x86, binutils, xen: Fix another wrong size directive
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / migrate.c
blob87e7e3a11db2e429c238b392b81564273231dd7d
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
38 #include <asm/tlbflush.h>
40 #include "internal.h"
42 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
45 * migrate_prep() needs to be called before we start compiling a list of pages
46 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
47 * undesirable, use migrate_prep_local()
49 int migrate_prep(void)
52 * Clear the LRU lists so pages can be isolated.
53 * Note that pages may be moved off the LRU after we have
54 * drained them. Those pages will fail to migrate like other
55 * pages that may be busy.
57 lru_add_drain_all();
59 return 0;
62 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
63 int migrate_prep_local(void)
65 lru_add_drain();
67 return 0;
71 * Add isolated pages on the list back to the LRU under page lock
72 * to avoid leaking evictable pages back onto unevictable list.
74 void putback_lru_pages(struct list_head *l)
76 struct page *page;
77 struct page *page2;
79 list_for_each_entry_safe(page, page2, l, lru) {
80 list_del(&page->lru);
81 dec_zone_page_state(page, NR_ISOLATED_ANON +
82 page_is_file_cache(page));
83 putback_lru_page(page);
88 * Restore a potential migration pte to a working pte entry
90 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
91 unsigned long addr, void *old)
93 struct mm_struct *mm = vma->vm_mm;
94 swp_entry_t entry;
95 pgd_t *pgd;
96 pud_t *pud;
97 pmd_t *pmd;
98 pte_t *ptep, pte;
99 spinlock_t *ptl;
101 if (unlikely(PageHuge(new))) {
102 ptep = huge_pte_offset(mm, addr);
103 if (!ptep)
104 goto out;
105 ptl = &mm->page_table_lock;
106 } else {
107 pgd = pgd_offset(mm, addr);
108 if (!pgd_present(*pgd))
109 goto out;
111 pud = pud_offset(pgd, addr);
112 if (!pud_present(*pud))
113 goto out;
115 pmd = pmd_offset(pud, addr);
116 if (!pmd_present(*pmd))
117 goto out;
119 ptep = pte_offset_map(pmd, addr);
121 if (!is_swap_pte(*ptep)) {
122 pte_unmap(ptep);
123 goto out;
126 ptl = pte_lockptr(mm, pmd);
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
132 goto unlock;
134 entry = pte_to_swp_entry(pte);
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
147 #endif
148 flush_cache_page(vma, addr, pte_pfn(pte));
149 set_pte_at(mm, addr, ptep, pte);
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma, addr, ptep);
163 unlock:
164 pte_unmap_unlock(ptep, ptl);
165 out:
166 return SWAP_AGAIN;
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
173 static void remove_migration_ptes(struct page *old, struct page *new)
175 rmap_walk(new, remove_migration_pte, old);
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
183 * This function is called from do_swap_page().
185 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
186 unsigned long address)
188 pte_t *ptep, pte;
189 spinlock_t *ptl;
190 swp_entry_t entry;
191 struct page *page;
193 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
194 pte = *ptep;
195 if (!is_swap_pte(pte))
196 goto out;
198 entry = pte_to_swp_entry(pte);
199 if (!is_migration_entry(entry))
200 goto out;
202 page = migration_entry_to_page(entry);
205 * Once radix-tree replacement of page migration started, page_count
206 * *must* be zero. And, we don't want to call wait_on_page_locked()
207 * against a page without get_page().
208 * So, we use get_page_unless_zero(), here. Even failed, page fault
209 * will occur again.
211 if (!get_page_unless_zero(page))
212 goto out;
213 pte_unmap_unlock(ptep, ptl);
214 wait_on_page_locked(page);
215 put_page(page);
216 return;
217 out:
218 pte_unmap_unlock(ptep, ptl);
222 * Replace the page in the mapping.
