x86, binutils, xen: Fix another wrong size directive
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blob5e0a919e27e61a95bbbeba5fc0c24ceaeb9cb6fa
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168 if (!overrun)
169 break;
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 ktime_t now;
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
230 #endif
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
242 struct cfs_rq;
244 static LIST_HEAD(task_groups);
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
262 struct rt_bandwidth rt_bandwidth;
263 #endif
265 struct rcu_head rcu;
266 struct list_head list;
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group.children);
287 #endif
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
317 u64 exec_clock;
318 u64 min_vruntime;
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last;
332 unsigned int nr_spread_over;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
348 #ifdef CONFIG_SMP
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
360 unsigned long h_load;
363 * this cpu's part of tg->shares
365 unsigned long shares;
368 * load.weight at the time we set shares
370 unsigned long rq_weight;
371 #endif
372 #endif
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
408 #ifdef CONFIG_SMP
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
436 static struct root_domain def_root_domain;
438 #endif /* CONFIG_SMP */
441 * This is the main, per-CPU runqueue data structure.
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
470 struct cfs_rq cfs;
471 struct rt_rq rt;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
493 u64 clock;
494 u64 clock_task;
496 atomic_t nr_iowait;
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
502 unsigned long cpu_power;
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
514 unsigned long avg_load_per_task;
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
556 /* BKL stats */
557 unsigned int bkl_count;
558 #endif
561 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
564 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566 static inline int cpu_of(struct rq *rq)
568 #ifdef CONFIG_SMP
569 return rq->cpu;
570 #else
571 return 0;
572 #endif
575 #define rcu_dereference_check_sched_domain(p) \
576 rcu_dereference_check((p), \
577 rcu_read_lock_sched_held() || \
578 lockdep_is_held(&sched_domains_mutex))
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596 #ifdef CONFIG_CGROUP_SCHED
599 * Return the group to which this tasks belongs.
601 * We use task_subsys_state_check() and extend the RCU verification
602 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
603 * holds that lock for each task it moves into the cgroup. Therefore
604 * by holding that lock, we pin the task to the current cgroup.
606 static inline struct task_group *task_group(struct task_struct *p)
608 struct cgroup_subsys_state *css;
610 if (p->flags & PF_EXITING)
611 return &root_task_group;
613 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
614 lockdep_is_held(&task_rq(p)->lock));
615 return container_of(css, struct task_group, css);
618 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
619 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621 #ifdef CONFIG_FAIR_GROUP_SCHED
622 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
623 p->se.parent = task_group(p)->se[cpu];
624 #endif
626 #ifdef CONFIG_RT_GROUP_SCHED
627 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
628 p->rt.parent = task_group(p)->rt_se[cpu];
629 #endif
632 #else /* CONFIG_CGROUP_SCHED */
634 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
635 static inline struct task_group *task_group(struct task_struct *p)
637 return NULL;
640 #endif /* CONFIG_CGROUP_SCHED */
642 static void update_rq_clock_task(struct rq *rq, s64 delta);
644 static void update_rq_clock(struct rq *rq)
646 s64 delta;
648 if (rq->skip_clock_update)
649 return;
651 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
652 rq->clock += delta;
653 update_rq_clock_task(rq, delta);
657 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 #ifdef CONFIG_SCHED_DEBUG
660 # define const_debug __read_mostly
661 #else
662 # define const_debug static const
663 #endif
666 * runqueue_is_locked
667 * @cpu: the processor in question.
669 * Returns true if the current cpu runqueue is locked.
670 * This interface allows printk to be called with the runqueue lock
671 * held and know whether or not it is OK to wake up the klogd.
673 int runqueue_is_locked(int cpu)
675 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
679 * Debugging: various feature bits
682 #define SCHED_FEAT(name, enabled) \
683 __SCHED_FEAT_##name ,
685 enum {
686 #include "sched_features.h"
689 #undef SCHED_FEAT
691 #define SCHED_FEAT(name, enabled) \
692 (1UL << __SCHED_FEAT_##name) * enabled |
694 const_debug unsigned int sysctl_sched_features =
695 #include "sched_features.h"
698 #undef SCHED_FEAT
700 #ifdef CONFIG_SCHED_DEBUG
701 #define SCHED_FEAT(name, enabled) \
702 #name ,
704 static __read_mostly char *sched_feat_names[] = {
705 #include "sched_features.h"
706 NULL
709 #undef SCHED_FEAT
711 static int sched_feat_show(struct seq_file *m, void *v)
713 int i;
715 for (i = 0; sched_feat_names[i]; i++) {
716 if (!(sysctl_sched_features & (1UL << i)))
717 seq_puts(m, "NO_");
718 seq_printf(m, "%s ", sched_feat_names[i]);
720 seq_puts(m, "\n");
722 return 0;
725 static ssize_t
726 sched_feat_write(struct file *filp, const char __user *ubuf,
727 size_t cnt, loff_t *ppos)
729 char buf[64];
730 char *cmp;
731 int neg = 0;
732 int i;
734 if (cnt > 63)
735 cnt = 63;
737 if (copy_from_user(&buf, ubuf, cnt))
738 return -EFAULT;
740 buf[cnt] = 0;
741 cmp = strstrip(buf);
743 if (strncmp(buf, "NO_", 3) == 0) {
744 neg = 1;
745 cmp += 3;
748 for (i = 0; sched_feat_names[i]; i++) {
749 if (strcmp(cmp, sched_feat_names[i]) == 0) {
750 if (neg)
751 sysctl_sched_features &= ~(1UL << i);
752 else
753 sysctl_sched_features |= (1UL << i);
754 break;
758 if (!sched_feat_names[i])
759 return -EINVAL;
761 *ppos += cnt;
763 return cnt;
766 static int sched_feat_open(struct inode *inode, struct file *filp)
768 return single_open(filp, sched_feat_show, NULL);
771 static const struct file_operations sched_feat_fops = {
772 .open = sched_feat_open,
773 .write = sched_feat_write,
774 .read = seq_read,
775 .llseek = seq_lseek,
776 .release = single_release,
779 static __init int sched_init_debug(void)
781 debugfs_create_file("sched_features", 0644, NULL, NULL,
782 &sched_feat_fops);
784 return 0;
786 late_initcall(sched_init_debug);
788 #endif
790 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
793 * Number of tasks to iterate in a single balance run.
794 * Limited because this is done with IRQs disabled.
796 const_debug unsigned int sysctl_sched_nr_migrate = 32;
799 * ratelimit for updating the group shares.
800 * default: 0.25ms
802 unsigned int sysctl_sched_shares_ratelimit = 250000;
803 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
806 * Inject some fuzzyness into changing the per-cpu group shares
807 * this avoids remote rq-locks at the expense of fairness.
808 * default: 4
810 unsigned int sysctl_sched_shares_thresh = 4;
813 * period over which we average the RT time consumption, measured
814 * in ms.
816 * default: 1s
818 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
821 * period over which we measure -rt task cpu usage in us.
822 * default: 1s
824 unsigned int sysctl_sched_rt_period = 1000000;
826 static __read_mostly int scheduler_running;
829 * part of the period that we allow rt tasks to run in us.
830 * default: 0.95s
832 int sysctl_sched_rt_runtime = 950000;
834 static inline u64 global_rt_period(void)
836 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
839 static inline u64 global_rt_runtime(void)
841 if (sysctl_sched_rt_runtime < 0)
842 return RUNTIME_INF;
844 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
847 #ifndef prepare_arch_switch
848 # define prepare_arch_switch(next) do { } while (0)
849 #endif
850 #ifndef finish_arch_switch
851 # define finish_arch_switch(prev) do { } while (0)
852 #endif
854 static inline int task_current(struct rq *rq, struct task_struct *p)
856 return rq->curr == p;
859 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
860 static inline int task_running(struct rq *rq, struct task_struct *p)
862 return task_current(rq, p);
865 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
869 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
871 #ifdef CONFIG_DEBUG_SPINLOCK
872 /* this is a valid case when another task releases the spinlock */
873 rq->lock.owner = current;
874 #endif
876 * If we are tracking spinlock dependencies then we have to
877 * fix up the runqueue lock - which gets 'carried over' from
878 * prev into current:
880 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
882 raw_spin_unlock_irq(&rq->lock);
885 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
886 static inline int task_running(struct rq *rq, struct task_struct *p)
888 #ifdef CONFIG_SMP
889 return p->oncpu;
890 #else
891 return task_current(rq, p);
892 #endif
895 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
897 #ifdef CONFIG_SMP
899 * We can optimise this out completely for !SMP, because the
900 * SMP rebalancing from interrupt is the only thing that cares
901 * here.
903 next->oncpu = 1;
904 #endif
905 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 raw_spin_unlock_irq(&rq->lock);
907 #else
908 raw_spin_unlock(&rq->lock);
909 #endif
912 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
914 #ifdef CONFIG_SMP
916 * After ->oncpu is cleared, the task can be moved to a different CPU.
917 * We must ensure this doesn't happen until the switch is completely
918 * finished.
920 smp_wmb();
921 prev->oncpu = 0;
922 #endif
923 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 local_irq_enable();
925 #endif
927 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
930 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
931 * against ttwu().
933 static inline int task_is_waking(struct task_struct *p)
935 return unlikely(p->state == TASK_WAKING);
939 * __task_rq_lock - lock the runqueue a given task resides on.
940 * Must be called interrupts disabled.
942 static inline struct rq *__task_rq_lock(struct task_struct *p)
943 __acquires(rq->lock)
945 struct rq *rq;
947 for (;;) {
948 rq = task_rq(p);
949 raw_spin_lock(&rq->lock);
950 if (likely(rq == task_rq(p)))
951 return rq;
952 raw_spin_unlock(&rq->lock);
957 * task_rq_lock - lock the runqueue a given task resides on and disable
958 * interrupts. Note the ordering: we can safely lookup the task_rq without
959 * explicitly disabling preemption.
961 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
962 __acquires(rq->lock)
964 struct rq *rq;
966 for (;;) {
967 local_irq_save(*flags);
968 rq = task_rq(p);
969 raw_spin_lock(&rq->lock);
970 if (likely(rq == task_rq(p)))
971 return rq;
972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
976 static void __task_rq_unlock(struct rq *rq)
977 __releases(rq->lock)
979 raw_spin_unlock(&rq->lock);
982 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
983 __releases(rq->lock)
985 raw_spin_unlock_irqrestore(&rq->lock, *flags);
989 * this_rq_lock - lock this runqueue and disable interrupts.
991 static struct rq *this_rq_lock(void)
992 __acquires(rq->lock)
994 struct rq *rq;
996 local_irq_disable();
997 rq = this_rq();
998 raw_spin_lock(&rq->lock);
1000 return rq;
1003 #ifdef CONFIG_SCHED_HRTICK
1005 * Use HR-timers to deliver accurate preemption points.
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1016 * Use hrtick when:
1017 * - enabled by features
1018 * - hrtimer is actually high res
1020 static inline int hrtick_enabled(struct rq *rq)
1022 if (!sched_feat(HRTICK))
1023 return 0;
1024 if (!cpu_active(cpu_of(rq)))
1025 return 0;
1026 return hrtimer_is_hres_active(&rq->hrtick_timer);
1029 static void hrtick_clear(struct rq *rq)
1031 if (hrtimer_active(&rq->hrtick_timer))
1032 hrtimer_cancel(&rq->hrtick_timer);
1036 * High-resolution timer tick.
1037 * Runs from hardirq context with interrupts disabled.
1039 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1041 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1043 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1045 raw_spin_lock(&rq->lock);
1046 update_rq_clock(rq);
1047 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1048 raw_spin_unlock(&rq->lock);
1050 return HRTIMER_NORESTART;
1053 #ifdef CONFIG_SMP
1055 * called from hardirq (IPI) context
1057 static void __hrtick_start(void *arg)
1059 struct rq *rq = arg;
1061 raw_spin_lock(&rq->lock);
1062 hrtimer_restart(&rq->hrtick_timer);
1063 rq->hrtick_csd_pending = 0;
1064 raw_spin_unlock(&rq->lock);
1068 * Called to set the hrtick timer state.
1070 * called with rq->lock held and irqs disabled
1072 static void hrtick_start(struct rq *rq, u64 delay)
1074 struct hrtimer *timer = &rq->hrtick_timer;
1075 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1077 hrtimer_set_expires(timer, time);
1079 if (rq == this_rq()) {
1080 hrtimer_restart(timer);
1081 } else if (!rq->hrtick_csd_pending) {
1082 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1083 rq->hrtick_csd_pending = 1;
1087 static int
1088 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1090 int cpu = (int)(long)hcpu;
1092 switch (action) {
1093 case CPU_UP_CANCELED:
1094 case CPU_UP_CANCELED_FROZEN:
1095 case CPU_DOWN_PREPARE:
1096 case CPU_DOWN_PREPARE_FROZEN:
1097 case CPU_DEAD:
1098 case CPU_DEAD_FROZEN:
1099 hrtick_clear(cpu_rq(cpu));
1100 return NOTIFY_OK;
1103 return NOTIFY_DONE;
1106 static __init void init_hrtick(void)
1108 hotcpu_notifier(hotplug_hrtick, 0);
1110 #else
1112 * Called to set the hrtick timer state.
1114 * called with rq->lock held and irqs disabled
1116 static void hrtick_start(struct rq *rq, u64 delay)
1118 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1119 HRTIMER_MODE_REL_PINNED, 0);
1122 static inline void init_hrtick(void)
1125 #endif /* CONFIG_SMP */
1127 static void init_rq_hrtick(struct rq *rq)
1129 #ifdef CONFIG_SMP
1130 rq->hrtick_csd_pending = 0;
1132 rq->hrtick_csd.flags = 0;
1133 rq->hrtick_csd.func = __hrtick_start;
1134 rq->hrtick_csd.info = rq;
1135 #endif
1137 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1138 rq->hrtick_timer.function = hrtick;
1140 #else /* CONFIG_SCHED_HRTICK */
1141 static inline void hrtick_clear(struct rq *rq)
1145 static inline void init_rq_hrtick(struct rq *rq)
1149 static inline void init_hrtick(void)
1152 #endif /* CONFIG_SCHED_HRTICK */
1155 * resched_task - mark a task 'to be rescheduled now'.
1157 * On UP this means the setting of the need_resched flag, on SMP it
1158 * might also involve a cross-CPU call to trigger the scheduler on
1159 * the target CPU.
1161 #ifdef CONFIG_SMP
1163 #ifndef tsk_is_polling
1164 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1165 #endif
1167 static void resched_task(struct task_struct *p)
1169 int cpu;
1171 assert_raw_spin_locked(&task_rq(p)->lock);
1173 if (test_tsk_need_resched(p))
1174 return;
1176 set_tsk_need_resched(p);
1178 cpu = task_cpu(p);
1179 if (cpu == smp_processor_id())
1180 return;
1182 /* NEED_RESCHED must be visible before we test polling */
1183 smp_mb();
1184 if (!tsk_is_polling(p))
1185 smp_send_reschedule(cpu);
1188 static void resched_cpu(int cpu)
1190 struct rq *rq = cpu_rq(cpu);
1191 unsigned long flags;
1193 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1194 return;
1195 resched_task(cpu_curr(cpu));
1196 raw_spin_unlock_irqrestore(&rq->lock, flags);
1199 #ifdef CONFIG_NO_HZ
1201 * In the semi idle case, use the nearest busy cpu for migrating timers
1202 * from an idle cpu. This is good for power-savings.
1204 * We don't do similar optimization for completely idle system, as
1205 * selecting an idle cpu will add more delays to the timers than intended
1206 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1208 int get_nohz_timer_target(void)
1210 int cpu = smp_processor_id();
1211 int i;
1212 struct sched_domain *sd;
1214 for_each_domain(cpu, sd) {
1215 for_each_cpu(i, sched_domain_span(sd))
1216 if (!idle_cpu(i))
1217 return i;
1219 return cpu;
1222 * When add_timer_on() enqueues a timer into the timer wheel of an
1223 * idle CPU then this timer might expire before the next timer event
1224 * which is scheduled to wake up that CPU. In case of a completely
1225 * idle system the next event might even be infinite time into the
1226 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1227 * leaves the inner idle loop so the newly added timer is taken into
1228 * account when the CPU goes back to idle and evaluates the timer
1229 * wheel for the next timer event.
1231 void wake_up_idle_cpu(int cpu)
1233 struct rq *rq = cpu_rq(cpu);
1235 if (cpu == smp_processor_id())
1236 return;
1239 * This is safe, as this function is called with the timer
1240 * wheel base lock of (cpu) held. When the CPU is on the way
1241 * to idle and has not yet set rq->curr to idle then it will
1242 * be serialized on the timer wheel base lock and take the new
1243 * timer into account automatically.
1245 if (rq->curr != rq->idle)
1246 return;
1249 * We can set TIF_RESCHED on the idle task of the other CPU
1250 * lockless. The worst case is that the other CPU runs the
1251 * idle task through an additional NOOP schedule()
1253 set_tsk_need_resched(rq->idle);
1255 /* NEED_RESCHED must be visible before we test polling */
1256 smp_mb();
1257 if (!tsk_is_polling(rq->idle))
1258 smp_send_reschedule(cpu);
1261 #endif /* CONFIG_NO_HZ */
1263 static u64 sched_avg_period(void)
1265 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1268 static void sched_avg_update(struct rq *rq)
1270 s64 period = sched_avg_period();
1272 while ((s64)(rq->clock - rq->age_stamp) > period) {
1274 * Inline assembly required to prevent the compiler
1275 * optimising this loop into a divmod call.
1276 * See __iter_div_u64_rem() for another example of this.
1278 asm("" : "+rm" (rq->age_stamp));
1279 rq->age_stamp += period;
1280 rq->rt_avg /= 2;
1284 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1286 rq->rt_avg += rt_delta;
1287 sched_avg_update(rq);
1290 #else /* !CONFIG_SMP */
1291 static void resched_task(struct task_struct *p)
1293 assert_raw_spin_locked(&task_rq(p)->lock);
1294 set_tsk_need_resched(p);
1297 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1301 static void sched_avg_update(struct rq *rq)
1304 #endif /* CONFIG_SMP */
1306 #if BITS_PER_LONG == 32
1307 # define WMULT_CONST (~0UL)
1308 #else
1309 # define WMULT_CONST (1UL << 32)
1310 #endif
1312 #define WMULT_SHIFT 32
1315 * Shift right and round:
1317 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1320 * delta *= weight / lw
1322 static unsigned long
1323 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1324 struct load_weight *lw)
1326 u64 tmp;
1328 if (!lw->inv_weight) {
1329 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1330 lw->inv_weight = 1;
1331 else
1332 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1333 / (lw->weight+1);
1336 tmp = (u64)delta_exec * weight;
1338 * Check whether we'd overflow the 64-bit multiplication:
1340 if (unlikely(tmp > WMULT_CONST))
1341 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1342 WMULT_SHIFT/2);
1343 else
1344 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1346 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1349 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1351 lw->weight += inc;
1352 lw->inv_weight = 0;
1355 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1357 lw->weight -= dec;
1358 lw->inv_weight = 0;
1362 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1363 * of tasks with abnormal "nice" values across CPUs the contribution that
1364 * each task makes to its run queue's load is weighted according to its
1365 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1366 * scaled version of the new time slice allocation that they receive on time
1367 * slice expiry etc.
1370 #define WEIGHT_IDLEPRIO 3
1371 #define WMULT_IDLEPRIO 1431655765
1374 * Nice levels are multiplicative, with a gentle 10% change for every
1375 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1376 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1377 * that remained on nice 0.
1379 * The "10% effect" is relative and cumulative: from _any_ nice level,
1380 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1381 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1382 * If a task goes up by ~10% and another task goes down by ~10% then
1383 * the relative distance between them is ~25%.)
1385 static const int prio_to_weight[40] = {
1386 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1387 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1388 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1389 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1390 /* 0 */ 1024, 820, 655, 526, 423,
1391 /* 5 */ 335, 272, 215, 172, 137,
1392 /* 10 */ 110, 87, 70, 56, 45,
1393 /* 15 */ 36, 29, 23, 18, 15,
1397 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1399 * In cases where the weight does not change often, we can use the
1400 * precalculated inverse to speed up arithmetics by turning divisions
1401 * into multiplications:
1403 static const u32 prio_to_wmult[40] = {
1404 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1405 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1406 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1407 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1408 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1409 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1410 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1411 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1414 /* Time spent by the tasks of the cpu accounting group executing in ... */
1415 enum cpuacct_stat_index {
1416 CPUACCT_STAT_USER, /* ... user mode */
1417 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1419 CPUACCT_STAT_NSTATS,
1422 #ifdef CONFIG_CGROUP_CPUACCT
1423 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1424 static void cpuacct_update_stats(struct task_struct *tsk,
1425 enum cpuacct_stat_index idx, cputime_t val);
1426 #else
1427 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1428 static inline void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val) {}
1430 #endif
1432 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1434 update_load_add(&rq->load, load);
1437 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1439 update_load_sub(&rq->load, load);
1442 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1443 typedef int (*tg_visitor)(struct task_group *, void *);
1446 * Iterate the full tree, calling @down when first entering a node and @up when
1447 * leaving it for the final time.
1449 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1451 struct task_group *parent, *child;
1452 int ret;
1454 rcu_read_lock();
1455 parent = &root_task_group;
1456 down:
1457 ret = (*down)(parent, data);
1458 if (ret)
1459 goto out_unlock;
1460 list_for_each_entry_rcu(child, &parent->children, siblings) {
1461 parent = child;
1462 goto down;
1465 continue;
1467 ret = (*up)(parent, data);
1468 if (ret)
1469 goto out_unlock;
1471 child = parent;
1472 parent = parent->parent;
1473 if (parent)
1474 goto up;
1475 out_unlock:
1476 rcu_read_unlock();
1478 return ret;
1481 static int tg_nop(struct task_group *tg, void *data)
1483 return 0;
1485 #endif
1487 #ifdef CONFIG_SMP
1488 /* Used instead of source_load when we know the type == 0 */
1489 static unsigned long weighted_cpuload(const int cpu)
1491 return cpu_rq(cpu)->load.weight;
1495 * Return a low guess at the load of a migration-source cpu weighted
1496 * according to the scheduling class and "nice" value.
1498 * We want to under-estimate the load of migration sources, to
1499 * balance conservatively.
1501 static unsigned long source_load(int cpu, int type)
1503 struct rq *rq = cpu_rq(cpu);
1504 unsigned long total = weighted_cpuload(cpu);
1506 if (type == 0 || !sched_feat(LB_BIAS))
1507 return total;
1509 return min(rq->cpu_load[type-1], total);
1513 * Return a high guess at the load of a migration-target cpu weighted
1514 * according to the scheduling class and "nice" value.
1516 static unsigned long target_load(int cpu, int type)
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long total = weighted_cpuload(cpu);
1521 if (type == 0 || !sched_feat(LB_BIAS))
1522 return total;
1524 return max(rq->cpu_load[type-1], total);
1527 static unsigned long power_of(int cpu)
1529 return cpu_rq(cpu)->cpu_power;
1532 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1534 static unsigned long cpu_avg_load_per_task(int cpu)
1536 struct rq *rq = cpu_rq(cpu);
1537 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1539 if (nr_running)
1540 rq->avg_load_per_task = rq->load.weight / nr_running;
1541 else
1542 rq->avg_load_per_task = 0;
1544 return rq->avg_load_per_task;
1547 #ifdef CONFIG_FAIR_GROUP_SCHED
1549 static __read_mostly unsigned long __percpu *update_shares_data;
1551 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1554 * Calculate and set the cpu's group shares.
1556 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1557 unsigned long sd_shares,
1558 unsigned long sd_rq_weight,
1559 unsigned long *usd_rq_weight)
1561 unsigned long shares, rq_weight;
1562 int boost = 0;
1564 rq_weight = usd_rq_weight[cpu];
1565 if (!rq_weight) {
1566 boost = 1;
1567 rq_weight = NICE_0_LOAD;
1571 * \Sum_j shares_j * rq_weight_i
1572 * shares_i = -----------------------------
1573 * \Sum_j rq_weight_j
1575 shares = (sd_shares * rq_weight) / sd_rq_weight;
1576 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1578 if (abs(shares - tg->se[cpu]->load.weight) >
1579 sysctl_sched_shares_thresh) {
1580 struct rq *rq = cpu_rq(cpu);
1581 unsigned long flags;
1583 raw_spin_lock_irqsave(&rq->lock, flags);
1584 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1585 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1586 __set_se_shares(tg->se[cpu], shares);
1587 raw_spin_unlock_irqrestore(&rq->lock, flags);
1592 * Re-compute the task group their per cpu shares over the given domain.
1593 * This needs to be done in a bottom-up fashion because the rq weight of a
1594 * parent group depends on the shares of its child groups.
1596 static int tg_shares_up(struct task_group *tg, void *data)
1598 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1599 unsigned long *usd_rq_weight;
1600 struct sched_domain *sd = data;
1601 unsigned long flags;
1602 int i;
1604 if (!tg->se[0])
1605 return 0;
1607 local_irq_save(flags);
1608 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1610 for_each_cpu(i, sched_domain_span(sd)) {
1611 weight = tg->cfs_rq[i]->load.weight;
1612 usd_rq_weight[i] = weight;
1614 rq_weight += weight;
1616 * If there are currently no tasks on the cpu pretend there
1617 * is one of average load so that when a new task gets to
1618 * run here it will not get delayed by group starvation.
1620 if (!weight)
1621 weight = NICE_0_LOAD;
1623 sum_weight += weight;
1624 shares += tg->cfs_rq[i]->shares;
1627 if (!rq_weight)
1628 rq_weight = sum_weight;
1630 if ((!shares && rq_weight) || shares > tg->shares)
1631 shares = tg->shares;
1633 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1634 shares = tg->shares;
1636 for_each_cpu(i, sched_domain_span(sd))
1637 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1639 local_irq_restore(flags);
1641 return 0;
1645 * Compute the cpu's hierarchical load factor for each task group.
1646 * This needs to be done in a top-down fashion because the load of a child
1647 * group is a fraction of its parents load.
1649 static int tg_load_down(struct task_group *tg, void *data)
1651 unsigned long load;
1652 long cpu = (long)data;
1654 if (!tg->parent) {
1655 load = cpu_rq(cpu)->load.weight;
1656 } else {
1657 load = tg->parent->cfs_rq[cpu]->h_load;
1658 load *= tg->cfs_rq[cpu]->shares;
1659 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1662 tg->cfs_rq[cpu]->h_load = load;
1664 return 0;
1667 static void update_shares(struct sched_domain *sd)
1669 s64 elapsed;
1670 u64 now;
1672 if (root_task_group_empty())
1673 return;
1675 now = local_clock();
1676 elapsed = now - sd->last_update;
1678 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1679 sd->last_update = now;
1680 walk_tg_tree(tg_nop, tg_shares_up, sd);
1684 static void update_h_load(long cpu)
1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1689 #else
1691 static inline void update_shares(struct sched_domain *sd)
1695 #endif
1697 #ifdef CONFIG_PREEMPT
1699 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
1709 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1714 raw_spin_unlock(&this_rq->lock);
1715 double_rq_lock(this_rq, busiest);
1717 return 1;
1720 #else
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1728 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1733 int ret = 0;
1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736 if (busiest < this_rq) {
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
1741 ret = 1;
1742 } else
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
1746 return ret;
1749 #endif /* CONFIG_PREEMPT */
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1754 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
1758 raw_spin_unlock(&this_rq->lock);
1759 BUG_ON(1);
1762 return _double_lock_balance(this_rq, busiest);
1765 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1768 raw_spin_unlock(&busiest->lock);
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1773 * double_rq_lock - safely lock two runqueues
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1778 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1798 * double_rq_unlock - safely unlock two runqueues
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1803 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1814 #endif
1816 #ifdef CONFIG_FAIR_GROUP_SCHED
1817 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819 #ifdef CONFIG_SMP
1820 cfs_rq->shares = shares;
1821 #endif
1823 #endif
1825 static void calc_load_account_idle(struct rq *this_rq);
1826 static void update_sysctl(void);
1827 static int get_update_sysctl_factor(void);
1828 static void update_cpu_load(struct rq *this_rq);
1830 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1832 set_task_rq(p, cpu);
1833 #ifdef CONFIG_SMP
1835 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1836 * successfuly executed on another CPU. We must ensure that updates of
1837 * per-task data have been completed by this moment.
