611 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5613 activate_task(rq, p, 0);
5615 raw_spin_unlock_irqrestore(&rq->lock, flags);
5619 * Ensures that the idle task is using init_mm right before its cpu goes
5620 * offline.
5622 void idle_task_exit(void)
5624 struct mm_struct *mm = current->active_mm;
5626 BUG_ON(cpu_online(smp_processor_id()));
5628 if (mm != &init_mm)
5629 switch_mm(mm, &init_mm, current);
5630 mmdrop(mm);
5633 /* called under rq->lock with disabled interrupts */
5634 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5636 struct rq *rq = cpu_rq(dead_cpu);
5638 /* Must be exiting, otherwise would be on tasklist. */
5639 BUG_ON(!p->exit_state);
5641 /* Cannot have done final schedule yet: would have vanished. */
5642 BUG_ON(p->state == TASK_DEAD);
5644 get_task_struct(p);
5647 * Drop lock around migration; if someone else moves it,
5648 * that's OK. No task can be added to this CPU, so iteration is
5649 * fine.
5651 raw_spin_unlock_irq(&rq->lock);
5652 move_task_off_dead_cpu(dead_cpu, p);
5653 raw_spin_lock_irq(&rq->lock);
5655 put_task_struct(p);
5658 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5659 static void migrate_dead_tasks(unsigned int dead_cpu)
5661 struct rq *rq = cpu_rq(dead_cpu);
5662 struct task_struct *next;
5664 for ( ; ; ) {
5665 if (!rq->nr_running)
5666 break;
5667 next = pick_next_task(rq);
5668 if (!next)
5669 break;
5670 next->sched_class->put_prev_task(rq, next);
5671 migrate_dead(dead_cpu, next);
5677 * remove the tasks which were accounted by rq from calc_load_tasks.
5679 static void calc_global_load_remove(struct rq *rq)
5681 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5682 rq->calc_load_active = 0;
5684 #endif /* CONFIG_HOTPLUG_CPU */
5686 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5688 static struct ctl_table sd_ctl_dir[] = {
5690 .procname = "sched_domain",
5691 .mode = 0555,
5696 static struct ctl_table sd_ctl_root[] = {
5698 .procname = "kernel",
5699 .mode = 0555,
5700 .child = sd_ctl_dir,
5705 static struct ctl_table *sd_alloc_ctl_entry(int n)
5707 struct ctl_table *entry =
5708 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5710 return entry;
5713 static void sd_free_ctl_entry(struct ctl_table **tablep)
5715 struct ctl_table *entry;
5718 * In the intermediate directories, both the child directory and
5719 * procname are dynamically allocated and could fail but the mode
5720 * will always be set. In the lowest directory the names are
5721 * static strings and all have proc handlers.
5723 for (entry = *tablep; entry->mode; entry++) {
5724 if (entry->child)
5725 sd_free_ctl_entry(&entry->child);
5726 if (entry->proc_handler == NULL)
5727 kfree(entry->procname);
5730 kfree(*tablep);
5731 *tablep = NULL;
5734 static void
5735 set_table_entry(struct ctl_table *entry,
5736 const char *procname, void *data, int maxlen,
5737 mode_t mode, proc_handler *proc_handler)
5739 entry->procname = procname;
5740 entry->data = data;
5741 entry->maxlen = maxlen;
5742 entry->mode = mode;
5743 entry->proc_handler = proc_handler;
5746 static struct ctl_table *
5747 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5749 struct ctl_table *table = sd_alloc_ctl_entry(13);
5751 if (table == NULL)
5752 return NULL;
5754 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5755 sizeof(long), 0644, proc_doulongvec_minmax);
5756 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5757 sizeof(long), 0644, proc_doulongvec_minmax);
5758 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5759 sizeof(int), 0644, proc_dointvec_minmax);
5760 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5761 sizeof(int), 0644, proc_dointvec_minmax);
5762 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5763 sizeof(int), 0644, proc_dointvec_minmax);
5764 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5765 sizeof(int), 0644, proc_dointvec_minmax);
5766 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5767 sizeof(int), 0644, proc_dointvec_minmax);
5768 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5769 sizeof(int), 0644, proc_dointvec_minmax);
5770 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5771 sizeof(int), 0644, proc_dointvec_minmax);
5772 set_table_entry(&table[9], "cache_nice_tries",
5773 &sd->cache_nice_tries,
5774 sizeof(int), 0644, proc_dointvec_minmax);
5775 set_table_entry(&table[10], "flags", &sd->flags,
5776 sizeof(int), 0644, proc_dointvec_minmax);
5777 set_table_entry(&table[11], "name", sd->name,
5778 CORENAME_MAX_SIZE, 0444, proc_dostring);
5779 /* &table[12] is terminator */
5781 return table;
5784 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5786 struct ctl_table *entry, *table;
5787 struct sched_domain *sd;
5788 int domain_num = 0, i;
5789 char buf[32];
5791 for_each_domain(cpu, sd)
5792 domain_num++;
5793 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5794 if (table == NULL)
5795 return NULL;
5797 i = 0;
5798 for_each_domain(cpu, sd) {
5799 snprintf(buf, 32, "domain%d", i);
5800 entry->procname = kstrdup(buf, GFP_KERNEL);
5801 entry->mode = 0555;
5802 entry->child = sd_alloc_ctl_domain_table(sd);
5803 entry++;
5804 i++;
5806 return table;
5809 static struct ctl_table_header *sd_sysctl_header;
5810 static void register_sched_domain_sysctl(void)
5812 int i, cpu_num = num_possible_cpus();
5813 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5814 char buf[32];
5816 WARN_ON(sd_ctl_dir[0].child);
5817 sd_ctl_dir[0].child = entry;
5819 if (entry == NULL)
5820 return;
5822 for_each_possible_cpu(i) {
5823 snprintf(buf, 32, "cpu%d", i);
5824 entry->procname = kstrdup(buf, GFP_KERNEL);
5825 entry->mode = 0555;
5826 entry->child = sd_alloc_ctl_cpu_table(i);
5827 entry++;
5830 WARN_ON(sd_sysctl_header);
5831 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5834 /* may be called multiple times per register */
5835 static void unregister_sched_domain_sysctl(void)
5837 if (sd_sysctl_header)
5838 unregister_sysctl_table(sd_sysctl_header);
5839 sd_sysctl_header = NULL;
5840 if (sd_ctl_dir[0].child)
5841 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5843 #else
5844 static void register_sched_domain_sysctl(void)
5847 static void unregister_sched_domain_sysctl(void)
5850 #endif
5852 static void set_rq_online(struct rq *rq)
5854 if (!rq->online) {
5855 const struct sched_class *class;
5857 cpumask_set_cpu(rq->cpu, rq->rd->online);
5858 rq->online = 1;
5860 for_each_class(class) {
5861 if (class->rq_online)
5862 class->rq_online(rq);
5867 static void set_rq_offline(struct rq *rq)
5869 if (rq->online) {
5870 const struct sched_class *class;
5872 for_each_class(class) {
5873 if (class->rq_offline)
5874 class->rq_offline(rq);
5877 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5878 rq->online = 0;
5883 * migration_call - callback that gets triggered when a CPU is added.
5884 * Here we can start up the necessary migration thread for the new CPU.
5886 static int __cpuinit
5887 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5889 int cpu = (long)hcpu;
5890 unsigned long flags;
5891 struct rq *rq = cpu_rq(cpu);
5893 switch (action) {
5895 case CPU_UP_PREPARE:
5896 case CPU_UP_PREPARE_FROZEN:
5897 rq->calc_load_update = calc_load_update;
5898 break;
5900 case CPU_ONLINE:
5901 case CPU_ONLINE_FROZEN:
5902 /* Update our root-domain */
5903 raw_spin_lock_irqsave(&rq->lock, flags);
5904 if (rq->rd) {
5905 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5907 set_rq_online(rq);
5909 raw_spin_unlock_irqrestore(&rq->lock, flags);
5910 break;
5912 #ifdef CONFIG_HOTPLUG_CPU
5913 case CPU_DEAD:
5914 case CPU_DEAD_FROZEN:
5915 migrate_live_tasks(cpu);
5916 /* Idle task back to normal (off runqueue, low prio) */
5917 raw_spin_lock_irq(&rq->lock);
5918 deactivate_task(rq, rq->idle, 0);
5919 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5920 rq->idle->sched_class = &idle_sched_class;
5921 migrate_dead_tasks(cpu);
5922 raw_spin_unlock_irq(&rq->lock);
5923 migrate_nr_uninterruptible(rq);
5924 BUG_ON(rq->nr_running != 0);
5925 calc_global_load_remove(rq);
5926 break;
5928 case CPU_DYING:
5929 case CPU_DYING_FROZEN:
5930 /* Update our root-domain */
5931 raw_spin_lock_irqsave(&rq->lock, flags);
5932 if (rq->rd) {
5933 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5934 set_rq_offline(rq);
5936 raw_spin_unlock_irqrestore(&rq->lock, flags);
5937 break;
5938 #endif
5940 return NOTIFY_OK;
5944 * Register at high priority so that task migration (migrate_all_tasks)
5945 * happens before everything else. This has to be lower priority than
5946 * the notifier in the perf_event subsystem, though.