224 * The number of remaining references must be:
225 * 1 for anonymous pages without a mapping
226 * 2 for pages with a mapping
227 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
229 static int migrate_page_move_mapping(struct address_space *mapping,
230 struct page *newpage, struct page *page)
232 int expected_count;
233 void **pslot;
235 if (!mapping) {
236 /* Anonymous page without mapping */
237 if (page_count(page) != 1)
238 return -EAGAIN;
239 return 0;
242 spin_lock_irq(&mapping->tree_lock);
244 pslot = radix_tree_lookup_slot(&mapping->page_tree,
245 page_index(page));
247 expected_count = 2 + page_has_private(page);
248 if (page_count(page) != expected_count ||
249 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
250 spin_unlock_irq(&mapping->tree_lock);
251 return -EAGAIN;
254 if (!page_freeze_refs(page, expected_count)) {
255 spin_unlock_irq(&mapping->tree_lock);
256 return -EAGAIN;
260 * Now we know that no one else is looking at the page.
262 get_page(newpage); /* add cache reference */
263 if (PageSwapCache(page)) {
264 SetPageSwapCache(newpage);
265 set_page_private(newpage, page_private(page));
268 radix_tree_replace_slot(pslot, newpage);
270 page_unfreeze_refs(page, expected_count);
272 * Drop cache reference from old page.
273 * We know this isn't the last reference.
275 __put_page(page);
278 * If moved to a different zone then also account
279 * the page for that zone. Other VM counters will be
280 * taken care of when we establish references to the
281 * new page and drop references to the old page.
283 * Note that anonymous pages are accounted for
284 * via NR_FILE_PAGES and NR_ANON_PAGES if they
285 * are mapped to swap space.
287 __dec_zone_page_state(page, NR_FILE_PAGES);
288 __inc_zone_page_state(newpage, NR_FILE_PAGES);
289 if (PageSwapBacked(page)) {
290 __dec_zone_page_state(page, NR_SHMEM);
291 __inc_zone_page_state(newpage, NR_SHMEM);
293 spin_unlock_irq(&mapping->tree_lock);
295 return 0;
299 * The expected number of remaining references is the same as that
300 * of migrate_page_move_mapping().
302 int migrate_huge_page_move_mapping(struct address_space *mapping,
303 struct page *newpage, struct page *page)
305 int expected_count;
306 void **pslot;
308 if (!mapping) {
309 if (page_count(page) != 1)
310 return -EAGAIN;
311 return 0;
314 spin_lock_irq(&mapping->tree_lock);
316 pslot = radix_tree_lookup_slot(&mapping->page_tree,
317 page_index(page));
319 expected_count = 2 + page_has_private(page);
320 if (page_count(page) != expected_count ||
321 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
322 spin_unlock_irq(&mapping->tree_lock);
323 return -EAGAIN;
326 if (!page_freeze_refs(page, expected_count)) {
327 spin_unlock_irq(&mapping->tree_lock);
328 return -EAGAIN;
331 get_page(newpage);
333 radix_tree_replace_slot(pslot, newpage);
335 page_unfreeze_refs(page, expected_count);
337 __put_page(page);
339 spin_unlock_irq(&mapping->tree_lock);
340 return 0;
344 * Copy the page to its new location
346 void migrate_page_copy(struct page *newpage, struct page *page)
348 if (PageHuge(page))
349 copy_huge_page(newpage, page);
350 else
351 copy_highpage(newpage, page);
353 if (PageError(page))
354 SetPageError(newpage);
355 if (PageReferenced(page))
356 SetPageReferenced(newpage);
357 if (PageUptodate(page))
358 SetPageUptodate(newpage);
359 if (TestClearPageActive(page)) {
360 VM_BUG_ON(PageUnevictable(page));
361 SetPageActive(newpage);
362 } else if (TestClearPageUnevictable(page))
363 SetPageUnevictable(newpage);
364 if (PageChecked(page))
365 SetPageChecked(newpage);
366 if (PageMappedToDisk(page))
367 SetPageMappedToDisk(newpage);
369 if (PageDirty(page)) {
370 clear_page_dirty_for_io(page);
372 * Want to mark the page and the radix tree as dirty, and
373 * redo the accounting that clear_page_dirty_for_io undid,
374 * but we can't use set_page_dirty because that function
375 * is actually a signal that all of the page has become dirty.