1839 smp_wmb();
1840 task_thread_info(p)->cpu = cpu;
1841 #endif
1844 static const struct sched_class rt_sched_class;
1846 #define sched_class_highest (&stop_sched_class)
1847 #define for_each_class(class) \
1848 for (class = sched_class_highest; class; class = class->next)
1850 #include "sched_stats.h"
1852 static void inc_nr_running(struct rq *rq)
1854 rq->nr_running++;
1857 static void dec_nr_running(struct rq *rq)
1859 rq->nr_running--;
1862 static void set_load_weight(struct task_struct *p)
1865 * SCHED_IDLE tasks get minimal weight:
1867 if (p->policy == SCHED_IDLE) {
1868 p->se.load.weight = WEIGHT_IDLEPRIO;
1869 p->se.load.inv_weight = WMULT_IDLEPRIO;
1870 return;
1873 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1874 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1877 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1879 update_rq_clock(rq);
1880 sched_info_queued(p);
1881 p->sched_class->enqueue_task(rq, p, flags);
1882 p->se.on_rq = 1;
1885 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1887 update_rq_clock(rq);
1888 sched_info_dequeued(p);
1889 p->sched_class->dequeue_task(rq, p, flags);
1890 p->se.on_rq = 0;
1894 * activate_task - move a task to the runqueue.
1896 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1898 if (task_contributes_to_load(p))
1899 rq->nr_uninterruptible--;
1901 enqueue_task(rq, p, flags);
1902 inc_nr_running(rq);
1906 * deactivate_task - remove a task from the runqueue.
1908 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible++;
1913 dequeue_task(rq, p, flags);
1914 dec_nr_running(rq);
1917 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1920 * There are no locks covering percpu hardirq/softirq time.
1921 * They are only modified in account_system_vtime, on corresponding CPU
1922 * with interrupts disabled. So, writes are safe.
1923 * They are read and saved off onto struct rq in update_rq_clock().
1924 * This may result in other CPU reading this CPU's irq time and can
1925 * race with irq/account_system_vtime on this CPU. We would either get old
1926 * or new value with a side effect of accounting a slice of irq time to wrong
1927 * task when irq is in progress while we read rq->clock. That is a worthy
1928 * compromise in place of having locks on each irq in account_system_time.
1930 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1931 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1933 static DEFINE_PER_CPU(u64, irq_start_time);
1934 static int sched_clock_irqtime;
1936 void enable_sched_clock_irqtime(void)
1938 sched_clock_irqtime = 1;
1941 void disable_sched_clock_irqtime(void)
1943 sched_clock_irqtime = 0;
1946 #ifndef CONFIG_64BIT
1947 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1949 static inline void irq_time_write_begin(void)
1951 __this_cpu_inc(irq_time_seq.sequence);
1952 smp_wmb();
1955 static inline void irq_time_write_end(void)
1957 smp_wmb();
1958 __this_cpu_inc(irq_time_seq.sequence);
1961 static inline u64 irq_time_read(int cpu)
1963 u64 irq_time;
1964 unsigned seq;
1966 do {
1967 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1968 irq_time = per_cpu(cpu_softirq_time, cpu) +
1969 per_cpu(cpu_hardirq_time, cpu);
1970 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1972 return irq_time;
1974 #else /* CONFIG_64BIT */
1975 static inline void irq_time_write_begin(void)
1979 static inline void irq_time_write_end(void)
1983 static inline u64 irq_time_read(int cpu)
1985 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1987 #endif /* CONFIG_64BIT */
1990 * Called before incrementing preempt_count on {soft,}irq_enter
1991 * and before decrementing preempt_count on {soft,}irq_exit.
1993 void account_system_vtime(struct task_struct *curr)
1995 unsigned long flags;
1996 s64 delta;
1997 int cpu;
1999 if (!sched_clock_irqtime)
2000 return;
2002 local_irq_save(flags);
2004 cpu = smp_processor_id();
2005 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2006 __this_cpu_add(irq_start_time, delta);
2008 irq_time_write_begin();
2010 * We do not account for softirq time from ksoftirqd here.
2011 * We want to continue accounting softirq time to ksoftirqd thread
2012 * in that case, so as not to confuse scheduler with a special task
2013 * that do not consume any time, but still wants to run.
2015 if (hardirq_count())
2016 __this_cpu_add(cpu_hardirq_time, delta);
2017 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
2018 __this_cpu_add(cpu_softirq_time, delta);
2020 irq_time_write_end();
2021 local_irq_restore(flags);
2023 EXPORT_SYMBOL_GPL(account_system_vtime);
2025 static void update_rq_clock_task(struct rq *rq, s64 delta)
2027 s64 irq_delta;
2029 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2032 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2033 * this case when a previous update_rq_clock() happened inside a
2034 * {soft,}irq region.
2036 * When this happens, we stop ->clock_task and only update the
2037 * prev_irq_time stamp to account for the part that fit, so that a next
2038 * update will consume the rest. This ensures ->clock_task is
2039 * monotonic.
2041 * It does however cause some slight miss-attribution of {soft,}irq
2042 * time, a more accurate solution would be to update the irq_time using
2043 * the current rq->clock timestamp, except that would require using
2044 * atomic ops.
2046 if (irq_delta > delta)
2047 irq_delta = delta;
2049 rq->prev_irq_time += irq_delta;
2050 delta -= irq_delta;
2051 rq->clock_task += delta;
2053 if (irq_delta && sched_feat(NONIRQ_POWER))
2054 sched_rt_avg_update(rq, irq_delta);
2057 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2059 static void update_rq_clock_task(struct rq *rq, s64 delta)
2061 rq->clock_task += delta;
2064 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2066 #include "sched_idletask.c"
2067 #include "sched_fair.c"
2068 #include "sched_rt.c"
2069 #include "sched_stoptask.c"
2070 #ifdef CONFIG_SCHED_DEBUG
2071 # include "sched_debug.c"
2072 #endif
2074 void sched_set_stop_task(int cpu, struct task_struct *stop)
2076 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2077 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2079 if (stop) {
2081 * Make it appear like a SCHED_FIFO task, its something
2082 * userspace knows about and won't get confused about.
2084 * Also, it will make PI more or less work without too
2085 * much confusion -- but then, stop work should not
2086 * rely on PI working anyway.
2088 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2090 stop->sched_class = &stop_sched_class;
2093 cpu_rq(cpu)->stop = stop;
2095 if (old_stop) {
2097 * Reset it back to a normal scheduling class so that
2098 * it can die in pieces.
2100 old_stop->sched_class = &rt_sched_class;
2105 * __normal_prio - return the priority that is based on the static prio
2107 static inline int __normal_prio(struct task_struct *p)
2109 return p->static_prio;
2113 * Calculate the expected normal priority: i.e. priority
2114 * without taking RT-inheritance into account. Might be
2115 * boosted by interactivity modifiers. Changes upon fork,
2116 * setprio syscalls, and whenever the interactivity
2117 * estimator recalculates.
2119 static inline int normal_prio(struct task_struct *p)
2121 int prio;
2123 if (task_has_rt_policy(p))
2124 prio = MAX_RT_PRIO-1 - p->rt_priority;
2125 else
2126 prio = __normal_prio(p);
2127 return prio;
2131 * Calculate the current priority, i.e. the priority
2132 * taken into account by the scheduler. This value might
2133 * be boosted by RT tasks, or might be boosted by
2134 * interactivity modifiers. Will be RT if the task got
2135 * RT-boosted. If not then it returns p->normal_prio.
2137 static int effective_prio(struct task_struct *p)
2139 p->normal_prio = normal_prio(p);
2141 * If we are RT tasks or we were boosted to RT priority,
2142 * keep the priority unchanged. Otherwise, update priority
2143 * to the normal priority:
2145 if (!rt_prio(p->prio))
2146 return p->normal_prio;
2147 return p->prio;
2151 * task_curr - is this task currently executing on a CPU?
2152 * @p: the task in question.
2154 inline int task_curr(const struct task_struct *p)
2156 return cpu_curr(task_cpu(p)) == p;
2159 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2160 const struct sched_class *prev_class,
2161 int oldprio, int running)
2163 if (prev_class != p->sched_class) {
2164 if (prev_class->switched_from)
2165 prev_class->switched_from(rq, p, running);
2166 p->sched_class->switched_to(rq, p, running);
2167 } else
2168 p->sched_class->prio_changed(rq, p, oldprio, running);
2171 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2173 const struct sched_class *class;
2175 if (p->sched_class == rq->curr->sched_class) {
2176 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2177 } else {
2178 for_each_class(class) {
2179 if (class == rq->curr->sched_class)
2180 break;
2181 if (class == p->sched_class) {
2182 resched_task(rq->curr);
2183 break;
2189 * A queue event has occurred, and we're going to schedule. In
2190 * this case, we can save a useless back to back clock update.
2192 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2193 rq->skip_clock_update = 1;
2196 #ifdef CONFIG_SMP
2198 * Is this task likely cache-hot:
2200 static int
2201 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2203 s64 delta;
2205 if (p->sched_class != &fair_sched_class)
2206 return 0;
2208 if (unlikely(p->policy == SCHED_IDLE))
2209 return 0;
2212 * Buddy candidates are cache hot:
2214 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2215 (&p->se == cfs_rq_of(&p->se)->next ||
2216 &p->se == cfs_rq_of(&p->se)->last))
2217 return 1;
2219 if (sysctl_sched_migration_cost == -1)
2220 return 1;
2221 if (sysctl_sched_migration_cost == 0)
2222 return 0;
2224 delta = now - p->se.exec_start;
2226 return delta < (s64)sysctl_sched_migration_cost;
2229 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2231 #ifdef CONFIG_SCHED_DEBUG
2233 * We should never call set_task_cpu() on a blocked task,
2234 * ttwu() will sort out the placement.
2236 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2237 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2238 #endif
2240 trace_sched_migrate_task(p, new_cpu);
2242 if (task_cpu(p) != new_cpu) {
2243 p->se.nr_migrations++;
2244 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2247 __set_task_cpu(p, new_cpu);
2250 struct migration_arg {
2251 struct task_struct *task;
2252 int dest_cpu;
2255 static int migration_cpu_stop(void *data);
2258 * The task's runqueue lock must be held.
2259 * Returns true if you have to wait for migration thread.
2261 static bool migrate_task(struct task_struct *p, int dest_cpu)
2263 struct rq *rq = task_rq(p);
2266 * If the task is not on a runqueue (and not running), then
2267 * the next wake-up will properly place the task.
2269 return p->se.on_rq || task_running(rq, p);
2273 * wait_task_inactive - wait for a thread to unschedule.
2275 * If @match_state is nonzero, it's the @p->state value just checked and
2276 * not expected to change. If it changes, i.e. @p might have woken up,
2277 * then return zero. When we succeed in waiting for @p to be off its CPU,
2278 * we return a positive number (its total switch count). If a second call
2279 * a short while later returns the same number, the caller can be sure that
2280 * @p has remained unscheduled the whole time.
2282 * The caller must ensure that the task *will* unschedule sometime soon,
2283 * else this function might spin for a *long* time. This function can't
2284 * be called with interrupts off, or it may introduce deadlock with
2285 * smp_call_function() if an IPI is sent by the same process we are
2286 * waiting to become inactive.
2288 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2290 unsigned long flags;
2291 int running, on_rq;
2292 unsigned long ncsw;
2293 struct rq *rq;
2295 for (;;) {
2297 * We do the initial early heuristics without holding
2298 * any task-queue locks at all. We'll only try to get
2299 * the runqueue lock when things look like they will
2300 * work out!
2302 rq = task_rq(p);
2305 * If the task is actively running on another CPU
2306 * still, just relax and busy-wait without holding
2307 * any locks.
2309 * NOTE! Since we don't hold any locks, it's not
2310 * even sure that "rq" stays as the right runqueue!
2311 * But we don't care, since "task_running()" will
2312 * return false if the runqueue has changed and p
2313 * is actually now running somewhere else!
2315 while (task_running(rq, p)) {
2316 if (match_state && unlikely(p->state != match_state))
2317 return 0;
2318 cpu_relax();
2322 * Ok, time to look more closely! We need the rq
2323 * lock now, to be *sure*. If we're wrong, we'll
2324 * just go back and repeat.
2326 rq = task_rq_lock(p, &flags);
2327 trace_sched_wait_task(p);
2328 running = task_running(rq, p);
2329 on_rq = p->se.on_rq;
2330 ncsw = 0;
2331 if (!match_state || p->state == match_state)
2332 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2333 task_rq_unlock(rq, &flags);
2336 * If it changed from the expected state, bail out now.
2338 if (unlikely(!ncsw))
2339 break;
2342 * Was it really running after all now that we
2343 * checked with the proper locks actually held?
2345 * Oops. Go back and try again..
2347 if (unlikely(running)) {
2348 cpu_relax();
2349 continue;
2353 * It's not enough that it's not actively running,
2354 * it must be off the runqueue _entirely_, and not
2355 * preempted!
2357 * So if it was still runnable (but just not actively
2358 * running right now), it's preempted, and we should
2359 * yield - it could be a while.
2361 if (unlikely(on_rq)) {
2362 schedule_timeout_uninterruptible(1);
2363 continue;
2367 * Ahh, all good. It wasn't running, and it wasn't
2368 * runnable, which means that it will never become
2369 * running in the future either. We're all done!
2371 break;
2374 return ncsw;
2377 /***
2378 * kick_process - kick a running thread to enter/exit the kernel
2379 * @p: the to-be-kicked thread
2381 * Cause a process which is running on another CPU to enter
2382 * kernel-mode, without any delay. (to get signals handled.)
2384 * NOTE: this function doesnt have to take the runqueue lock,
2385 * because all it wants to ensure is that the remote task enters
2386 * the kernel. If the IPI races and the task has been migrated
2387 * to another CPU then no harm is done and the purpose has been
2388 * achieved as well.
2390 void kick_process(struct task_struct *p)
2392 int cpu;
2394 preempt_disable();
2395 cpu = task_cpu(p);
2396 if ((cpu != smp_processor_id()) && task_curr(p))
2397 smp_send_reschedule(cpu);
2398 preempt_enable();
2400 EXPORT_SYMBOL_GPL(kick_process);
2401 #endif /* CONFIG_SMP */
2404 * task_oncpu_function_call - call a function on the cpu on which a task runs
2405 * @p: the task to evaluate
2406 * @func: the function to be called
2407 * @info: the function call argument
2409 * Calls the function @func when the task is currently running. This might
2410 * be on the current CPU, which just calls the function directly
2412 void task_oncpu_function_call(struct task_struct *p,
2413 void (*func) (void *info), void *info)
2415 int cpu;
2417 preempt_disable();
2418 cpu = task_cpu(p);
2419 if (task_curr(p))
2420 smp_call_function_single(cpu, func, info, 1);
2421 preempt_enable();
2424 #ifdef CONFIG_SMP
2426 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2428 static int select_fallback_rq(int cpu, struct task_struct *p)
2430 int dest_cpu;
2431 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2433 /* Look for allowed, online CPU in same node. */
2434 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2435 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2436 return dest_cpu;
2438 /* Any allowed, online CPU? */
2439 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2440 if (dest_cpu < nr_cpu_ids)
2441 return dest_cpu;
2443 /* No more Mr. Nice Guy. */
2444 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2445 dest_cpu = cpuset_cpus_allowed_fallback(p);
2447 * Don't tell them about moving exiting tasks or
2448 * kernel threads (both mm NULL), since they never
2449 * leave kernel.
2451 if (p->mm && printk_ratelimit()) {
2452 printk(KERN_INFO "process %d (%s) no "
2453 "longer affine to cpu%d\n",
2454 task_pid_nr(p), p->comm, cpu);
2458 return dest_cpu;
2462 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2464 static inline
2465 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2467 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2470 * In order not to call set_task_cpu() on a blocking task we need
2471 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2472 * cpu.
2474 * Since this is common to all placement strategies, this lives here.
2476 * [ this allows ->select_task() to simply return task_cpu(p) and
2477 * not worry about this generic constraint ]
2479 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2480 !cpu_online(cpu)))
2481 cpu = select_fallback_rq(task_cpu(p), p);
2483 return cpu;
2486 static void update_avg(u64 *avg, u64 sample)
2488 s64 diff = sample - *avg;
2489 *avg += diff >> 3;
2491 #endif
2493 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2494 bool is_sync, bool is_migrate, bool is_local,
2495 unsigned long en_flags)
2497 schedstat_inc(p, se.statistics.nr_wakeups);
2498 if (is_sync)
2499 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2500 if (is_migrate)
2501 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2502 if (is_local)
2503 schedstat_inc(p, se.statistics.nr_wakeups_local);
2504 else
2505 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2507 activate_task(rq, p, en_flags);
2510 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2511 int wake_flags, bool success)
2513 trace_sched_wakeup(p, success);
2514 check_preempt_curr(rq, p, wake_flags);
2516 p->state = TASK_RUNNING;
2517 #ifdef CONFIG_SMP
2518 if (p->sched_class->task_woken)
2519 p->sched_class->task_woken(rq, p);
2521 if (unlikely(rq->idle_stamp)) {
2522 u64 delta = rq->clock - rq->idle_stamp;
2523 u64 max = 2*sysctl_sched_migration_cost;
2525 if (delta > max)
2526 rq->avg_idle = max;
2527 else
2528 update_avg(&rq->avg_idle, delta);
2529 rq->idle_stamp = 0;
2531 #endif
2532 /* if a worker is waking up, notify workqueue */
2533 if ((p->flags & PF_WQ_WORKER) && success)
2534 wq_worker_waking_up(p, cpu_of(rq));
2538 * try_to_wake_up - wake up a thread
2539 * @p: the thread to be awakened
2540 * @state: the mask of task states that can be woken
2541 * @wake_flags: wake modifier flags (WF_*)
2543 * Put it on the run-queue if it's not already there. The "current"
2544 * thread is always on the run-queue (except when the actual
2545 * re-schedule is in progress), and as such you're allowed to do
2546 * the simpler "current->state = TASK_RUNNING" to mark yourself
2547 * runnable without the overhead of this.
2549 * Returns %true if @p was woken up, %false if it was already running
2550 * or @state didn't match @p's state.
2552 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2553 int wake_flags)
2555 int cpu, orig_cpu, this_cpu, success = 0;
2556 unsigned long flags;
2557 unsigned long en_flags = ENQUEUE_WAKEUP;
2558 struct rq *rq;
2560 this_cpu = get_cpu();
2562 smp_wmb();
2563 rq = task_rq_lock(p, &flags);
2564 if (!(p->state & state))
2565 goto out;
2567 if (p->se.on_rq)
2568 goto out_running;
2570 cpu = task_cpu(p);
2571 orig_cpu = cpu;
2573 #ifdef CONFIG_SMP
2574 if (unlikely(task_running(rq, p)))
2575 goto out_activate;
2578 * In order to handle concurrent wakeups and release the rq->lock
2579 * we put the task in TASK_WAKING state.
2581 * First fix up the nr_uninterruptible count:
2583 if (task_contributes_to_load(p)) {
2584 if (likely(cpu_online(orig_cpu)))
2585 rq->nr_uninterruptible--;
2586 else
2587 this_rq()->nr_uninterruptible--;
2589 p->state = TASK_WAKING;
2591 if (p->sched_class->task_waking) {
2592 p->sched_class->task_waking(rq, p);
2593 en_flags |= ENQUEUE_WAKING;
2596 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2597 if (cpu != orig_cpu)
2598 set_task_cpu(p, cpu);
2599 __task_rq_unlock(rq);
2601 rq = cpu_rq(cpu);
2602 raw_spin_lock(&rq->lock);
2605 * We migrated the task without holding either rq->lock, however
2606 * since the task is not on the task list itself, nobody else
2607 * will try and migrate the task, hence the rq should match the
2608 * cpu we just moved it to.
2610 WARN_ON(task_cpu(p) != cpu);
2611 WARN_ON(p->state != TASK_WAKING);
2613 #ifdef CONFIG_SCHEDSTATS
2614 schedstat_inc(rq, ttwu_count);
2615 if (cpu == this_cpu)
2616 schedstat_inc(rq, ttwu_local);
2617 else {
2618 struct sched_domain *sd;
2619 for_each_domain(this_cpu, sd) {
2620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2621 schedstat_inc(sd, ttwu_wake_remote);
2622 break;
2626 #endif /* CONFIG_SCHEDSTATS */
2628 out_activate:
2629 #endif /* CONFIG_SMP */
2630 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2631 cpu == this_cpu, en_flags);
2632 success = 1;
2633 out_running:
2634 ttwu_post_activation(p, rq, wake_flags, success);
2635 out:
2636 task_rq_unlock(rq, &flags);
2637 put_cpu();
2639 return success;
2643 * try_to_wake_up_local - try to wake up a local task with rq lock held
2644 * @p: the thread to be awakened
2646 * Put @p on the run-queue if it's not alredy there. The caller must
2647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2648 * the current task. this_rq() stays locked over invocation.
2650 static void try_to_wake_up_local(struct task_struct *p)
2652 struct rq *rq = task_rq(p);
2653 bool success = false;
2655 BUG_ON(rq != this_rq());
2656 BUG_ON(p == current);
2657 lockdep_assert_held(&rq->lock);
2659 if (!(p->state & TASK_NORMAL))
2660 return;
2662 if (!p->se.on_rq) {
2663 if (likely(!task_running(rq, p))) {
2664 schedstat_inc(rq, ttwu_count);
2665 schedstat_inc(rq, ttwu_local);
2667 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2668 success = true;
2670 ttwu_post_activation(p, rq, 0, success);
2674 * wake_up_process - Wake up a specific process
2675 * @p: The process to be woken up.
2677 * Attempt to wake up the nominated process and move it to the set of runnable
2678 * processes. Returns 1 if the process was woken up, 0 if it was already
2679 * running.
2681 * It may be assumed that this function implies a write memory barrier before
2682 * changing the task state if and only if any tasks are woken up.
2684 int wake_up_process(struct task_struct *p)
2686 return try_to_wake_up(p, TASK_ALL, 0);
2688 EXPORT_SYMBOL(wake_up_process);
2690 int wake_up_state(struct task_struct *p, unsigned int state)
2692 return try_to_wake_up(p, state, 0);
2696 * Perform scheduler related setup for a newly forked process p.
2697 * p is forked by current.
2699 * __sched_fork() is basic setup used by init_idle() too:
2701 static void __sched_fork(struct task_struct *p)
2703 p->se.exec_start = 0;
2704 p->se.sum_exec_runtime = 0;
2705 p->se.prev_sum_exec_runtime = 0;
2706 p->se.nr_migrations = 0;
2708 #ifdef CONFIG_SCHEDSTATS
2709 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2710 #endif
2712 INIT_LIST_HEAD(&p->rt.run_list);
2713 p->se.on_rq = 0;
2714 INIT_LIST_HEAD(&p->se.group_node);
2716 #ifdef CONFIG_PREEMPT_NOTIFIERS
2717 INIT_HLIST_HEAD(&p->preempt_notifiers);
2718 #endif
2722 * fork()/clone()-time setup:
2724 void sched_fork(struct task_struct *p, int clone_flags)
2726 int cpu = get_cpu();
2728 __sched_fork(p);
2730 * We mark the process as running here. This guarantees that
2731 * nobody will actually run it, and a signal or other external
2732 * event cannot wake it up and insert it on the runqueue either.
2734 p->state = TASK_RUNNING;
2737 * Revert to default priority/policy on fork if requested.
2739 if (unlikely(p->sched_reset_on_fork)) {
2740 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2741 p->policy = SCHED_NORMAL;
2742 p->normal_prio = p->static_prio;
2745 if (PRIO_TO_NICE(p->static_prio) < 0) {
2746 p->static_prio = NICE_TO_PRIO(0);
2747 p->normal_prio = p->static_prio;
2748 set_load_weight(p);
2752 * We don't need the reset flag anymore after the fork. It has
2753 * fulfilled its duty:
2755 p->sched_reset_on_fork = 0;
2759 * Make sure we do not leak PI boosting priority to the child.
2761 p->prio = current->normal_prio;
2763 if (!rt_prio(p->prio))
2764 p->sched_class = &fair_sched_class;
2766 if (p->sched_class->task_fork)
2767 p->sched_class->task_fork(p);
2770 * The child is not yet in the pid-hash so no cgroup attach races,
2771 * and the cgroup is pinned to this child due to cgroup_fork()
2772 * is ran before sched_fork().
2774 * Silence PROVE_RCU.
2776 rcu_read_lock();
2777 set_task_cpu(p, cpu);
2778 rcu_read_unlock();
2780 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2781 if (likely(sched_info_on()))
2782 memset(&p->sched_info, 0, sizeof(p->sched_info));
2783 #endif
2784 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2785 p->oncpu = 0;
2786 #endif
2787 #ifdef CONFIG_PREEMPT
2788 /* Want to start with kernel preemption disabled. */
2789 task_thread_info(p)->preempt_count = 1;
2790 #endif
2791 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2793 put_cpu();
2797 * wake_up_new_task - wake up a newly created task for the first time.
2799 * This function will do some initial scheduler statistics housekeeping
2800 * that must be done for every newly created context, then puts the task
2801 * on the runqueue and wakes it.
2803 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2805 unsigned long flags;
2806 struct rq *rq;
2807 int cpu __maybe_unused = get_cpu();
2809 #ifdef CONFIG_SMP
2810 rq = task_rq_lock(p, &flags);
2811 p->state = TASK_WAKING;
2814 * Fork balancing, do it here and not earlier because:
2815 * - cpus_allowed can change in the fork path
2816 * - any previously selected cpu might disappear through hotplug
2818 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2819 * without people poking at ->cpus_allowed.
2821 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2822 set_task_cpu(p, cpu);
2824 p->state = TASK_RUNNING;
2825 task_rq_unlock(rq, &flags);
2826 #endif
2828 rq = task_rq_lock(p, &flags);
2829 activate_task(rq, p, 0);
2830 trace_sched_wakeup_new(p, 1);
2831 check_preempt_curr(rq, p, WF_FORK);
2832 #ifdef CONFIG_SMP
2833 if (p->sched_class->task_woken)
2834 p->sched_class->task_woken(rq, p);
2835 #endif
2836 task_rq_unlock(rq, &flags);
2837 put_cpu();
2840 #ifdef CONFIG_PREEMPT_NOTIFIERS
2843 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2844 * @notifier: notifier struct to register
2846 void preempt_notifier_register(struct preempt_notifier *notifier)
2848 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2850 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2853 * preempt_notifier_unregister - no longer interested in preemption notifications
2854 * @notifier: notifier struct to unregister
2856 * This is safe to call from within a preemption notifier.
2858 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2860 hlist_del(&notifier->link);
2862 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2864 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2866 struct preempt_notifier *notifier;
2867 struct hlist_node *node;
2869 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2870 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2873 static void
2874 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2875 struct task_struct *next)
2877 struct preempt_notifier *notifier;
2878 struct hlist_node *node;
2880 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2881 notifier->ops->sched_out(notifier, next);
2884 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2886 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2890 static void
2891 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2892 struct task_struct *next)
2896 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2899 * prepare_task_switch - prepare to switch tasks
2900 * @rq: the runqueue preparing to switch
2901 * @prev: the current task that is being switched out
2902 * @next: the task we are going to switch to.
2904 * This is called with the rq lock held and interrupts off. It must
2905 * be paired with a subsequent finish_task_switch after the context
2906 * switch.
2908 * prepare_task_switch sets up locking and calls architecture specific
2909 * hooks.
2911 static inline void
2912 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2913 struct task_struct *next)
2915 fire_sched_out_preempt_notifiers(prev, next);
2916 prepare_lock_switch(rq, next);
2917 prepare_arch_switch(next);
2921 * finish_task_switch - clean up after a task-switch
2922 * @rq: runqueue associated with task-switch
2923 * @prev: the thread we just switched away from.
2925 * finish_task_switch must be called after the context switch, paired
2926 * with a prepare_task_switch call before the context switch.
2927 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2928 * and do any other architecture-specific cleanup actions.
2930 * Note that we may have delayed dropping an mm in context_switch(). If
2931 * so, we finish that here outside of the runqueue lock. (Doing it
2932 * with the lock held can cause deadlocks; see schedule() for
2933 * details.)