5948 static struct notifier_block __cpuinitdata migration_notifier = {
5949 .notifier_call = migration_call,
5950 .priority = 10
5953 static int __init migration_init(void)
5955 void *cpu = (void *)(long)smp_processor_id();
5956 int err;
5958 /* Start one for the boot CPU: */
5959 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5960 BUG_ON(err == NOTIFY_BAD);
5961 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5962 register_cpu_notifier(&migration_notifier);
5964 return 0;
5966 early_initcall(migration_init);
5967 #endif
5969 #ifdef CONFIG_SMP
5971 #ifdef CONFIG_SCHED_DEBUG
5973 static __read_mostly int sched_domain_debug_enabled;
5975 static int __init sched_domain_debug_setup(char *str)
5977 sched_domain_debug_enabled = 1;
5979 return 0;
5981 early_param("sched_debug", sched_domain_debug_setup);
5983 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5984 struct cpumask *groupmask)
5986 struct sched_group *group = sd->groups;
5987 char str[256];
5989 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5990 cpumask_clear(groupmask);
5992 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5994 if (!(sd->flags & SD_LOAD_BALANCE)) {
5995 printk("does not load-balance\n");
5996 if (sd->parent)
5997 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5998 " has parent");
5999 return -1;
6002 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6004 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6005 printk(KERN_ERR "ERROR: domain->span does not contain "
6006 "CPU%d\n", cpu);
6008 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6009 printk(KERN_ERR "ERROR: domain->groups does not contain"
6010 " CPU%d\n", cpu);
6013 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6014 do {
6015 if (!group) {
6016 printk("\n");
6017 printk(KERN_ERR "ERROR: group is NULL\n");
6018 break;
6021 if (!group->cpu_power) {
6022 printk(KERN_CONT "\n");
6023 printk(KERN_ERR "ERROR: domain->cpu_power not "
6024 "set\n");
6025 break;
6028 if (!cpumask_weight(sched_group_cpus(group))) {
6029 printk(KERN_CONT "\n");
6030 printk(KERN_ERR "ERROR: empty group\n");
6031 break;
6034 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6035 printk(KERN_CONT "\n");
6036 printk(KERN_ERR "ERROR: repeated CPUs\n");
6037 break;
6040 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6042 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6044 printk(KERN_CONT " %s", str);
6045 if (group->cpu_power != SCHED_LOAD_SCALE) {
6046 printk(KERN_CONT " (cpu_power = %d)",
6047 group->cpu_power);
6050 group = group->next;
6051 } while (group != sd->groups);
6052 printk(KERN_CONT "\n");
6054 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6055 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6057 if (sd->parent &&
6058 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6059 printk(KERN_ERR "ERROR: parent span is not a superset "
6060 "of domain->span\n");
6061 return 0;
6064 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6066 cpumask_var_t groupmask;
6067 int level = 0;
6069 if (!sched_domain_debug_enabled)
6070 return;
6072 if (!sd) {
6073 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6074 return;
6077 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6079 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6080 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6081 return;
6084 for (;;) {
6085 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6086 break;
6087 level++;
6088 sd = sd->parent;
6089 if (!sd)
6090 break;
6092 free_cpumask_var(groupmask);
6094 #else /* !CONFIG_SCHED_DEBUG */
6095 # define sched_domain_debug(sd, cpu) do { } while (0)
6096 #endif /* CONFIG_SCHED_DEBUG */
6098 static int sd_degenerate(struct sched_domain *sd)
6100 if (cpumask_weight(sched_domain_span(sd)) == 1)
6101 return 1;
6103 /* Following flags need at least 2 groups */
6104 if (sd->flags & (SD_LOAD_BALANCE |
6105 SD_BALANCE_NEWIDLE |
6106 SD_BALANCE_FORK |
6107 SD_BALANCE_EXEC |
6108 SD_SHARE_CPUPOWER |
6109 SD_SHARE_PKG_RESOURCES)) {
6110 if (sd->groups != sd->groups->next)
6111 return 0;
6114 /* Following flags don't use groups */
6115 if (sd->flags & (SD_WAKE_AFFINE))
6116 return 0;
6118 return 1;
6121 static int
6122 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6124 unsigned long cflags = sd->flags, pflags = parent->flags;
6126 if (sd_degenerate(parent))
6127 return 1;
6129 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6130 return 0;
6132 /* Flags needing groups don't count if only 1 group in parent */
6133 if (parent->groups == parent->groups->next) {
6134 pflags &= ~(SD_LOAD_BALANCE |
6135 SD_BALANCE_NEWIDLE |
6136 SD_BALANCE_FORK |
6137 SD_BALANCE_EXEC |
6138 SD_SHARE_CPUPOWER |
6139 SD_SHARE_PKG_RESOURCES);
6140 if (nr_node_ids == 1)
6141 pflags &= ~SD_SERIALIZE;
6143 if (~cflags & pflags)
6144 return 0;
6146 return 1;
6149 static void free_rootdomain(struct root_domain *rd)
6151 synchronize_sched();
6153 cpupri_cleanup(&rd->cpupri);
6155 free_cpumask_var(rd->rto_mask);
6156 free_cpumask_var(rd->online);
6157 free_cpumask_var(rd->span);
6158 kfree(rd);
6161 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6163 struct root_domain *old_rd = NULL;
6164 unsigned long flags;
6166 raw_spin_lock_irqsave(&rq->lock, flags);
6168 if (rq->rd) {
6169 old_rd = rq->rd;
6171 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6172 set_rq_offline(rq);
6174 cpumask_clear_cpu(rq->cpu, old_rd->span);
6177 * If we dont want to free the old_rt yet then
6178 * set old_rd to NULL to skip the freeing later
6179 * in this function:
6181 if (!atomic_dec_and_test(&old_rd->refcount))
6182 old_rd = NULL;
6185 atomic_inc(&rd->refcount);
6186 rq->rd = rd;
6188 cpumask_set_cpu(rq->cpu, rd->span);
6189 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6190 set_rq_online(rq);
6192 raw_spin_unlock_irqrestore(&rq->lock, flags);
6194 if (old_rd)
6195 free_rootdomain(old_rd);
6198 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6200 gfp_t gfp = GFP_KERNEL;
6202 memset(rd, 0, sizeof(*rd));
6204 if (bootmem)
6205 gfp = GFP_NOWAIT;
6207 if (!alloc_cpumask_var(&rd->span, gfp))
6208 goto out;
6209 if (!alloc_cpumask_var(&rd->online, gfp))
6210 goto free_span;
6211 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6212 goto free_online;
6214 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6215 goto free_rto_mask;
6216 return 0;
6218 free_rto_mask:
6219 free_cpumask_var(rd->rto_mask);
6220 free_online:
6221 free_cpumask_var(rd->online);
6222 free_span:
6223 free_cpumask_var(rd->span);
6224 out:
6225 return -ENOMEM;
6228 static void init_defrootdomain(void)
6230 init_rootdomain(&def_root_domain, true);
6232 atomic_set(&def_root_domain.refcount, 1);
6235 static struct root_domain *alloc_rootdomain(void)
6237 struct root_domain *rd;
6239 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6240 if (!rd)
6241 return NULL;
6243 if (init_rootdomain(rd, false) != 0) {
6244 kfree(rd);
6245 return NULL;
6248 return rd;
6252 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6253 * hold the hotplug lock.
6255 static void
6256 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6258 struct rq *rq = cpu_rq(cpu);
6259 struct sched_domain *tmp;
6261 for (tmp = sd; tmp; tmp = tmp->parent)
6262 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6264 /* Remove the sched domains which do not contribute to scheduling. */
6265 for (tmp = sd; tmp; ) {
6266 struct sched_domain *parent = tmp->parent;
6267 if (!parent)
6268 break;
6270 if (sd_parent_degenerate(tmp, parent)) {
6271 tmp->parent = parent->parent;
6272 if (parent->parent)
6273 parent->parent->child = tmp;
6274 } else
6275 tmp = tmp->parent;
6278 if (sd && sd_degenerate(sd)) {
6279 sd = sd->parent;
6280 if (sd)
6281 sd->child = NULL;
6284 sched_domain_debug(sd, cpu);
6286 rq_attach_root(rq, rd);
6287 rcu_assign_pointer(rq->sd, sd);
6290 /* cpus with isolated domains */
6291 static cpumask_var_t cpu_isolated_map;
6293 /* Setup the mask of cpus configured for isolated domains */
6294 static int __init isolated_cpu_setup(char *str)
6296 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6297 cpulist_parse(str, cpu_isolated_map);
6298 return 1;
6301 __setup("isolcpus=", isolated_cpu_setup);
6304 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6305 * to a function which identifies what group(along with sched group) a CPU
6306 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6307 * (due to the fact that we keep track of groups covered with a struct cpumask).
6309 * init_sched_build_groups will build a circular linked list of the groups
6310 * covered by the given span, and will set each group's ->cpumask correctly,
6311 * and ->cpu_power to 0.
6313 static void
6314 init_sched_build_groups(const struct cpumask *span,
6315 const struct cpumask *cpu_map,
6316 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6317 struct sched_group **sg,
6318 struct cpumask *tmpmask),
6319 struct cpumask *covered, struct cpumask *tmpmask)
6321 struct sched_group *first = NULL, *last = NULL;
6322 int i;
6324 cpumask_clear(covered);
6326 for_each_cpu(i, span) {
6327 struct sched_group *sg;
6328 int group = group_fn(i, cpu_map, &sg, tmpmask);
6329 int j;
6331 if (cpumask_test_cpu(i, covered))
6332 continue;
6334 cpumask_clear(sched_group_cpus(sg));
6335 sg->cpu_power = 0;
6337 for_each_cpu(j, span) {
6338 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6339 continue;
6341 cpumask_set_cpu(j, covered);
6342 cpumask_set_cpu(j, sched_group_cpus(sg));
6344 if (!first)
6345 first = sg;
6346 if (last)
6347 last->next = sg;
6348 last = sg;
6350 last->next = first;
6353 #define SD_NODES_PER_DOMAIN 16
6355 #ifdef CONFIG_NUMA
6358 * find_next_best_node - find the next node to include in a sched_domain
6359 * @node: node whose sched_domain we're building
6360 * @used_nodes: nodes already in the sched_domain
6362 * Find the next node to include in a given scheduling domain. Simply
6363 * finds the closest node not already in the @used_nodes map.
6365 * Should use nodemask_t.
6367 static int find_next_best_node(int node, nodemask_t *used_nodes)
6369 int i, n, val, min_val, best_node = 0;
6371 min_val = INT_MAX;
6373 for (i = 0; i < nr_node_ids; i++) {
6374 /* Start at @node */
6375 n = (node + i) % nr_node_ids;
6377 if (!nr_cpus_node(n))
6378 continue;
6380 /* Skip already used nodes */
6381 if (node_isset(n, *used_nodes))
6382 continue;
6384 /* Simple min distance search */
6385 val = node_distance(node, n);
6387 if (val < min_val) {
6388 min_val = val;
6389 best_node = n;
6393 node_set(best_node, *used_nodes);
6394 return best_node;
6398 * sched_domain_node_span - get a cpumask for a node's sched_domain
6399 * @node: node whose cpumask we're constructing
6400 * @span: resulting cpumask
6402 * Given a node, construct a good cpumask for its sched_domain to span. It
6403 * should be one that prevents unnecessary balancing, but also spreads tasks
6404 * out optimally.
6406 static void sched_domain_node_span(int node, struct cpumask *span)
6408 nodemask_t used_nodes;
6409 int i;
6411 cpumask_clear(span);
6412 nodes_clear(used_nodes);
6414 cpumask_or(span, span, cpumask_of_node(node));
6415 node_set(node, used_nodes);
6417 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6418 int next_node = find_next_best_node(node, &used_nodes);
6420 cpumask_or(span, span, cpumask_of_node(next_node));
6423 #endif /* CONFIG_NUMA */
6425 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6428 * The cpus mask in sched_group and sched_domain hangs off the end.
6430 * ( See the the comments in include/linux/sched.h:struct sched_group
6431 * and struct sched_domain. )
6433 struct static_sched_group {
6434 struct sched_group sg;
6435 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6438 struct static_sched_domain {
6439 struct sched_domain sd;
6440 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6443 struct s_data {
6444 #ifdef CONFIG_NUMA
6445 int sd_allnodes;
6446 cpumask_var_t domainspan;
6447 cpumask_var_t covered;
6448 cpumask_var_t notcovered;
6449 #endif
6450 cpumask_var_t nodemask;
6451 cpumask_var_t this_sibling_map;
6452 cpumask_var_t this_core_map;
6453 cpumask_var_t send_covered;
6454 cpumask_var_t tmpmask;
6455 struct sched_group **sched_group_nodes;
6456 struct root_domain *rd;
6459 enum s_alloc {
6460 sa_sched_groups = 0,
6461 sa_rootdomain,
6462 sa_tmpmask,
6463 sa_send_covered,
6464 sa_this_core_map,
6465 sa_this_sibling_map,
6466 sa_nodemask,
6467 sa_sched_group_nodes,
6468 #ifdef CONFIG_NUMA
6469 sa_notcovered,
6470 sa_covered,
6471 sa_domainspan,
6472 #endif
6473 sa_none,
6477 * SMT sched-domains:
6479 #ifdef CONFIG_SCHED_SMT
6480 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6481 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6483 static int
6484 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6485 struct sched_group **sg, struct cpumask *unused)
6487 if (sg)
6488 *sg = &per_cpu(sched_groups, cpu).sg;
6489 return cpu;
6491 #endif /* CONFIG_SCHED_SMT */
6494 * multi-core sched-domains:
6496 #ifdef CONFIG_SCHED_MC
6497 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6498 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6499 #endif /* CONFIG_SCHED_MC */
6501 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6502 static int
6503 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6504 struct sched_group **sg, struct cpumask *mask)
6506 int group;
6508 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6509 group = cpumask_first(mask);
6510 if (sg)
6511 *sg = &per_cpu(sched_group_core, group).sg;
6512 return group;
6514 #elif defined(CONFIG_SCHED_MC)
6515 static int
6516 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6517 struct sched_group **sg, struct cpumask *unused)
6519 if (sg)
6520 *sg = &per_cpu(sched_group_core, cpu).sg;
6521 return cpu;
6523 #endif
6525 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6526 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6528 static int
6529 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6530 struct sched_group **sg, struct cpumask *mask)
6532 int group;
6533 #ifdef CONFIG_SCHED_MC
6534 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6535 group = cpumask_first(mask);
6536 #elif defined(CONFIG_SCHED_SMT)
6537 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6538 group = cpumask_first(mask);
6539 #else
6540 group = cpu;
6541 #endif
6542 if (sg)
6543 *sg = &per_cpu(sched_group_phys, group).sg;
6544 return group;
6547 #ifdef CONFIG_NUMA
6549 * The init_sched_build_groups can't handle what we want to do with node
6550 * groups, so roll our own. Now each node has its own list of groups which
6551 * gets dynamically allocated.