376 * Wheras only part of our page may be dirty.
378 __set_page_dirty_nobuffers(newpage);
381 mlock_migrate_page(newpage, page);
382 ksm_migrate_page(newpage, page);
384 ClearPageSwapCache(page);
385 ClearPagePrivate(page);
386 set_page_private(page, 0);
387 page->mapping = NULL;
390 * If any waiters have accumulated on the new page then
391 * wake them up.
393 if (PageWriteback(newpage))
394 end_page_writeback(newpage);
397 /************************************************************
398 * Migration functions
399 ***********************************************************/
401 /* Always fail migration. Used for mappings that are not movable */
402 int fail_migrate_page(struct address_space *mapping,
403 struct page *newpage, struct page *page)
405 return -EIO;
407 EXPORT_SYMBOL(fail_migrate_page);
410 * Common logic to directly migrate a single page suitable for
411 * pages that do not use PagePrivate/PagePrivate2.
413 * Pages are locked upon entry and exit.
415 int migrate_page(struct address_space *mapping,
416 struct page *newpage, struct page *page)
418 int rc;
420 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
422 rc = migrate_page_move_mapping(mapping, newpage, page);
424 if (rc)
425 return rc;
427 migrate_page_copy(newpage, page);
428 return 0;
430 EXPORT_SYMBOL(migrate_page);
432 #ifdef CONFIG_BLOCK
434 * Migration function for pages with buffers. This function can only be used
435 * if the underlying filesystem guarantees that no other references to "page"
436 * exist.
438 int buffer_migrate_page(struct address_space *mapping,
439 struct page *newpage, struct page *page)
441 struct buffer_head *bh, *head;
442 int rc;
444 if (!page_has_buffers(page))
445 return migrate_page(mapping, newpage, page);
447 head = page_buffers(page);
449 rc = migrate_page_move_mapping(mapping, newpage, page);
451 if (rc)
452 return rc;
454 bh = head;
455 do {
456 get_bh(bh);
457 lock_buffer(bh);
458 bh = bh->b_this_page;
460 } while (bh != head);
462 ClearPagePrivate(page);
463 set_page_private(newpage, page_private(page));
464 set_page_private(page, 0);
465 put_page(page);
466 get_page(newpage);
468 bh = head;
469 do {
470 set_bh_page(bh, newpage, bh_offset(bh));
471 bh = bh->b_this_page;
473 } while (bh != head);
475 SetPagePrivate(newpage);
477 migrate_page_copy(newpage, page);
479 bh = head;
480 do {
481 unlock_buffer(bh);
482 put_bh(bh);
483 bh = bh->b_this_page;
485 } while (bh != head);
487 return 0;
489 EXPORT_SYMBOL(buffer_migrate_page);
490 #endif
493 * Writeback a page to clean the dirty state
495 static int writeout(struct address_space *mapping, struct page *page)
497 struct writeback_control wbc = {
498 .sync_mode = WB_SYNC_NONE,
499 .nr_to_write = 1,
500 .range_start = 0,
501 .range_end = LLONG_MAX,
502 .for_reclaim = 1
504 int rc;
506 if (!mapping->a_ops->writepage)
507 /* No write method for the address space */
508 return -EINVAL;
510 if (!clear_page_dirty_for_io(page))
511 /* Someone else already triggered a write */
512 return -EAGAIN;
515 * A dirty page may imply that the underlying filesystem has
516 * the page on some queue. So the page must be clean for
517 * migration. Writeout may mean we loose the lock and the
518 * page state is no longer what we checked for earlier.
519 * At this point we know that the migration attempt cannot
520 * be successful.
522 remove_migration_ptes(page, page);
524 rc = mapping->a_ops->writepage(page, &wbc);
526 if (rc != AOP_WRITEPAGE_ACTIVATE)
527 /* unlocked. Relock */
528 lock_page(page);
530 return (rc < 0) ? -EIO : -EAGAIN;
534 * Default handling if a filesystem does not provide a migration function.
536 static int fallback_migrate_page(struct address_space *mapping,
537 struct page *newpage, struct page *page)
539 if (PageDirty(page))
540 return writeout(mapping, page);
543 * Buffers may be managed in a filesystem specific way.