2935 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2936 __releases(rq->lock)
2938 struct mm_struct *mm = rq->prev_mm;
2939 long prev_state;
2941 rq->prev_mm = NULL;
2944 * A task struct has one reference for the use as "current".
2945 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2946 * schedule one last time. The schedule call will never return, and
2947 * the scheduled task must drop that reference.
2948 * The test for TASK_DEAD must occur while the runqueue locks are
2949 * still held, otherwise prev could be scheduled on another cpu, die
2950 * there before we look at prev->state, and then the reference would
2951 * be dropped twice.
2952 * Manfred Spraul <manfred@colorfullife.com>
2954 prev_state = prev->state;
2955 finish_arch_switch(prev);
2956 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2957 local_irq_disable();
2958 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2959 perf_event_task_sched_in(current);
2960 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2961 local_irq_enable();
2962 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2963 finish_lock_switch(rq, prev);
2965 fire_sched_in_preempt_notifiers(current);
2966 if (mm)
2967 mmdrop(mm);
2968 if (unlikely(prev_state == TASK_DEAD)) {
2970 * Remove function-return probe instances associated with this
2971 * task and put them back on the free list.
2973 kprobe_flush_task(prev);
2974 put_task_struct(prev);
2978 #ifdef CONFIG_SMP
2980 /* assumes rq->lock is held */
2981 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2983 if (prev->sched_class->pre_schedule)
2984 prev->sched_class->pre_schedule(rq, prev);
2987 /* rq->lock is NOT held, but preemption is disabled */
2988 static inline void post_schedule(struct rq *rq)
2990 if (rq->post_schedule) {
2991 unsigned long flags;
2993 raw_spin_lock_irqsave(&rq->lock, flags);
2994 if (rq->curr->sched_class->post_schedule)
2995 rq->curr->sched_class->post_schedule(rq);
2996 raw_spin_unlock_irqrestore(&rq->lock, flags);
2998 rq->post_schedule = 0;
3002 #else
3004 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3008 static inline void post_schedule(struct rq *rq)
3012 #endif
3015 * schedule_tail - first thing a freshly forked thread must call.
3016 * @prev: the thread we just switched away from.
3018 asmlinkage void schedule_tail(struct task_struct *prev)
3019 __releases(rq->lock)
3021 struct rq *rq = this_rq();
3023 finish_task_switch(rq, prev);
3026 * FIXME: do we need to worry about rq being invalidated by the
3027 * task_switch?
3029 post_schedule(rq);
3031 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3032 /* In this case, finish_task_switch does not reenable preemption */
3033 preempt_enable();
3034 #endif
3035 if (current->set_child_tid)
3036 put_user(task_pid_vnr(current), current->set_child_tid);
3040 * context_switch - switch to the new MM and the new
3041 * thread's register state.
3043 static inline void
3044 context_switch(struct rq *rq, struct task_struct *prev,
3045 struct task_struct *next)
3047 struct mm_struct *mm, *oldmm;
3049 prepare_task_switch(rq, prev, next);
3050 trace_sched_switch(prev, next);
3051 mm = next->mm;
3052 oldmm = prev->active_mm;
3054 * For paravirt, this is coupled with an exit in switch_to to
3055 * combine the page table reload and the switch backend into
3056 * one hypercall.
3058 arch_start_context_switch(prev);
3060 if (!mm) {
3061 next->active_mm = oldmm;
3062 atomic_inc(&oldmm->mm_count);
3063 enter_lazy_tlb(oldmm, next);
3064 } else
3065 switch_mm(oldmm, mm, next);
3067 if (!prev->mm) {
3068 prev->active_mm = NULL;
3069 rq->prev_mm = oldmm;
3072 * Since the runqueue lock will be released by the next
3073 * task (which is an invalid locking op but in the case
3074 * of the scheduler it's an obvious special-case), so we
3075 * do an early lockdep release here:
3077 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3078 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3079 #endif
3081 /* Here we just switch the register state and the stack. */
3082 switch_to(prev, next, prev);
3084 barrier();
3086 * this_rq must be evaluated again because prev may have moved
3087 * CPUs since it called schedule(), thus the 'rq' on its stack
3088 * frame will be invalid.
3090 finish_task_switch(this_rq(), prev);
3094 * nr_running, nr_uninterruptible and nr_context_switches:
3096 * externally visible scheduler statistics: current number of runnable
3097 * threads, current number of uninterruptible-sleeping threads, total
3098 * number of context switches performed since bootup.
3100 unsigned long nr_running(void)
3102 unsigned long i, sum = 0;
3104 for_each_online_cpu(i)
3105 sum += cpu_rq(i)->nr_running;
3107 return sum;
3110 unsigned long nr_uninterruptible(void)
3112 unsigned long i, sum = 0;
3114 for_each_possible_cpu(i)
3115 sum += cpu_rq(i)->nr_uninterruptible;
3118 * Since we read the counters lockless, it might be slightly
3119 * inaccurate. Do not allow it to go below zero though:
3121 if (unlikely((long)sum < 0))
3122 sum = 0;
3124 return sum;
3127 unsigned long long nr_context_switches(void)
3129 int i;
3130 unsigned long long sum = 0;
3132 for_each_possible_cpu(i)
3133 sum += cpu_rq(i)->nr_switches;
3135 return sum;
3138 unsigned long nr_iowait(void)
3140 unsigned long i, sum = 0;
3142 for_each_possible_cpu(i)
3143 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3145 return sum;
3148 unsigned long nr_iowait_cpu(int cpu)
3150 struct rq *this = cpu_rq(cpu);
3151 return atomic_read(&this->nr_iowait);
3154 unsigned long this_cpu_load(void)
3156 struct rq *this = this_rq();
3157 return this->cpu_load[0];
3161 /* Variables and functions for calc_load */
3162 static atomic_long_t calc_load_tasks;
3163 static unsigned long calc_load_update;
3164 unsigned long avenrun[3];
3165 EXPORT_SYMBOL(avenrun);
3167 static long calc_load_fold_active(struct rq *this_rq)
3169 long nr_active, delta = 0;
3171 nr_active = this_rq->nr_running;
3172 nr_active += (long) this_rq->nr_uninterruptible;
3174 if (nr_active != this_rq->calc_load_active) {
3175 delta = nr_active - this_rq->calc_load_active;
3176 this_rq->calc_load_active = nr_active;
3179 return delta;
3182 static unsigned long
3183 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3185 load *= exp;
3186 load += active * (FIXED_1 - exp);
3187 load += 1UL << (FSHIFT - 1);
3188 return load >> FSHIFT;
3191 #ifdef CONFIG_NO_HZ
3193 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3195 * When making the ILB scale, we should try to pull this in as well.
3197 static atomic_long_t calc_load_tasks_idle;
3199 static void calc_load_account_idle(struct rq *this_rq)
3201 long delta;
3203 delta = calc_load_fold_active(this_rq);
3204 if (delta)
3205 atomic_long_add(delta, &calc_load_tasks_idle);
3208 static long calc_load_fold_idle(void)
3210 long delta = 0;
3213 * Its got a race, we don't care...
3215 if (atomic_long_read(&calc_load_tasks_idle))
3216 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3218 return delta;
3222 * fixed_power_int - compute: x^n, in O(log n) time
3224 * @x: base of the power
3225 * @frac_bits: fractional bits of @x
3226 * @n: power to raise @x to.
3228 * By exploiting the relation between the definition of the natural power
3229 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3230 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3231 * (where: n_i \elem {0, 1}, the binary vector representing n),
3232 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3233 * of course trivially computable in O(log_2 n), the length of our binary
3234 * vector.
3236 static unsigned long
3237 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3239 unsigned long result = 1UL << frac_bits;
3241 if (n) for (;;) {
3242 if (n & 1) {
3243 result *= x;
3244 result += 1UL << (frac_bits - 1);
3245 result >>= frac_bits;
3247 n >>= 1;
3248 if (!n)
3249 break;
3250 x *= x;
3251 x += 1UL << (frac_bits - 1);
3252 x >>= frac_bits;
3255 return result;
3259 * a1 = a0 * e + a * (1 - e)
3261 * a2 = a1 * e + a * (1 - e)
3262 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3263 * = a0 * e^2 + a * (1 - e) * (1 + e)
3265 * a3 = a2 * e + a * (1 - e)
3266 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3267 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3269 * ...
3271 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3272 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3273 * = a0 * e^n + a * (1 - e^n)
3275 * [1] application of the geometric series:
3277 * n 1 - x^(n+1)
3278 * S_n := \Sum x^i = -------------
3279 * i=0 1 - x
3281 static unsigned long
3282 calc_load_n(unsigned long load, unsigned long exp,
3283 unsigned long active, unsigned int n)
3286 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3290 * NO_HZ can leave us missing all per-cpu ticks calling
3291 * calc_load_account_active(), but since an idle CPU folds its delta into
3292 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3293 * in the pending idle delta if our idle period crossed a load cycle boundary.
3295 * Once we've updated the global active value, we need to apply the exponential
3296 * weights adjusted to the number of cycles missed.
3298 static void calc_global_nohz(unsigned long ticks)
3300 long delta, active, n;
3302 if (time_before(jiffies, calc_load_update))
3303 return;
3306 * If we crossed a calc_load_update boundary, make sure to fold
3307 * any pending idle changes, the respective CPUs might have
3308 * missed the tick driven calc_load_account_active() update
3309 * due to NO_HZ.
3311 delta = calc_load_fold_idle();
3312 if (delta)
3313 atomic_long_add(delta, &calc_load_tasks);
3316 * If we were idle for multiple load cycles, apply them.
3318 if (ticks >= LOAD_FREQ) {
3319 n = ticks / LOAD_FREQ;
3321 active = atomic_long_read(&calc_load_tasks);
3322 active = active > 0 ? active * FIXED_1 : 0;
3324 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3325 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3326 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3328 calc_load_update += n * LOAD_FREQ;
3332 * Its possible the remainder of the above division also crosses
3333 * a LOAD_FREQ period, the regular check in calc_global_load()
3334 * which comes after this will take care of that.
3336 * Consider us being 11 ticks before a cycle completion, and us
3337 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3338 * age us 4 cycles, and the test in calc_global_load() will
3339 * pick up the final one.
3342 #else
3343 static void calc_load_account_idle(struct rq *this_rq)
3347 static inline long calc_load_fold_idle(void)
3349 return 0;
3352 static void calc_global_nohz(unsigned long ticks)
3355 #endif
3358 * get_avenrun - get the load average array
3359 * @loads: pointer to dest load array
3360 * @offset: offset to add
3361 * @shift: shift count to shift the result left
3363 * These values are estimates at best, so no need for locking.
3365 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3367 loads[0] = (avenrun[0] + offset) << shift;
3368 loads[1] = (avenrun[1] + offset) << shift;
3369 loads[2] = (avenrun[2] + offset) << shift;
3373 * calc_load - update the avenrun load estimates 10 ticks after the
3374 * CPUs have updated calc_load_tasks.
3376 void calc_global_load(unsigned long ticks)
3378 long active;
3380 calc_global_nohz(ticks);
3382 if (time_before(jiffies, calc_load_update + 10))
3383 return;
3385 active = atomic_long_read(&calc_load_tasks);
3386 active = active > 0 ? active * FIXED_1 : 0;
3388 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3389 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3390 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3392 calc_load_update += LOAD_FREQ;
3396 * Called from update_cpu_load() to periodically update this CPU's
3397 * active count.
3399 static void calc_load_account_active(struct rq *this_rq)
3401 long delta;
3403 if (time_before(jiffies, this_rq->calc_load_update))
3404 return;
3406 delta = calc_load_fold_active(this_rq);
3407 delta += calc_load_fold_idle();
3408 if (delta)
3409 atomic_long_add(delta, &calc_load_tasks);
3411 this_rq->calc_load_update += LOAD_FREQ;
3415 * The exact cpuload at various idx values, calculated at every tick would be
3416 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3418 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3419 * on nth tick when cpu may be busy, then we have:
3420 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3421 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3423 * decay_load_missed() below does efficient calculation of
3424 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3425 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3427 * The calculation is approximated on a 128 point scale.
3428 * degrade_zero_ticks is the number of ticks after which load at any
3429 * particular idx is approximated to be zero.
3430 * degrade_factor is a precomputed table, a row for each load idx.
3431 * Each column corresponds to degradation factor for a power of two ticks,
3432 * based on 128 point scale.
3433 * Example:
3434 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3435 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3437 * With this power of 2 load factors, we can degrade the load n times
3438 * by looking at 1 bits in n and doing as many mult/shift instead of
3439 * n mult/shifts needed by the exact degradation.
3441 #define DEGRADE_SHIFT 7
3442 static const unsigned char
3443 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3444 static const unsigned char
3445 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3446 {0, 0, 0, 0, 0, 0, 0, 0},
3447 {64, 32, 8, 0, 0, 0, 0, 0},
3448 {96, 72, 40, 12, 1, 0, 0},
3449 {112, 98, 75, 43, 15, 1, 0},
3450 {120, 112, 98, 76, 45, 16, 2} };
3453 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3454 * would be when CPU is idle and so we just decay the old load without
3455 * adding any new load.
3457 static unsigned long
3458 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3460 int j = 0;
3462 if (!missed_updates)
3463 return load;
3465 if (missed_updates >= degrade_zero_ticks[idx])
3466 return 0;
3468 if (idx == 1)
3469 return load >> missed_updates;
3471 while (missed_updates) {
3472 if (missed_updates % 2)
3473 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3475 missed_updates >>= 1;
3476 j++;
3478 return load;
3482 * Update rq->cpu_load[] statistics. This function is usually called every
3483 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3484 * every tick. We fix it up based on jiffies.
3486 static void update_cpu_load(struct rq *this_rq)
3488 unsigned long this_load = this_rq->load.weight;
3489 unsigned long curr_jiffies = jiffies;
3490 unsigned long pending_updates;
3491 int i, scale;
3493 this_rq->nr_load_updates++;
3495 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3496 if (curr_jiffies == this_rq->last_load_update_tick)
3497 return;
3499 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3500 this_rq->last_load_update_tick = curr_jiffies;
3502 /* Update our load: */
3503 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3504 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3505 unsigned long old_load, new_load;
3507 /* scale is effectively 1 << i now, and >> i divides by scale */
3509 old_load = this_rq->cpu_load[i];
3510 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3511 new_load = this_load;
3513 * Round up the averaging division if load is increasing. This
3514 * prevents us from getting stuck on 9 if the load is 10, for
3515 * example.
3517 if (new_load > old_load)
3518 new_load += scale - 1;
3520 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3523 sched_avg_update(this_rq);
3526 static void update_cpu_load_active(struct rq *this_rq)
3528 update_cpu_load(this_rq);
3530 calc_load_account_active(this_rq);
3533 #ifdef CONFIG_SMP
3536 * sched_exec - execve() is a valuable balancing opportunity, because at
3537 * this point the task has the smallest effective memory and cache footprint.
3539 void sched_exec(void)
3541 struct task_struct *p = current;
3542 unsigned long flags;
3543 struct rq *rq;
3544 int dest_cpu;
3546 rq = task_rq_lock(p, &flags);
3547 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3548 if (dest_cpu == smp_processor_id())
3549 goto unlock;
3552 * select_task_rq() can race against ->cpus_allowed
3554 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3555 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3556 struct migration_arg arg = { p, dest_cpu };
3558 task_rq_unlock(rq, &flags);
3559 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3560 return;
3562 unlock:
3563 task_rq_unlock(rq, &flags);
3566 #endif
3568 DEFINE_PER_CPU(struct kernel_stat, kstat);
3570 EXPORT_PER_CPU_SYMBOL(kstat);
3573 * Return any ns on the sched_clock that have not yet been accounted in
3574 * @p in case that task is currently running.
3576 * Called with task_rq_lock() held on @rq.
3578 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3580 u64 ns = 0;
3582 if (task_current(rq, p)) {
3583 update_rq_clock(rq);
3584 ns = rq->clock_task - p->se.exec_start;
3585 if ((s64)ns < 0)
3586 ns = 0;
3589 return ns;
3592 unsigned long long task_delta_exec(struct task_struct *p)
3594 unsigned long flags;
3595 struct rq *rq;
3596 u64 ns = 0;
3598 rq = task_rq_lock(p, &flags);
3599 ns = do_task_delta_exec(p, rq);
3600 task_rq_unlock(rq, &flags);
3602 return ns;
3606 * Return accounted runtime for the task.
3607 * In case the task is currently running, return the runtime plus current's
3608 * pending runtime that have not been accounted yet.
3610 unsigned long long task_sched_runtime(struct task_struct *p)
3612 unsigned long flags;
3613 struct rq *rq;
3614 u64 ns = 0;
3616 rq = task_rq_lock(p, &flags);
3617 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3618 task_rq_unlock(rq, &flags);
3620 return ns;
3624 * Return sum_exec_runtime for the thread group.
3625 * In case the task is currently running, return the sum plus current's
3626 * pending runtime that have not been accounted yet.
3628 * Note that the thread group might have other running tasks as well,
3629 * so the return value not includes other pending runtime that other
3630 * running tasks might have.
3632 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3634 struct task_cputime totals;
3635 unsigned long flags;
3636 struct rq *rq;
3637 u64 ns;
3639 rq = task_rq_lock(p, &flags);
3640 thread_group_cputime(p, &totals);
3641 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3642 task_rq_unlock(rq, &flags);
3644 return ns;
3648 * Account user cpu time to a process.
3649 * @p: the process that the cpu time gets accounted to
3650 * @cputime: the cpu time spent in user space since the last update
3651 * @cputime_scaled: cputime scaled by cpu frequency
3653 void account_user_time(struct task_struct *p, cputime_t cputime,
3654 cputime_t cputime_scaled)
3656 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3657 cputime64_t tmp;
3659 /* Add user time to process. */
3660 p->utime = cputime_add(p->utime, cputime);
3661 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3662 account_group_user_time(p, cputime);
3664 /* Add user time to cpustat. */
3665 tmp = cputime_to_cputime64(cputime);
3666 if (TASK_NICE(p) > 0)
3667 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3668 else
3669 cpustat->user = cputime64_add(cpustat->user, tmp);
3671 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3672 /* Account for user time used */
3673 acct_update_integrals(p);
3677 * Account guest cpu time to a process.
3678 * @p: the process that the cpu time gets accounted to
3679 * @cputime: the cpu time spent in virtual machine since the last update
3680 * @cputime_scaled: cputime scaled by cpu frequency
3682 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3683 cputime_t cputime_scaled)
3685 cputime64_t tmp;
3686 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3688 tmp = cputime_to_cputime64(cputime);
3690 /* Add guest time to process. */
3691 p->utime = cputime_add(p->utime, cputime);
3692 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3693 account_group_user_time(p, cputime);
3694 p->gtime = cputime_add(p->gtime, cputime);
3696 /* Add guest time to cpustat. */
3697 if (TASK_NICE(p) > 0) {
3698 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3699 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3700 } else {
3701 cpustat->user = cputime64_add(cpustat->user, tmp);
3702 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3707 * Account system cpu time to a process.
3708 * @p: the process that the cpu time gets accounted to
3709 * @hardirq_offset: the offset to subtract from hardirq_count()
3710 * @cputime: the cpu time spent in kernel space since the last update
3711 * @cputime_scaled: cputime scaled by cpu frequency
3713 void account_system_time(struct task_struct *p, int hardirq_offset,
3714 cputime_t cputime, cputime_t cputime_scaled)
3716 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3717 cputime64_t tmp;
3719 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3720 account_guest_time(p, cputime, cputime_scaled);
3721 return;
3724 /* Add system time to process. */
3725 p->stime = cputime_add(p->stime, cputime);
3726 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3727 account_group_system_time(p, cputime);
3729 /* Add system time to cpustat. */
3730 tmp = cputime_to_cputime64(cputime);
3731 if (hardirq_count() - hardirq_offset)
3732 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3733 else if (in_serving_softirq())
3734 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3735 else
3736 cpustat->system = cputime64_add(cpustat->system, tmp);
3738 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3740 /* Account for system time used */
3741 acct_update_integrals(p);
3745 * Account for involuntary wait time.
3746 * @steal: the cpu time spent in involuntary wait
3748 void account_steal_time(cputime_t cputime)
3750 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3751 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3753 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3757 * Account for idle time.
3758 * @cputime: the cpu time spent in idle wait
3760 void account_idle_time(cputime_t cputime)
3762 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3763 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3764 struct rq *rq = this_rq();
3766 if (atomic_read(&rq->nr_iowait) > 0)
3767 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3768 else
3769 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3772 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3775 * Account a single tick of cpu time.
3776 * @p: the process that the cpu time gets accounted to
3777 * @user_tick: indicates if the tick is a user or a system tick
3779 void account_process_tick(struct task_struct *p, int user_tick)
3781 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3782 struct rq *rq = this_rq();
3784 if (user_tick)
3785 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3786 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3787 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3788 one_jiffy_scaled);
3789 else
3790 account_idle_time(cputime_one_jiffy);
3794 * Account multiple ticks of steal time.
3795 * @p: the process from which the cpu time has been stolen
3796 * @ticks: number of stolen ticks
3798 void account_steal_ticks(unsigned long ticks)
3800 account_steal_time(jiffies_to_cputime(ticks));
3804 * Account multiple ticks of idle time.
3805 * @ticks: number of stolen ticks
3807 void account_idle_ticks(unsigned long ticks)
3809 account_idle_time(jiffies_to_cputime(ticks));
3812 #endif
3815 * Use precise platform statistics if available:
3817 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3818 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3820 *ut = p->utime;
3821 *st = p->stime;
3824 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3826 struct task_cputime cputime;
3828 thread_group_cputime(p, &cputime);
3830 *ut = cputime.utime;
3831 *st = cputime.stime;
3833 #else
3835 #ifndef nsecs_to_cputime
3836 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3837 #endif
3839 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3841 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3844 * Use CFS's precise accounting:
3846 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3848 if (total) {
3849 u64 temp = rtime;
3851 temp *= utime;
3852 do_div(temp, total);
3853 utime = (cputime_t)temp;
3854 } else
3855 utime = rtime;
3858 * Compare with previous values, to keep monotonicity:
3860 p->prev_utime = max(p->prev_utime, utime);
3861 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3863 *ut = p->prev_utime;
3864 *st = p->prev_stime;
3868 * Must be called with siglock held.
3870 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3872 struct signal_struct *sig = p->signal;
3873 struct task_cputime cputime;
3874 cputime_t rtime, utime, total;
3876 thread_group_cputime(p, &cputime);
3878 total = cputime_add(cputime.utime, cputime.stime);
3879 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3881 if (total) {
3882 u64 temp = rtime;
3884 temp *= cputime.utime;
3885 do_div(temp, total);
3886 utime = (cputime_t)temp;
3887 } else
3888 utime = rtime;
3890 sig->prev_utime = max(sig->prev_utime, utime);
3891 sig->prev_stime = max(sig->prev_stime,
3892 cputime_sub(rtime, sig->prev_utime));
3894 *ut = sig->prev_utime;
3895 *st = sig->prev_stime;
3897 #endif
3900 * This function gets called by the timer code, with HZ frequency.
3901 * We call it with interrupts disabled.
3903 * It also gets called by the fork code, when changing the parent's
3904 * timeslices.
3906 void scheduler_tick(void)
3908 int cpu = smp_processor_id();
3909 struct rq *rq = cpu_rq(cpu);
3910 struct task_struct *curr = rq->curr;
3912 sched_clock_tick();
3914 raw_spin_lock(&rq->lock);
3915 update_rq_clock(rq);
3916 update_cpu_load_active(rq);
3917 curr->sched_class->task_tick(rq, curr, 0);
3918 raw_spin_unlock(&rq->lock);
3920 perf_event_task_tick();
3922 #ifdef CONFIG_SMP
3923 rq->idle_at_tick = idle_cpu(cpu);
3924 trigger_load_balance(rq, cpu);
3925 #endif
3928 notrace unsigned long get_parent_ip(unsigned long addr)
3930 if (in_lock_functions(addr)) {
3931 addr = CALLER_ADDR2;
3932 if (in_lock_functions(addr))
3933 addr = CALLER_ADDR3;
3935 return addr;
3938 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3939 defined(CONFIG_PREEMPT_TRACER))
3941 void __kprobes add_preempt_count(int val)
3943 #ifdef CONFIG_DEBUG_PREEMPT
3945 * Underflow?
3947 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3948 return;
3949 #endif
3950 preempt_count() += val;
3951 #ifdef CONFIG_DEBUG_PREEMPT
3953 * Spinlock count overflowing soon?
3955 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3956 PREEMPT_MASK - 10);
3957 #endif
3958 if (preempt_count() == val)
3959 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3961 EXPORT_SYMBOL(add_preempt_count);
3963 void __kprobes sub_preempt_count(int val)
3965 #ifdef CONFIG_DEBUG_PREEMPT
3967 * Underflow?
3969 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3970 return;
3972 * Is the spinlock portion underflowing?
3974 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3975 !(preempt_count() & PREEMPT_MASK)))
3976 return;
3977 #endif
3979 if (preempt_count() == val)
3980 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3981 preempt_count() -= val;
3983 EXPORT_SYMBOL(sub_preempt_count);
3985 #endif
3988 * Print scheduling while atomic bug:
3990 static noinline void __schedule_bug(struct task_struct *prev)
3992 struct pt_regs *regs = get_irq_regs();
3994 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3995 prev->comm, prev->pid, preempt_count());
3997 debug_show_held_locks(prev);
3998 print_modules();
3999 if (irqs_disabled())
4000 print_irqtrace_events(prev);
4002 if (regs)
4003 show_regs(regs);
4004 else
4005 dump_stack();
4009 * Various schedule()-time debugging checks and statistics:
4011 static inline void schedule_debug(struct task_struct *prev)
4014 * Test if we are atomic. Since do_exit() needs to call into
4015 * schedule() atomically, we ignore that path for now.
4016 * Otherwise, whine if we are scheduling when we should not be.
4018 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4019 __schedule_bug(prev);
4021 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4023 schedstat_inc(this_rq(), sched_count);
4024 #ifdef CONFIG_SCHEDSTATS
4025 if (unlikely(prev->lock_depth >= 0)) {
4026 schedstat_inc(this_rq(), bkl_count);
4027 schedstat_inc(prev, sched_info.bkl_count);
4029 #endif
4032 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4034 if (prev->se.on_rq)
4035 update_rq_clock(rq);
4036 prev->sched_class->put_prev_task(rq, prev);
4040 * Pick up the highest-prio task:
4042 static inline struct task_struct *
4043 pick_next_task(struct rq *rq)
4045 const struct sched_class *class;
4046 struct task_struct *p;
4049 * Optimization: we know that if all tasks are in
4050 * the fair class we can call that function directly:
4052 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4053 p = fair_sched_class.pick_next_task(rq);
4054 if (likely(p))
4055 return p;
4058 for_each_class(class) {
4059 p = class->pick_next_task(rq);
4060 if (p)
4061 return p;
4064 BUG(); /* the idle class will always have a runnable task */
4068 * schedule() is the main scheduler function.
4070 asmlinkage void __sched schedule(void)
4072 struct task_struct *prev, *next;
4073 unsigned long *switch_count;
4074 struct rq *rq;
4075 int cpu;
4077 need_resched:
4078 preempt_disable();
4079 cpu = smp_processor_id();
4080 rq = cpu_rq(cpu);
4081 rcu_note_context_switch(cpu);
4082 prev = rq->curr;
4084 release_kernel_lock(prev);
4085 need_resched_nonpreemptible:
4087 schedule_debug(prev);
4089 if (sched_feat(HRTICK))
4090 hrtick_clear(rq);
4092 raw_spin_lock_irq(&rq->lock);
4094 switch_count = &prev->nivcsw;
4095 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4096 if (unlikely(signal_pending_state(prev->state, prev))) {
4097 prev->state = TASK_RUNNING;
4098 } else {
4100 * If a worker is going to sleep, notify and
4101 * ask workqueue whether it wants to wake up a
4102 * task to maintain concurrency. If so, wake
4103 * up the task.