6553 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6554 static struct sched_group ***sched_group_nodes_bycpu;
6556 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6557 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6559 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6560 struct sched_group **sg,
6561 struct cpumask *nodemask)
6563 int group;
6565 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6566 group = cpumask_first(nodemask);
6568 if (sg)
6569 *sg = &per_cpu(sched_group_allnodes, group).sg;
6570 return group;
6573 static void init_numa_sched_groups_power(struct sched_group *group_head)
6575 struct sched_group *sg = group_head;
6576 int j;
6578 if (!sg)
6579 return;
6580 do {
6581 for_each_cpu(j, sched_group_cpus(sg)) {
6582 struct sched_domain *sd;
6584 sd = &per_cpu(phys_domains, j).sd;
6585 if (j != group_first_cpu(sd->groups)) {
6587 * Only add "power" once for each
6588 * physical package.
6590 continue;
6593 sg->cpu_power += sd->groups->cpu_power;
6595 sg = sg->next;
6596 } while (sg != group_head);
6599 static int build_numa_sched_groups(struct s_data *d,
6600 const struct cpumask *cpu_map, int num)
6602 struct sched_domain *sd;
6603 struct sched_group *sg, *prev;
6604 int n, j;
6606 cpumask_clear(d->covered);
6607 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6608 if (cpumask_empty(d->nodemask)) {
6609 d->sched_group_nodes[num] = NULL;
6610 goto out;
6613 sched_domain_node_span(num, d->domainspan);
6614 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6616 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6617 GFP_KERNEL, num);
6618 if (!sg) {
6619 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6620 num);
6621 return -ENOMEM;
6623 d->sched_group_nodes[num] = sg;
6625 for_each_cpu(j, d->nodemask) {
6626 sd = &per_cpu(node_domains, j).sd;
6627 sd->groups = sg;
6630 sg->cpu_power = 0;
6631 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6632 sg->next = sg;
6633 cpumask_or(d->covered, d->covered, d->nodemask);
6635 prev = sg;
6636 for (j = 0; j < nr_node_ids; j++) {
6637 n = (num + j) % nr_node_ids;
6638 cpumask_complement(d->notcovered, d->covered);
6639 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6640 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6641 if (cpumask_empty(d->tmpmask))
6642 break;
6643 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6644 if (cpumask_empty(d->tmpmask))
6645 continue;
6646 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6647 GFP_KERNEL, num);
6648 if (!sg) {
6649 printk(KERN_WARNING
6650 "Can not alloc domain group for node %d\n", j);
6651 return -ENOMEM;
6653 sg->cpu_power = 0;
6654 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6655 sg->next = prev->next;
6656 cpumask_or(d->covered, d->covered, d->tmpmask);
6657 prev->next = sg;
6658 prev = sg;
6660 out:
6661 return 0;
6663 #endif /* CONFIG_NUMA */
6665 #ifdef CONFIG_NUMA
6666 /* Free memory allocated for various sched_group structures */
6667 static void free_sched_groups(const struct cpumask *cpu_map,
6668 struct cpumask *nodemask)
6670 int cpu, i;
6672 for_each_cpu(cpu, cpu_map) {
6673 struct sched_group **sched_group_nodes
6674 = sched_group_nodes_bycpu[cpu];
6676 if (!sched_group_nodes)
6677 continue;
6679 for (i = 0; i < nr_node_ids; i++) {
6680 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6682 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6683 if (cpumask_empty(nodemask))
6684 continue;
6686 if (sg == NULL)
6687 continue;
6688 sg = sg->next;
6689 next_sg:
6690 oldsg = sg;
6691 sg = sg->next;
6692 kfree(oldsg);
6693 if (oldsg != sched_group_nodes[i])
6694 goto next_sg;
6696 kfree(sched_group_nodes);
6697 sched_group_nodes_bycpu[cpu] = NULL;
6700 #else /* !CONFIG_NUMA */
6701 static void free_sched_groups(const struct cpumask *cpu_map,
6702 struct cpumask *nodemask)
6705 #endif /* CONFIG_NUMA */
6708 * Initialize sched groups cpu_power.
6710 * cpu_power indicates the capacity of sched group, which is used while
6711 * distributing the load between different sched groups in a sched domain.
6712 * Typically cpu_power for all the groups in a sched domain will be same unless
6713 * there are asymmetries in the topology. If there are asymmetries, group
6714 * having more cpu_power will pickup more load compared to the group having
6715 * less cpu_power.
6717 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6719 struct sched_domain *child;
6720 struct sched_group *group;
6721 long power;
6722 int weight;
6724 WARN_ON(!sd || !sd->groups);
6726 if (cpu != group_first_cpu(sd->groups))
6727 return;
6729 child = sd->child;
6731 sd->groups->cpu_power = 0;
6733 if (!child) {
6734 power = SCHED_LOAD_SCALE;
6735 weight = cpumask_weight(sched_domain_span(sd));
6737 * SMT siblings share the power of a single core.
6738 * Usually multiple threads get a better yield out of
6739 * that one core than a single thread would have,
6740 * reflect that in sd->smt_gain.
6742 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6743 power *= sd->smt_gain;
6744 power /= weight;
6745 power >>= SCHED_LOAD_SHIFT;
6747 sd->groups->cpu_power += power;
6748 return;
6752 * Add cpu_power of each child group to this groups cpu_power.
6754 group = child->groups;
6755 do {
6756 sd->groups->cpu_power += group->cpu_power;
6757 group = group->next;
6758 } while (group != child->groups);
6762 * Initializers for schedule domains
6763 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6766 #ifdef CONFIG_SCHED_DEBUG
6767 # define SD_INIT_NAME(sd, type) sd->name = #type
6768 #else
6769 # define SD_INIT_NAME(sd, type) do { } while (0)
6770 #endif
6772 #define SD_INIT(sd, type) sd_init_##type(sd)
6774 #define SD_INIT_FUNC(type) \
6775 static noinline void sd_init_##type(struct sched_domain *sd) \
6777 memset(sd, 0, sizeof(*sd)); \
6778 *sd = SD_##type##_INIT; \
6779 sd->level = SD_LV_##type; \
6780 SD_INIT_NAME(sd, type); \
6783 SD_INIT_FUNC(CPU)
6784 #ifdef CONFIG_NUMA
6785 SD_INIT_FUNC(ALLNODES)
6786 SD_INIT_FUNC(NODE)
6787 #endif
6788 #ifdef CONFIG_SCHED_SMT
6789 SD_INIT_FUNC(SIBLING)
6790 #endif
6791 #ifdef CONFIG_SCHED_MC
6792 SD_INIT_FUNC(MC)
6793 #endif
6795 static int default_relax_domain_level = -1;
6797 static int __init setup_relax_domain_level(char *str)
6799 unsigned long val;
6801 val = simple_strtoul(str, NULL, 0);
6802 if (val < SD_LV_MAX)
6803 default_relax_domain_level = val;
6805 return 1;
6807 __setup("relax_domain_level=", setup_relax_domain_level);
6809 static void set_domain_attribute(struct sched_domain *sd,
6810 struct sched_domain_attr *attr)
6812 int request;
6814 if (!attr || attr->relax_domain_level < 0) {
6815 if (default_relax_domain_level < 0)
6816 return;
6817 else
6818 request = default_relax_domain_level;
6819 } else
6820 request = attr->relax_domain_level;
6821 if (request < sd->level) {
6822 /* turn off idle balance on this domain */
6823 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6824 } else {
6825 /* turn on idle balance on this domain */
6826 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6830 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6831 const struct cpumask *cpu_map)
6833 switch (what) {
6834 case sa_sched_groups:
6835 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6836 d->sched_group_nodes = NULL;
6837 case sa_rootdomain:
6838 free_rootdomain(d->rd); /* fall through */
6839 case sa_tmpmask:
6840 free_cpumask_var(d->tmpmask); /* fall through */
6841 case sa_send_covered:
6842 free_cpumask_var(d->send_covered); /* fall through */
6843 case sa_this_core_map:
6844 free_cpumask_var(d->this_core_map); /* fall through */
6845 case sa_this_sibling_map:
6846 free_cpumask_var(d->this_sibling_map); /* fall through */
6847 case sa_nodemask:
6848 free_cpumask_var(d->nodemask); /* fall through */
6849 case sa_sched_group_nodes:
6850 #ifdef CONFIG_NUMA
6851 kfree(d->sched_group_nodes); /* fall through */
6852 case sa_notcovered:
6853 free_cpumask_var(d->notcovered); /* fall through */
6854 case sa_covered:
6855 free_cpumask_var(d->covered); /* fall through */
6856 case sa_domainspan:
6857 free_cpumask_var(d->domainspan); /* fall through */
6858 #endif
6859 case sa_none:
6860 break;
6864 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6865 const struct cpumask *cpu_map)
6867 #ifdef CONFIG_NUMA
6868 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6869 return sa_none;
6870 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6871 return sa_domainspan;
6872 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6873 return sa_covered;
6874 /* Allocate the per-node list of sched groups */
6875 d->sched_group_nodes = kcalloc(nr_node_ids,
6876 sizeof(struct sched_group *), GFP_KERNEL);
6877 if (!d->sched_group_nodes) {
6878 printk(KERN_WARNING "Can not alloc sched group node list\n");
6879 return sa_notcovered;
6881 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6882 #endif
6883 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6884 return sa_sched_group_nodes;
6885 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6886 return sa_nodemask;
6887 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6888 return sa_this_sibling_map;
6889 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6890 return sa_this_core_map;
6891 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6892 return sa_send_covered;
6893 d->rd = alloc_rootdomain();
6894 if (!d->rd) {
6895 printk(KERN_WARNING "Cannot alloc root domain\n");
6896 return sa_tmpmask;
6898 return sa_rootdomain;
6901 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6902 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6904 struct sched_domain *sd = NULL;
6905 #ifdef CONFIG_NUMA
6906 struct sched_domain *parent;
6908 d->sd_allnodes = 0;
6909 if (cpumask_weight(cpu_map) >
6910 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6911 sd = &per_cpu(allnodes_domains, i).sd;
6912 SD_INIT(sd, ALLNODES);
6913 set_domain_attribute(sd, attr);
6914 cpumask_copy(sched_domain_span(sd), cpu_map);
6915 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6916 d->sd_allnodes = 1;
6918 parent = sd;
6920 sd = &per_cpu(node_domains, i).sd;
6921 SD_INIT(sd, NODE);
6922 set_domain_attribute(sd, attr);
6923 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6924 sd->parent = parent;
6925 if (parent)
6926 parent->child = sd;
6927 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6928 #endif
6929 return sd;
6932 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6933 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6934 struct sched_domain *parent, int i)
6936 struct sched_domain *sd;
6937 sd = &per_cpu(phys_domains, i).sd;
6938 SD_INIT(sd, CPU);
6939 set_domain_attribute(sd, attr);
6940 cpumask_copy(sched_domain_span(sd), d->nodemask);
6941 sd->parent = parent;
6942 if (parent)
6943 parent->child = sd;
6944 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6945 return sd;
6948 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6949 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6950 struct sched_domain *parent, int i)
6952 struct sched_domain *sd = parent;
6953 #ifdef CONFIG_SCHED_MC
6954 sd = &per_cpu(core_domains, i).sd;
6955 SD_INIT(sd, MC);
6956 set_domain_attribute(sd, attr);