544 * We must have no buffers or drop them.
546 if (page_has_private(page) &&
547 !try_to_release_page(page, GFP_KERNEL))
548 return -EAGAIN;
550 return migrate_page(mapping, newpage, page);
554 * Move a page to a newly allocated page
555 * The page is locked and all ptes have been successfully removed.
557 * The new page will have replaced the old page if this function
558 * is successful.
560 * Return value:
561 * < 0 - error code
562 * == 0 - success
564 static int move_to_new_page(struct page *newpage, struct page *page,
565 int remap_swapcache)
567 struct address_space *mapping;
568 int rc;
571 * Block others from accessing the page when we get around to
572 * establishing additional references. We are the only one
573 * holding a reference to the new page at this point.
575 if (!trylock_page(newpage))
576 BUG();
578 /* Prepare mapping for the new page.*/
579 newpage->index = page->index;
580 newpage->mapping = page->mapping;
581 if (PageSwapBacked(page))
582 SetPageSwapBacked(newpage);
584 mapping = page_mapping(page);
585 if (!mapping)
586 rc = migrate_page(mapping, newpage, page);
587 else if (mapping->a_ops->migratepage)
589 * Most pages have a mapping and most filesystems
590 * should provide a migration function. Anonymous
591 * pages are part of swap space which also has its
592 * own migration function. This is the most common
593 * path for page migration.
595 rc = mapping->a_ops->migratepage(mapping,
596 newpage, page);
597 else
598 rc = fallback_migrate_page(mapping, newpage, page);
600 if (rc) {
601 newpage->mapping = NULL;
602 } else {
603 if (remap_swapcache)
604 remove_migration_ptes(page, newpage);
607 unlock_page(newpage);
609 return rc;
613 * Obtain the lock on page, remove all ptes and migrate the page
614 * to the newly allocated page in newpage.
616 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
617 struct page *page, int force, int offlining)
619 int rc = 0;
620 int *result = NULL;
621 struct page *newpage = get_new_page(page, private, &result);
622 int remap_swapcache = 1;
623 int charge = 0;
624 struct mem_cgroup *mem = NULL;
625 struct anon_vma *anon_vma = NULL;
627 if (!newpage)
628 return -ENOMEM;
630 if (page_count(page) == 1) {
631 /* page was freed from under us. So we are done. */
632 goto move_newpage;
635 /* prepare cgroup just returns 0 or -ENOMEM */
636 rc = -EAGAIN;
638 if (!trylock_page(page)) {
639 if (!force)
640 goto move_newpage;
641 lock_page(page);
645 * Only memory hotplug's offline_pages() caller has locked out KSM,
646 * and can safely migrate a KSM page. The other cases have skipped
647 * PageKsm along with PageReserved - but it is only now when we have
648 * the page lock that we can be certain it will not go KSM beneath us
649 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
650 * its pagecount raised, but only here do we take the page lock which
651 * serializes that).
653 if (PageKsm(page) && !offlining) {
654 rc = -EBUSY;
655 goto unlock;
658 /* charge against new page */
659 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
660 if (charge == -ENOMEM) {
661 rc = -ENOMEM;
662 goto unlock;
664 BUG_ON(charge);
666 if (PageWriteback(page)) {
667 if (!force)
668 goto uncharge;
669 wait_on_page_writeback(page);
672 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
673 * we cannot notice that anon_vma is freed while we migrates a page.
674 * This get_anon_vma() delays freeing anon_vma pointer until the end
675 * of migration. File cache pages are no problem because of page_lock()
676 * File Caches may use write_page() or lock_page() in migration, then,
677 * just care Anon page here.
679 if (PageAnon(page)) {
681 * Only page_lock_anon_vma() understands the subtleties of
682 * getting a hold on an anon_vma from outside one of its mms.