4105 if (prev->flags & PF_WQ_WORKER) {
4106 struct task_struct *to_wakeup;
4108 to_wakeup = wq_worker_sleeping(prev, cpu);
4109 if (to_wakeup)
4110 try_to_wake_up_local(to_wakeup);
4112 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4114 switch_count = &prev->nvcsw;
4117 pre_schedule(rq, prev);
4119 if (unlikely(!rq->nr_running))
4120 idle_balance(cpu, rq);
4122 put_prev_task(rq, prev);
4123 next = pick_next_task(rq);
4124 clear_tsk_need_resched(prev);
4125 rq->skip_clock_update = 0;
4127 if (likely(prev != next)) {
4128 sched_info_switch(prev, next);
4129 perf_event_task_sched_out(prev, next);
4131 rq->nr_switches++;
4132 rq->curr = next;
4133 ++*switch_count;
4135 context_switch(rq, prev, next); /* unlocks the rq */
4137 * The context switch have flipped the stack from under us
4138 * and restored the local variables which were saved when
4139 * this task called schedule() in the past. prev == current
4140 * is still correct, but it can be moved to another cpu/rq.
4142 cpu = smp_processor_id();
4143 rq = cpu_rq(cpu);
4144 } else
4145 raw_spin_unlock_irq(&rq->lock);
4147 post_schedule(rq);
4149 if (unlikely(reacquire_kernel_lock(prev)))
4150 goto need_resched_nonpreemptible;
4152 preempt_enable_no_resched();
4153 if (need_resched())
4154 goto need_resched;
4156 EXPORT_SYMBOL(schedule);
4158 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4160 * Look out! "owner" is an entirely speculative pointer
4161 * access and not reliable.
4163 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4165 unsigned int cpu;
4166 struct rq *rq;
4168 if (!sched_feat(OWNER_SPIN))
4169 return 0;
4171 #ifdef CONFIG_DEBUG_PAGEALLOC
4173 * Need to access the cpu field knowing that
4174 * DEBUG_PAGEALLOC could have unmapped it if
4175 * the mutex owner just released it and exited.
4177 if (probe_kernel_address(&owner->cpu, cpu))
4178 return 0;
4179 #else
4180 cpu = owner->cpu;
4181 #endif
4184 * Even if the access succeeded (likely case),
4185 * the cpu field may no longer be valid.
4187 if (cpu >= nr_cpumask_bits)
4188 return 0;
4191 * We need to validate that we can do a
4192 * get_cpu() and that we have the percpu area.
4194 if (!cpu_online(cpu))
4195 return 0;
4197 rq = cpu_rq(cpu);
4199 for (;;) {
4201 * Owner changed, break to re-assess state.
4203 if (lock->owner != owner) {
4205 * If the lock has switched to a different owner,
4206 * we likely have heavy contention. Return 0 to quit
4207 * optimistic spinning and not contend further:
4209 if (lock->owner)
4210 return 0;
4211 break;
4215 * Is that owner really running on that cpu?
4217 if (task_thread_info(rq->curr) != owner || need_resched())
4218 return 0;
4220 cpu_relax();
4223 return 1;
4225 #endif
4227 #ifdef CONFIG_PREEMPT
4229 * this is the entry point to schedule() from in-kernel preemption
4230 * off of preempt_enable. Kernel preemptions off return from interrupt
4231 * occur there and call schedule directly.
4233 asmlinkage void __sched notrace preempt_schedule(void)
4235 struct thread_info *ti = current_thread_info();
4238 * If there is a non-zero preempt_count or interrupts are disabled,
4239 * we do not want to preempt the current task. Just return..
4241 if (likely(ti->preempt_count || irqs_disabled()))
4242 return;
4244 do {
4245 add_preempt_count_notrace(PREEMPT_ACTIVE);
4246 schedule();
4247 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4250 * Check again in case we missed a preemption opportunity
4251 * between schedule and now.
4253 barrier();
4254 } while (need_resched());
4256 EXPORT_SYMBOL(preempt_schedule);
4259 * this is the entry point to schedule() from kernel preemption
4260 * off of irq context.
4261 * Note, that this is called and return with irqs disabled. This will
4262 * protect us against recursive calling from irq.
4264 asmlinkage void __sched preempt_schedule_irq(void)
4266 struct thread_info *ti = current_thread_info();
4268 /* Catch callers which need to be fixed */
4269 BUG_ON(ti->preempt_count || !irqs_disabled());
4271 do {
4272 add_preempt_count(PREEMPT_ACTIVE);
4273 local_irq_enable();
4274 schedule();
4275 local_irq_disable();
4276 sub_preempt_count(PREEMPT_ACTIVE);
4279 * Check again in case we missed a preemption opportunity
4280 * between schedule and now.
4282 barrier();
4283 } while (need_resched());
4286 #endif /* CONFIG_PREEMPT */
4288 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4289 void *key)
4291 return try_to_wake_up(curr->private, mode, wake_flags);
4293 EXPORT_SYMBOL(default_wake_function);
4296 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4297 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4298 * number) then we wake all the non-exclusive tasks and one exclusive task.
4300 * There are circumstances in which we can try to wake a task which has already
4301 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4302 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4304 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4305 int nr_exclusive, int wake_flags, void *key)
4307 wait_queue_t *curr, *next;
4309 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4310 unsigned flags = curr->flags;
4312 if (curr->func(curr, mode, wake_flags, key) &&
4313 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4314 break;
4319 * __wake_up - wake up threads blocked on a waitqueue.
4320 * @q: the waitqueue
4321 * @mode: which threads
4322 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4323 * @key: is directly passed to the wakeup function
4325 * It may be assumed that this function implies a write memory barrier before
4326 * changing the task state if and only if any tasks are woken up.
4328 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4329 int nr_exclusive, void *key)
4331 unsigned long flags;
4333 spin_lock_irqsave(&q->lock, flags);
4334 __wake_up_common(q, mode, nr_exclusive, 0, key);
4335 spin_unlock_irqrestore(&q->lock, flags);
4337 EXPORT_SYMBOL(__wake_up);
4340 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4342 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4344 __wake_up_common(q, mode, 1, 0, NULL);
4346 EXPORT_SYMBOL_GPL(__wake_up_locked);
4348 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4350 __wake_up_common(q, mode, 1, 0, key);
4354 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4355 * @q: the waitqueue
4356 * @mode: which threads
4357 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4358 * @key: opaque value to be passed to wakeup targets
4360 * The sync wakeup differs that the waker knows that it will schedule
4361 * away soon, so while the target thread will be woken up, it will not
4362 * be migrated to another CPU - ie. the two threads are 'synchronized'
4363 * with each other. This can prevent needless bouncing between CPUs.
4365 * On UP it can prevent extra preemption.
4367 * It may be assumed that this function implies a write memory barrier before
4368 * changing the task state if and only if any tasks are woken up.
4370 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4371 int nr_exclusive, void *key)
4373 unsigned long flags;
4374 int wake_flags = WF_SYNC;
4376 if (unlikely(!q))
4377 return;
4379 if (unlikely(!nr_exclusive))
4380 wake_flags = 0;
4382 spin_lock_irqsave(&q->lock, flags);
4383 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4384 spin_unlock_irqrestore(&q->lock, flags);
4386 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4389 * __wake_up_sync - see __wake_up_sync_key()
4391 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4393 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4395 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4398 * complete: - signals a single thread waiting on this completion
4399 * @x: holds the state of this particular completion
4401 * This will wake up a single thread waiting on this completion. Threads will be
4402 * awakened in the same order in which they were queued.
4404 * See also complete_all(), wait_for_completion() and related routines.
4406 * It may be assumed that this function implies a write memory barrier before
4407 * changing the task state if and only if any tasks are woken up.
4409 void complete(struct completion *x)
4411 unsigned long flags;
4413 spin_lock_irqsave(&x->wait.lock, flags);
4414 x->done++;
4415 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4416 spin_unlock_irqrestore(&x->wait.lock, flags);
4418 EXPORT_SYMBOL(complete);
4421 * complete_all: - signals all threads waiting on this completion
4422 * @x: holds the state of this particular completion
4424 * This will wake up all threads waiting on this particular completion event.
4426 * It may be assumed that this function implies a write memory barrier before
4427 * changing the task state if and only if any tasks are woken up.
4429 void complete_all(struct completion *x)
4431 unsigned long flags;
4433 spin_lock_irqsave(&x->wait.lock, flags);
4434 x->done += UINT_MAX/2;
4435 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4436 spin_unlock_irqrestore(&x->wait.lock, flags);
4438 EXPORT_SYMBOL(complete_all);
4440 static inline long __sched
4441 do_wait_for_common(struct completion *x, long timeout, int state)
4443 if (!x->done) {
4444 DECLARE_WAITQUEUE(wait, current);
4446 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4447 do {
4448 if (signal_pending_state(state, current)) {
4449 timeout = -ERESTARTSYS;
4450 break;
4452 __set_current_state(state);
4453 spin_unlock_irq(&x->wait.lock);
4454 timeout = schedule_timeout(timeout);
4455 spin_lock_irq(&x->wait.lock);
4456 } while (!x->done && timeout);
4457 __remove_wait_queue(&x->wait, &wait);
4458 if (!x->done)
4459 return timeout;
4461 x->done--;
4462 return timeout ?: 1;
4465 static long __sched
4466 wait_for_common(struct completion *x, long timeout, int state)
4468 might_sleep();
4470 spin_lock_irq(&x->wait.lock);
4471 timeout = do_wait_for_common(x, timeout, state);
4472 spin_unlock_irq(&x->wait.lock);
4473 return timeout;
4477 * wait_for_completion: - waits for completion of a task
4478 * @x: holds the state of this particular completion
4480 * This waits to be signaled for completion of a specific task. It is NOT
4481 * interruptible and there is no timeout.
4483 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4484 * and interrupt capability. Also see complete().
4486 void __sched wait_for_completion(struct completion *x)
4488 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4490 EXPORT_SYMBOL(wait_for_completion);
4493 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4494 * @x: holds the state of this particular completion
4495 * @timeout: timeout value in jiffies
4497 * This waits for either a completion of a specific task to be signaled or for a
4498 * specified timeout to expire. The timeout is in jiffies. It is not
4499 * interruptible.
4501 unsigned long __sched
4502 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4504 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4506 EXPORT_SYMBOL(wait_for_completion_timeout);
4509 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4510 * @x: holds the state of this particular completion
4512 * This waits for completion of a specific task to be signaled. It is
4513 * interruptible.
4515 int __sched wait_for_completion_interruptible(struct completion *x)
4517 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4518 if (t == -ERESTARTSYS)
4519 return t;
4520 return 0;
4522 EXPORT_SYMBOL(wait_for_completion_interruptible);
4525 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4526 * @x: holds the state of this particular completion
4527 * @timeout: timeout value in jiffies
4529 * This waits for either a completion of a specific task to be signaled or for a
4530 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4532 long __sched
4533 wait_for_completion_interruptible_timeout(struct completion *x,
4534 unsigned long timeout)
4536 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4538 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4541 * wait_for_completion_killable: - waits for completion of a task (killable)
4542 * @x: holds the state of this particular completion
4544 * This waits to be signaled for completion of a specific task. It can be
4545 * interrupted by a kill signal.
4547 int __sched wait_for_completion_killable(struct completion *x)
4549 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4550 if (t == -ERESTARTSYS)
4551 return t;
4552 return 0;
4554 EXPORT_SYMBOL(wait_for_completion_killable);
4557 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4558 * @x: holds the state of this particular completion
4559 * @timeout: timeout value in jiffies
4561 * This waits for either a completion of a specific task to be
4562 * signaled or for a specified timeout to expire. It can be
4563 * interrupted by a kill signal. The timeout is in jiffies.
4565 long __sched
4566 wait_for_completion_killable_timeout(struct completion *x,
4567 unsigned long timeout)
4569 return wait_for_common(x, timeout, TASK_KILLABLE);
4571 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4574 * try_wait_for_completion - try to decrement a completion without blocking
4575 * @x: completion structure
4577 * Returns: 0 if a decrement cannot be done without blocking
4578 * 1 if a decrement succeeded.
4580 * If a completion is being used as a counting completion,
4581 * attempt to decrement the counter without blocking. This
4582 * enables us to avoid waiting if the resource the completion
4583 * is protecting is not available.
4585 bool try_wait_for_completion(struct completion *x)
4587 unsigned long flags;
4588 int ret = 1;
4590 spin_lock_irqsave(&x->wait.lock, flags);
4591 if (!x->done)
4592 ret = 0;
4593 else
4594 x->done--;
4595 spin_unlock_irqrestore(&x->wait.lock, flags);
4596 return ret;
4598 EXPORT_SYMBOL(try_wait_for_completion);
4601 * completion_done - Test to see if a completion has any waiters
4602 * @x: completion structure
4604 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4605 * 1 if there are no waiters.
4608 bool completion_done(struct completion *x)
4610 unsigned long flags;
4611 int ret = 1;
4613 spin_lock_irqsave(&x->wait.lock, flags);
4614 if (!x->done)
4615 ret = 0;
4616 spin_unlock_irqrestore(&x->wait.lock, flags);
4617 return ret;
4619 EXPORT_SYMBOL(completion_done);
4621 static long __sched
4622 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4624 unsigned long flags;
4625 wait_queue_t wait;
4627 init_waitqueue_entry(&wait, current);
4629 __set_current_state(state);
4631 spin_lock_irqsave(&q->lock, flags);
4632 __add_wait_queue(q, &wait);
4633 spin_unlock(&q->lock);
4634 timeout = schedule_timeout(timeout);
4635 spin_lock_irq(&q->lock);
4636 __remove_wait_queue(q, &wait);
4637 spin_unlock_irqrestore(&q->lock, flags);
4639 return timeout;
4642 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4644 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4646 EXPORT_SYMBOL(interruptible_sleep_on);
4648 long __sched
4649 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4651 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4653 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4655 void __sched sleep_on(wait_queue_head_t *q)
4657 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4659 EXPORT_SYMBOL(sleep_on);
4661 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4663 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4665 EXPORT_SYMBOL(sleep_on_timeout);
4667 #ifdef CONFIG_RT_MUTEXES
4670 * rt_mutex_setprio - set the current priority of a task
4671 * @p: task
4672 * @prio: prio value (kernel-internal form)
4674 * This function changes the 'effective' priority of a task. It does
4675 * not touch ->normal_prio like __setscheduler().
4677 * Used by the rt_mutex code to implement priority inheritance logic.
4679 void rt_mutex_setprio(struct task_struct *p, int prio)
4681 unsigned long flags;
4682 int oldprio, on_rq, running;
4683 struct rq *rq;
4684 const struct sched_class *prev_class;
4686 BUG_ON(prio < 0 || prio > MAX_PRIO);
4688 rq = task_rq_lock(p, &flags);
4690 trace_sched_pi_setprio(p, prio);
4691 oldprio = p->prio;
4692 prev_class = p->sched_class;
4693 on_rq = p->se.on_rq;
4694 running = task_current(rq, p);
4695 if (on_rq)
4696 dequeue_task(rq, p, 0);
4697 if (running)
4698 p->sched_class->put_prev_task(rq, p);
4700 if (rt_prio(prio))
4701 p->sched_class = &rt_sched_class;
4702 else
4703 p->sched_class = &fair_sched_class;
4705 p->prio = prio;
4707 if (running)
4708 p->sched_class->set_curr_task(rq);
4709 if (on_rq) {
4710 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4712 check_class_changed(rq, p, prev_class, oldprio, running);
4714 task_rq_unlock(rq, &flags);
4717 #endif
4719 void set_user_nice(struct task_struct *p, long nice)
4721 int old_prio, delta, on_rq;
4722 unsigned long flags;
4723 struct rq *rq;
4725 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4726 return;
4728 * We have to be careful, if called from sys_setpriority(),
4729 * the task might be in the middle of scheduling on another CPU.
4731 rq = task_rq_lock(p, &flags);
4733 * The RT priorities are set via sched_setscheduler(), but we still
4734 * allow the 'normal' nice value to be set - but as expected
4735 * it wont have any effect on scheduling until the task is
4736 * SCHED_FIFO/SCHED_RR:
4738 if (task_has_rt_policy(p)) {
4739 p->static_prio = NICE_TO_PRIO(nice);
4740 goto out_unlock;
4742 on_rq = p->se.on_rq;
4743 if (on_rq)
4744 dequeue_task(rq, p, 0);
4746 p->static_prio = NICE_TO_PRIO(nice);
4747 set_load_weight(p);
4748 old_prio = p->prio;
4749 p->prio = effective_prio(p);
4750 delta = p->prio - old_prio;
4752 if (on_rq) {
4753 enqueue_task(rq, p, 0);
4755 * If the task increased its priority or is running and
4756 * lowered its priority, then reschedule its CPU:
4758 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4759 resched_task(rq->curr);
4761 out_unlock:
4762 task_rq_unlock(rq, &flags);
4764 EXPORT_SYMBOL(set_user_nice);
4767 * can_nice - check if a task can reduce its nice value
4768 * @p: task
4769 * @nice: nice value
4771 int can_nice(const struct task_struct *p, const int nice)
4773 /* convert nice value [19,-20] to rlimit style value [1,40] */
4774 int nice_rlim = 20 - nice;
4776 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4777 capable(CAP_SYS_NICE));
4780 #ifdef __ARCH_WANT_SYS_NICE
4783 * sys_nice - change the priority of the current process.
4784 * @increment: priority increment
4786 * sys_setpriority is a more generic, but much slower function that
4787 * does similar things.
4789 SYSCALL_DEFINE1(nice, int, increment)
4791 long nice, retval;
4794 * Setpriority might change our priority at the same moment.
4795 * We don't have to worry. Conceptually one call occurs first
4796 * and we have a single winner.
4798 if (increment < -40)
4799 increment = -40;
4800 if (increment > 40)
4801 increment = 40;
4803 nice = TASK_NICE(current) + increment;
4804 if (nice < -20)
4805 nice = -20;
4806 if (nice > 19)
4807 nice = 19;
4809 if (increment < 0 && !can_nice(current, nice))
4810 return -EPERM;
4812 retval = security_task_setnice(current, nice);
4813 if (retval)
4814 return retval;
4816 set_user_nice(current, nice);
4817 return 0;
4820 #endif
4823 * task_prio - return the priority value of a given task.
4824 * @p: the task in question.
4826 * This is the priority value as seen by users in /proc.
4827 * RT tasks are offset by -200. Normal tasks are centered
4828 * around 0, value goes from -16 to +15.
4830 int task_prio(const struct task_struct *p)
4832 return p->prio - MAX_RT_PRIO;
4836 * task_nice - return the nice value of a given task.
4837 * @p: the task in question.
4839 int task_nice(const struct task_struct *p)
4841 return TASK_NICE(p);
4843 EXPORT_SYMBOL(task_nice);
4846 * idle_cpu - is a given cpu idle currently?
4847 * @cpu: the processor in question.
4849 int idle_cpu(int cpu)
4851 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4855 * idle_task - return the idle task for a given cpu.
4856 * @cpu: the processor in question.
4858 struct task_struct *idle_task(int cpu)
4860 return cpu_rq(cpu)->idle;
4864 * find_process_by_pid - find a process with a matching PID value.
4865 * @pid: the pid in question.
4867 static struct task_struct *find_process_by_pid(pid_t pid)
4869 return pid ? find_task_by_vpid(pid) : current;
4872 /* Actually do priority change: must hold rq lock. */
4873 static void
4874 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4876 BUG_ON(p->se.on_rq);
4878 p->policy = policy;
4879 p->rt_priority = prio;
4880 p->normal_prio = normal_prio(p);
4881 /* we are holding p->pi_lock already */
4882 p->prio = rt_mutex_getprio(p);
4883 if (rt_prio(p->prio))
4884 p->sched_class = &rt_sched_class;
4885 else
4886 p->sched_class = &fair_sched_class;
4887 set_load_weight(p);
4891 * check the target process has a UID that matches the current process's
4893 static bool check_same_owner(struct task_struct *p)
4895 const struct cred *cred = current_cred(), *pcred;
4896 bool match;
4898 rcu_read_lock();
4899 pcred = __task_cred(p);
4900 match = (cred->euid == pcred->euid ||
4901 cred->euid == pcred->uid);
4902 rcu_read_unlock();
4903 return match;
4906 static int __sched_setscheduler(struct task_struct *p, int policy,
4907 struct sched_param *param, bool user)
4909 int retval, oldprio, oldpolicy = -1, on_rq, running;
4910 unsigned long flags;
4911 const struct sched_class *prev_class;
4912 struct rq *rq;
4913 int reset_on_fork;
4915 /* may grab non-irq protected spin_locks */
4916 BUG_ON(in_interrupt());
4917 recheck:
4918 /* double check policy once rq lock held */
4919 if (policy < 0) {
4920 reset_on_fork = p->sched_reset_on_fork;
4921 policy = oldpolicy = p->policy;
4922 } else {
4923 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4924 policy &= ~SCHED_RESET_ON_FORK;
4926 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4927 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4928 policy != SCHED_IDLE)
4929 return -EINVAL;
4933 * Valid priorities for SCHED_FIFO and SCHED_RR are
4934 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4935 * SCHED_BATCH and SCHED_IDLE is 0.
4937 if (param->sched_priority < 0 ||
4938 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4939 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4940 return -EINVAL;
4941 if (rt_policy(policy) != (param->sched_priority != 0))
4942 return -EINVAL;
4945 * Allow unprivileged RT tasks to decrease priority:
4947 if (user && !capable(CAP_SYS_NICE)) {
4948 if (rt_policy(policy)) {
4949 unsigned long rlim_rtprio =
4950 task_rlimit(p, RLIMIT_RTPRIO);
4952 /* can't set/change the rt policy */
4953 if (policy != p->policy && !rlim_rtprio)
4954 return -EPERM;
4956 /* can't increase priority */
4957 if (param->sched_priority > p->rt_priority &&
4958 param->sched_priority > rlim_rtprio)
4959 return -EPERM;
4962 * Like positive nice levels, dont allow tasks to
4963 * move out of SCHED_IDLE either:
4965 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4966 return -EPERM;
4968 /* can't change other user's priorities */
4969 if (!check_same_owner(p))
4970 return -EPERM;
4972 /* Normal users shall not reset the sched_reset_on_fork flag */
4973 if (p->sched_reset_on_fork && !reset_on_fork)
4974 return -EPERM;
4977 if (user) {
4978 retval = security_task_setscheduler(p);
4979 if (retval)
4980 return retval;
4984 * make sure no PI-waiters arrive (or leave) while we are
4985 * changing the priority of the task:
4987 raw_spin_lock_irqsave(&p->pi_lock, flags);
4989 * To be able to change p->policy safely, the apropriate
4990 * runqueue lock must be held.
4992 rq = __task_rq_lock(p);
4995 * Changing the policy of the stop threads its a very bad idea
4997 if (p == rq->stop) {
4998 __task_rq_unlock(rq);
4999 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5000 return -EINVAL;
5003 #ifdef CONFIG_RT_GROUP_SCHED
5004 if (user) {
5006 * Do not allow realtime tasks into groups that have no runtime
5007 * assigned.
5009 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5010 task_group(p)->rt_bandwidth.rt_runtime == 0) {
5011 __task_rq_unlock(rq);
5012 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5013 return -EPERM;
5016 #endif
5018 /* recheck policy now with rq lock held */
5019 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5020 policy = oldpolicy = -1;
5021 __task_rq_unlock(rq);
5022 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5023 goto recheck;
5025 on_rq = p->se.on_rq;
5026 running = task_current(rq, p);
5027 if (on_rq)
5028 deactivate_task(rq, p, 0);
5029 if (running)
5030 p->sched_class->put_prev_task(rq, p);
5032 p->sched_reset_on_fork = reset_on_fork;
5034 oldprio = p->prio;
5035 prev_class = p->sched_class;
5036 __setscheduler(rq, p, policy, param->sched_priority);
5038 if (running)
5039 p->sched_class->set_curr_task(rq);
5040 if (on_rq) {
5041 activate_task(rq, p, 0);
5043 check_class_changed(rq, p, prev_class, oldprio, running);
5045 __task_rq_unlock(rq);
5046 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5048 rt_mutex_adjust_pi(p);
5050 return 0;
5054 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5055 * @p: the task in question.
5056 * @policy: new policy.
5057 * @param: structure containing the new RT priority.
5059 * NOTE that the task may be already dead.
5061 int sched_setscheduler(struct task_struct *p, int policy,
5062 struct sched_param *param)
5064 return __sched_setscheduler(p, policy, param, true);
5066 EXPORT_SYMBOL_GPL(sched_setscheduler);
5069 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5070 * @p: the task in question.
5071 * @policy: new policy.
5072 * @param: structure containing the new RT priority.
5074 * Just like sched_setscheduler, only don't bother checking if the
5075 * current context has permission. For example, this is needed in
5076 * stop_machine(): we create temporary high priority worker threads,
5077 * but our caller might not have that capability.
5079 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5080 struct sched_param *param)
5082 return __sched_setscheduler(p, policy, param, false);
5085 static int
5086 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5088 struct sched_param lparam;
5089 struct task_struct *p;
5090 int retval;
5092 if (!param || pid < 0)
5093 return -EINVAL;
5094 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5095 return -EFAULT;
5097 rcu_read_lock();
5098 retval = -ESRCH;
5099 p = find_process_by_pid(pid);
5100 if (p != NULL)
5101 retval = sched_setscheduler(p, policy, &lparam);
5102 rcu_read_unlock();
5104 return retval;
5108 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5109 * @pid: the pid in question.
5110 * @policy: new policy.
5111 * @param: structure containing the new RT priority.
5113 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5114 struct sched_param __user *, param)
5116 /* negative values for policy are not valid */
5117 if (policy < 0)
5118 return -EINVAL;
5120 return do_sched_setscheduler(pid, policy, param);
5124 * sys_sched_setparam - set/change the RT priority of a thread
5125 * @pid: the pid in question.
5126 * @param: structure containing the new RT priority.
5128 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5130 return do_sched_setscheduler(pid, -1, param);
5134 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5135 * @pid: the pid in question.
5137 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5139 struct task_struct *p;
5140 int retval;
5142 if (pid < 0)
5143 return -EINVAL;
5145 retval = -ESRCH;
5146 rcu_read_lock();
5147 p = find_process_by_pid(pid);
5148 if (p) {
5149 retval = security_task_getscheduler(p);
5150 if (!retval)
5151 retval = p->policy
5152 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5154 rcu_read_unlock();
5155 return retval;
5159 * sys_sched_getparam - get the RT priority of a thread
5160 * @pid: the pid in question.
5161 * @param: structure containing the RT priority.
5163 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5165 struct sched_param lp;
5166 struct task_struct *p;
5167 int retval;
5169 if (!param || pid < 0)
5170 return -EINVAL;
5172 rcu_read_lock();
5173 p = find_process_by_pid(pid);
5174 retval = -ESRCH;
5175 if (!p)
5176 goto out_unlock;
5178 retval = security_task_getscheduler(p);
5179 if (retval)
5180 goto out_unlock;
5182 lp.sched_priority = p->rt_priority;
5183 rcu_read_unlock();
5186 * This one might sleep, we cannot do it with a spinlock held ...