6957 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6958 sd->parent = parent;
6959 parent->child = sd;
6960 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6961 #endif
6962 return sd;
6965 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6966 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6967 struct sched_domain *parent, int i)
6969 struct sched_domain *sd = parent;
6970 #ifdef CONFIG_SCHED_SMT
6971 sd = &per_cpu(cpu_domains, i).sd;
6972 SD_INIT(sd, SIBLING);
6973 set_domain_attribute(sd, attr);
6974 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6975 sd->parent = parent;
6976 parent->child = sd;
6977 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6978 #endif
6979 return sd;
6982 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6983 const struct cpumask *cpu_map, int cpu)
6985 switch (l) {
6986 #ifdef CONFIG_SCHED_SMT
6987 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6988 cpumask_and(d->this_sibling_map, cpu_map,
6989 topology_thread_cpumask(cpu));
6990 if (cpu == cpumask_first(d->this_sibling_map))
6991 init_sched_build_groups(d->this_sibling_map, cpu_map,
6992 &cpu_to_cpu_group,
6993 d->send_covered, d->tmpmask);
6994 break;
6995 #endif
6996 #ifdef CONFIG_SCHED_MC
6997 case SD_LV_MC: /* set up multi-core groups */
6998 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6999 if (cpu == cpumask_first(d->this_core_map))
7000 init_sched_build_groups(d->this_core_map, cpu_map,
7001 &cpu_to_core_group,
7002 d->send_covered, d->tmpmask);
7003 break;
7004 #endif
7005 case SD_LV_CPU: /* set up physical groups */
7006 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7007 if (!cpumask_empty(d->nodemask))
7008 init_sched_build_groups(d->nodemask, cpu_map,
7009 &cpu_to_phys_group,
7010 d->send_covered, d->tmpmask);
7011 break;
7012 #ifdef CONFIG_NUMA
7013 case SD_LV_ALLNODES:
7014 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7015 d->send_covered, d->tmpmask);
7016 break;
7017 #endif
7018 default:
7019 break;
7024 * Build sched domains for a given set of cpus and attach the sched domains
7025 * to the individual cpus
7027 static int __build_sched_domains(const struct cpumask *cpu_map,
7028 struct sched_domain_attr *attr)
7030 enum s_alloc alloc_state = sa_none;
7031 struct s_data d;
7032 struct sched_domain *sd;
7033 int i;
7034 #ifdef CONFIG_NUMA
7035 d.sd_allnodes = 0;
7036 #endif
7038 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7039 if (alloc_state != sa_rootdomain)
7040 goto error;
7041 alloc_state = sa_sched_groups;
7044 * Set up domains for cpus specified by the cpu_map.
7046 for_each_cpu(i, cpu_map) {
7047 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7048 cpu_map);
7050 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7051 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7052 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7053 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7056 for_each_cpu(i, cpu_map) {
7057 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7058 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7061 /* Set up physical groups */
7062 for (i = 0; i < nr_node_ids; i++)
7063 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7065 #ifdef CONFIG_NUMA
7066 /* Set up node groups */
7067 if (d.sd_allnodes)
7068 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7070 for (i = 0; i < nr_node_ids; i++)
7071 if (build_numa_sched_groups(&d, cpu_map, i))
7072 goto error;
7073 #endif
7075 /* Calculate CPU power for physical packages and nodes */
7076 #ifdef CONFIG_SCHED_SMT
7077 for_each_cpu(i, cpu_map) {
7078 sd = &per_cpu(cpu_domains, i).sd;
7079 init_sched_groups_power(i, sd);
7081 #endif
7082 #ifdef CONFIG_SCHED_MC
7083 for_each_cpu(i, cpu_map) {
7084 sd = &per_cpu(core_domains, i).sd;
7085 init_sched_groups_power(i, sd);
7087 #endif
7089 for_each_cpu(i, cpu_map) {
7090 sd = &per_cpu(phys_domains, i).sd;
7091 init_sched_groups_power(i, sd);
7094 #ifdef CONFIG_NUMA
7095 for (i = 0; i < nr_node_ids; i++)
7096 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7098 if (d.sd_allnodes) {
7099 struct sched_group *sg;
7101 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7102 d.tmpmask);
7103 init_numa_sched_groups_power(sg);
7105 #endif
7107 /* Attach the domains */
7108 for_each_cpu(i, cpu_map) {
7109 #ifdef CONFIG_SCHED_SMT
7110 sd = &per_cpu(cpu_domains, i).sd;
7111 #elif defined(CONFIG_SCHED_MC)
7112 sd = &per_cpu(core_domains, i).sd;
7113 #else
7114 sd = &per_cpu(phys_domains, i).sd;
7115 #endif
7116 cpu_attach_domain(sd, d.rd, i);
7119 d.sched_group_nodes = NULL; /* don't free this we still need it */
7120 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7121 return 0;
7123 error:
7124 __free_domain_allocs(&d, alloc_state, cpu_map);
7125 return -ENOMEM;
7128 static int build_sched_domains(const struct cpumask *cpu_map)
7130 return __build_sched_domains(cpu_map, NULL);
7133 static cpumask_var_t *doms_cur; /* current sched domains */
7134 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7135 static struct sched_domain_attr *dattr_cur;
7136 /* attribues of custom domains in 'doms_cur' */
7139 * Special case: If a kmalloc of a doms_cur partition (array of
7140 * cpumask) fails, then fallback to a single sched domain,
7141 * as determined by the single cpumask fallback_doms.
7143 static cpumask_var_t fallback_doms;
7146 * arch_update_cpu_topology lets virtualized architectures update the
7147 * cpu core maps. It is supposed to return 1 if the topology changed
7148 * or 0 if it stayed the same.
7150 int __attribute__((weak)) arch_update_cpu_topology(void)
7152 return 0;
7155 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7157 int i;
7158 cpumask_var_t *doms;
7160 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7161 if (!doms)
7162 return NULL;
7163 for (i = 0; i < ndoms; i++) {
7164 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7165 free_sched_domains(doms, i);
7166 return NULL;
7169 return doms;
7172 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7174 unsigned int i;
7175 for (i = 0; i < ndoms; i++)
7176 free_cpumask_var(doms[i]);
7177 kfree(doms);
7181 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7182 * For now this just excludes isolated cpus, but could be used to
7183 * exclude other special cases in the future.
7185 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7187 int err;
7189 arch_update_cpu_topology();
7190 ndoms_cur = 1;
7191 doms_cur = alloc_sched_domains(ndoms_cur);
7192 if (!doms_cur)
7193 doms_cur = &fallback_doms;
7194 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7195 dattr_cur = NULL;
7196 err = build_sched_domains(doms_cur[0]);
7197 register_sched_domain_sysctl();
7199 return err;
7202 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7203 struct cpumask *tmpmask)
7205 free_sched_groups(cpu_map, tmpmask);
7209 * Detach sched domains from a group of cpus specified in cpu_map
7210 * These cpus will now be attached to the NULL domain
7212 static void detach_destroy_domains(const struct cpumask *cpu_map)
7214 /* Save because hotplug lock held. */
7215 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7216 int i;
7218 for_each_cpu(i, cpu_map)
7219 cpu_attach_domain(NULL, &def_root_domain, i);
7220 synchronize_sched();
7221 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7224 /* handle null as "default" */
7225 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7226 struct sched_domain_attr *new, int idx_new)
7228 struct sched_domain_attr tmp;
7230 /* fast path */
7231 if (!new && !cur)
7232 return 1;
7234 tmp = SD_ATTR_INIT;
7235 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7236 new ? (new + idx_new) : &tmp,
7237 sizeof(struct sched_domain_attr));
7241 * Partition sched domains as specified by the 'ndoms_new'
7242 * cpumasks in the array doms_new[] of cpumasks. This compares
7243 * doms_new[] to the current sched domain partitioning, doms_cur[].
7244 * It destroys each deleted domain and builds each new domain.
7246 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7247 * The masks don't intersect (don't overlap.) We should setup one
7248 * sched domain for each mask. CPUs not in any of the cpumasks will
7249 * not be load balanced. If the same cpumask appears both in the
7250 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7251 * it as it is.
7253 * The passed in 'doms_new' should be allocated using
7254 * alloc_sched_domains. This routine takes ownership of it and will
7255 * free_sched_domains it when done with it. If the caller failed the
7256 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7257 * and partition_sched_domains() will fallback to the single partition
7258 * 'fallback_doms', it also forces the domains to be rebuilt.
7260 * If doms_new == NULL it will be replaced with cpu_online_mask.
7261 * ndoms_new == 0 is a special case for destroying existing domains,
7262 * and it will not create the default domain.
7264 * Call with hotplug lock held
7266 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7267 struct sched_domain_attr *dattr_new)
7269 int i, j, n;
7270 int new_topology;
7272 mutex_lock(&sched_domains_mutex);
7274 /* always unregister in case we don't destroy any domains */
7275 unregister_sched_domain_sysctl();
7277 /* Let architecture update cpu core mappings. */
7278 new_topology = arch_update_cpu_topology();
7280 n = doms_new ? ndoms_new : 0;
7282 /* Destroy deleted domains */
7283 for (i = 0; i < ndoms_cur; i++) {
7284 for (j = 0; j < n && !new_topology; j++) {
7285 if (cpumask_equal(doms_cur[i], doms_new[j])
7286 && dattrs_equal(dattr_cur, i, dattr_new, j))
7287 goto match1;
7289 /* no match - a current sched domain not in new doms_new[] */
7290 detach_destroy_domains(doms_cur[i]);
7291 match1:
7295 if (doms_new == NULL) {
7296 ndoms_cur = 0;
7297 doms_new = &fallback_doms;
7298 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7299 WARN_ON_ONCE(dattr_new);
7302 /* Build new domains */
7303 for (i = 0; i < ndoms_new; i++) {
7304 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7305 if (cpumask_equal(doms_new[i], doms_cur[j])
7306 && dattrs_equal(dattr_new, i, dattr_cur, j))
7307 goto match2;
7309 /* no match - add a new doms_new */
7310 __build_sched_domains(doms_new[i],
7311 dattr_new ? dattr_new + i : NULL);
7312 match2:
7316 /* Remember the new sched domains */
7317 if (doms_cur != &fallback_doms)
7318 free_sched_domains(doms_cur, ndoms_cur);
7319 kfree(dattr_cur); /* kfree(NULL) is safe */
7320 doms_cur = doms_new;
7321 dattr_cur = dattr_new;
7322 ndoms_cur = ndoms_new;
7324 register_sched_domain_sysctl();
7326 mutex_unlock(&sched_domains_mutex);
7329 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7330 static void arch_reinit_sched_domains(void)
7332 get_online_cpus();
7334 /* Destroy domains first to force the rebuild */
7335 partition_sched_domains(0, NULL, NULL);
7337 rebuild_sched_domains();
7338 put_online_cpus();
7341 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7343 unsigned int level = 0;
7345 if (sscanf(buf, "%u", &level) != 1)
7346 return -EINVAL;
7349 * level is always be positive so don't check for
7350 * level < POWERSAVINGS_BALANCE_NONE which is 0
7351 * What happens on 0 or 1 byte write,
7352 * need to check for count as well?