684 anon_vma = page_lock_anon_vma(page);
685 if (anon_vma) {
687 * Take a reference count on the anon_vma if the
688 * page is mapped so that it is guaranteed to
689 * exist when the page is remapped later
691 get_anon_vma(anon_vma);
692 page_unlock_anon_vma(anon_vma);
693 } else if (PageSwapCache(page)) {
695 * We cannot be sure that the anon_vma of an unmapped
696 * swapcache page is safe to use because we don't
697 * know in advance if the VMA that this page belonged
698 * to still exists. If the VMA and others sharing the
699 * data have been freed, then the anon_vma could
700 * already be invalid.
702 * To avoid this possibility, swapcache pages get
703 * migrated but are not remapped when migration
704 * completes
706 remap_swapcache = 0;
707 } else {
708 goto uncharge;
713 * Corner case handling:
714 * 1. When a new swap-cache page is read into, it is added to the LRU
715 * and treated as swapcache but it has no rmap yet.
716 * Calling try_to_unmap() against a page->mapping==NULL page will
717 * trigger a BUG. So handle it here.
718 * 2. An orphaned page (see truncate_complete_page) might have
719 * fs-private metadata. The page can be picked up due to memory
720 * offlining. Everywhere else except page reclaim, the page is
721 * invisible to the vm, so the page can not be migrated. So try to
722 * free the metadata, so the page can be freed.
724 if (!page->mapping) {
725 VM_BUG_ON(PageAnon(page));
726 if (page_has_private(page)) {
727 try_to_free_buffers(page);
728 goto uncharge;
730 goto skip_unmap;
733 /* Establish migration ptes or remove ptes */
734 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
736 skip_unmap:
737 if (!page_mapped(page))
738 rc = move_to_new_page(newpage, page, remap_swapcache);
740 if (rc && remap_swapcache)
741 remove_migration_ptes(page, page);
743 /* Drop an anon_vma reference if we took one */
744 if (anon_vma)
745 drop_anon_vma(anon_vma);
747 uncharge:
748 if (!charge)
749 mem_cgroup_end_migration(mem, page, newpage);
750 unlock:
751 unlock_page(page);
753 if (rc != -EAGAIN) {
755 * A page that has been migrated has all references
756 * removed and will be freed. A page that has not been
757 * migrated will have kepts its references and be
758 * restored.
760 list_del(&page->lru);
761 dec_zone_page_state(page, NR_ISOLATED_ANON +
762 page_is_file_cache(page));
763 putback_lru_page(page);
766 move_newpage:
769 * Move the new page to the LRU. If migration was not successful
770 * then this will free the page.
772 putback_lru_page(newpage);
774 if (result) {
775 if (rc)
776 *result = rc;
777 else
778 *result = page_to_nid(newpage);
780 return rc;
784 * Counterpart of unmap_and_move_page() for hugepage migration.
786 * This function doesn't wait the completion of hugepage I/O
787 * because there is no race between I/O and migration for hugepage.
788 * Note that currently hugepage I/O occurs only in direct I/O
789 * where no lock is held and PG_writeback is irrelevant,
790 * and writeback status of all subpages are counted in the reference
791 * count of the head page (i.e. if all subpages of a 2MB hugepage are
792 * under direct I/O, the reference of the head page is 512 and a bit more.)
793 * This means that when we try to migrate hugepage whose subpages are
794 * doing direct I/O, some references remain after try_to_unmap() and
795 * hugepage migration fails without data corruption.
797 * There is also no race when direct I/O is issued on the page under migration,
798 * because then pte is replaced with migration swap entry and direct I/O code
799 * will wait in the page fault for migration to complete.