5188 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5190 return retval;
5192 out_unlock:
5193 rcu_read_unlock();
5194 return retval;
5197 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5199 cpumask_var_t cpus_allowed, new_mask;
5200 struct task_struct *p;
5201 int retval;
5203 get_online_cpus();
5204 rcu_read_lock();
5206 p = find_process_by_pid(pid);
5207 if (!p) {
5208 rcu_read_unlock();
5209 put_online_cpus();
5210 return -ESRCH;
5213 /* Prevent p going away */
5214 get_task_struct(p);
5215 rcu_read_unlock();
5217 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5218 retval = -ENOMEM;
5219 goto out_put_task;
5221 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5222 retval = -ENOMEM;
5223 goto out_free_cpus_allowed;
5225 retval = -EPERM;
5226 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5227 goto out_unlock;
5229 retval = security_task_setscheduler(p);
5230 if (retval)
5231 goto out_unlock;
5233 cpuset_cpus_allowed(p, cpus_allowed);
5234 cpumask_and(new_mask, in_mask, cpus_allowed);
5235 again:
5236 retval = set_cpus_allowed_ptr(p, new_mask);
5238 if (!retval) {
5239 cpuset_cpus_allowed(p, cpus_allowed);
5240 if (!cpumask_subset(new_mask, cpus_allowed)) {
5242 * We must have raced with a concurrent cpuset
5243 * update. Just reset the cpus_allowed to the
5244 * cpuset's cpus_allowed
5246 cpumask_copy(new_mask, cpus_allowed);
5247 goto again;
5250 out_unlock:
5251 free_cpumask_var(new_mask);
5252 out_free_cpus_allowed:
5253 free_cpumask_var(cpus_allowed);
5254 out_put_task:
5255 put_task_struct(p);
5256 put_online_cpus();
5257 return retval;
5260 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5261 struct cpumask *new_mask)
5263 if (len < cpumask_size())
5264 cpumask_clear(new_mask);
5265 else if (len > cpumask_size())
5266 len = cpumask_size();
5268 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5272 * sys_sched_setaffinity - set the cpu affinity of a process
5273 * @pid: pid of the process
5274 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5275 * @user_mask_ptr: user-space pointer to the new cpu mask
5277 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5278 unsigned long __user *, user_mask_ptr)
5280 cpumask_var_t new_mask;
5281 int retval;
5283 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5284 return -ENOMEM;
5286 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5287 if (retval == 0)
5288 retval = sched_setaffinity(pid, new_mask);
5289 free_cpumask_var(new_mask);
5290 return retval;
5293 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5295 struct task_struct *p;
5296 unsigned long flags;
5297 struct rq *rq;
5298 int retval;
5300 get_online_cpus();
5301 rcu_read_lock();
5303 retval = -ESRCH;
5304 p = find_process_by_pid(pid);
5305 if (!p)
5306 goto out_unlock;
5308 retval = security_task_getscheduler(p);
5309 if (retval)
5310 goto out_unlock;
5312 rq = task_rq_lock(p, &flags);
5313 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5314 task_rq_unlock(rq, &flags);
5316 out_unlock:
5317 rcu_read_unlock();
5318 put_online_cpus();
5320 return retval;
5324 * sys_sched_getaffinity - get the cpu affinity of a process
5325 * @pid: pid of the process
5326 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5327 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5329 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5330 unsigned long __user *, user_mask_ptr)
5332 int ret;
5333 cpumask_var_t mask;
5335 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5336 return -EINVAL;
5337 if (len & (sizeof(unsigned long)-1))
5338 return -EINVAL;
5340 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5341 return -ENOMEM;
5343 ret = sched_getaffinity(pid, mask);
5344 if (ret == 0) {
5345 size_t retlen = min_t(size_t, len, cpumask_size());
5347 if (copy_to_user(user_mask_ptr, mask, retlen))
5348 ret = -EFAULT;
5349 else
5350 ret = retlen;
5352 free_cpumask_var(mask);
5354 return ret;
5358 * sys_sched_yield - yield the current processor to other threads.
5360 * This function yields the current CPU to other tasks. If there are no
5361 * other threads running on this CPU then this function will return.
5363 SYSCALL_DEFINE0(sched_yield)
5365 struct rq *rq = this_rq_lock();
5367 schedstat_inc(rq, yld_count);
5368 current->sched_class->yield_task(rq);
5371 * Since we are going to call schedule() anyway, there's
5372 * no need to preempt or enable interrupts:
5374 __release(rq->lock);
5375 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5376 do_raw_spin_unlock(&rq->lock);
5377 preempt_enable_no_resched();
5379 schedule();
5381 return 0;
5384 static inline int should_resched(void)
5386 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5389 static void __cond_resched(void)
5391 add_preempt_count(PREEMPT_ACTIVE);
5392 schedule();
5393 sub_preempt_count(PREEMPT_ACTIVE);
5396 int __sched _cond_resched(void)
5398 if (should_resched()) {
5399 __cond_resched();
5400 return 1;
5402 return 0;
5404 EXPORT_SYMBOL(_cond_resched);
5407 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5408 * call schedule, and on return reacquire the lock.
5410 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5411 * operations here to prevent schedule() from being called twice (once via
5412 * spin_unlock(), once by hand).
5414 int __cond_resched_lock(spinlock_t *lock)
5416 int resched = should_resched();
5417 int ret = 0;
5419 lockdep_assert_held(lock);
5421 if (spin_needbreak(lock) || resched) {
5422 spin_unlock(lock);
5423 if (resched)
5424 __cond_resched();
5425 else
5426 cpu_relax();
5427 ret = 1;
5428 spin_lock(lock);
5430 return ret;
5432 EXPORT_SYMBOL(__cond_resched_lock);
5434 int __sched __cond_resched_softirq(void)
5436 BUG_ON(!in_softirq());
5438 if (should_resched()) {
5439 local_bh_enable();
5440 __cond_resched();
5441 local_bh_disable();
5442 return 1;
5444 return 0;
5446 EXPORT_SYMBOL(__cond_resched_softirq);
5449 * yield - yield the current processor to other threads.
5451 * This is a shortcut for kernel-space yielding - it marks the
5452 * thread runnable and calls sys_sched_yield().
5454 void __sched yield(void)
5456 set_current_state(TASK_RUNNING);
5457 sys_sched_yield();
5459 EXPORT_SYMBOL(yield);
5462 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5463 * that process accounting knows that this is a task in IO wait state.
5465 void __sched io_schedule(void)
5467 struct rq *rq = raw_rq();
5469 delayacct_blkio_start();
5470 atomic_inc(&rq->nr_iowait);
5471 current->in_iowait = 1;
5472 schedule();
5473 current->in_iowait = 0;
5474 atomic_dec(&rq->nr_iowait);
5475 delayacct_blkio_end();
5477 EXPORT_SYMBOL(io_schedule);
5479 long __sched io_schedule_timeout(long timeout)
5481 struct rq *rq = raw_rq();
5482 long ret;
5484 delayacct_blkio_start();
5485 atomic_inc(&rq->nr_iowait);
5486 current->in_iowait = 1;
5487 ret = schedule_timeout(timeout);
5488 current->in_iowait = 0;
5489 atomic_dec(&rq->nr_iowait);
5490 delayacct_blkio_end();
5491 return ret;
5495 * sys_sched_get_priority_max - return maximum RT priority.
5496 * @policy: scheduling class.
5498 * this syscall returns the maximum rt_priority that can be used
5499 * by a given scheduling class.
5501 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5503 int ret = -EINVAL;
5505 switch (policy) {
5506 case SCHED_FIFO:
5507 case SCHED_RR:
5508 ret = MAX_USER_RT_PRIO-1;
5509 break;
5510 case SCHED_NORMAL:
5511 case SCHED_BATCH:
5512 case SCHED_IDLE:
5513 ret = 0;
5514 break;
5516 return ret;
5520 * sys_sched_get_priority_min - return minimum RT priority.
5521 * @policy: scheduling class.
5523 * this syscall returns the minimum rt_priority that can be used
5524 * by a given scheduling class.
5526 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5528 int ret = -EINVAL;
5530 switch (policy) {
5531 case SCHED_FIFO:
5532 case SCHED_RR:
5533 ret = 1;
5534 break;
5535 case SCHED_NORMAL:
5536 case SCHED_BATCH:
5537 case SCHED_IDLE:
5538 ret = 0;
5540 return ret;
5544 * sys_sched_rr_get_interval - return the default timeslice of a process.
5545 * @pid: pid of the process.
5546 * @interval: userspace pointer to the timeslice value.
5548 * this syscall writes the default timeslice value of a given process
5549 * into the user-space timespec buffer. A value of '0' means infinity.
5551 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5552 struct timespec __user *, interval)
5554 struct task_struct *p;
5555 unsigned int time_slice;
5556 unsigned long flags;
5557 struct rq *rq;
5558 int retval;
5559 struct timespec t;
5561 if (pid < 0)
5562 return -EINVAL;
5564 retval = -ESRCH;
5565 rcu_read_lock();
5566 p = find_process_by_pid(pid);
5567 if (!p)
5568 goto out_unlock;
5570 retval = security_task_getscheduler(p);
5571 if (retval)
5572 goto out_unlock;
5574 rq = task_rq_lock(p, &flags);
5575 time_slice = p->sched_class->get_rr_interval(rq, p);
5576 task_rq_unlock(rq, &flags);
5578 rcu_read_unlock();
5579 jiffies_to_timespec(time_slice, &t);
5580 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5581 return retval;
5583 out_unlock:
5584 rcu_read_unlock();
5585 return retval;
5588 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5590 void sched_show_task(struct task_struct *p)
5592 unsigned long free = 0;
5593 unsigned state;
5595 state = p->state ? __ffs(p->state) + 1 : 0;
5596 printk(KERN_INFO "%-13.13s %c", p->comm,
5597 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5598 #if BITS_PER_LONG == 32
5599 if (state == TASK_RUNNING)
5600 printk(KERN_CONT " running ");
5601 else
5602 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5603 #else
5604 if (state == TASK_RUNNING)
5605 printk(KERN_CONT " running task ");
5606 else
5607 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5608 #endif
5609 #ifdef CONFIG_DEBUG_STACK_USAGE
5610 free = stack_not_used(p);
5611 #endif
5612 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5613 task_pid_nr(p), task_pid_nr(p->real_parent),
5614 (unsigned long)task_thread_info(p)->flags);
5616 show_stack(p, NULL);
5619 void show_state_filter(unsigned long state_filter)
5621 struct task_struct *g, *p;
5623 #if BITS_PER_LONG == 32
5624 printk(KERN_INFO
5625 " task PC stack pid father\n");
5626 #else
5627 printk(KERN_INFO
5628 " task PC stack pid father\n");
5629 #endif
5630 read_lock(&tasklist_lock);
5631 do_each_thread(g, p) {
5633 * reset the NMI-timeout, listing all files on a slow
5634 * console might take alot of time:
5636 touch_nmi_watchdog();
5637 if (!state_filter || (p->state & state_filter))
5638 sched_show_task(p);
5639 } while_each_thread(g, p);
5641 touch_all_softlockup_watchdogs();
5643 #ifdef CONFIG_SCHED_DEBUG
5644 sysrq_sched_debug_show();
5645 #endif
5646 read_unlock(&tasklist_lock);
5648 * Only show locks if all tasks are dumped:
5650 if (!state_filter)
5651 debug_show_all_locks();
5654 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5656 idle->sched_class = &idle_sched_class;
5660 * init_idle - set up an idle thread for a given CPU
5661 * @idle: task in question
5662 * @cpu: cpu the idle task belongs to
5664 * NOTE: this function does not set the idle thread's NEED_RESCHED
5665 * flag, to make booting more robust.
5667 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5669 struct rq *rq = cpu_rq(cpu);
5670 unsigned long flags;
5672 raw_spin_lock_irqsave(&rq->lock, flags);
5674 __sched_fork(idle);
5675 idle->state = TASK_RUNNING;
5676 idle->se.exec_start = sched_clock();
5678 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5680 * We're having a chicken and egg problem, even though we are
5681 * holding rq->lock, the cpu isn't yet set to this cpu so the
5682 * lockdep check in task_group() will fail.
5684 * Similar case to sched_fork(). / Alternatively we could
5685 * use task_rq_lock() here and obtain the other rq->lock.
5687 * Silence PROVE_RCU
5689 rcu_read_lock();
5690 __set_task_cpu(idle, cpu);
5691 rcu_read_unlock();
5693 rq->curr = rq->idle = idle;
5694 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5695 idle->oncpu = 1;
5696 #endif
5697 raw_spin_unlock_irqrestore(&rq->lock, flags);
5699 /* Set the preempt count _outside_ the spinlocks! */
5700 #if defined(CONFIG_PREEMPT)
5701 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5702 #else
5703 task_thread_info(idle)->preempt_count = 0;
5704 #endif
5706 * The idle tasks have their own, simple scheduling class:
5708 idle->sched_class = &idle_sched_class;
5709 ftrace_graph_init_idle_task(idle, cpu);
5713 * In a system that switches off the HZ timer nohz_cpu_mask
5714 * indicates which cpus entered this state. This is used
5715 * in the rcu update to wait only for active cpus. For system
5716 * which do not switch off the HZ timer nohz_cpu_mask should
5717 * always be CPU_BITS_NONE.
5719 cpumask_var_t nohz_cpu_mask;
5722 * Increase the granularity value when there are more CPUs,
5723 * because with more CPUs the 'effective latency' as visible
5724 * to users decreases. But the relationship is not linear,
5725 * so pick a second-best guess by going with the log2 of the
5726 * number of CPUs.
5728 * This idea comes from the SD scheduler of Con Kolivas:
5730 static int get_update_sysctl_factor(void)
5732 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5733 unsigned int factor;
5735 switch (sysctl_sched_tunable_scaling) {
5736 case SCHED_TUNABLESCALING_NONE:
5737 factor = 1;
5738 break;
5739 case SCHED_TUNABLESCALING_LINEAR:
5740 factor = cpus;
5741 break;
5742 case SCHED_TUNABLESCALING_LOG:
5743 default:
5744 factor = 1 + ilog2(cpus);
5745 break;
5748 return factor;
5751 static void update_sysctl(void)
5753 unsigned int factor = get_update_sysctl_factor();
5755 #define SET_SYSCTL(name) \
5756 (sysctl_##name = (factor) * normalized_sysctl_##name)
5757 SET_SYSCTL(sched_min_granularity);
5758 SET_SYSCTL(sched_latency);
5759 SET_SYSCTL(sched_wakeup_granularity);
5760 SET_SYSCTL(sched_shares_ratelimit);
5761 #undef SET_SYSCTL
5764 static inline void sched_init_granularity(void)
5766 update_sysctl();
5769 #ifdef CONFIG_SMP
5771 * This is how migration works:
5773 * 1) we invoke migration_cpu_stop() on the target CPU using
5774 * stop_one_cpu().
5775 * 2) stopper starts to run (implicitly forcing the migrated thread
5776 * off the CPU)
5777 * 3) it checks whether the migrated task is still in the wrong runqueue.
5778 * 4) if it's in the wrong runqueue then the migration thread removes
5779 * it and puts it into the right queue.
5780 * 5) stopper completes and stop_one_cpu() returns and the migration
5781 * is done.
5785 * Change a given task's CPU affinity. Migrate the thread to a
5786 * proper CPU and schedule it away if the CPU it's executing on
5787 * is removed from the allowed bitmask.
5789 * NOTE: the caller must have a valid reference to the task, the
5790 * task must not exit() & deallocate itself prematurely. The
5791 * call is not atomic; no spinlocks may be held.
5793 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5795 unsigned long flags;
5796 struct rq *rq;
5797 unsigned int dest_cpu;
5798 int ret = 0;
5801 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5802 * drop the rq->lock and still rely on ->cpus_allowed.
5804 again:
5805 while (task_is_waking(p))
5806 cpu_relax();
5807 rq = task_rq_lock(p, &flags);
5808 if (task_is_waking(p)) {
5809 task_rq_unlock(rq, &flags);
5810 goto again;
5813 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5814 ret = -EINVAL;
5815 goto out;
5818 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5819 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5820 ret = -EINVAL;
5821 goto out;
5824 if (p->sched_class->set_cpus_allowed)
5825 p->sched_class->set_cpus_allowed(p, new_mask);
5826 else {
5827 cpumask_copy(&p->cpus_allowed, new_mask);
5828 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5831 /* Can the task run on the task's current CPU? If so, we're done */
5832 if (cpumask_test_cpu(task_cpu(p), new_mask))
5833 goto out;
5835 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5836 if (migrate_task(p, dest_cpu)) {
5837 struct migration_arg arg = { p, dest_cpu };
5838 /* Need help from migration thread: drop lock and wait. */
5839 task_rq_unlock(rq, &flags);
5840 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5841 tlb_migrate_finish(p->mm);
5842 return 0;
5844 out:
5845 task_rq_unlock(rq, &flags);
5847 return ret;
5849 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5852 * Move (not current) task off this cpu, onto dest cpu. We're doing
5853 * this because either it can't run here any more (set_cpus_allowed()
5854 * away from this CPU, or CPU going down), or because we're
5855 * attempting to rebalance this task on exec (sched_exec).
5857 * So we race with normal scheduler movements, but that's OK, as long
5858 * as the task is no longer on this CPU.
5860 * Returns non-zero if task was successfully migrated.
5862 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5864 struct rq *rq_dest, *rq_src;
5865 int ret = 0;
5867 if (unlikely(!cpu_active(dest_cpu)))
5868 return ret;
5870 rq_src = cpu_rq(src_cpu);
5871 rq_dest = cpu_rq(dest_cpu);
5873 double_rq_lock(rq_src, rq_dest);
5874 /* Already moved. */
5875 if (task_cpu(p) != src_cpu)
5876 goto done;
5877 /* Affinity changed (again). */
5878 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5879 goto fail;
5882 * If we're not on a rq, the next wake-up will ensure we're
5883 * placed properly.
5885 if (p->se.on_rq) {
5886 deactivate_task(rq_src, p, 0);
5887 set_task_cpu(p, dest_cpu);
5888 activate_task(rq_dest, p, 0);
5889 check_preempt_curr(rq_dest, p, 0);
5891 done:
5892 ret = 1;
5893 fail:
5894 double_rq_unlock(rq_src, rq_dest);
5895 return ret;
5899 * migration_cpu_stop - this will be executed by a highprio stopper thread
5900 * and performs thread migration by bumping thread off CPU then
5901 * 'pushing' onto another runqueue.
5903 static int migration_cpu_stop(void *data)
5905 struct migration_arg *arg = data;
5908 * The original target cpu might have gone down and we might
5909 * be on another cpu but it doesn't matter.
5911 local_irq_disable();
5912 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5913 local_irq_enable();
5914 return 0;
5917 #ifdef CONFIG_HOTPLUG_CPU
5919 * Figure out where task on dead CPU should go, use force if necessary.
5921 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5923 struct rq *rq = cpu_rq(dead_cpu);
5924 int needs_cpu, uninitialized_var(dest_cpu);
5925 unsigned long flags;
5927 local_irq_save(flags);
5929 raw_spin_lock(&rq->lock);
5930 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5931 if (needs_cpu)
5932 dest_cpu = select_fallback_rq(dead_cpu, p);
5933 raw_spin_unlock(&rq->lock);
5935 * It can only fail if we race with set_cpus_allowed(),
5936 * in the racer should migrate the task anyway.
5938 if (needs_cpu)
5939 __migrate_task(p, dead_cpu, dest_cpu);
5940 local_irq_restore(flags);
5944 * While a dead CPU has no uninterruptible tasks queued at this point,
5945 * it might still have a nonzero ->nr_uninterruptible counter, because
5946 * for performance reasons the counter is not stricly tracking tasks to
5947 * their home CPUs. So we just add the counter to another CPU's counter,
5948 * to keep the global sum constant after CPU-down:
5950 static void migrate_nr_uninterruptible(struct rq *rq_src)
5952 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5953 unsigned long flags;
5955 local_irq_save(flags);
5956 double_rq_lock(rq_src, rq_dest);
5957 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5958 rq_src->nr_uninterruptible = 0;
5959 double_rq_unlock(rq_src, rq_dest);
5960 local_irq_restore(flags);
5963 /* Run through task list and migrate tasks from the dead cpu. */
5964 static void migrate_live_tasks(int src_cpu)
5966 struct task_struct *p, *t;
5968 read_lock(&tasklist_lock);
5970 do_each_thread(t, p) {
5971 if (p == current)
5972 continue;
5974 if (task_cpu(p) == src_cpu)
5975 move_task_off_dead_cpu(src_cpu, p);
5976 } while_each_thread(t, p);
5978 read_unlock(&tasklist_lock);
5982 * Schedules idle task to be the next runnable task on current CPU.
5983 * It does so by boosting its priority to highest possible.
5984 * Used by CPU offline code.
5986 void sched_idle_next(void)
5988 int this_cpu = smp_processor_id();
5989 struct rq *rq = cpu_rq(this_cpu);
5990 struct task_struct *p = rq->idle;
5991 unsigned long flags;
5993 /* cpu has to be offline */
5994 BUG_ON(cpu_online(this_cpu));
5997 * Strictly not necessary since rest of the CPUs are stopped by now
5998 * and interrupts disabled on the current cpu.
6000 raw_spin_lock_irqsave(&rq->lock, flags);
6002 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6004 activate_task(rq, p, 0);
6006 raw_spin_unlock_irqrestore(&rq->lock, flags);
6010 * Ensures that the idle task is using init_mm right before its cpu goes
6011 * offline.
6013 void idle_task_exit(void)
6015 struct mm_struct *mm = current->active_mm;
6017 BUG_ON(cpu_online(smp_processor_id()));
6019 if (mm != &init_mm)
6020 switch_mm(mm, &init_mm, current);
6021 mmdrop(mm);
6024 /* called under rq->lock with disabled interrupts */
6025 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6027 struct rq *rq = cpu_rq(dead_cpu);
6029 /* Must be exiting, otherwise would be on tasklist. */
6030 BUG_ON(!p->exit_state);
6032 /* Cannot have done final schedule yet: would have vanished. */
6033 BUG_ON(p->state == TASK_DEAD);
6035 get_task_struct(p);
6038 * Drop lock around migration; if someone else moves it,
6039 * that's OK. No task can be added to this CPU, so iteration is
6040 * fine.
6042 raw_spin_unlock_irq(&rq->lock);
6043 move_task_off_dead_cpu(dead_cpu, p);
6044 raw_spin_lock_irq(&rq->lock);
6046 put_task_struct(p);
6049 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6050 static void migrate_dead_tasks(unsigned int dead_cpu)
6052 struct rq *rq = cpu_rq(dead_cpu);
6053 struct task_struct *next;
6055 for ( ; ; ) {
6056 if (!rq->nr_running)
6057 break;
6058 next = pick_next_task(rq);
6059 if (!next)
6060 break;
6061 next->sched_class->put_prev_task(rq, next);
6062 migrate_dead(dead_cpu, next);
6068 * remove the tasks which were accounted by rq from calc_load_tasks.
6070 static void calc_global_load_remove(struct rq *rq)
6072 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6073 rq->calc_load_active = 0;
6075 #endif /* CONFIG_HOTPLUG_CPU */
6077 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6079 static struct ctl_table sd_ctl_dir[] = {
6081 .procname = "sched_domain",
6082 .mode = 0555,
6087 static struct ctl_table sd_ctl_root[] = {
6089 .procname = "kernel",
6090 .mode = 0555,
6091 .child = sd_ctl_dir,
6096 static struct ctl_table *sd_alloc_ctl_entry(int n)
6098 struct ctl_table *entry =
6099 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6101 return entry;
6104 static void sd_free_ctl_entry(struct ctl_table **tablep)
6106 struct ctl_table *entry;
6109 * In the intermediate directories, both the child directory and
6110 * procname are dynamically allocated and could fail but the mode
6111 * will always be set. In the lowest directory the names are
6112 * static strings and all have proc handlers.
6114 for (entry = *tablep; entry->mode; entry++) {
6115 if (entry->child)
6116 sd_free_ctl_entry(&entry->child);
6117 if (entry->proc_handler == NULL)
6118 kfree(entry->procname);
6121 kfree(*tablep);
6122 *tablep = NULL;
6125 static void
6126 set_table_entry(struct ctl_table *entry,
6127 const char *procname, void *data, int maxlen,
6128 mode_t mode, proc_handler *proc_handler)
6130 entry->procname = procname;
6131 entry->data = data;
6132 entry->maxlen = maxlen;
6133 entry->mode = mode;
6134 entry->proc_handler = proc_handler;
6137 static struct ctl_table *
6138 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6140 struct ctl_table *table = sd_alloc_ctl_entry(13);
6142 if (table == NULL)
6143 return NULL;
6145 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6146 sizeof(long), 0644, proc_doulongvec_minmax);
6147 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6148 sizeof(long), 0644, proc_doulongvec_minmax);
6149 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6150 sizeof(int), 0644, proc_dointvec_minmax);
6151 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6152 sizeof(int), 0644, proc_dointvec_minmax);
6153 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6154 sizeof(int), 0644, proc_dointvec_minmax);
6155 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6156 sizeof(int), 0644, proc_dointvec_minmax);
6157 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6158 sizeof(int), 0644, proc_dointvec_minmax);
6159 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6160 sizeof(int), 0644, proc_dointvec_minmax);
6161 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6162 sizeof(int), 0644, proc_dointvec_minmax);
6163 set_table_entry(&table[9], "cache_nice_tries",
6164 &sd->cache_nice_tries,
6165 sizeof(int), 0644, proc_dointvec_minmax);
6166 set_table_entry(&table[10], "flags", &sd->flags,
6167 sizeof(int), 0644, proc_dointvec_minmax);
6168 set_table_entry(&table[11], "name", sd->name,
6169 CORENAME_MAX_SIZE, 0444, proc_dostring);
6170 /* &table[12] is terminator */
6172 return table;
6175 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6177 struct ctl_table *entry, *table;
6178 struct sched_domain *sd;
6179 int domain_num = 0, i;
6180 char buf[32];
6182 for_each_domain(cpu, sd)
6183 domain_num++;
6184 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6185 if (table == NULL)
6186 return NULL;
6188 i = 0;
6189 for_each_domain(cpu, sd) {
6190 snprintf(buf, 32, "domain%d", i);
6191 entry->procname = kstrdup(buf, GFP_KERNEL);
6192 entry->mode = 0555;
6193 entry->child = sd_alloc_ctl_domain_table(sd);
6194 entry++;
6195 i++;
6197 return table;
6200 static struct ctl_table_header *sd_sysctl_header;
6201 static void register_sched_domain_sysctl(void)
6203 int i, cpu_num = num_possible_cpus();
6204 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6205 char buf[32];
6207 WARN_ON(sd_ctl_dir[0].child);
6208 sd_ctl_dir[0].child = entry;
6210 if (entry == NULL)
6211 return;
6213 for_each_possible_cpu(i) {
6214 snprintf(buf, 32, "cpu%d", i);
6215 entry->procname = kstrdup(buf, GFP_KERNEL);
6216 entry->mode = 0555;
6217 entry->child = sd_alloc_ctl_cpu_table(i);
6218 entry++;
6221 WARN_ON(sd_sysctl_header);
6222 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6225 /* may be called multiple times per register */
6226 static void unregister_sched_domain_sysctl(void)
6228 if (sd_sysctl_header)
6229 unregister_sysctl_table(sd_sysctl_header);
6230 sd_sysctl_header = NULL;
6231 if (sd_ctl_dir[0].child)
6232 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6234 #else
6235 static void register_sched_domain_sysctl(void)
6238 static void unregister_sched_domain_sysctl(void)
6241 #endif
6243 static void set_rq_online(struct rq *rq)
6245 if (!rq->online) {
6246 const struct sched_class *class;
6248 cpumask_set_cpu(rq->cpu, rq->rd->online);
6249 rq->online = 1;
6251 for_each_class(class) {
6252 if (class->rq_online)
6253 class->rq_online(rq);
6258 static void set_rq_offline(struct rq *rq)
6260 if (rq->online) {
6261 const struct sched_class *class;
6263 for_each_class(class) {
6264 if (class->rq_offline)
6265 class->rq_offline(rq);
6268 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6269 rq->online = 0;
6274 * migration_call - callback that gets triggered when a CPU is added.
6275 * Here we can start up the necessary migration thread for the new CPU.
6277 static int __cpuinit
6278 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6280 int cpu = (long)hcpu;
6281 unsigned long flags;
6282 struct rq *rq = cpu_rq(cpu);
6284 switch (action) {
6286 case CPU_UP_PREPARE:
6287 case CPU_UP_PREPARE_FROZEN:
6288 rq->calc_load_update = calc_load_update;
6289 break;
6291 case CPU_ONLINE:
6292 case CPU_ONLINE_FROZEN:
6293 /* Update our root-domain */
6294 raw_spin_lock_irqsave(&rq->lock, flags);
6295 if (rq->rd) {
6296 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6298 set_rq_online(rq);
6300 raw_spin_unlock_irqrestore(&rq->lock, flags);
6301 break;
6303 #ifdef CONFIG_HOTPLUG_CPU
6304 case CPU_DEAD:
6305 case CPU_DEAD_FROZEN:
6306 migrate_live_tasks(cpu);
6307 /* Idle task back to normal (off runqueue, low prio) */
6308 raw_spin_lock_irq(&rq->lock);
6309 deactivate_task(rq, rq->idle, 0);
6310 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6311 rq->idle->sched_class = &idle_sched_class;
6312 migrate_dead_tasks(cpu);
6313 raw_spin_unlock_irq(&rq->lock);
6314 migrate_nr_uninterruptible(rq);
6315 BUG_ON(rq->nr_running != 0);
6316 calc_global_load_remove(rq);
6317 break;
6319 case CPU_DYING:
6320 case CPU_DYING_FROZEN:
6321 /* Update our root-domain */
6322 raw_spin_lock_irqsave(&rq->lock, flags);
6323 if (rq->rd) {
6324 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6325 set_rq_offline(rq);
6327 raw_spin_unlock_irqrestore(&rq->lock, flags);
6328 break;
6329 #endif
6331 return NOTIFY_OK;
6335 * Register at high priority so that task migration (migrate_all_tasks)
6336 * happens before everything else. This has to be lower priority than
6337 * the notifier in the perf_event subsystem, though.