7355 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7356 return -EINVAL;
7358 if (smt)
7359 sched_smt_power_savings = level;
7360 else
7361 sched_mc_power_savings = level;
7363 arch_reinit_sched_domains();
7365 return count;
7368 #ifdef CONFIG_SCHED_MC
7369 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7370 struct sysdev_class_attribute *attr,
7371 char *page)
7373 return sprintf(page, "%u\n", sched_mc_power_savings);
7375 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7376 struct sysdev_class_attribute *attr,
7377 const char *buf, size_t count)
7379 return sched_power_savings_store(buf, count, 0);
7381 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7382 sched_mc_power_savings_show,
7383 sched_mc_power_savings_store);
7384 #endif
7386 #ifdef CONFIG_SCHED_SMT
7387 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7388 struct sysdev_class_attribute *attr,
7389 char *page)
7391 return sprintf(page, "%u\n", sched_smt_power_savings);
7393 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7394 struct sysdev_class_attribute *attr,
7395 const char *buf, size_t count)
7397 return sched_power_savings_store(buf, count, 1);
7399 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7400 sched_smt_power_savings_show,
7401 sched_smt_power_savings_store);
7402 #endif
7404 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7406 int err = 0;
7408 #ifdef CONFIG_SCHED_SMT
7409 if (smt_capable())
7410 err = sysfs_create_file(&cls->kset.kobj,
7411 &attr_sched_smt_power_savings.attr);
7412 #endif
7413 #ifdef CONFIG_SCHED_MC
7414 if (!err && mc_capable())
7415 err = sysfs_create_file(&cls->kset.kobj,
7416 &attr_sched_mc_power_savings.attr);
7417 #endif
7418 return err;
7420 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7422 #ifndef CONFIG_CPUSETS
7424 * Add online and remove offline CPUs from the scheduler domains.
7425 * When cpusets are enabled they take over this function.
7427 static int update_sched_domains(struct notifier_block *nfb,
7428 unsigned long action, void *hcpu)
7430 switch (action) {
7431 case CPU_ONLINE:
7432 case CPU_ONLINE_FROZEN:
7433 case CPU_DOWN_PREPARE:
7434 case CPU_DOWN_PREPARE_FROZEN:
7435 case CPU_DOWN_FAILED:
7436 case CPU_DOWN_FAILED_FROZEN:
7437 partition_sched_domains(1, NULL, NULL);
7438 return NOTIFY_OK;
7440 default:
7441 return NOTIFY_DONE;
7444 #endif
7446 static int update_runtime(struct notifier_block *nfb,
7447 unsigned long action, void *hcpu)
7449 int cpu = (int)(long)hcpu;
7451 switch (action) {
7452 case CPU_DOWN_PREPARE:
7453 case CPU_DOWN_PREPARE_FROZEN:
7454 disable_runtime(cpu_rq(cpu));
7455 return NOTIFY_OK;
7457 case CPU_DOWN_FAILED:
7458 case CPU_DOWN_FAILED_FROZEN:
7459 case CPU_ONLINE:
7460 case CPU_ONLINE_FROZEN:
7461 enable_runtime(cpu_rq(cpu));
7462 return NOTIFY_OK;
7464 default:
7465 return NOTIFY_DONE;
7469 void __init sched_init_smp(void)
7471 cpumask_var_t non_isolated_cpus;
7473 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7474 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7476 #if defined(CONFIG_NUMA)
7477 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7478 GFP_KERNEL);
7479 BUG_ON(sched_group_nodes_bycpu == NULL);
7480 #endif
7481 get_online_cpus();
7482 mutex_lock(&sched_domains_mutex);
7483 arch_init_sched_domains(cpu_active_mask);
7484 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7485 if (cpumask_empty(non_isolated_cpus))
7486 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7487 mutex_unlock(&sched_domains_mutex);
7488 put_online_cpus();
7490 #ifndef CONFIG_CPUSETS
7491 /* XXX: Theoretical race here - CPU may be hotplugged now */
7492 hotcpu_notifier(update_sched_domains, 0);
7493 #endif
7495 /* RT runtime code needs to handle some hotplug events */
7496 hotcpu_notifier(update_runtime, 0);
7498 init_hrtick();
7500 /* Move init over to a non-isolated CPU */
7501 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7502 BUG();
7503 sched_init_granularity();
7504 free_cpumask_var(non_isolated_cpus);
7506 init_sched_rt_class();
7508 #else
7509 void __init sched_init_smp(void)
7511 sched_init_granularity();
7513 #endif /* CONFIG_SMP */
7515 const_debug unsigned int sysctl_timer_migration = 1;
7517 int in_sched_functions(unsigned long addr)
7519 return in_lock_functions(addr) ||
7520 (addr >= (unsigned long)__sched_text_start
7521 && addr < (unsigned long)__sched_text_end);
7524 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7526 cfs_rq->tasks_timeline = RB_ROOT;
7527 INIT_LIST_HEAD(&cfs_rq->tasks);
7528 #ifdef CONFIG_FAIR_GROUP_SCHED
7529 cfs_rq->rq = rq;
7530 #endif
7531 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7534 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7536 struct rt_prio_array *array;
7537 int i;
7539 array = &rt_rq->active;
7540 for (i = 0; i < MAX_RT_PRIO; i++) {
7541 INIT_LIST_HEAD(array->queue + i);
7542 __clear_bit(i, array->bitmap);
7544 /* delimiter for bitsearch: */
7545 __set_bit(MAX_RT_PRIO, array->bitmap);
7547 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7548 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7549 #ifdef CONFIG_SMP
7550 rt_rq->highest_prio.next = MAX_RT_PRIO;
7551 #endif
7552 #endif
7553 #ifdef CONFIG_SMP
7554 rt_rq->rt_nr_migratory = 0;
7555 rt_rq->overloaded = 0;
7556 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7557 #endif
7559 rt_rq->rt_time = 0;
7560 rt_rq->rt_throttled = 0;
7561 rt_rq->rt_runtime = 0;
7562 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7564 #ifdef CONFIG_RT_GROUP_SCHED
7565 rt_rq->rt_nr_boosted = 0;
7566 rt_rq->rq = rq;
7567 #endif
7570 #ifdef CONFIG_FAIR_GROUP_SCHED
7571 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7572 struct sched_entity *se, int cpu, int add,
7573 struct sched_entity *parent)
7575 struct rq *rq = cpu_rq(cpu);
7576 tg->cfs_rq[cpu] = cfs_rq;
7577 init_cfs_rq(cfs_rq, rq);
7578 cfs_rq->tg = tg;
7579 if (add)
7580 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7582 tg->se[cpu] = se;
7583 /* se could be NULL for init_task_group */
7584 if (!se)
7585 return;
7587 if (!parent)
7588 se->cfs_rq = &rq->cfs;
7589 else
7590 se->cfs_rq = parent->my_q;
7592 se->my_q = cfs_rq;
7593 se->load.weight = tg->shares;
7594 se->load.inv_weight = 0;
7595 se->parent = parent;
7597 #endif
7599 #ifdef CONFIG_RT_GROUP_SCHED
7600 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7601 struct sched_rt_entity *rt_se, int cpu, int add,
7602 struct sched_rt_entity *parent)
7604 struct rq *rq = cpu_rq(cpu);
7606 tg->rt_rq[cpu] = rt_rq;
7607 init_rt_rq(rt_rq, rq);
7608 rt_rq->tg = tg;
7609 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7610 if (add)
7611 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7613 tg->rt_se[cpu] = rt_se;
7614 if (!rt_se)
7615 return;
7617 if (!parent)
7618 rt_se->rt_rq = &rq->rt;
7619 else
7620 rt_se->rt_rq = parent->my_q;
7622 rt_se->my_q = rt_rq;
7623 rt_se->parent = parent;
7624 INIT_LIST_HEAD(&rt_se->run_list);
7626 #endif
7628 void __init sched_init(void)
7630 int i, j;
7631 unsigned long alloc_size = 0, ptr;
7633 #ifdef CONFIG_FAIR_GROUP_SCHED
7634 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7635 #endif
7636 #ifdef CONFIG_RT_GROUP_SCHED
7637 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7638 #endif
7639 #ifdef CONFIG_CPUMASK_OFFSTACK
7640 alloc_size += num_possible_cpus() * cpumask_size();
7641 #endif
7642 if (alloc_size) {
7643 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7645 #ifdef CONFIG_FAIR_GROUP_SCHED
7646 init_task_group.se = (struct sched_entity **)ptr;
7647 ptr += nr_cpu_ids * sizeof(void **);
7649 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7650 ptr += nr_cpu_ids * sizeof(void **);
7652 #endif /* CONFIG_FAIR_GROUP_SCHED */
7653 #ifdef CONFIG_RT_GROUP_SCHED
7654 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7655 ptr += nr_cpu_ids * sizeof(void **);
7657 init_task_group.rt_rq = (struct rt_rq **)ptr;
7658 ptr += nr_cpu_ids * sizeof(void **);
7660 #endif /* CONFIG_RT_GROUP_SCHED */
7661 #ifdef CONFIG_CPUMASK_OFFSTACK
7662 for_each_possible_cpu(i) {
7663 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7664 ptr += cpumask_size();
7666 #endif /* CONFIG_CPUMASK_OFFSTACK */
7669 #ifdef CONFIG_SMP
7670 init_defrootdomain();
7671 #endif
7673 init_rt_bandwidth(&def_rt_bandwidth,
7674 global_rt_period(), global_rt_runtime());
7676 #ifdef CONFIG_RT_GROUP_SCHED
7677 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7678 global_rt_period(), global_rt_runtime());
7679 #endif /* CONFIG_RT_GROUP_SCHED */
7681 #ifdef CONFIG_CGROUP_SCHED
7682 list_add(&init_task_group.list, &task_groups);
7683 INIT_LIST_HEAD(&init_task_group.children);
7685 #endif /* CONFIG_CGROUP_SCHED */
7687 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7688 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7689 __alignof__(unsigned long));
7690 #endif
7691 for_each_possible_cpu(i) {
7692 struct rq *rq;
7694 rq = cpu_rq(i);
7695 raw_spin_lock_init(&rq->lock);
7696 rq->nr_running = 0;
7697 rq->calc_load_active = 0;
7698 rq->calc_load_update = jiffies + LOAD_FREQ;
7699 init_cfs_rq(&rq->cfs, rq);
7700 init_rt_rq(&rq->rt, rq);
7701 #ifdef CONFIG_FAIR_GROUP_SCHED
7702 init_task_group.shares = init_task_group_load;
7703 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7704 #ifdef CONFIG_CGROUP_SCHED
7706 * How much cpu bandwidth does init_task_group get?