801 static int unmap_and_move_huge_page(new_page_t get_new_page,
802 unsigned long private, struct page *hpage,
803 int force, int offlining)
805 int rc = 0;
806 int *result = NULL;
807 struct page *new_hpage = get_new_page(hpage, private, &result);
808 struct anon_vma *anon_vma = NULL;
810 if (!new_hpage)
811 return -ENOMEM;
813 rc = -EAGAIN;
815 if (!trylock_page(hpage)) {
816 if (!force)
817 goto out;
818 lock_page(hpage);
821 if (PageAnon(hpage)) {
822 anon_vma = page_lock_anon_vma(hpage);
823 if (anon_vma) {
824 get_anon_vma(anon_vma);
825 page_unlock_anon_vma(anon_vma);
829 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
831 if (!page_mapped(hpage))
832 rc = move_to_new_page(new_hpage, hpage, 1);
834 if (rc)
835 remove_migration_ptes(hpage, hpage);
837 if (anon_vma)
838 drop_anon_vma(anon_vma);
839 out:
840 unlock_page(hpage);
842 if (rc != -EAGAIN) {
843 list_del(&hpage->lru);
844 put_page(hpage);
847 put_page(new_hpage);
849 if (result) {
850 if (rc)
851 *result = rc;
852 else
853 *result = page_to_nid(new_hpage);
855 return rc;
859 * migrate_pages
861 * The function takes one list of pages to migrate and a function
862 * that determines from the page to be migrated and the private data
863 * the target of the move and allocates the page.
865 * The function returns after 10 attempts or if no pages
866 * are movable anymore because to has become empty
867 * or no retryable pages exist anymore.
868 * Caller should call putback_lru_pages to return pages to the LRU
869 * or free list.
871 * Return: Number of pages not migrated or error code.
873 int migrate_pages(struct list_head *from,
874 new_page_t get_new_page, unsigned long private, int offlining)
876 int retry = 1;
877 int nr_failed = 0;
878 int pass = 0;
879 struct page *page;
880 struct page *page2;
881 int swapwrite = current->flags & PF_SWAPWRITE;
882 int rc;
884 if (!swapwrite)
885 current->flags |= PF_SWAPWRITE;
887 for(pass = 0; pass < 10 && retry; pass++) {
888 retry = 0;
890 list_for_each_entry_safe(page, page2, from, lru) {
891 cond_resched();
893 rc = unmap_and_move(get_new_page, private,
894 page, pass > 2, offlining);
896 switch(rc) {
897 case -ENOMEM:
898 goto out;
899 case -EAGAIN:
900 retry++;
901 break;
902 case 0:
903 break;
904 default:
905 /* Permanent failure */
906 nr_failed++;
907 break;
911 rc = 0;
912 out:
913 if (!swapwrite)
914 current->flags &= ~PF_SWAPWRITE;
916 if (rc)
917 return rc;
919 return nr_failed + retry;
922 int migrate_huge_pages(struct list_head *from,
923 new_page_t get_new_page, unsigned long private, int offlining)
925 int retry = 1;
926 int nr_failed = 0;
927 int pass = 0;
928 struct page *page;
929 struct page *page2;
930 int rc;
932 for (pass = 0; pass < 10 && retry; pass++) {
933 retry = 0;
935 list_for_each_entry_safe(page, page2, from, lru) {
936 cond_resched();
938 rc = unmap_and_move_huge_page(get_new_page,
939 private, page, pass > 2, offlining);
941 switch(rc) {
942 case -ENOMEM:
943 goto out;
944 case -EAGAIN:
945 retry++;
946 break;
947 case 0:
948 break;
949 default:
950 /* Permanent failure */
951 nr_failed++;
952 break;
956 rc = 0;
957 out:
959 list_for_each_entry_safe(page, page2, from, lru)
960 put_page(page);
962 if (rc)
963 return rc;
965 return nr_failed + retry;
968 #ifdef CONFIG_NUMA
970 * Move a list of individual pages
972 struct page_to_node {
973 unsigned long addr;
974 struct page *page;
975 int node;
976 int status;
979 static struct page *new_page_node(struct page *p, unsigned long private,
980 int **result)
982 struct page_to_node *pm = (struct page_to_node *)private;
984 while (pm->node != MAX_NUMNODES && pm->page != p)
985 pm++;
987 if (pm->node == MAX_NUMNODES)
988 return NULL;
990 *result = &pm->status;
992 return alloc_pages_exact_node(pm->node,
993 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
997 * Move a set of pages as indicated in the pm array. The addr
998 * field must be set to the virtual address of the page to be moved
999 * and the node number must contain a valid target node.
1000 * The pm array ends with node = MAX_NUMNODES.