6339 static struct notifier_block __cpuinitdata migration_notifier = {
6340 .notifier_call = migration_call,
6341 .priority = CPU_PRI_MIGRATION,
6344 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6345 unsigned long action, void *hcpu)
6347 switch (action & ~CPU_TASKS_FROZEN) {
6348 case CPU_ONLINE:
6349 case CPU_DOWN_FAILED:
6350 set_cpu_active((long)hcpu, true);
6351 return NOTIFY_OK;
6352 default:
6353 return NOTIFY_DONE;
6357 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6358 unsigned long action, void *hcpu)
6360 switch (action & ~CPU_TASKS_FROZEN) {
6361 case CPU_DOWN_PREPARE:
6362 set_cpu_active((long)hcpu, false);
6363 return NOTIFY_OK;
6364 default:
6365 return NOTIFY_DONE;
6369 static int __init migration_init(void)
6371 void *cpu = (void *)(long)smp_processor_id();
6372 int err;
6374 /* Initialize migration for the boot CPU */
6375 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6376 BUG_ON(err == NOTIFY_BAD);
6377 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6378 register_cpu_notifier(&migration_notifier);
6380 /* Register cpu active notifiers */
6381 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6382 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6384 return 0;
6386 early_initcall(migration_init);
6387 #endif
6389 #ifdef CONFIG_SMP
6391 #ifdef CONFIG_SCHED_DEBUG
6393 static __read_mostly int sched_domain_debug_enabled;
6395 static int __init sched_domain_debug_setup(char *str)
6397 sched_domain_debug_enabled = 1;
6399 return 0;
6401 early_param("sched_debug", sched_domain_debug_setup);
6403 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6404 struct cpumask *groupmask)
6406 struct sched_group *group = sd->groups;
6407 char str[256];
6409 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6410 cpumask_clear(groupmask);
6412 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6414 if (!(sd->flags & SD_LOAD_BALANCE)) {
6415 printk("does not load-balance\n");
6416 if (sd->parent)
6417 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6418 " has parent");
6419 return -1;
6422 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6424 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6425 printk(KERN_ERR "ERROR: domain->span does not contain "
6426 "CPU%d\n", cpu);
6428 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6429 printk(KERN_ERR "ERROR: domain->groups does not contain"
6430 " CPU%d\n", cpu);
6433 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6434 do {
6435 if (!group) {
6436 printk("\n");
6437 printk(KERN_ERR "ERROR: group is NULL\n");
6438 break;
6441 if (!group->cpu_power) {
6442 printk(KERN_CONT "\n");
6443 printk(KERN_ERR "ERROR: domain->cpu_power not "
6444 "set\n");
6445 break;
6448 if (!cpumask_weight(sched_group_cpus(group))) {
6449 printk(KERN_CONT "\n");
6450 printk(KERN_ERR "ERROR: empty group\n");
6451 break;
6454 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6455 printk(KERN_CONT "\n");
6456 printk(KERN_ERR "ERROR: repeated CPUs\n");
6457 break;
6460 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6462 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6464 printk(KERN_CONT " %s", str);
6465 if (group->cpu_power != SCHED_LOAD_SCALE) {
6466 printk(KERN_CONT " (cpu_power = %d)",
6467 group->cpu_power);
6470 group = group->next;
6471 } while (group != sd->groups);
6472 printk(KERN_CONT "\n");
6474 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6475 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6477 if (sd->parent &&
6478 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6479 printk(KERN_ERR "ERROR: parent span is not a superset "
6480 "of domain->span\n");
6481 return 0;
6484 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6486 cpumask_var_t groupmask;
6487 int level = 0;
6489 if (!sched_domain_debug_enabled)
6490 return;
6492 if (!sd) {
6493 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6494 return;
6497 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6499 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6500 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6501 return;
6504 for (;;) {
6505 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6506 break;
6507 level++;
6508 sd = sd->parent;
6509 if (!sd)
6510 break;
6512 free_cpumask_var(groupmask);
6514 #else /* !CONFIG_SCHED_DEBUG */
6515 # define sched_domain_debug(sd, cpu) do { } while (0)
6516 #endif /* CONFIG_SCHED_DEBUG */
6518 static int sd_degenerate(struct sched_domain *sd)
6520 if (cpumask_weight(sched_domain_span(sd)) == 1)
6521 return 1;
6523 /* Following flags need at least 2 groups */
6524 if (sd->flags & (SD_LOAD_BALANCE |
6525 SD_BALANCE_NEWIDLE |
6526 SD_BALANCE_FORK |
6527 SD_BALANCE_EXEC |
6528 SD_SHARE_CPUPOWER |
6529 SD_SHARE_PKG_RESOURCES)) {
6530 if (sd->groups != sd->groups->next)
6531 return 0;
6534 /* Following flags don't use groups */
6535 if (sd->flags & (SD_WAKE_AFFINE))
6536 return 0;
6538 return 1;
6541 static int
6542 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6544 unsigned long cflags = sd->flags, pflags = parent->flags;
6546 if (sd_degenerate(parent))
6547 return 1;
6549 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6550 return 0;
6552 /* Flags needing groups don't count if only 1 group in parent */
6553 if (parent->groups == parent->groups->next) {
6554 pflags &= ~(SD_LOAD_BALANCE |
6555 SD_BALANCE_NEWIDLE |
6556 SD_BALANCE_FORK |
6557 SD_BALANCE_EXEC |
6558 SD_SHARE_CPUPOWER |
6559 SD_SHARE_PKG_RESOURCES);
6560 if (nr_node_ids == 1)
6561 pflags &= ~SD_SERIALIZE;
6563 if (~cflags & pflags)
6564 return 0;
6566 return 1;
6569 static void free_rootdomain(struct root_domain *rd)
6571 synchronize_sched();
6573 cpupri_cleanup(&rd->cpupri);
6575 free_cpumask_var(rd->rto_mask);
6576 free_cpumask_var(rd->online);
6577 free_cpumask_var(rd->span);
6578 kfree(rd);
6581 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6583 struct root_domain *old_rd = NULL;
6584 unsigned long flags;
6586 raw_spin_lock_irqsave(&rq->lock, flags);
6588 if (rq->rd) {
6589 old_rd = rq->rd;
6591 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6592 set_rq_offline(rq);
6594 cpumask_clear_cpu(rq->cpu, old_rd->span);
6597 * If we dont want to free the old_rt yet then
6598 * set old_rd to NULL to skip the freeing later
6599 * in this function:
6601 if (!atomic_dec_and_test(&old_rd->refcount))
6602 old_rd = NULL;
6605 atomic_inc(&rd->refcount);
6606 rq->rd = rd;
6608 cpumask_set_cpu(rq->cpu, rd->span);
6609 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6610 set_rq_online(rq);
6612 raw_spin_unlock_irqrestore(&rq->lock, flags);
6614 if (old_rd)
6615 free_rootdomain(old_rd);
6618 static int init_rootdomain(struct root_domain *rd)
6620 memset(rd, 0, sizeof(*rd));
6622 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6623 goto out;
6624 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6625 goto free_span;
6626 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6627 goto free_online;
6629 if (cpupri_init(&rd->cpupri) != 0)
6630 goto free_rto_mask;
6631 return 0;
6633 free_rto_mask:
6634 free_cpumask_var(rd->rto_mask);
6635 free_online:
6636 free_cpumask_var(rd->online);
6637 free_span:
6638 free_cpumask_var(rd->span);
6639 out:
6640 return -ENOMEM;
6643 static void init_defrootdomain(void)
6645 init_rootdomain(&def_root_domain);
6647 atomic_set(&def_root_domain.refcount, 1);
6650 static struct root_domain *alloc_rootdomain(void)
6652 struct root_domain *rd;
6654 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6655 if (!rd)
6656 return NULL;
6658 if (init_rootdomain(rd) != 0) {
6659 kfree(rd);
6660 return NULL;
6663 return rd;
6667 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6668 * hold the hotplug lock.
6670 static void
6671 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6673 struct rq *rq = cpu_rq(cpu);
6674 struct sched_domain *tmp;
6676 for (tmp = sd; tmp; tmp = tmp->parent)
6677 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6679 /* Remove the sched domains which do not contribute to scheduling. */
6680 for (tmp = sd; tmp; ) {
6681 struct sched_domain *parent = tmp->parent;
6682 if (!parent)
6683 break;
6685 if (sd_parent_degenerate(tmp, parent)) {
6686 tmp->parent = parent->parent;
6687 if (parent->parent)
6688 parent->parent->child = tmp;
6689 } else
6690 tmp = tmp->parent;
6693 if (sd && sd_degenerate(sd)) {
6694 sd = sd->parent;
6695 if (sd)
6696 sd->child = NULL;
6699 sched_domain_debug(sd, cpu);
6701 rq_attach_root(rq, rd);
6702 rcu_assign_pointer(rq->sd, sd);
6705 /* cpus with isolated domains */
6706 static cpumask_var_t cpu_isolated_map;
6708 /* Setup the mask of cpus configured for isolated domains */
6709 static int __init isolated_cpu_setup(char *str)
6711 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6712 cpulist_parse(str, cpu_isolated_map);
6713 return 1;
6716 __setup("isolcpus=", isolated_cpu_setup);
6719 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6720 * to a function which identifies what group(along with sched group) a CPU
6721 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6722 * (due to the fact that we keep track of groups covered with a struct cpumask).
6724 * init_sched_build_groups will build a circular linked list of the groups
6725 * covered by the given span, and will set each group's ->cpumask correctly,
6726 * and ->cpu_power to 0.
6728 static void
6729 init_sched_build_groups(const struct cpumask *span,
6730 const struct cpumask *cpu_map,
6731 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6732 struct sched_group **sg,
6733 struct cpumask *tmpmask),
6734 struct cpumask *covered, struct cpumask *tmpmask)
6736 struct sched_group *first = NULL, *last = NULL;
6737 int i;
6739 cpumask_clear(covered);
6741 for_each_cpu(i, span) {
6742 struct sched_group *sg;
6743 int group = group_fn(i, cpu_map, &sg, tmpmask);
6744 int j;
6746 if (cpumask_test_cpu(i, covered))
6747 continue;
6749 cpumask_clear(sched_group_cpus(sg));
6750 sg->cpu_power = 0;
6752 for_each_cpu(j, span) {
6753 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6754 continue;
6756 cpumask_set_cpu(j, covered);
6757 cpumask_set_cpu(j, sched_group_cpus(sg));
6759 if (!first)
6760 first = sg;
6761 if (last)
6762 last->next = sg;
6763 last = sg;
6765 last->next = first;
6768 #define SD_NODES_PER_DOMAIN 16
6770 #ifdef CONFIG_NUMA
6773 * find_next_best_node - find the next node to include in a sched_domain
6774 * @node: node whose sched_domain we're building
6775 * @used_nodes: nodes already in the sched_domain
6777 * Find the next node to include in a given scheduling domain. Simply
6778 * finds the closest node not already in the @used_nodes map.
6780 * Should use nodemask_t.
6782 static int find_next_best_node(int node, nodemask_t *used_nodes)
6784 int i, n, val, min_val, best_node = 0;
6786 min_val = INT_MAX;
6788 for (i = 0; i < nr_node_ids; i++) {
6789 /* Start at @node */
6790 n = (node + i) % nr_node_ids;
6792 if (!nr_cpus_node(n))
6793 continue;
6795 /* Skip already used nodes */
6796 if (node_isset(n, *used_nodes))
6797 continue;
6799 /* Simple min distance search */
6800 val = node_distance(node, n);
6802 if (val < min_val) {
6803 min_val = val;
6804 best_node = n;
6808 node_set(best_node, *used_nodes);
6809 return best_node;
6813 * sched_domain_node_span - get a cpumask for a node's sched_domain
6814 * @node: node whose cpumask we're constructing
6815 * @span: resulting cpumask
6817 * Given a node, construct a good cpumask for its sched_domain to span. It
6818 * should be one that prevents unnecessary balancing, but also spreads tasks
6819 * out optimally.
6821 static void sched_domain_node_span(int node, struct cpumask *span)
6823 nodemask_t used_nodes;
6824 int i;
6826 cpumask_clear(span);
6827 nodes_clear(used_nodes);
6829 cpumask_or(span, span, cpumask_of_node(node));
6830 node_set(node, used_nodes);
6832 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6833 int next_node = find_next_best_node(node, &used_nodes);
6835 cpumask_or(span, span, cpumask_of_node(next_node));
6838 #endif /* CONFIG_NUMA */
6840 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6843 * The cpus mask in sched_group and sched_domain hangs off the end.
6845 * ( See the the comments in include/linux/sched.h:struct sched_group
6846 * and struct sched_domain. )
6848 struct static_sched_group {
6849 struct sched_group sg;
6850 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6853 struct static_sched_domain {
6854 struct sched_domain sd;
6855 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6858 struct s_data {
6859 #ifdef CONFIG_NUMA
6860 int sd_allnodes;
6861 cpumask_var_t domainspan;
6862 cpumask_var_t covered;
6863 cpumask_var_t notcovered;
6864 #endif
6865 cpumask_var_t nodemask;
6866 cpumask_var_t this_sibling_map;
6867 cpumask_var_t this_core_map;
6868 cpumask_var_t this_book_map;
6869 cpumask_var_t send_covered;
6870 cpumask_var_t tmpmask;
6871 struct sched_group **sched_group_nodes;
6872 struct root_domain *rd;
6875 enum s_alloc {
6876 sa_sched_groups = 0,
6877 sa_rootdomain,
6878 sa_tmpmask,
6879 sa_send_covered,
6880 sa_this_book_map,
6881 sa_this_core_map,
6882 sa_this_sibling_map,
6883 sa_nodemask,
6884 sa_sched_group_nodes,
6885 #ifdef CONFIG_NUMA
6886 sa_notcovered,
6887 sa_covered,
6888 sa_domainspan,
6889 #endif
6890 sa_none,
6894 * SMT sched-domains:
6896 #ifdef CONFIG_SCHED_SMT
6897 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6898 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6900 static int
6901 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6902 struct sched_group **sg, struct cpumask *unused)
6904 if (sg)
6905 *sg = &per_cpu(sched_groups, cpu).sg;
6906 return cpu;
6908 #endif /* CONFIG_SCHED_SMT */
6911 * multi-core sched-domains:
6913 #ifdef CONFIG_SCHED_MC
6914 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6915 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6917 static int
6918 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6919 struct sched_group **sg, struct cpumask *mask)
6921 int group;
6922 #ifdef CONFIG_SCHED_SMT
6923 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6924 group = cpumask_first(mask);
6925 #else
6926 group = cpu;
6927 #endif
6928 if (sg)
6929 *sg = &per_cpu(sched_group_core, group).sg;
6930 return group;
6932 #endif /* CONFIG_SCHED_MC */
6935 * book sched-domains:
6937 #ifdef CONFIG_SCHED_BOOK
6938 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6939 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6941 static int
6942 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6943 struct sched_group **sg, struct cpumask *mask)
6945 int group = cpu;
6946 #ifdef CONFIG_SCHED_MC
6947 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6948 group = cpumask_first(mask);
6949 #elif defined(CONFIG_SCHED_SMT)
6950 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6951 group = cpumask_first(mask);
6952 #endif
6953 if (sg)
6954 *sg = &per_cpu(sched_group_book, group).sg;
6955 return group;
6957 #endif /* CONFIG_SCHED_BOOK */
6959 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6960 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6962 static int
6963 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6964 struct sched_group **sg, struct cpumask *mask)
6966 int group;
6967 #ifdef CONFIG_SCHED_BOOK
6968 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6969 group = cpumask_first(mask);
6970 #elif defined(CONFIG_SCHED_MC)
6971 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6972 group = cpumask_first(mask);
6973 #elif defined(CONFIG_SCHED_SMT)
6974 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6975 group = cpumask_first(mask);
6976 #else
6977 group = cpu;
6978 #endif
6979 if (sg)
6980 *sg = &per_cpu(sched_group_phys, group).sg;
6981 return group;
6984 #ifdef CONFIG_NUMA
6986 * The init_sched_build_groups can't handle what we want to do with node
6987 * groups, so roll our own. Now each node has its own list of groups which
6988 * gets dynamically allocated.
6990 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6991 static struct sched_group ***sched_group_nodes_bycpu;
6993 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6994 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6996 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6997 struct sched_group **sg,
6998 struct cpumask *nodemask)
7000 int group;
7002 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7003 group = cpumask_first(nodemask);
7005 if (sg)
7006 *sg = &per_cpu(sched_group_allnodes, group).sg;
7007 return group;
7010 static void init_numa_sched_groups_power(struct sched_group *group_head)
7012 struct sched_group *sg = group_head;
7013 int j;
7015 if (!sg)
7016 return;
7017 do {
7018 for_each_cpu(j, sched_group_cpus(sg)) {
7019 struct sched_domain *sd;
7021 sd = &per_cpu(phys_domains, j).sd;
7022 if (j != group_first_cpu(sd->groups)) {
7024 * Only add "power" once for each
7025 * physical package.
7027 continue;
7030 sg->cpu_power += sd->groups->cpu_power;
7032 sg = sg->next;
7033 } while (sg != group_head);
7036 static int build_numa_sched_groups(struct s_data *d,
7037 const struct cpumask *cpu_map, int num)
7039 struct sched_domain *sd;
7040 struct sched_group *sg, *prev;
7041 int n, j;
7043 cpumask_clear(d->covered);
7044 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7045 if (cpumask_empty(d->nodemask)) {
7046 d->sched_group_nodes[num] = NULL;
7047 goto out;
7050 sched_domain_node_span(num, d->domainspan);
7051 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7053 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7054 GFP_KERNEL, num);
7055 if (!sg) {
7056 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7057 num);
7058 return -ENOMEM;
7060 d->sched_group_nodes[num] = sg;
7062 for_each_cpu(j, d->nodemask) {
7063 sd = &per_cpu(node_domains, j).sd;
7064 sd->groups = sg;
7067 sg->cpu_power = 0;
7068 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7069 sg->next = sg;
7070 cpumask_or(d->covered, d->covered, d->nodemask);
7072 prev = sg;
7073 for (j = 0; j < nr_node_ids; j++) {
7074 n = (num + j) % nr_node_ids;
7075 cpumask_complement(d->notcovered, d->covered);
7076 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7077 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7078 if (cpumask_empty(d->tmpmask))
7079 break;
7080 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7081 if (cpumask_empty(d->tmpmask))
7082 continue;
7083 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7084 GFP_KERNEL, num);
7085 if (!sg) {
7086 printk(KERN_WARNING
7087 "Can not alloc domain group for node %d\n", j);
7088 return -ENOMEM;
7090 sg->cpu_power = 0;
7091 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7092 sg->next = prev->next;
7093 cpumask_or(d->covered, d->covered, d->tmpmask);
7094 prev->next = sg;
7095 prev = sg;
7097 out:
7098 return 0;
7100 #endif /* CONFIG_NUMA */
7102 #ifdef CONFIG_NUMA
7103 /* Free memory allocated for various sched_group structures */
7104 static void free_sched_groups(const struct cpumask *cpu_map,
7105 struct cpumask *nodemask)
7107 int cpu, i;
7109 for_each_cpu(cpu, cpu_map) {
7110 struct sched_group **sched_group_nodes
7111 = sched_group_nodes_bycpu[cpu];
7113 if (!sched_group_nodes)
7114 continue;
7116 for (i = 0; i < nr_node_ids; i++) {
7117 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7119 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7120 if (cpumask_empty(nodemask))
7121 continue;
7123 if (sg == NULL)
7124 continue;
7125 sg = sg->next;
7126 next_sg:
7127 oldsg = sg;
7128 sg = sg->next;
7129 kfree(oldsg);
7130 if (oldsg != sched_group_nodes[i])
7131 goto next_sg;
7133 kfree(sched_group_nodes);
7134 sched_group_nodes_bycpu[cpu] = NULL;
7137 #else /* !CONFIG_NUMA */
7138 static void free_sched_groups(const struct cpumask *cpu_map,
7139 struct cpumask *nodemask)
7142 #endif /* CONFIG_NUMA */
7145 * Initialize sched groups cpu_power.
7147 * cpu_power indicates the capacity of sched group, which is used while
7148 * distributing the load between different sched groups in a sched domain.
7149 * Typically cpu_power for all the groups in a sched domain will be same unless
7150 * there are asymmetries in the topology. If there are asymmetries, group
7151 * having more cpu_power will pickup more load compared to the group having
7152 * less cpu_power.
7154 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7156 struct sched_domain *child;
7157 struct sched_group *group;
7158 long power;
7159 int weight;
7161 WARN_ON(!sd || !sd->groups);
7163 if (cpu != group_first_cpu(sd->groups))
7164 return;
7166 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7168 child = sd->child;
7170 sd->groups->cpu_power = 0;
7172 if (!child) {
7173 power = SCHED_LOAD_SCALE;
7174 weight = cpumask_weight(sched_domain_span(sd));
7176 * SMT siblings share the power of a single core.
7177 * Usually multiple threads get a better yield out of
7178 * that one core than a single thread would have,
7179 * reflect that in sd->smt_gain.
7181 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7182 power *= sd->smt_gain;
7183 power /= weight;
7184 power >>= SCHED_LOAD_SHIFT;
7186 sd->groups->cpu_power += power;
7187 return;
7191 * Add cpu_power of each child group to this groups cpu_power.
7193 group = child->groups;
7194 do {
7195 sd->groups->cpu_power += group->cpu_power;
7196 group = group->next;
7197 } while (group != child->groups);
7201 * Initializers for schedule domains
7202 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7205 #ifdef CONFIG_SCHED_DEBUG
7206 # define SD_INIT_NAME(sd, type) sd->name = #type
7207 #else
7208 # define SD_INIT_NAME(sd, type) do { } while (0)
7209 #endif
7211 #define SD_INIT(sd, type) sd_init_##type(sd)
7213 #define SD_INIT_FUNC(type) \
7214 static noinline void sd_init_##type(struct sched_domain *sd) \
7216 memset(sd, 0, sizeof(*sd)); \
7217 *sd = SD_##type##_INIT; \
7218 sd->level = SD_LV_##type; \
7219 SD_INIT_NAME(sd, type); \
7222 SD_INIT_FUNC(CPU)
7223 #ifdef CONFIG_NUMA
7224 SD_INIT_FUNC(ALLNODES)
7225 SD_INIT_FUNC(NODE)
7226 #endif
7227 #ifdef CONFIG_SCHED_SMT
7228 SD_INIT_FUNC(SIBLING)
7229 #endif
7230 #ifdef CONFIG_SCHED_MC
7231 SD_INIT_FUNC(MC)
7232 #endif
7233 #ifdef CONFIG_SCHED_BOOK
7234 SD_INIT_FUNC(BOOK)
7235 #endif
7237 static int default_relax_domain_level = -1;
7239 static int __init setup_relax_domain_level(char *str)
7241 unsigned long val;
7243 val = simple_strtoul(str, NULL, 0);
7244 if (val < SD_LV_MAX)
7245 default_relax_domain_level = val;
7247 return 1;
7249 __setup("relax_domain_level=", setup_relax_domain_level);
7251 static void set_domain_attribute(struct sched_domain *sd,
7252 struct sched_domain_attr *attr)
7254 int request;
7256 if (!attr || attr->relax_domain_level < 0) {
7257 if (default_relax_domain_level < 0)
7258 return;
7259 else
7260 request = default_relax_domain_level;
7261 } else
7262 request = attr->relax_domain_level;
7263 if (request < sd->level) {
7264 /* turn off idle balance on this domain */
7265 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7266 } else {
7267 /* turn on idle balance on this domain */
7268 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7272 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7273 const struct cpumask *cpu_map)
7275 switch (what) {
7276 case sa_sched_groups:
7277 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7278 d->sched_group_nodes = NULL;
7279 case sa_rootdomain:
7280 free_rootdomain(d->rd); /* fall through */
7281 case sa_tmpmask:
7282 free_cpumask_var(d->tmpmask); /* fall through */
7283 case sa_send_covered:
7284 free_cpumask_var(d->send_covered); /* fall through */
7285 case sa_this_book_map:
7286 free_cpumask_var(d->this_book_map); /* fall through */
7287 case sa_this_core_map:
7288 free_cpumask_var(d->this_core_map); /* fall through */
7289 case sa_this_sibling_map:
7290 free_cpumask_var(d->this_sibling_map); /* fall through */
7291 case sa_nodemask:
7292 free_cpumask_var(d->nodemask); /* fall through */
7293 case sa_sched_group_nodes:
7294 #ifdef CONFIG_NUMA
7295 kfree(d->sched_group_nodes); /* fall through */
7296 case sa_notcovered:
7297 free_cpumask_var(d->notcovered); /* fall through */
7298 case sa_covered:
7299 free_cpumask_var(d->covered); /* fall through */
7300 case sa_domainspan:
7301 free_cpumask_var(d->domainspan); /* fall through */
7302 #endif
7303 case sa_none:
7304 break;
7308 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7309 const struct cpumask *cpu_map)
7311 #ifdef CONFIG_NUMA
7312 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7313 return sa_none;
7314 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7315 return sa_domainspan;
7316 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7317 return sa_covered;
7318 /* Allocate the per-node list of sched groups */
7319 d->sched_group_nodes = kcalloc(nr_node_ids,
7320 sizeof(struct sched_group *), GFP_KERNEL);
7321 if (!d->sched_group_nodes) {
7322 printk(KERN_WARNING "Can not alloc sched group node list\n");
7323 return sa_notcovered;
7325 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7326 #endif
7327 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7328 return sa_sched_group_nodes;
7329 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7330 return sa_nodemask;
7331 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7332 return sa_this_sibling_map;
7333 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7334 return sa_this_core_map;
7335 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7336 return sa_this_book_map;
7337 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7338 return sa_send_covered;
7339 d->rd = alloc_rootdomain();
7340 if (!d->rd) {
7341 printk(KERN_WARNING "Cannot alloc root domain\n");
7342 return sa_tmpmask;
7344 return sa_rootdomain;
7347 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7348 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7350 struct sched_domain *sd = NULL;
7351 #ifdef CONFIG_NUMA
7352 struct sched_domain *parent;
7354 d->sd_allnodes = 0;
7355 if (cpumask_weight(cpu_map) >
7356 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7357 sd = &per_cpu(allnodes_domains, i).sd;
7358 SD_INIT(sd, ALLNODES);
7359 set_domain_attribute(sd, attr);
7360 cpumask_copy(sched_domain_span(sd), cpu_map);
7361 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7362 d->sd_allnodes = 1;
7364 parent = sd;
7366 sd = &per_cpu(node_domains, i).sd;
7367 SD_INIT(sd, NODE);
7368 set_domain_attribute(sd, attr);
7369 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7370 sd->parent = parent;
7371 if (parent)
7372 parent->child = sd;
7373 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7374 #endif
7375 return sd;
7378 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7379 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7380 struct sched_domain *parent, int i)
7382 struct sched_domain *sd;
7383 sd = &per_cpu(phys_domains, i).sd;
7384 SD_INIT(sd, CPU);
7385 set_domain_attribute(sd, attr);
7386 cpumask_copy(sched_domain_span(sd), d->nodemask);
7387 sd->parent = parent;
7388 if (parent)
7389 parent->child = sd;
7390 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7391 return sd;
7394 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7395 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7396 struct sched_domain *parent, int i)
7398 struct sched_domain *sd = parent;
7399 #ifdef CONFIG_SCHED_BOOK
7400 sd = &per_cpu(book_domains, i).sd;
7401 SD_INIT(sd, BOOK);
7402 set_domain_attribute(sd, attr);
7403 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7404 sd->parent = parent;
7405 parent->child = sd;
7406 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7407 #endif
7408 return sd;
7411 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7412 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7413 struct sched_domain *parent, int i)
7415 struct sched_domain *sd = parent;
7416 #ifdef CONFIG_SCHED_MC
7417 sd = &per_cpu(core_domains, i).sd;
7418 SD_INIT(sd, MC);
7419 set_domain_attribute(sd, attr);
7420 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7421 sd->parent = parent;
7422 parent->child = sd;
7423 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7424 #endif
7425 return sd;
7428 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7429 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7430 struct sched_domain *parent, int i)
7432 struct sched_domain *sd = parent;
7433 #ifdef CONFIG_SCHED_SMT
7434 sd = &per_cpu(cpu_domains, i).sd;
7435 SD_INIT(sd, SIBLING);
7436 set_domain_attribute(sd, attr);
7437 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7438 sd->parent = parent;
7439 parent->child = sd;
7440 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7441 #endif
7442 return sd;
7445 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7446 const struct cpumask *cpu_map, int cpu)
7448 switch (l) {
7449 #ifdef CONFIG_SCHED_SMT
7450 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7451 cpumask_and(d->this_sibling_map, cpu_map,
7452 topology_thread_cpumask(cpu));
7453 if (cpu == cpumask_first(d->this_sibling_map))
7454 init_sched_build_groups(d->this_sibling_map, cpu_map,
7455 &cpu_to_cpu_group,
7456 d->send_covered, d->tmpmask);
7457 break;
7458 #endif
7459 #ifdef CONFIG_SCHED_MC
7460 case SD_LV_MC: /* set up multi-core groups */
7461 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7462 if (cpu == cpumask_first(d->this_core_map))
7463 init_sched_build_groups(d->this_core_map, cpu_map,
7464 &cpu_to_core_group,
7465 d->send_covered, d->tmpmask);
7466 break;
7467 #endif
7468 #ifdef CONFIG_SCHED_BOOK
7469 case SD_LV_BOOK: /* set up book groups */
7470 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7471 if (cpu == cpumask_first(d->this_book_map))
7472 init_sched_build_groups(d->this_book_map, cpu_map,
7473 &cpu_to_book_group,
7474 d->send_covered, d->tmpmask);
7475 break;
7476 #endif
7477 case SD_LV_CPU: /* set up physical groups */
7478 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7479 if (!cpumask_empty(d->nodemask))
7480 init_sched_build_groups(d->nodemask, cpu_map,
7481 &cpu_to_phys_group,
7482 d->send_covered, d->tmpmask);
7483 break;
7484 #ifdef CONFIG_NUMA
7485 case SD_LV_ALLNODES:
7486 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7487 d->send_covered, d->tmpmask);
7488 break;
7489 #endif
7490 default:
7491 break;
7496 * Build sched domains for a given set of cpus and attach the sched domains
7497 * to the individual cpus
7499 static int __build_sched_domains(const struct cpumask *cpu_map,
7500 struct sched_domain_attr *attr)
7502 enum s_alloc alloc_state = sa_none;
7503 struct s_data d;
7504 struct sched_domain *sd;
7505 int i;
7506 #ifdef CONFIG_NUMA
7507 d.sd_allnodes = 0;
7508 #endif
7510 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7511 if (alloc_state != sa_rootdomain)
7512 goto error;
7513 alloc_state = sa_sched_groups;
7516 * Set up domains for cpus specified by the cpu_map.