7708 * In case of task-groups formed thr' the cgroup filesystem, it
7709 * gets 100% of the cpu resources in the system. This overall
7710 * system cpu resource is divided among the tasks of
7711 * init_task_group and its child task-groups in a fair manner,
7712 * based on each entity's (task or task-group's) weight
7713 * (se->load.weight).
7715 * In other words, if init_task_group has 10 tasks of weight
7716 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7717 * then A0's share of the cpu resource is:
7719 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7721 * We achieve this by letting init_task_group's tasks sit
7722 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7724 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7725 #endif
7726 #endif /* CONFIG_FAIR_GROUP_SCHED */
7728 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7729 #ifdef CONFIG_RT_GROUP_SCHED
7730 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7731 #ifdef CONFIG_CGROUP_SCHED
7732 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7733 #endif
7734 #endif
7736 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7737 rq->cpu_load[j] = 0;
7738 #ifdef CONFIG_SMP
7739 rq->sd = NULL;
7740 rq->rd = NULL;
7741 rq->cpu_power = SCHED_LOAD_SCALE;
7742 rq->post_schedule = 0;
7743 rq->active_balance = 0;
7744 rq->next_balance = jiffies;
7745 rq->push_cpu = 0;
7746 rq->cpu = i;
7747 rq->online = 0;
7748 rq->idle_stamp = 0;
7749 rq->avg_idle = 2*sysctl_sched_migration_cost;
7750 rq_attach_root(rq, &def_root_domain);
7751 #endif
7752 init_rq_hrtick(rq);
7753 atomic_set(&rq->nr_iowait, 0);
7756 set_load_weight(&init_task);
7758 #ifdef CONFIG_PREEMPT_NOTIFIERS
7759 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7760 #endif
7762 #ifdef CONFIG_SMP
7763 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7764 #endif
7766 #ifdef CONFIG_RT_MUTEXES
7767 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7768 #endif
7771 * The boot idle thread does lazy MMU switching as well:
7773 atomic_inc(&init_mm.mm_count);
7774 enter_lazy_tlb(&init_mm, current);
7777 * Make us the idle thread. Technically, schedule() should not be
7778 * called from this thread, however somewhere below it might be,
7779 * but because we are the idle thread, we just pick up running again
7780 * when this runqueue becomes "idle".
7782 init_idle(current, smp_processor_id());
7784 calc_load_update = jiffies + LOAD_FREQ;
7787 * During early bootup we pretend to be a normal task:
7789 current->sched_class = &fair_sched_class;
7791 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7792 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7793 #ifdef CONFIG_SMP
7794 #ifdef CONFIG_NO_HZ
7795 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7796 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7797 #endif
7798 /* May be allocated at isolcpus cmdline parse time */
7799 if (cpu_isolated_map == NULL)
7800 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7801 #endif /* SMP */
7803 perf_event_init();
7805 scheduler_running = 1;
7808 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7809 static inline int preempt_count_equals(int preempt_offset)
7811 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7813 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7816 void __might_sleep(const char *file, int line, int preempt_offset)
7818 #ifdef in_atomic
7819 static unsigned long prev_jiffy; /* ratelimiting */
7821 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7822 system_state != SYSTEM_RUNNING || oops_in_progress)
7823 return;
7824 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7825 return;
7826 prev_jiffy = jiffies;
7828 printk(KERN_ERR
7829 "BUG: sleeping function called from invalid context at %s:%d\n",
7830 file, line);
7831 printk(KERN_ERR
7832 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7833 in_atomic(), irqs_disabled(),
7834 current->pid, current->comm);
7836 debug_show_held_locks(current);
7837 if (irqs_disabled())
7838 print_irqtrace_events(current);
7839 dump_stack();
7840 #endif
7842 EXPORT_SYMBOL(__might_sleep);
7843 #endif
7845 #ifdef CONFIG_MAGIC_SYSRQ
7846 static void normalize_task(struct rq *rq, struct task_struct *p)
7848 int on_rq;
7850 on_rq = p->se.on_rq;
7851 if (on_rq)
7852 deactivate_task(rq, p, 0);
7853 __setscheduler(rq, p, SCHED_NORMAL, 0);
7854 if (on_rq) {
7855 activate_task(rq, p, 0);
7856 resched_task(rq->curr);
7860 void normalize_rt_tasks(void)
7862 struct task_struct *g, *p;
7863 unsigned long flags;
7864 struct rq *rq;
7866 read_lock_irqsave(&tasklist_lock, flags);
7867 do_each_thread(g, p) {
7869 * Only normalize user tasks:
7871 if (!p->mm)
7872 continue;
7874 p->se.exec_start = 0;
7875 #ifdef CONFIG_SCHEDSTATS
7876 p->se.statistics.wait_start = 0;
7877 p->se.statistics.sleep_start = 0;
7878 p->se.statistics.block_start = 0;
7879 #endif
7881 if (!rt_task(p)) {
7883 * Renice negative nice level userspace
7884 * tasks back to 0:
7886 if (TASK_NICE(p) < 0 && p->mm)
7887 set_user_nice(p, 0);
7888 continue;
7891 raw_spin_lock(&p->pi_lock);
7892 rq = __task_rq_lock(p);
7894 normalize_task(rq, p);
7896 __task_rq_unlock(rq);
7897 raw_spin_unlock(&p->pi_lock);
7898 } while_each_thread(g, p);
7900 read_unlock_irqrestore(&tasklist_lock, flags);
7903 #endif /* CONFIG_MAGIC_SYSRQ */
7905 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7907 * These functions are only useful for the IA64 MCA handling, or kdb.
7909 * They can only be called when the whole system has been
7910 * stopped - every CPU needs to be quiescent, and no scheduling
7911 * activity can take place. Using them for anything else would
7912 * be a serious bug, and as a result, they aren't even visible
7913 * under any other configuration.
7917 * curr_task - return the current task for a given cpu.
7918 * @cpu: the processor in question.
7920 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7922 struct task_struct *curr_task(int cpu)
7924 return cpu_curr(cpu);
7927 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7929 #ifdef CONFIG_IA64
7931 * set_curr_task - set the current task for a given cpu.
7932 * @cpu: the processor in question.
7933 * @p: the task pointer to set.
7935 * Description: This function must only be used when non-maskable interrupts
7936 * are serviced on a separate stack. It allows the architecture to switch the
7937 * notion of the current task on a cpu in a non-blocking manner. This function
7938 * must be called with all CPU's synchronized, and interrupts disabled, the
7939 * and caller must save the original value of the current task (see
7940 * curr_task() above) and restore that value before reenabling interrupts and
7941 * re-starting the system.
7943 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7945 void set_curr_task(int cpu, struct task_struct *p)
7947 cpu_curr(cpu) = p;
7950 #endif
7952 #ifdef CONFIG_FAIR_GROUP_SCHED
7953 static void free_fair_sched_group(struct task_group *tg)
7955 int i;
7957 for_each_possible_cpu(i) {
7958 if (tg->cfs_rq)
7959 kfree(tg->cfs_rq[i]);
7960 if (tg->se)
7961 kfree(tg->se[i]);
7964 kfree(tg->cfs_rq);
7965 kfree(tg->se);
7968 static
7969 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7971 struct cfs_rq *cfs_rq;
7972 struct sched_entity *se;
7973 struct rq *rq;
7974 int i;
7976 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7977 if (!tg->cfs_rq)
7978 goto err;
7979 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7980 if (!tg->se)
7981 goto err;
7983 tg->shares = NICE_0_LOAD;
7985 for_each_possible_cpu(i) {
7986 rq = cpu_rq(i);
7988 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7989 GFP_KERNEL, cpu_to_node(i));
7990 if (!cfs_rq)
7991 goto err;
7993 se = kzalloc_node(sizeof(struct sched_entity),
7994 GFP_KERNEL, cpu_to_node(i));
7995 if (!se)
7996 goto err_free_rq;
7998 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8001 return 1;
8003 err_free_rq:
8004 kfree(cfs_rq);
8005 err:
8006 return 0;
8009 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8011 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8012 &cpu_rq(cpu)->leaf_cfs_rq_list);
8015 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8017 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8019 #else /* !CONFG_FAIR_GROUP_SCHED */
8020 static inline void free_fair_sched_group(struct task_group *tg)
8024 static inline
8025 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8027 return 1;
8030 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8034 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8037 #endif /* CONFIG_FAIR_GROUP_SCHED */
8039 #ifdef CONFIG_RT_GROUP_SCHED
8040 static void free_rt_sched_group(struct task_group *tg)
8042 int i;
8044 destroy_rt_bandwidth(&tg->rt_bandwidth);
8046 for_each_possible_cpu(i) {
8047 if (tg->rt_rq)
8048 kfree(tg->rt_rq[i]);
8049 if (tg->rt_se)
8050 kfree(tg->rt_se[i]);
8053 kfree(tg->rt_rq);
8054 kfree(tg->rt_se);
8057 static
8058 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8060 struct rt_rq *rt_rq;
8061 struct sched_rt_entity *rt_se;
8062 struct rq *rq;
8063 int i;
8065 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8066 if (!tg->rt_rq)
8067 goto err;
8068 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8069 if (!tg->rt_se)
8070 goto err;
8072 init_rt_bandwidth(&tg->rt_bandwidth,
8073 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8075 for_each_possible_cpu(i) {
8076 rq = cpu_rq(i);
8078 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8079 GFP_KERNEL, cpu_to_node(i));
8080 if (!rt_rq)
8081 goto err;
8083 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8084 GFP_KERNEL, cpu_to_node(i));
8085 if (!rt_se)
8086 goto err_free_rq;
8088 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8091 return 1;
8093 err_free_rq:
8094 kfree(rt_rq);
8095 err:
8096 return 0;
8099 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8101 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8102 &cpu_rq(cpu)->leaf_rt_rq_list);
8105 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8107 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8109 #else /* !CONFIG_RT_GROUP_SCHED */
8110 static inline void free_rt_sched_group(struct task_group *tg)
8114 static inline
8115 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8117 return 1;
8120 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8124 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8127 #endif /* CONFIG_RT_GROUP_SCHED */
8129 #ifdef CONFIG_CGROUP_SCHED
8130 static void free_sched_group(struct task_group *tg)
8132 free_fair_sched_group(tg);
8133 free_rt_sched_group(tg);
8134 kfree(tg);
8137 /* allocate runqueue etc for a new task group */
8138 struct task_group *sched_create_group(struct task_group *parent)
8140 struct task_group *tg;
8141 unsigned long flags;
8142 int i;
8144 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8145 if (!tg)
8146 return ERR_PTR(-ENOMEM);
8148 if (!alloc_fair_sched_group(tg, parent))
8149 goto err;
8151 if (!alloc_rt_sched_group(tg, parent))
8152 goto err;
8154 spin_lock_irqsave(&task_group_lock, flags);
8155 for_each_possible_cpu(i) {
8156 register_fair_sched_group(tg, i);
8157 register_rt_sched_group(tg, i);
8159 list_add_rcu(&tg->list, &task_groups);
8161 WARN_ON(!parent); /* root should already exist */
8163 tg->parent = parent;
8164 INIT_LIST_HEAD(&tg->children);
8165 list_add_rcu(&tg->siblings, &parent->children);
8166 spin_unlock_irqrestore(&task_group_lock, flags);
8168 return tg;
8170 err:
8171 free_sched_group(tg);
8172 return ERR_PTR(-ENOMEM);
8175 /* rcu callback to free various structures associated with a task group */
8176 static void free_sched_group_rcu(struct rcu_head *rhp)
8178 /* now it should be safe to free those cfs_rqs */
8179 free_sched_group(container_of(rhp, struct task_group, rcu));
8182 /* Destroy runqueue etc associated with a task group */
8183 void sched_destroy_group(struct task_group *tg)
8185 unsigned long flags;
8186 int i;
8188 spin_lock_irqsave(&task_group_lock, flags);
8189 for_each_possible_cpu(i) {
8190 unregister_fair_sched_group(tg, i);
8191 unregister_rt_sched_group(tg, i);
8193 list_del_rcu(&tg->list);
8194 list_del_rcu(&tg->siblings);
8195 spin_unlock_irqrestore(&task_group_lock, flags);
8197 /* wait for possible concurrent references to cfs_rqs complete */
8198 call_rcu(&tg->rcu, free_sched_group_rcu);
8201 /* change task's runqueue when it moves between groups.