1002 static int do_move_page_to_node_array(struct mm_struct *mm,
1003 struct page_to_node *pm,
1004 int migrate_all)
1006 int err;
1007 struct page_to_node *pp;
1008 LIST_HEAD(pagelist);
1010 down_read(&mm->mmap_sem);
1013 * Build a list of pages to migrate
1015 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1016 struct vm_area_struct *vma;
1017 struct page *page;
1019 err = -EFAULT;
1020 vma = find_vma(mm, pp->addr);
1021 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1022 goto set_status;
1024 page = follow_page(vma, pp->addr, FOLL_GET);
1026 err = PTR_ERR(page);
1027 if (IS_ERR(page))
1028 goto set_status;
1030 err = -ENOENT;
1031 if (!page)
1032 goto set_status;
1034 /* Use PageReserved to check for zero page */
1035 if (PageReserved(page) || PageKsm(page))
1036 goto put_and_set;
1038 pp->page = page;
1039 err = page_to_nid(page);
1041 if (err == pp->node)
1043 * Node already in the right place
1045 goto put_and_set;
1047 err = -EACCES;
1048 if (page_mapcount(page) > 1 &&
1049 !migrate_all)
1050 goto put_and_set;
1052 err = isolate_lru_page(page);
1053 if (!err) {
1054 list_add_tail(&page->lru, &pagelist);
1055 inc_zone_page_state(page, NR_ISOLATED_ANON +
1056 page_is_file_cache(page));
1058 put_and_set:
1060 * Either remove the duplicate refcount from
1061 * isolate_lru_page() or drop the page ref if it was
1062 * not isolated.
1064 put_page(page);
1065 set_status:
1066 pp->status = err;
1069 err = 0;
1070 if (!list_empty(&pagelist)) {
1071 err = migrate_pages(&pagelist, new_page_node,
1072 (unsigned long)pm, 0);
1073 if (err)
1074 putback_lru_pages(&pagelist);
1077 up_read(&mm->mmap_sem);
1078 return err;
1082 * Migrate an array of page address onto an array of nodes and fill
1083 * the corresponding array of status.
1085 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1086 unsigned long nr_pages,
1087 const void __user * __user *pages,
1088 const int __user *nodes,
1089 int __user *status, int flags)
1091 struct page_to_node *pm;
1092 nodemask_t task_nodes;
1093 unsigned long chunk_nr_pages;
1094 unsigned long chunk_start;
1095 int err;
1097 task_nodes = cpuset_mems_allowed(task);
1099 err = -ENOMEM;
1100 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1101 if (!pm)
1102 goto out;
1104 migrate_prep();
1107 * Store a chunk of page_to_node array in a page,
1108 * but keep the last one as a marker
1110 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1112 for (chunk_start = 0;
1113 chunk_start < nr_pages;
1114 chunk_start += chunk_nr_pages) {
1115 int j;
1117 if (chunk_start + chunk_nr_pages > nr_pages)
1118 chunk_nr_pages = nr_pages - chunk_start;
1120 /* fill the chunk pm with addrs and nodes from user-space */
1121 for (j = 0; j < chunk_nr_pages; j++) {
1122 const void __user *p;
1123 int node;
1125 err = -EFAULT;
1126 if (get_user(p, pages + j + chunk_start))
1127 goto out_pm;
1128 pm[j].addr = (unsigned long) p;
1130 if (get_user(node, nodes + j + chunk_start))
1131 goto out_pm;
1133 err = -ENODEV;
1134 if (node < 0 || node >= MAX_NUMNODES)
1135 goto out_pm;
1137 if (!node_state(node, N_HIGH_MEMORY))
1138 goto out_pm;
1140 err = -EACCES;
1141 if (!node_isset(node, task_nodes))
1142 goto out_pm;
1144 pm[j].node = node;
1147 /* End marker for this chunk */
1148 pm[chunk_nr_pages].node = MAX_NUMNODES;
1150 /* Migrate this chunk */
1151 err = do_move_page_to_node_array(mm, pm,
1152 flags & MPOL_MF_MOVE_ALL);
1153 if (err < 0)
1154 goto out_pm;
1156 /* Return status information */
1157 for (j = 0; j < chunk_nr_pages; j++)
1158 if (put_user(pm[j].status, status + j + chunk_start)) {
1159 err = -EFAULT;
1160 goto out_pm;
1163 err = 0;
1165 out_pm:
1166 free_page((unsigned long)pm);
1167 out:
1168 return err;
1172 * Determine the nodes of an array of pages and store it in an array of status.