7518 for_each_cpu(i, cpu_map) {
7519 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7520 cpu_map);
7522 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7523 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7524 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7525 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7526 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7529 for_each_cpu(i, cpu_map) {
7530 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7531 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7532 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7535 /* Set up physical groups */
7536 for (i = 0; i < nr_node_ids; i++)
7537 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7539 #ifdef CONFIG_NUMA
7540 /* Set up node groups */
7541 if (d.sd_allnodes)
7542 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7544 for (i = 0; i < nr_node_ids; i++)
7545 if (build_numa_sched_groups(&d, cpu_map, i))
7546 goto error;
7547 #endif
7549 /* Calculate CPU power for physical packages and nodes */
7550 #ifdef CONFIG_SCHED_SMT
7551 for_each_cpu(i, cpu_map) {
7552 sd = &per_cpu(cpu_domains, i).sd;
7553 init_sched_groups_power(i, sd);
7555 #endif
7556 #ifdef CONFIG_SCHED_MC
7557 for_each_cpu(i, cpu_map) {
7558 sd = &per_cpu(core_domains, i).sd;
7559 init_sched_groups_power(i, sd);
7561 #endif
7562 #ifdef CONFIG_SCHED_BOOK
7563 for_each_cpu(i, cpu_map) {
7564 sd = &per_cpu(book_domains, i).sd;
7565 init_sched_groups_power(i, sd);
7567 #endif
7569 for_each_cpu(i, cpu_map) {
7570 sd = &per_cpu(phys_domains, i).sd;
7571 init_sched_groups_power(i, sd);
7574 #ifdef CONFIG_NUMA
7575 for (i = 0; i < nr_node_ids; i++)
7576 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7578 if (d.sd_allnodes) {
7579 struct sched_group *sg;
7581 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7582 d.tmpmask);
7583 init_numa_sched_groups_power(sg);
7585 #endif
7587 /* Attach the domains */
7588 for_each_cpu(i, cpu_map) {
7589 #ifdef CONFIG_SCHED_SMT
7590 sd = &per_cpu(cpu_domains, i).sd;
7591 #elif defined(CONFIG_SCHED_MC)
7592 sd = &per_cpu(core_domains, i).sd;
7593 #elif defined(CONFIG_SCHED_BOOK)
7594 sd = &per_cpu(book_domains, i).sd;
7595 #else
7596 sd = &per_cpu(phys_domains, i).sd;
7597 #endif
7598 cpu_attach_domain(sd, d.rd, i);
7601 d.sched_group_nodes = NULL; /* don't free this we still need it */
7602 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7603 return 0;
7605 error:
7606 __free_domain_allocs(&d, alloc_state, cpu_map);
7607 return -ENOMEM;
7610 static int build_sched_domains(const struct cpumask *cpu_map)
7612 return __build_sched_domains(cpu_map, NULL);
7615 static cpumask_var_t *doms_cur; /* current sched domains */
7616 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7617 static struct sched_domain_attr *dattr_cur;
7618 /* attribues of custom domains in 'doms_cur' */
7621 * Special case: If a kmalloc of a doms_cur partition (array of
7622 * cpumask) fails, then fallback to a single sched domain,
7623 * as determined by the single cpumask fallback_doms.
7625 static cpumask_var_t fallback_doms;
7628 * arch_update_cpu_topology lets virtualized architectures update the
7629 * cpu core maps. It is supposed to return 1 if the topology changed
7630 * or 0 if it stayed the same.
7632 int __attribute__((weak)) arch_update_cpu_topology(void)
7634 return 0;
7637 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7639 int i;
7640 cpumask_var_t *doms;
7642 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7643 if (!doms)
7644 return NULL;
7645 for (i = 0; i < ndoms; i++) {
7646 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7647 free_sched_domains(doms, i);
7648 return NULL;
7651 return doms;
7654 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7656 unsigned int i;
7657 for (i = 0; i < ndoms; i++)
7658 free_cpumask_var(doms[i]);
7659 kfree(doms);
7663 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7664 * For now this just excludes isolated cpus, but could be used to
7665 * exclude other special cases in the future.
7667 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7669 int err;
7671 arch_update_cpu_topology();
7672 ndoms_cur = 1;
7673 doms_cur = alloc_sched_domains(ndoms_cur);
7674 if (!doms_cur)
7675 doms_cur = &fallback_doms;
7676 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7677 dattr_cur = NULL;
7678 err = build_sched_domains(doms_cur[0]);
7679 register_sched_domain_sysctl();
7681 return err;
7684 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7685 struct cpumask *tmpmask)
7687 free_sched_groups(cpu_map, tmpmask);
7691 * Detach sched domains from a group of cpus specified in cpu_map
7692 * These cpus will now be attached to the NULL domain
7694 static void detach_destroy_domains(const struct cpumask *cpu_map)
7696 /* Save because hotplug lock held. */
7697 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7698 int i;
7700 for_each_cpu(i, cpu_map)
7701 cpu_attach_domain(NULL, &def_root_domain, i);
7702 synchronize_sched();
7703 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7706 /* handle null as "default" */
7707 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7708 struct sched_domain_attr *new, int idx_new)
7710 struct sched_domain_attr tmp;
7712 /* fast path */
7713 if (!new && !cur)
7714 return 1;
7716 tmp = SD_ATTR_INIT;
7717 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7718 new ? (new + idx_new) : &tmp,
7719 sizeof(struct sched_domain_attr));
7723 * Partition sched domains as specified by the 'ndoms_new'
7724 * cpumasks in the array doms_new[] of cpumasks. This compares
7725 * doms_new[] to the current sched domain partitioning, doms_cur[].
7726 * It destroys each deleted domain and builds each new domain.
7728 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7729 * The masks don't intersect (don't overlap.) We should setup one
7730 * sched domain for each mask. CPUs not in any of the cpumasks will
7731 * not be load balanced. If the same cpumask appears both in the
7732 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7733 * it as it is.
7735 * The passed in 'doms_new' should be allocated using
7736 * alloc_sched_domains. This routine takes ownership of it and will
7737 * free_sched_domains it when done with it. If the caller failed the
7738 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7739 * and partition_sched_domains() will fallback to the single partition
7740 * 'fallback_doms', it also forces the domains to be rebuilt.
7742 * If doms_new == NULL it will be replaced with cpu_online_mask.
7743 * ndoms_new == 0 is a special case for destroying existing domains,
7744 * and it will not create the default domain.
7746 * Call with hotplug lock held
7748 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7749 struct sched_domain_attr *dattr_new)
7751 int i, j, n;
7752 int new_topology;
7754 mutex_lock(&sched_domains_mutex);
7756 /* always unregister in case we don't destroy any domains */
7757 unregister_sched_domain_sysctl();
7759 /* Let architecture update cpu core mappings. */
7760 new_topology = arch_update_cpu_topology();
7762 n = doms_new ? ndoms_new : 0;
7764 /* Destroy deleted domains */
7765 for (i = 0; i < ndoms_cur; i++) {
7766 for (j = 0; j < n && !new_topology; j++) {
7767 if (cpumask_equal(doms_cur[i], doms_new[j])
7768 && dattrs_equal(dattr_cur, i, dattr_new, j))
7769 goto match1;
7771 /* no match - a current sched domain not in new doms_new[] */
7772 detach_destroy_domains(doms_cur[i]);
7773 match1:
7777 if (doms_new == NULL) {
7778 ndoms_cur = 0;
7779 doms_new = &fallback_doms;
7780 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7781 WARN_ON_ONCE(dattr_new);
7784 /* Build new domains */
7785 for (i = 0; i < ndoms_new; i++) {
7786 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7787 if (cpumask_equal(doms_new[i], doms_cur[j])
7788 && dattrs_equal(dattr_new, i, dattr_cur, j))
7789 goto match2;
7791 /* no match - add a new doms_new */
7792 __build_sched_domains(doms_new[i],
7793 dattr_new ? dattr_new + i : NULL);
7794 match2:
7798 /* Remember the new sched domains */
7799 if (doms_cur != &fallback_doms)
7800 free_sched_domains(doms_cur, ndoms_cur);
7801 kfree(dattr_cur); /* kfree(NULL) is safe */
7802 doms_cur = doms_new;
7803 dattr_cur = dattr_new;
7804 ndoms_cur = ndoms_new;
7806 register_sched_domain_sysctl();
7808 mutex_unlock(&sched_domains_mutex);
7811 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7812 static void arch_reinit_sched_domains(void)
7814 get_online_cpus();
7816 /* Destroy domains first to force the rebuild */
7817 partition_sched_domains(0, NULL, NULL);
7819 rebuild_sched_domains();
7820 put_online_cpus();
7823 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7825 unsigned int level = 0;
7827 if (sscanf(buf, "%u", &level) != 1)
7828 return -EINVAL;
7831 * level is always be positive so don't check for
7832 * level < POWERSAVINGS_BALANCE_NONE which is 0
7833 * What happens on 0 or 1 byte write,
7834 * need to check for count as well?
7837 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7838 return -EINVAL;
7840 if (smt)
7841 sched_smt_power_savings = level;
7842 else
7843 sched_mc_power_savings = level;
7845 arch_reinit_sched_domains();
7847 return count;
7850 #ifdef CONFIG_SCHED_MC
7851 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7852 struct sysdev_class_attribute *attr,
7853 char *page)
7855 return sprintf(page, "%u\n", sched_mc_power_savings);
7857 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7858 struct sysdev_class_attribute *attr,
7859 const char *buf, size_t count)
7861 return sched_power_savings_store(buf, count, 0);
7863 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7864 sched_mc_power_savings_show,
7865 sched_mc_power_savings_store);
7866 #endif
7868 #ifdef CONFIG_SCHED_SMT
7869 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7870 struct sysdev_class_attribute *attr,
7871 char *page)
7873 return sprintf(page, "%u\n", sched_smt_power_savings);
7875 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7876 struct sysdev_class_attribute *attr,
7877 const char *buf, size_t count)
7879 return sched_power_savings_store(buf, count, 1);
7881 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7882 sched_smt_power_savings_show,
7883 sched_smt_power_savings_store);
7884 #endif
7886 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7888 int err = 0;
7890 #ifdef CONFIG_SCHED_SMT
7891 if (smt_capable())
7892 err = sysfs_create_file(&cls->kset.kobj,
7893 &attr_sched_smt_power_savings.attr);
7894 #endif
7895 #ifdef CONFIG_SCHED_MC
7896 if (!err && mc_capable())
7897 err = sysfs_create_file(&cls->kset.kobj,
7898 &attr_sched_mc_power_savings.attr);
7899 #endif
7900 return err;
7902 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7905 * Update cpusets according to cpu_active mask. If cpusets are
7906 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7907 * around partition_sched_domains().
7909 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7910 void *hcpu)
7912 switch (action & ~CPU_TASKS_FROZEN) {
7913 case CPU_ONLINE:
7914 case CPU_DOWN_FAILED:
7915 cpuset_update_active_cpus();
7916 return NOTIFY_OK;
7917 default:
7918 return NOTIFY_DONE;
7922 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7923 void *hcpu)
7925 switch (action & ~CPU_TASKS_FROZEN) {
7926 case CPU_DOWN_PREPARE:
7927 cpuset_update_active_cpus();
7928 return NOTIFY_OK;
7929 default:
7930 return NOTIFY_DONE;
7934 static int update_runtime(struct notifier_block *nfb,
7935 unsigned long action, void *hcpu)
7937 int cpu = (int)(long)hcpu;
7939 switch (action) {
7940 case CPU_DOWN_PREPARE:
7941 case CPU_DOWN_PREPARE_FROZEN:
7942 disable_runtime(cpu_rq(cpu));
7943 return NOTIFY_OK;
7945 case CPU_DOWN_FAILED:
7946 case CPU_DOWN_FAILED_FROZEN:
7947 case CPU_ONLINE:
7948 case CPU_ONLINE_FROZEN:
7949 enable_runtime(cpu_rq(cpu));
7950 return NOTIFY_OK;
7952 default:
7953 return NOTIFY_DONE;
7957 void __init sched_init_smp(void)
7959 cpumask_var_t non_isolated_cpus;
7961 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7962 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7964 #if defined(CONFIG_NUMA)
7965 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7966 GFP_KERNEL);
7967 BUG_ON(sched_group_nodes_bycpu == NULL);
7968 #endif
7969 get_online_cpus();
7970 mutex_lock(&sched_domains_mutex);
7971 arch_init_sched_domains(cpu_active_mask);
7972 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7973 if (cpumask_empty(non_isolated_cpus))
7974 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7975 mutex_unlock(&sched_domains_mutex);
7976 put_online_cpus();
7978 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7979 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7981 /* RT runtime code needs to handle some hotplug events */
7982 hotcpu_notifier(update_runtime, 0);
7984 init_hrtick();
7986 /* Move init over to a non-isolated CPU */
7987 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7988 BUG();
7989 sched_init_granularity();
7990 free_cpumask_var(non_isolated_cpus);
7992 init_sched_rt_class();
7994 #else
7995 void __init sched_init_smp(void)
7997 sched_init_granularity();
7999 #endif /* CONFIG_SMP */
8001 const_debug unsigned int sysctl_timer_migration = 1;
8003 int in_sched_functions(unsigned long addr)
8005 return in_lock_functions(addr) ||
8006 (addr >= (unsigned long)__sched_text_start
8007 && addr < (unsigned long)__sched_text_end);
8010 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8012 cfs_rq->tasks_timeline = RB_ROOT;
8013 INIT_LIST_HEAD(&cfs_rq->tasks);
8014 #ifdef CONFIG_FAIR_GROUP_SCHED
8015 cfs_rq->rq = rq;
8016 #endif
8017 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8020 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8022 struct rt_prio_array *array;
8023 int i;
8025 array = &rt_rq->active;
8026 for (i = 0; i < MAX_RT_PRIO; i++) {
8027 INIT_LIST_HEAD(array->queue + i);
8028 __clear_bit(i, array->bitmap);
8030 /* delimiter for bitsearch: */
8031 __set_bit(MAX_RT_PRIO, array->bitmap);
8033 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8034 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8035 #ifdef CONFIG_SMP
8036 rt_rq->highest_prio.next = MAX_RT_PRIO;
8037 #endif
8038 #endif
8039 #ifdef CONFIG_SMP
8040 rt_rq->rt_nr_migratory = 0;
8041 rt_rq->overloaded = 0;
8042 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8043 #endif
8045 rt_rq->rt_time = 0;
8046 rt_rq->rt_throttled = 0;
8047 rt_rq->rt_runtime = 0;
8048 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8050 #ifdef CONFIG_RT_GROUP_SCHED
8051 rt_rq->rt_nr_boosted = 0;
8052 rt_rq->rq = rq;
8053 #endif
8056 #ifdef CONFIG_FAIR_GROUP_SCHED
8057 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8058 struct sched_entity *se, int cpu, int add,
8059 struct sched_entity *parent)
8061 struct rq *rq = cpu_rq(cpu);
8062 tg->cfs_rq[cpu] = cfs_rq;
8063 init_cfs_rq(cfs_rq, rq);
8064 cfs_rq->tg = tg;
8065 if (add)
8066 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8068 tg->se[cpu] = se;
8069 /* se could be NULL for init_task_group */
8070 if (!se)
8071 return;
8073 if (!parent)
8074 se->cfs_rq = &rq->cfs;
8075 else
8076 se->cfs_rq = parent->my_q;
8078 se->my_q = cfs_rq;
8079 se->load.weight = tg->shares;
8080 se->load.inv_weight = 0;
8081 se->parent = parent;
8083 #endif
8085 #ifdef CONFIG_RT_GROUP_SCHED
8086 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8087 struct sched_rt_entity *rt_se, int cpu, int add,
8088 struct sched_rt_entity *parent)
8090 struct rq *rq = cpu_rq(cpu);
8092 tg->rt_rq[cpu] = rt_rq;
8093 init_rt_rq(rt_rq, rq);
8094 rt_rq->tg = tg;
8095 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8096 if (add)
8097 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8099 tg->rt_se[cpu] = rt_se;
8100 if (!rt_se)
8101 return;
8103 if (!parent)
8104 rt_se->rt_rq = &rq->rt;
8105 else
8106 rt_se->rt_rq = parent->my_q;
8108 rt_se->my_q = rt_rq;
8109 rt_se->parent = parent;
8110 INIT_LIST_HEAD(&rt_se->run_list);
8112 #endif
8114 void __init sched_init(void)
8116 int i, j;
8117 unsigned long alloc_size = 0, ptr;
8119 #ifdef CONFIG_FAIR_GROUP_SCHED
8120 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8121 #endif
8122 #ifdef CONFIG_RT_GROUP_SCHED
8123 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8124 #endif
8125 #ifdef CONFIG_CPUMASK_OFFSTACK
8126 alloc_size += num_possible_cpus() * cpumask_size();
8127 #endif
8128 if (alloc_size) {
8129 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8131 #ifdef CONFIG_FAIR_GROUP_SCHED
8132 init_task_group.se = (struct sched_entity **)ptr;
8133 ptr += nr_cpu_ids * sizeof(void **);
8135 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8136 ptr += nr_cpu_ids * sizeof(void **);
8138 #endif /* CONFIG_FAIR_GROUP_SCHED */
8139 #ifdef CONFIG_RT_GROUP_SCHED
8140 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8141 ptr += nr_cpu_ids * sizeof(void **);
8143 init_task_group.rt_rq = (struct rt_rq **)ptr;
8144 ptr += nr_cpu_ids * sizeof(void **);
8146 #endif /* CONFIG_RT_GROUP_SCHED */
8147 #ifdef CONFIG_CPUMASK_OFFSTACK
8148 for_each_possible_cpu(i) {
8149 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8150 ptr += cpumask_size();
8152 #endif /* CONFIG_CPUMASK_OFFSTACK */
8155 #ifdef CONFIG_SMP
8156 init_defrootdomain();
8157 #endif
8159 init_rt_bandwidth(&def_rt_bandwidth,
8160 global_rt_period(), global_rt_runtime());
8162 #ifdef CONFIG_RT_GROUP_SCHED
8163 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8164 global_rt_period(), global_rt_runtime());
8165 #endif /* CONFIG_RT_GROUP_SCHED */
8167 #ifdef CONFIG_CGROUP_SCHED
8168 list_add(&init_task_group.list, &task_groups);
8169 INIT_LIST_HEAD(&init_task_group.children);
8171 #endif /* CONFIG_CGROUP_SCHED */
8173 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
8174 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
8175 __alignof__(unsigned long));
8176 #endif
8177 for_each_possible_cpu(i) {
8178 struct rq *rq;
8180 rq = cpu_rq(i);
8181 raw_spin_lock_init(&rq->lock);
8182 rq->nr_running = 0;
8183 rq->calc_load_active = 0;
8184 rq->calc_load_update = jiffies + LOAD_FREQ;
8185 init_cfs_rq(&rq->cfs, rq);
8186 init_rt_rq(&rq->rt, rq);
8187 #ifdef CONFIG_FAIR_GROUP_SCHED
8188 init_task_group.shares = init_task_group_load;
8189 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8190 #ifdef CONFIG_CGROUP_SCHED
8192 * How much cpu bandwidth does init_task_group get?
8194 * In case of task-groups formed thr' the cgroup filesystem, it
8195 * gets 100% of the cpu resources in the system. This overall
8196 * system cpu resource is divided among the tasks of
8197 * init_task_group and its child task-groups in a fair manner,
8198 * based on each entity's (task or task-group's) weight
8199 * (se->load.weight).
8201 * In other words, if init_task_group has 10 tasks of weight
8202 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8203 * then A0's share of the cpu resource is:
8205 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8207 * We achieve this by letting init_task_group's tasks sit
8208 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8210 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8211 #endif
8212 #endif /* CONFIG_FAIR_GROUP_SCHED */
8214 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8215 #ifdef CONFIG_RT_GROUP_SCHED
8216 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8217 #ifdef CONFIG_CGROUP_SCHED
8218 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8219 #endif
8220 #endif
8222 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8223 rq->cpu_load[j] = 0;
8225 rq->last_load_update_tick = jiffies;
8227 #ifdef CONFIG_SMP
8228 rq->sd = NULL;
8229 rq->rd = NULL;
8230 rq->cpu_power = SCHED_LOAD_SCALE;
8231 rq->post_schedule = 0;
8232 rq->active_balance = 0;
8233 rq->next_balance = jiffies;
8234 rq->push_cpu = 0;
8235 rq->cpu = i;
8236 rq->online = 0;
8237 rq->idle_stamp = 0;
8238 rq->avg_idle = 2*sysctl_sched_migration_cost;
8239 rq_attach_root(rq, &def_root_domain);
8240 #ifdef CONFIG_NO_HZ
8241 rq->nohz_balance_kick = 0;
8242 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8243 #endif
8244 #endif
8245 init_rq_hrtick(rq);
8246 atomic_set(&rq->nr_iowait, 0);
8249 set_load_weight(&init_task);
8251 #ifdef CONFIG_PREEMPT_NOTIFIERS
8252 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8253 #endif
8255 #ifdef CONFIG_SMP
8256 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8257 #endif
8259 #ifdef CONFIG_RT_MUTEXES
8260 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8261 #endif
8264 * The boot idle thread does lazy MMU switching as well:
8266 atomic_inc(&init_mm.mm_count);
8267 enter_lazy_tlb(&init_mm, current);
8270 * Make us the idle thread. Technically, schedule() should not be
8271 * called from this thread, however somewhere below it might be,
8272 * but because we are the idle thread, we just pick up running again
8273 * when this runqueue becomes "idle".
8275 init_idle(current, smp_processor_id());
8277 calc_load_update = jiffies + LOAD_FREQ;
8280 * During early bootup we pretend to be a normal task:
8282 current->sched_class = &fair_sched_class;
8284 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8285 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8286 #ifdef CONFIG_SMP
8287 #ifdef CONFIG_NO_HZ
8288 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8289 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8290 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8291 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8292 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8293 #endif
8294 /* May be allocated at isolcpus cmdline parse time */
8295 if (cpu_isolated_map == NULL)
8296 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8297 #endif /* SMP */
8299 perf_event_init();
8301 scheduler_running = 1;
8304 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8305 static inline int preempt_count_equals(int preempt_offset)
8307 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8309 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8312 void __might_sleep(const char *file, int line, int preempt_offset)
8314 #ifdef in_atomic
8315 static unsigned long prev_jiffy; /* ratelimiting */
8317 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8318 system_state != SYSTEM_RUNNING || oops_in_progress)
8319 return;
8320 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8321 return;
8322 prev_jiffy = jiffies;
8324 printk(KERN_ERR
8325 "BUG: sleeping function called from invalid context at %s:%d\n",
8326 file, line);
8327 printk(KERN_ERR
8328 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8329 in_atomic(), irqs_disabled(),
8330 current->pid, current->comm);
8332 debug_show_held_locks(current);
8333 if (irqs_disabled())
8334 print_irqtrace_events(current);
8335 dump_stack();
8336 #endif
8338 EXPORT_SYMBOL(__might_sleep);
8339 #endif
8341 #ifdef CONFIG_MAGIC_SYSRQ
8342 static void normalize_task(struct rq *rq, struct task_struct *p)
8344 int on_rq;
8346 on_rq = p->se.on_rq;
8347 if (on_rq)
8348 deactivate_task(rq, p, 0);
8349 __setscheduler(rq, p, SCHED_NORMAL, 0);
8350 if (on_rq) {
8351 activate_task(rq, p, 0);
8352 resched_task(rq->curr);
8356 void normalize_rt_tasks(void)
8358 struct task_struct *g, *p;
8359 unsigned long flags;
8360 struct rq *rq;
8362 read_lock_irqsave(&tasklist_lock, flags);
8363 do_each_thread(g, p) {
8365 * Only normalize user tasks:
8367 if (!p->mm)
8368 continue;
8370 p->se.exec_start = 0;
8371 #ifdef CONFIG_SCHEDSTATS
8372 p->se.statistics.wait_start = 0;
8373 p->se.statistics.sleep_start = 0;
8374 p->se.statistics.block_start = 0;
8375 #endif
8377 if (!rt_task(p)) {
8379 * Renice negative nice level userspace
8380 * tasks back to 0:
8382 if (TASK_NICE(p) < 0 && p->mm)
8383 set_user_nice(p, 0);
8384 continue;
8387 raw_spin_lock(&p->pi_lock);
8388 rq = __task_rq_lock(p);
8390 normalize_task(rq, p);
8392 __task_rq_unlock(rq);
8393 raw_spin_unlock(&p->pi_lock);
8394 } while_each_thread(g, p);
8396 read_unlock_irqrestore(&tasklist_lock, flags);
8399 #endif /* CONFIG_MAGIC_SYSRQ */
8401 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8403 * These functions are only useful for the IA64 MCA handling, or kdb.