8202 * The caller of this function should have put the task in its new group
8203 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8204 * reflect its new group.
8206 void sched_move_task(struct task_struct *tsk)
8208 int on_rq, running;
8209 unsigned long flags;
8210 struct rq *rq;
8212 rq = task_rq_lock(tsk, &flags);
8214 running = task_current(rq, tsk);
8215 on_rq = tsk->se.on_rq;
8217 if (on_rq)
8218 dequeue_task(rq, tsk, 0);
8219 if (unlikely(running))
8220 tsk->sched_class->put_prev_task(rq, tsk);
8222 set_task_rq(tsk, task_cpu(tsk));
8224 #ifdef CONFIG_FAIR_GROUP_SCHED
8225 if (tsk->sched_class->moved_group)
8226 tsk->sched_class->moved_group(tsk, on_rq);
8227 #endif
8229 if (unlikely(running))
8230 tsk->sched_class->set_curr_task(rq);
8231 if (on_rq)
8232 enqueue_task(rq, tsk, 0);
8234 task_rq_unlock(rq, &flags);
8236 #endif /* CONFIG_CGROUP_SCHED */
8238 #ifdef CONFIG_FAIR_GROUP_SCHED
8239 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8241 struct cfs_rq *cfs_rq = se->cfs_rq;
8242 int on_rq;
8244 on_rq = se->on_rq;
8245 if (on_rq)
8246 dequeue_entity(cfs_rq, se, 0);
8248 se->load.weight = shares;
8249 se->load.inv_weight = 0;
8251 if (on_rq)
8252 enqueue_entity(cfs_rq, se, 0);
8255 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8257 struct cfs_rq *cfs_rq = se->cfs_rq;
8258 struct rq *rq = cfs_rq->rq;
8259 unsigned long flags;
8261 raw_spin_lock_irqsave(&rq->lock, flags);
8262 __set_se_shares(se, shares);
8263 raw_spin_unlock_irqrestore(&rq->lock, flags);
8266 static DEFINE_MUTEX(shares_mutex);
8268 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8270 int i;
8271 unsigned long flags;
8274 * We can't change the weight of the root cgroup.
8276 if (!tg->se[0])
8277 return -EINVAL;
8279 if (shares < MIN_SHARES)
8280 shares = MIN_SHARES;
8281 else if (shares > MAX_SHARES)
8282 shares = MAX_SHARES;
8284 mutex_lock(&shares_mutex);
8285 if (tg->shares == shares)
8286 goto done;
8288 spin_lock_irqsave(&task_group_lock, flags);
8289 for_each_possible_cpu(i)
8290 unregister_fair_sched_group(tg, i);
8291 list_del_rcu(&tg->siblings);
8292 spin_unlock_irqrestore(&task_group_lock, flags);
8294 /* wait for any ongoing reference to this group to finish */
8295 synchronize_sched();
8298 * Now we are free to modify the group's share on each cpu
8299 * w/o tripping rebalance_share or load_balance_fair.
8301 tg->shares = shares;
8302 for_each_possible_cpu(i) {
8304 * force a rebalance
8306 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8307 set_se_shares(tg->se[i], shares);
8311 * Enable load balance activity on this group, by inserting it back on
8312 * each cpu's rq->leaf_cfs_rq_list.
8314 spin_lock_irqsave(&task_group_lock, flags);
8315 for_each_possible_cpu(i)
8316 register_fair_sched_group(tg, i);
8317 list_add_rcu(&tg->siblings, &tg->parent->children);
8318 spin_unlock_irqrestore(&task_group_lock, flags);
8319 done:
8320 mutex_unlock(&shares_mutex);
8321 return 0;
8324 unsigned long sched_group_shares(struct task_group *tg)
8326 return tg->shares;
8328 #endif
8330 #ifdef CONFIG_RT_GROUP_SCHED
8332 * Ensure that the real time constraints are schedulable.
8334 static DEFINE_MUTEX(rt_constraints_mutex);
8336 static unsigned long to_ratio(u64 period, u64 runtime)
8338 if (runtime == RUNTIME_INF)
8339 return 1ULL << 20;
8341 return div64_u64(runtime << 20, period);
8344 /* Must be called with tasklist_lock held */
8345 static inline int tg_has_rt_tasks(struct task_group *tg)
8347 struct task_struct *g, *p;
8349 do_each_thread(g, p) {
8350 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8351 return 1;
8352 } while_each_thread(g, p);
8354 return 0;
8357 struct rt_schedulable_data {
8358 struct task_group *tg;
8359 u64 rt_period;
8360 u64 rt_runtime;
8363 static int tg_schedulable(struct task_group *tg, void *data)
8365 struct rt_schedulable_data *d = data;
8366 struct task_group *child;
8367 unsigned long total, sum = 0;
8368 u64 period, runtime;
8370 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8371 runtime = tg->rt_bandwidth.rt_runtime;
8373 if (tg == d->tg) {
8374 period = d->rt_period;
8375 runtime = d->rt_runtime;
8379 * Cannot have more runtime than the period.
8381 if (runtime > period && runtime != RUNTIME_INF)
8382 return -EINVAL;
8385 * Ensure we don't starve existing RT tasks.
8387 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8388 return -EBUSY;
8390 total = to_ratio(period, runtime);
8393 * Nobody can have more than the global setting allows.
8395 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8396 return -EINVAL;
8399 * The sum of our children's runtime should not exceed our own.
8401 list_for_each_entry_rcu(child, &tg->children, siblings) {
8402 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8403 runtime = child->rt_bandwidth.rt_runtime;
8405 if (child == d->tg) {
8406 period = d->rt_period;
8407 runtime = d->rt_runtime;
8410 sum += to_ratio(period, runtime);
8413 if (sum > total)
8414 return -EINVAL;
8416 return 0;
8419 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8421 struct rt_schedulable_data data = {
8422 .tg = tg,
8423 .rt_period = period,
8424 .rt_runtime = runtime,
8427 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8430 static int tg_set_bandwidth(struct task_group *tg,
8431 u64 rt_period, u64 rt_runtime)
8433 int i, err = 0;
8435 mutex_lock(&rt_constraints_mutex);
8436 read_lock(&tasklist_lock);
8437 err = __rt_schedulable(tg, rt_period, rt_runtime);
8438 if (err)
8439 goto unlock;
8441 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8442 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8443 tg->rt_bandwidth.rt_runtime = rt_runtime;
8445 for_each_possible_cpu(i) {
8446 struct rt_rq *rt_rq = tg->rt_rq[i];
8448 raw_spin_lock(&rt_rq->rt_runtime_lock);
8449 rt_rq->rt_runtime = rt_runtime;
8450 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8452 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8453 unlock:
8454 read_unlock(&tasklist_lock);
8455 mutex_unlock(&rt_constraints_mutex);
8457 return err;
8460 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8462 u64 rt_runtime, rt_period;
8464 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8465 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8466 if (rt_runtime_us < 0)
8467 rt_runtime = RUNTIME_INF;
8469 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8472 long sched_group_rt_runtime(struct task_group *tg)
8474 u64 rt_runtime_us;
8476 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8477 return -1;
8479 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8480 do_div(rt_runtime_us, NSEC_PER_USEC);
8481 return rt_runtime_us;
8484 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8486 u64 rt_runtime, rt_period;
8488 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8489 rt_runtime = tg->rt_bandwidth.rt_runtime;
8491 if (rt_period == 0)
8492 return -EINVAL;
8494 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8497 long sched_group_rt_period(struct task_group *tg)
8499 u64 rt_period_us;
8501 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8502 do_div(rt_period_us, NSEC_PER_USEC);
8503 return rt_period_us;
8506 static int sched_rt_global_constraints(void)
8508 u64 runtime, period;
8509 int ret = 0;
8511 if (sysctl_sched_rt_period <= 0)
8512 return -EINVAL;
8514 runtime = global_rt_runtime();
8515 period = global_rt_period();
8518 * Sanity check on the sysctl variables.
8520 if (runtime > period && runtime != RUNTIME_INF)
8521 return -EINVAL;
8523 mutex_lock(&rt_constraints_mutex);
8524 read_lock(&tasklist_lock);
8525 ret = __rt_schedulable(NULL, 0, 0);
8526 read_unlock(&tasklist_lock);
8527 mutex_unlock(&rt_constraints_mutex);
8529 return ret;
8532 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8534 /* Don't accept realtime tasks when there is no way for them to run */
8535 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8536 return 0;
8538 return 1;
8541 #else /* !CONFIG_RT_GROUP_SCHED */
8542 static int sched_rt_global_constraints(void)
8544 unsigned long flags;
8545 int i;
8547 if (sysctl_sched_rt_period <= 0)
8548 return -EINVAL;
8551 * There's always some RT tasks in the root group
8552 * -- migration, kstopmachine etc..