1174 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1175 const void __user **pages, int *status)
1177 unsigned long i;
1179 down_read(&mm->mmap_sem);
1181 for (i = 0; i < nr_pages; i++) {
1182 unsigned long addr = (unsigned long)(*pages);
1183 struct vm_area_struct *vma;
1184 struct page *page;
1185 int err = -EFAULT;
1187 vma = find_vma(mm, addr);
1188 if (!vma || addr < vma->vm_start)
1189 goto set_status;
1191 page = follow_page(vma, addr, 0);
1193 err = PTR_ERR(page);
1194 if (IS_ERR(page))
1195 goto set_status;
1197 err = -ENOENT;
1198 /* Use PageReserved to check for zero page */
1199 if (!page || PageReserved(page) || PageKsm(page))
1200 goto set_status;
1202 err = page_to_nid(page);
1203 set_status:
1204 *status = err;
1206 pages++;
1207 status++;
1210 up_read(&mm->mmap_sem);
1214 * Determine the nodes of a user array of pages and store it in
1215 * a user array of status.
1217 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1218 const void __user * __user *pages,
1219 int __user *status)
1221 #define DO_PAGES_STAT_CHUNK_NR 16
1222 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1223 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1225 while (nr_pages) {
1226 unsigned long chunk_nr;
1228 chunk_nr = nr_pages;
1229 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1230 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1232 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1233 break;
1235 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1237 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1238 break;
1240 pages += chunk_nr;
1241 status += chunk_nr;
1242 nr_pages -= chunk_nr;
1244 return nr_pages ? -EFAULT : 0;
1248 * Move a list of pages in the address space of the currently executing
1249 * process.
1251 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1252 const void __user * __user *, pages,
1253 const int __user *, nodes,
1254 int __user *, status, int, flags)
1256 const struct cred *cred = current_cred(), *tcred;
1257 struct task_struct *task;
1258 struct mm_struct *mm;
1259 int err;
1261 /* Check flags */
1262 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1263 return -EINVAL;
1265 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1266 return -EPERM;
1268 /* Find the mm_struct */
1269 read_lock(&tasklist_lock);
1270 task = pid ? find_task_by_vpid(pid) : current;
1271 if (!task) {
1272 read_unlock(&tasklist_lock);
1273 return -ESRCH;
1275 mm = get_task_mm(task);
1276 read_unlock(&tasklist_lock);
1278 if (!mm)
1279 return -EINVAL;
1282 * Check if this process has the right to modify the specified
1283 * process. The right exists if the process has administrative
1284 * capabilities, superuser privileges or the same
1285 * userid as the target process.
1287 rcu_read_lock();
1288 tcred = __task_cred(task);
1289 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1290 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1291 !capable(CAP_SYS_NICE)) {
1292 rcu_read_unlock();
1293 err = -EPERM;
1294 goto out;
1296 rcu_read_unlock();
1298 err = security_task_movememory(task);
1299 if (err)
1300 goto out;
1302 if (nodes) {
1303 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1304 flags);
1305 } else {
1306 err = do_pages_stat(mm, nr_pages, pages, status);
1309 out:
1310 mmput(mm);
1311 return err;
1315 * Call migration functions in the vma_ops that may prepare
1316 * memory in a vm for migration. migration functions may perform
1317 * the migration for vmas that do not have an underlying page struct.
1319 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1320 const nodemask_t *from, unsigned long flags)
1322 struct vm_area_struct *vma;
1323 int err = 0;
1325 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1326 if (vma->vm_ops && vma->vm_ops->migrate) {
1327 err = vma->vm_ops->migrate(vma, to, from, flags);
1328 if (err)
1329 break;
1332 return err;
1334 #endif