8554 if (sysctl_sched_rt_runtime == 0)
8555 return -EBUSY;
8557 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8558 for_each_possible_cpu(i) {
8559 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8561 raw_spin_lock(&rt_rq->rt_runtime_lock);
8562 rt_rq->rt_runtime = global_rt_runtime();
8563 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8565 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8567 return 0;
8569 #endif /* CONFIG_RT_GROUP_SCHED */
8571 int sched_rt_handler(struct ctl_table *table, int write,
8572 void __user *buffer, size_t *lenp,
8573 loff_t *ppos)
8575 int ret;
8576 int old_period, old_runtime;
8577 static DEFINE_MUTEX(mutex);
8579 mutex_lock(&mutex);
8580 old_period = sysctl_sched_rt_period;
8581 old_runtime = sysctl_sched_rt_runtime;
8583 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8585 if (!ret && write) {
8586 ret = sched_rt_global_constraints();
8587 if (ret) {
8588 sysctl_sched_rt_period = old_period;
8589 sysctl_sched_rt_runtime = old_runtime;
8590 } else {
8591 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8592 def_rt_bandwidth.rt_period =
8593 ns_to_ktime(global_rt_period());
8596 mutex_unlock(&mutex);
8598 return ret;
8601 #ifdef CONFIG_CGROUP_SCHED
8603 /* return corresponding task_group object of a cgroup */
8604 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8606 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8607 struct task_group, css);
8610 static struct cgroup_subsys_state *
8611 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8613 struct task_group *tg, *parent;
8615 if (!cgrp->parent) {
8616 /* This is early initialization for the top cgroup */
8617 return &init_task_group.css;
8620 parent = cgroup_tg(cgrp->parent);
8621 tg = sched_create_group(parent);
8622 if (IS_ERR(tg))
8623 return ERR_PTR(-ENOMEM);
8625 return &tg->css;
8628 static void
8629 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8631 struct task_group *tg = cgroup_tg(cgrp);
8633 sched_destroy_group(tg);
8636 static int
8637 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8639 #ifdef CONFIG_RT_GROUP_SCHED
8640 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8641 return -EINVAL;
8642 #else
8643 /* We don't support RT-tasks being in separate groups */
8644 if (tsk->sched_class != &fair_sched_class)
8645 return -EINVAL;
8646 #endif
8647 return 0;
8650 static int
8651 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8652 struct task_struct *tsk, bool threadgroup)
8654 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8655 if (retval)
8656 return retval;
8657 if (threadgroup) {
8658 struct task_struct *c;
8659 rcu_read_lock();
8660 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8661 retval = cpu_cgroup_can_attach_task(cgrp, c);
8662 if (retval) {
8663 rcu_read_unlock();
8664 return retval;
8667 rcu_read_unlock();
8669 return 0;
8672 static void
8673 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8674 struct cgroup *old_cont, struct task_struct *tsk,
8675 bool threadgroup)
8677 sched_move_task(tsk);
8678 if (threadgroup) {
8679 struct task_struct *c;
8680 rcu_read_lock();
8681 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8682 sched_move_task(c);
8684 rcu_read_unlock();
8688 #ifdef CONFIG_FAIR_GROUP_SCHED
8689 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8690 u64 shareval)
8692 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8695 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8697 struct task_group *tg = cgroup_tg(cgrp);
8699 return (u64) tg->shares;
8701 #endif /* CONFIG_FAIR_GROUP_SCHED */
8703 #ifdef CONFIG_RT_GROUP_SCHED
8704 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8705 s64 val)
8707 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8710 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8712 return sched_group_rt_runtime(cgroup_tg(cgrp));
8715 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8716 u64 rt_period_us)
8718 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8721 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8723 return sched_group_rt_period(cgroup_tg(cgrp));
8725 #endif /* CONFIG_RT_GROUP_SCHED */
8727 static struct cftype cpu_files[] = {
8728 #ifdef CONFIG_FAIR_GROUP_SCHED
8730 .name = "shares",
8731 .read_u64 = cpu_shares_read_u64,
8732 .write_u64 = cpu_shares_write_u64,
8734 #endif
8735 #ifdef CONFIG_RT_GROUP_SCHED
8737 .name = "rt_runtime_us",
8738 .read_s64 = cpu_rt_runtime_read,
8739 .write_s64 = cpu_rt_runtime_write,
8742 .name = "rt_period_us",
8743 .read_u64 = cpu_rt_period_read_uint,
8744 .write_u64 = cpu_rt_period_write_uint,
8746 #endif
8749 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8751 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8754 struct cgroup_subsys cpu_cgroup_subsys = {
8755 .name = "cpu",
8756 .create = cpu_cgroup_create,
8757 .destroy = cpu_cgroup_destroy,
8758 .can_attach = cpu_cgroup_can_attach,
8759 .attach = cpu_cgroup_attach,
8760 .populate = cpu_cgroup_populate,
8761 .subsys_id = cpu_cgroup_subsys_id,
8762 .early_init = 1,
8765 #endif /* CONFIG_CGROUP_SCHED */
8767 #ifdef CONFIG_CGROUP_CPUACCT
8770 * CPU accounting code for task groups.
8772 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8773 * (balbir@in.ibm.com).
8776 /* track cpu usage of a group of tasks and its child groups */
8777 struct cpuacct {
8778 struct cgroup_subsys_state css;
8779 /* cpuusage holds pointer to a u64-type object on every cpu */
8780 u64 __percpu *cpuusage;
8781 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8782 struct cpuacct *parent;
8785 struct cgroup_subsys cpuacct_subsys;
8787 /* return cpu accounting group corresponding to this container */
8788 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8790 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8791 struct cpuacct, css);
8794 /* return cpu accounting group to which this task belongs */
8795 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8797 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8798 struct cpuacct, css);
8801 /* create a new cpu accounting group */
8802 static struct cgroup_subsys_state *cpuacct_create(
8803 struct cgroup_subsys *ss, struct cgroup *cgrp)
8805 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8806 int i;
8808 if (!ca)
8809 goto out;
8811 ca->cpuusage = alloc_percpu(u64);
8812 if (!ca->cpuusage)
8813 goto out_free_ca;
8815 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8816 if (percpu_counter_init(&ca->cpustat[i], 0))
8817 goto out_free_counters;
8819 if (cgrp->parent)
8820 ca->parent = cgroup_ca(cgrp->parent);
8822 return &ca->css;
8824 out_free_counters:
8825 while (--i >= 0)
8826 percpu_counter_destroy(&ca->cpustat[i]);
8827 free_percpu(ca->cpuusage);
8828 out_free_ca:
8829 kfree(ca);
8830 out:
8831 return ERR_PTR(-ENOMEM);
8834 /* destroy an existing cpu accounting group */
8835 static void
8836 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8838 struct cpuacct *ca = cgroup_ca(cgrp);
8839 int i;
8841 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8842 percpu_counter_destroy(&ca->cpustat[i]);
8843 free_percpu(ca->cpuusage);
8844 kfree(ca);
8847 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8849 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8850 u64 data;
8852 #ifndef CONFIG_64BIT
8854 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8856 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8857 data = *cpuusage;
8858 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8859 #else
8860 data = *cpuusage;
8861 #endif
8863 return data;
8866 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8868 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8870 #ifndef CONFIG_64BIT
8872 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8874 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8875 *cpuusage = val;
8876 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8877 #else
8878 *cpuusage = val;
8879 #endif
8882 /* return total cpu usage (in nanoseconds) of a group */
8883 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8885 struct cpuacct *ca = cgroup_ca(cgrp);
8886 u64 totalcpuusage = 0;
8887 int i;
8889 for_each_present_cpu(i)
8890 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8892 return totalcpuusage;
8895 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8896 u64 reset)
8898 struct cpuacct *ca = cgroup_ca(cgrp);
8899 int err = 0;
8900 int i;
8902 if (reset) {
8903 err = -EINVAL;
8904 goto out;
8907 for_each_present_cpu(i)
8908 cpuacct_cpuusage_write(ca, i, 0);
8910 out:
8911 return err;
8914 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8915 struct seq_file *m)
8917 struct cpuacct *ca = cgroup_ca(cgroup);
8918 u64 percpu;
8919 int i;
8921 for_each_present_cpu(i) {
8922 percpu = cpuacct_cpuusage_read(ca, i);
8923 seq_printf(m, "%llu ", (unsigned long long) percpu);
8925 seq_printf(m, "\n");
8926 return 0;
8929 static const char *cpuacct_stat_desc[] = {
8930 [CPUACCT_STAT_USER] = "user",
8931 [CPUACCT_STAT_SYSTEM] = "system",
8934 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8935 struct cgroup_map_cb *cb)
8937 struct cpuacct *ca = cgroup_ca(cgrp);
8938 int i;
8940 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8941 s64 val = percpu_counter_read(&ca->cpustat[i]);
8942 val = cputime64_to_clock_t(val);
8943 cb->fill(cb, cpuacct_stat_desc[i], val);
8945 return 0;
8948 static struct cftype files[] = {
8950 .name = "usage",
8951 .read_u64 = cpuusage_read,
8952 .write_u64 = cpuusage_write,
8955 .name = "usage_percpu",
8956 .read_seq_string = cpuacct_percpu_seq_read,
8959 .name = "stat",
8960 .read_map = cpuacct_stats_show,
8964 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8966 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8970 * charge this task's execution time to its accounting group.
8972 * called with rq->lock held.
8974 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8976 struct cpuacct *ca;
8977 int cpu;
8979 if (unlikely(!cpuacct_subsys.active))
8980 return;
8982 cpu = task_cpu(tsk);
8984 rcu_read_lock();
8986 ca = task_ca(tsk);
8988 for (; ca; ca = ca->parent) {
8989 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8990 *cpuusage += cputime;
8993 rcu_read_unlock();
8997 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8998 * in cputime_t units. As a result, cpuacct_update_stats calls
8999 * percpu_counter_add with values large enough to always overflow the
9000 * per cpu batch limit causing bad SMP scalability.
9002 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9003 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9004 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9006 #ifdef CONFIG_SMP
9007 #define CPUACCT_BATCH \
9008 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9009 #else
9010 #define CPUACCT_BATCH 0
9011 #endif
9014 * Charge the system/user time to the task's accounting group.
9016 static void cpuacct_update_stats(struct task_struct *tsk,
9017 enum cpuacct_stat_index idx, cputime_t val)
9019 struct cpuacct *ca;
9020 int batch = CPUACCT_BATCH;
9022 if (unlikely(!cpuacct_subsys.active))
9023 return;
9025 rcu_read_lock();
9026 ca = task_ca(tsk);
9028 do {
9029 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9030 ca = ca->parent;
9031 } while (ca);
9032 rcu_read_unlock();
9035 struct cgroup_subsys cpuacct_subsys = {
9036 .name = "cpuacct",
9037 .create = cpuacct_create,
9038 .destroy = cpuacct_destroy,
9039 .populate = cpuacct_populate,
9040 .subsys_id = cpuacct_subsys_id,
9042 #endif /* CONFIG_CGROUP_CPUACCT */
9044 #ifndef CONFIG_SMP
9046 void synchronize_sched_expedited(void)
9048 barrier();
9050 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9052 #else /* #ifndef CONFIG_SMP */
9054 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9056 static int synchronize_sched_expedited_cpu_stop(void *data)
9059 * There must be a full memory barrier on each affected CPU
9060 * between the time that try_stop_cpus() is called and the
9061 * time that it returns.
9063 * In the current initial implementation of cpu_stop, the
9064 * above condition is already met when the control reaches
9065 * this point and the following smp_mb() is not strictly
9066 * necessary. Do smp_mb() anyway for documentation and
9067 * robustness against future implementation changes.
9069 smp_mb(); /* See above comment block. */
9070 return 0;
9074 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9075 * approach to force grace period to end quickly. This consumes
9076 * significant time on all CPUs, and is thus not recommended for
9077 * any sort of common-case code.
9079 * Note that it is illegal to call this function while holding any
9080 * lock that is acquired by a CPU-hotplug notifier. Failing to
9081 * observe this restriction will result in deadlock.
9083 void synchronize_sched_expedited(void)
9085 int snap, trycount = 0;
9087 smp_mb(); /* ensure prior mod happens before capturing snap. */
9088 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9089 get_online_cpus();
9090 while (try_stop_cpus(cpu_online_mask,
9091 synchronize_sched_expedited_cpu_stop,
9092 NULL) == -EAGAIN) {
9093 put_online_cpus();
9094 if (trycount++ < 10)
9095 udelay(trycount * num_online_cpus());
9096 else {
9097 synchronize_sched();
9098 return;
9100 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9101 smp_mb(); /* ensure test happens before caller kfree */
9102 return;
9104 get_online_cpus();
9106 atomic_inc(&synchronize_sched_expedited_count);
9107 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9108 put_online_cpus();
9110 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9112 #endif /* #else #ifndef CONFIG_SMP */