8405 * They can only be called when the whole system has been
8406 * stopped - every CPU needs to be quiescent, and no scheduling
8407 * activity can take place. Using them for anything else would
8408 * be a serious bug, and as a result, they aren't even visible
8409 * under any other configuration.
8413 * curr_task - return the current task for a given cpu.
8414 * @cpu: the processor in question.
8416 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8418 struct task_struct *curr_task(int cpu)
8420 return cpu_curr(cpu);
8423 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8425 #ifdef CONFIG_IA64
8427 * set_curr_task - set the current task for a given cpu.
8428 * @cpu: the processor in question.
8429 * @p: the task pointer to set.
8431 * Description: This function must only be used when non-maskable interrupts
8432 * are serviced on a separate stack. It allows the architecture to switch the
8433 * notion of the current task on a cpu in a non-blocking manner. This function
8434 * must be called with all CPU's synchronized, and interrupts disabled, the
8435 * and caller must save the original value of the current task (see
8436 * curr_task() above) and restore that value before reenabling interrupts and
8437 * re-starting the system.
8439 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8441 void set_curr_task(int cpu, struct task_struct *p)
8443 cpu_curr(cpu) = p;
8446 #endif
8448 #ifdef CONFIG_FAIR_GROUP_SCHED
8449 static void free_fair_sched_group(struct task_group *tg)
8451 int i;
8453 for_each_possible_cpu(i) {
8454 if (tg->cfs_rq)
8455 kfree(tg->cfs_rq[i]);
8456 if (tg->se)
8457 kfree(tg->se[i]);
8460 kfree(tg->cfs_rq);
8461 kfree(tg->se);
8464 static
8465 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8467 struct cfs_rq *cfs_rq;
8468 struct sched_entity *se;
8469 struct rq *rq;
8470 int i;
8472 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8473 if (!tg->cfs_rq)
8474 goto err;
8475 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8476 if (!tg->se)
8477 goto err;
8479 tg->shares = NICE_0_LOAD;
8481 for_each_possible_cpu(i) {
8482 rq = cpu_rq(i);
8484 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8485 GFP_KERNEL, cpu_to_node(i));
8486 if (!cfs_rq)
8487 goto err;
8489 se = kzalloc_node(sizeof(struct sched_entity),
8490 GFP_KERNEL, cpu_to_node(i));
8491 if (!se)
8492 goto err_free_rq;
8494 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8497 return 1;
8499 err_free_rq:
8500 kfree(cfs_rq);
8501 err:
8502 return 0;
8505 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8507 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8508 &cpu_rq(cpu)->leaf_cfs_rq_list);
8511 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8513 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8515 #else /* !CONFG_FAIR_GROUP_SCHED */
8516 static inline void free_fair_sched_group(struct task_group *tg)
8520 static inline
8521 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8523 return 1;
8526 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8530 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8533 #endif /* CONFIG_FAIR_GROUP_SCHED */
8535 #ifdef CONFIG_RT_GROUP_SCHED
8536 static void free_rt_sched_group(struct task_group *tg)
8538 int i;
8540 destroy_rt_bandwidth(&tg->rt_bandwidth);
8542 for_each_possible_cpu(i) {
8543 if (tg->rt_rq)
8544 kfree(tg->rt_rq[i]);
8545 if (tg->rt_se)
8546 kfree(tg->rt_se[i]);
8549 kfree(tg->rt_rq);
8550 kfree(tg->rt_se);
8553 static
8554 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8556 struct rt_rq *rt_rq;
8557 struct sched_rt_entity *rt_se;
8558 struct rq *rq;
8559 int i;
8561 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8562 if (!tg->rt_rq)
8563 goto err;
8564 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8565 if (!tg->rt_se)
8566 goto err;
8568 init_rt_bandwidth(&tg->rt_bandwidth,
8569 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8571 for_each_possible_cpu(i) {
8572 rq = cpu_rq(i);
8574 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8575 GFP_KERNEL, cpu_to_node(i));
8576 if (!rt_rq)
8577 goto err;
8579 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8580 GFP_KERNEL, cpu_to_node(i));
8581 if (!rt_se)
8582 goto err_free_rq;
8584 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8587 return 1;
8589 err_free_rq:
8590 kfree(rt_rq);
8591 err:
8592 return 0;
8595 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8597 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8598 &cpu_rq(cpu)->leaf_rt_rq_list);
8601 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8603 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8605 #else /* !CONFIG_RT_GROUP_SCHED */
8606 static inline void free_rt_sched_group(struct task_group *tg)
8610 static inline
8611 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8613 return 1;
8616 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8620 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8623 #endif /* CONFIG_RT_GROUP_SCHED */
8625 #ifdef CONFIG_CGROUP_SCHED
8626 static void free_sched_group(struct task_group *tg)
8628 free_fair_sched_group(tg);
8629 free_rt_sched_group(tg);
8630 kfree(tg);
8633 /* allocate runqueue etc for a new task group */
8634 struct task_group *sched_create_group(struct task_group *parent)
8636 struct task_group *tg;
8637 unsigned long flags;
8638 int i;
8640 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8641 if (!tg)
8642 return ERR_PTR(-ENOMEM);
8644 if (!alloc_fair_sched_group(tg, parent))
8645 goto err;
8647 if (!alloc_rt_sched_group(tg, parent))
8648 goto err;
8650 spin_lock_irqsave(&task_group_lock, flags);
8651 for_each_possible_cpu(i) {
8652 register_fair_sched_group(tg, i);
8653 register_rt_sched_group(tg, i);
8655 list_add_rcu(&tg->list, &task_groups);
8657 WARN_ON(!parent); /* root should already exist */
8659 tg->parent = parent;
8660 INIT_LIST_HEAD(&tg->children);
8661 list_add_rcu(&tg->siblings, &parent->children);
8662 spin_unlock_irqrestore(&task_group_lock, flags);
8664 return tg;
8666 err:
8667 free_sched_group(tg);
8668 return ERR_PTR(-ENOMEM);
8671 /* rcu callback to free various structures associated with a task group */
8672 static void free_sched_group_rcu(struct rcu_head *rhp)
8674 /* now it should be safe to free those cfs_rqs */
8675 free_sched_group(container_of(rhp, struct task_group, rcu));
8678 /* Destroy runqueue etc associated with a task group */
8679 void sched_destroy_group(struct task_group *tg)
8681 unsigned long flags;
8682 int i;
8684 spin_lock_irqsave(&task_group_lock, flags);
8685 for_each_possible_cpu(i) {
8686 unregister_fair_sched_group(tg, i);
8687 unregister_rt_sched_group(tg, i);
8689 list_del_rcu(&tg->list);
8690 list_del_rcu(&tg->siblings);
8691 spin_unlock_irqrestore(&task_group_lock, flags);
8693 /* wait for possible concurrent references to cfs_rqs complete */
8694 call_rcu(&tg->rcu, free_sched_group_rcu);
8697 /* change task's runqueue when it moves between groups.
8698 * The caller of this function should have put the task in its new group
8699 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8700 * reflect its new group.
8702 void sched_move_task(struct task_struct *tsk)
8704 int on_rq, running;
8705 unsigned long flags;
8706 struct rq *rq;
8708 rq = task_rq_lock(tsk, &flags);
8710 running = task_current(rq, tsk);
8711 on_rq = tsk->se.on_rq;
8713 if (on_rq)
8714 dequeue_task(rq, tsk, 0);
8715 if (unlikely(running))
8716 tsk->sched_class->put_prev_task(rq, tsk);
8718 #ifdef CONFIG_FAIR_GROUP_SCHED
8719 if (tsk->sched_class->task_move_group)
8720 tsk->sched_class->task_move_group(tsk, on_rq);
8721 else
8722 #endif
8723 set_task_rq(tsk, task_cpu(tsk));
8725 if (unlikely(running))
8726 tsk->sched_class->set_curr_task(rq);
8727 if (on_rq)
8728 enqueue_task(rq, tsk, 0);
8730 task_rq_unlock(rq, &flags);
8732 #endif /* CONFIG_CGROUP_SCHED */
8734 #ifdef CONFIG_FAIR_GROUP_SCHED
8735 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8737 struct cfs_rq *cfs_rq = se->cfs_rq;
8738 int on_rq;
8740 on_rq = se->on_rq;
8741 if (on_rq)
8742 dequeue_entity(cfs_rq, se, 0);
8744 se->load.weight = shares;
8745 se->load.inv_weight = 0;
8747 if (on_rq)
8748 enqueue_entity(cfs_rq, se, 0);
8751 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8753 struct cfs_rq *cfs_rq = se->cfs_rq;
8754 struct rq *rq = cfs_rq->rq;
8755 unsigned long flags;
8757 raw_spin_lock_irqsave(&rq->lock, flags);
8758 __set_se_shares(se, shares);
8759 raw_spin_unlock_irqrestore(&rq->lock, flags);
8762 static DEFINE_MUTEX(shares_mutex);
8764 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8766 int i;
8767 unsigned long flags;
8770 * We can't change the weight of the root cgroup.
8772 if (!tg->se[0])
8773 return -EINVAL;
8775 if (shares < MIN_SHARES)
8776 shares = MIN_SHARES;
8777 else if (shares > MAX_SHARES)
8778 shares = MAX_SHARES;
8780 mutex_lock(&shares_mutex);
8781 if (tg->shares == shares)
8782 goto done;
8784 spin_lock_irqsave(&task_group_lock, flags);
8785 for_each_possible_cpu(i)
8786 unregister_fair_sched_group(tg, i);
8787 list_del_rcu(&tg->siblings);
8788 spin_unlock_irqrestore(&task_group_lock, flags);
8790 /* wait for any ongoing reference to this group to finish */
8791 synchronize_sched();
8794 * Now we are free to modify the group's share on each cpu
8795 * w/o tripping rebalance_share or load_balance_fair.
8797 tg->shares = shares;
8798 for_each_possible_cpu(i) {
8800 * force a rebalance
8802 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8803 set_se_shares(tg->se[i], shares);
8807 * Enable load balance activity on this group, by inserting it back on
8808 * each cpu's rq->leaf_cfs_rq_list.
8810 spin_lock_irqsave(&task_group_lock, flags);
8811 for_each_possible_cpu(i)
8812 register_fair_sched_group(tg, i);
8813 list_add_rcu(&tg->siblings, &tg->parent->children);
8814 spin_unlock_irqrestore(&task_group_lock, flags);
8815 done:
8816 mutex_unlock(&shares_mutex);
8817 return 0;
8820 unsigned long sched_group_shares(struct task_group *tg)
8822 return tg->shares;
8824 #endif
8826 #ifdef CONFIG_RT_GROUP_SCHED
8828 * Ensure that the real time constraints are schedulable.
8830 static DEFINE_MUTEX(rt_constraints_mutex);
8832 static unsigned long to_ratio(u64 period, u64 runtime)
8834 if (runtime == RUNTIME_INF)
8835 return 1ULL << 20;
8837 return div64_u64(runtime << 20, period);
8840 /* Must be called with tasklist_lock held */
8841 static inline int tg_has_rt_tasks(struct task_group *tg)
8843 struct task_struct *g, *p;
8845 do_each_thread(g, p) {
8846 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8847 return 1;
8848 } while_each_thread(g, p);
8850 return 0;
8853 struct rt_schedulable_data {
8854 struct task_group *tg;
8855 u64 rt_period;
8856 u64 rt_runtime;
8859 static int tg_schedulable(struct task_group *tg, void *data)
8861 struct rt_schedulable_data *d = data;
8862 struct task_group *child;
8863 unsigned long total, sum = 0;
8864 u64 period, runtime;
8866 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8867 runtime = tg->rt_bandwidth.rt_runtime;
8869 if (tg == d->tg) {
8870 period = d->rt_period;
8871 runtime = d->rt_runtime;
8875 * Cannot have more runtime than the period.
8877 if (runtime > period && runtime != RUNTIME_INF)
8878 return -EINVAL;
8881 * Ensure we don't starve existing RT tasks.
8883 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8884 return -EBUSY;
8886 total = to_ratio(period, runtime);
8889 * Nobody can have more than the global setting allows.
8891 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8892 return -EINVAL;
8895 * The sum of our children's runtime should not exceed our own.
8897 list_for_each_entry_rcu(child, &tg->children, siblings) {
8898 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8899 runtime = child->rt_bandwidth.rt_runtime;
8901 if (child == d->tg) {
8902 period = d->rt_period;
8903 runtime = d->rt_runtime;
8906 sum += to_ratio(period, runtime);
8909 if (sum > total)
8910 return -EINVAL;
8912 return 0;
8915 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8917 struct rt_schedulable_data data = {
8918 .tg = tg,
8919 .rt_period = period,
8920 .rt_runtime = runtime,
8923 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8926 static int tg_set_bandwidth(struct task_group *tg,
8927 u64 rt_period, u64 rt_runtime)
8929 int i, err = 0;
8931 mutex_lock(&rt_constraints_mutex);
8932 read_lock(&tasklist_lock);
8933 err = __rt_schedulable(tg, rt_period, rt_runtime);
8934 if (err)
8935 goto unlock;
8937 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8938 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8939 tg->rt_bandwidth.rt_runtime = rt_runtime;
8941 for_each_possible_cpu(i) {
8942 struct rt_rq *rt_rq = tg->rt_rq[i];
8944 raw_spin_lock(&rt_rq->rt_runtime_lock);
8945 rt_rq->rt_runtime = rt_runtime;
8946 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8948 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8949 unlock:
8950 read_unlock(&tasklist_lock);
8951 mutex_unlock(&rt_constraints_mutex);
8953 return err;
8956 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8958 u64 rt_runtime, rt_period;
8960 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8961 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8962 if (rt_runtime_us < 0)
8963 rt_runtime = RUNTIME_INF;
8965 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8968 long sched_group_rt_runtime(struct task_group *tg)
8970 u64 rt_runtime_us;
8972 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8973 return -1;
8975 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8976 do_div(rt_runtime_us, NSEC_PER_USEC);
8977 return rt_runtime_us;
8980 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8982 u64 rt_runtime, rt_period;
8984 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8985 rt_runtime = tg->rt_bandwidth.rt_runtime;
8987 if (rt_period == 0)
8988 return -EINVAL;
8990 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8993 long sched_group_rt_period(struct task_group *tg)
8995 u64 rt_period_us;
8997 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8998 do_div(rt_period_us, NSEC_PER_USEC);
8999 return rt_period_us;
9002 static int sched_rt_global_constraints(void)
9004 u64 runtime, period;
9005 int ret = 0;
9007 if (sysctl_sched_rt_period <= 0)
9008 return -EINVAL;
9010 runtime = global_rt_runtime();
9011 period = global_rt_period();
9014 * Sanity check on the sysctl variables.
9016 if (runtime > period && runtime != RUNTIME_INF)
9017 return -EINVAL;
9019 mutex_lock(&rt_constraints_mutex);
9020 read_lock(&tasklist_lock);
9021 ret = __rt_schedulable(NULL, 0, 0);
9022 read_unlock(&tasklist_lock);
9023 mutex_unlock(&rt_constraints_mutex);
9025 return ret;
9028 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9030 /* Don't accept realtime tasks when there is no way for them to run */
9031 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9032 return 0;
9034 return 1;
9037 #else /* !CONFIG_RT_GROUP_SCHED */
9038 static int sched_rt_global_constraints(void)
9040 unsigned long flags;
9041 int i;
9043 if (sysctl_sched_rt_period <= 0)
9044 return -EINVAL;
9047 * There's always some RT tasks in the root group
9048 * -- migration, kstopmachine etc..
9050 if (sysctl_sched_rt_runtime == 0)
9051 return -EBUSY;
9053 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9054 for_each_possible_cpu(i) {
9055 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9057 raw_spin_lock(&rt_rq->rt_runtime_lock);
9058 rt_rq->rt_runtime = global_rt_runtime();
9059 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9061 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9063 return 0;
9065 #endif /* CONFIG_RT_GROUP_SCHED */
9067 int sched_rt_handler(struct ctl_table *table, int write,
9068 void __user *buffer, size_t *lenp,
9069 loff_t *ppos)
9071 int ret;
9072 int old_period, old_runtime;
9073 static DEFINE_MUTEX(mutex);
9075 mutex_lock(&mutex);
9076 old_period = sysctl_sched_rt_period;
9077 old_runtime = sysctl_sched_rt_runtime;
9079 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9081 if (!ret && write) {
9082 ret = sched_rt_global_constraints();
9083 if (ret) {
9084 sysctl_sched_rt_period = old_period;
9085 sysctl_sched_rt_runtime = old_runtime;
9086 } else {
9087 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9088 def_rt_bandwidth.rt_period =
9089 ns_to_ktime(global_rt_period());
9092 mutex_unlock(&mutex);
9094 return ret;
9097 #ifdef CONFIG_CGROUP_SCHED
9099 /* return corresponding task_group object of a cgroup */
9100 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9102 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9103 struct task_group, css);
9106 static struct cgroup_subsys_state *
9107 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9109 struct task_group *tg, *parent;
9111 if (!cgrp->parent) {
9112 /* This is early initialization for the top cgroup */
9113 return &init_task_group.css;
9116 parent = cgroup_tg(cgrp->parent);
9117 tg = sched_create_group(parent);
9118 if (IS_ERR(tg))
9119 return ERR_PTR(-ENOMEM);
9121 return &tg->css;
9124 static void
9125 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9127 struct task_group *tg = cgroup_tg(cgrp);
9129 sched_destroy_group(tg);
9132 static int
9133 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9135 #ifdef CONFIG_RT_GROUP_SCHED
9136 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9137 return -EINVAL;
9138 #else
9139 /* We don't support RT-tasks being in separate groups */
9140 if (tsk->sched_class != &fair_sched_class)
9141 return -EINVAL;
9142 #endif
9143 return 0;
9146 static int
9147 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9148 struct task_struct *tsk, bool threadgroup)
9150 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9151 if (retval)
9152 return retval;
9153 if (threadgroup) {
9154 struct task_struct *c;
9155 rcu_read_lock();
9156 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9157 retval = cpu_cgroup_can_attach_task(cgrp, c);
9158 if (retval) {
9159 rcu_read_unlock();
9160 return retval;
9163 rcu_read_unlock();
9165 return 0;
9168 static void
9169 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9170 struct cgroup *old_cont, struct task_struct *tsk,
9171 bool threadgroup)
9173 sched_move_task(tsk);
9174 if (threadgroup) {
9175 struct task_struct *c;
9176 rcu_read_lock();
9177 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9178 sched_move_task(c);
9180 rcu_read_unlock();
9184 static void
9185 cpu_cgroup_exit(struct cgroup_subsys *ss, struct task_struct *task)
9188 * cgroup_exit() is called in the copy_process() failure path.
9189 * Ignore this case since the task hasn't ran yet, this avoids
9190 * trying to poke a half freed task state from generic code.
9192 if (!(task->flags & PF_EXITING))
9193 return;
9195 sched_move_task(task);
9198 #ifdef CONFIG_FAIR_GROUP_SCHED
9199 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9200 u64 shareval)
9202 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9205 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9207 struct task_group *tg = cgroup_tg(cgrp);
9209 return (u64) tg->shares;
9211 #endif /* CONFIG_FAIR_GROUP_SCHED */
9213 #ifdef CONFIG_RT_GROUP_SCHED
9214 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9215 s64 val)
9217 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9220 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9222 return sched_group_rt_runtime(cgroup_tg(cgrp));
9225 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9226 u64 rt_period_us)
9228 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9231 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9233 return sched_group_rt_period(cgroup_tg(cgrp));
9235 #endif /* CONFIG_RT_GROUP_SCHED */
9237 static struct cftype cpu_files[] = {
9238 #ifdef CONFIG_FAIR_GROUP_SCHED
9240 .name = "shares",
9241 .read_u64 = cpu_shares_read_u64,
9242 .write_u64 = cpu_shares_write_u64,
9244 #endif
9245 #ifdef CONFIG_RT_GROUP_SCHED
9247 .name = "rt_runtime_us",
9248 .read_s64 = cpu_rt_runtime_read,
9249 .write_s64 = cpu_rt_runtime_write,
9252 .name = "rt_period_us",
9253 .read_u64 = cpu_rt_period_read_uint,
9254 .write_u64 = cpu_rt_period_write_uint,
9256 #endif
9259 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9261 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9264 struct cgroup_subsys cpu_cgroup_subsys = {
9265 .name = "cpu",
9266 .create = cpu_cgroup_create,
9267 .destroy = cpu_cgroup_destroy,
9268 .can_attach = cpu_cgroup_can_attach,
9269 .attach = cpu_cgroup_attach,
9270 .exit = cpu_cgroup_exit,
9271 .populate = cpu_cgroup_populate,
9272 .subsys_id = cpu_cgroup_subsys_id,
9273 .early_init = 1,
9276 #endif /* CONFIG_CGROUP_SCHED */
9278 #ifdef CONFIG_CGROUP_CPUACCT
9281 * CPU accounting code for task groups.
9283 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9284 * (balbir@in.ibm.com).
9287 /* track cpu usage of a group of tasks and its child groups */
9288 struct cpuacct {
9289 struct cgroup_subsys_state css;
9290 /* cpuusage holds pointer to a u64-type object on every cpu */
9291 u64 __percpu *cpuusage;
9292 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9293 struct cpuacct *parent;
9296 struct cgroup_subsys cpuacct_subsys;
9298 /* return cpu accounting group corresponding to this container */
9299 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9301 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9302 struct cpuacct, css);
9305 /* return cpu accounting group to which this task belongs */
9306 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9308 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9309 struct cpuacct, css);
9312 /* create a new cpu accounting group */
9313 static struct cgroup_subsys_state *cpuacct_create(
9314 struct cgroup_subsys *ss, struct cgroup *cgrp)
9316 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9317 int i;
9319 if (!ca)
9320 goto out;
9322 ca->cpuusage = alloc_percpu(u64);
9323 if (!ca->cpuusage)
9324 goto out_free_ca;
9326 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9327 if (percpu_counter_init(&ca->cpustat[i], 0))
9328 goto out_free_counters;
9330 if (cgrp->parent)
9331 ca->parent = cgroup_ca(cgrp->parent);
9333 return &ca->css;
9335 out_free_counters:
9336 while (--i >= 0)
9337 percpu_counter_destroy(&ca->cpustat[i]);
9338 free_percpu(ca->cpuusage);
9339 out_free_ca:
9340 kfree(ca);
9341 out:
9342 return ERR_PTR(-ENOMEM);
9345 /* destroy an existing cpu accounting group */
9346 static void
9347 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9349 struct cpuacct *ca = cgroup_ca(cgrp);
9350 int i;
9352 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9353 percpu_counter_destroy(&ca->cpustat[i]);
9354 free_percpu(ca->cpuusage);
9355 kfree(ca);
9358 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9360 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9361 u64 data;
9363 #ifndef CONFIG_64BIT
9365 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9367 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9368 data = *cpuusage;
9369 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9370 #else
9371 data = *cpuusage;
9372 #endif
9374 return data;
9377 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9379 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9381 #ifndef CONFIG_64BIT
9383 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9385 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9386 *cpuusage = val;
9387 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9388 #else
9389 *cpuusage = val;
9390 #endif
9393 /* return total cpu usage (in nanoseconds) of a group */
9394 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9396 struct cpuacct *ca = cgroup_ca(cgrp);
9397 u64 totalcpuusage = 0;
9398 int i;
9400 for_each_present_cpu(i)
9401 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9403 return totalcpuusage;
9406 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9407 u64 reset)
9409 struct cpuacct *ca = cgroup_ca(cgrp);
9410 int err = 0;
9411 int i;
9413 if (reset) {
9414 err = -EINVAL;
9415 goto out;
9418 for_each_present_cpu(i)
9419 cpuacct_cpuusage_write(ca, i, 0);
9421 out:
9422 return err;
9425 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9426 struct seq_file *m)
9428 struct cpuacct *ca = cgroup_ca(cgroup);
9429 u64 percpu;
9430 int i;
9432 for_each_present_cpu(i) {
9433 percpu = cpuacct_cpuusage_read(ca, i);
9434 seq_printf(m, "%llu ", (unsigned long long) percpu);
9436 seq_printf(m, "\n");
9437 return 0;
9440 static const char *cpuacct_stat_desc[] = {
9441 [CPUACCT_STAT_USER] = "user",
9442 [CPUACCT_STAT_SYSTEM] = "system",
9445 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9446 struct cgroup_map_cb *cb)
9448 struct cpuacct *ca = cgroup_ca(cgrp);
9449 int i;
9451 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9452 s64 val = percpu_counter_read(&ca->cpustat[i]);
9453 val = cputime64_to_clock_t(val);
9454 cb->fill(cb, cpuacct_stat_desc[i], val);
9456 return 0;
9459 static struct cftype files[] = {
9461 .name = "usage",
9462 .read_u64 = cpuusage_read,
9463 .write_u64 = cpuusage_write,
9466 .name = "usage_percpu",
9467 .read_seq_string = cpuacct_percpu_seq_read,
9470 .name = "stat",
9471 .read_map = cpuacct_stats_show,
9475 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9477 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9481 * charge this task's execution time to its accounting group.
9483 * called with rq->lock held.
9485 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9487 struct cpuacct *ca;
9488 int cpu;
9490 if (unlikely(!cpuacct_subsys.active))
9491 return;
9493 cpu = task_cpu(tsk);
9495 rcu_read_lock();
9497 ca = task_ca(tsk);
9499 for (; ca; ca = ca->parent) {
9500 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9501 *cpuusage += cputime;
9504 rcu_read_unlock();
9508 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9509 * in cputime_t units. As a result, cpuacct_update_stats calls
9510 * percpu_counter_add with values large enough to always overflow the
9511 * per cpu batch limit causing bad SMP scalability.
9513 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9514 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9515 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9517 #ifdef CONFIG_SMP
9518 #define CPUACCT_BATCH \
9519 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9520 #else
9521 #define CPUACCT_BATCH 0
9522 #endif
9525 * Charge the system/user time to the task's accounting group.
9527 static void cpuacct_update_stats(struct task_struct *tsk,
9528 enum cpuacct_stat_index idx, cputime_t val)
9530 struct cpuacct *ca;
9531 int batch = CPUACCT_BATCH;
9533 if (unlikely(!cpuacct_subsys.active))
9534 return;
9536 rcu_read_lock();
9537 ca = task_ca(tsk);
9539 do {
9540 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9541 ca = ca->parent;
9542 } while (ca);
9543 rcu_read_unlock();
9546 struct cgroup_subsys cpuacct_subsys = {
9547 .name = "cpuacct",
9548 .create = cpuacct_create,
9549 .destroy = cpuacct_destroy,
9550 .populate = cpuacct_populate,
9551 .subsys_id = cpuacct_subsys_id,
9553 #endif /* CONFIG_CGROUP_CPUACCT */
9555 #ifndef CONFIG_SMP
9557 void synchronize_sched_expedited(void)
9559 barrier();
9561 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9563 #else /* #ifndef CONFIG_SMP */
9565 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9567 static int synchronize_sched_expedited_cpu_stop(void *data)
9570 * There must be a full memory barrier on each affected CPU
9571 * between the time that try_stop_cpus() is called and the
9572 * time that it returns.
9574 * In the current initial implementation of cpu_stop, the
9575 * above condition is already met when the control reaches
9576 * this point and the following smp_mb() is not strictly
9577 * necessary. Do smp_mb() anyway for documentation and
9578 * robustness against future implementation changes.
9580 smp_mb(); /* See above comment block. */
9581 return 0;
9585 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9586 * approach to force grace period to end quickly. This consumes
9587 * significant time on all CPUs, and is thus not recommended for
9588 * any sort of common-case code.
9590 * Note that it is illegal to call this function while holding any
9591 * lock that is acquired by a CPU-hotplug notifier. Failing to
9592 * observe this restriction will result in deadlock.
9594 void synchronize_sched_expedited(void)
9596 int snap, trycount = 0;
9598 smp_mb(); /* ensure prior mod happens before capturing snap. */
9599 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9600 get_online_cpus();
9601 while (try_stop_cpus(cpu_online_mask,
9602 synchronize_sched_expedited_cpu_stop,
9603 NULL) == -EAGAIN) {
9604 put_online_cpus();
9605 if (trycount++ < 10)
9606 udelay(trycount * num_online_cpus());
9607 else {
9608 synchronize_sched();
9609 return;
9611 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9612 smp_mb(); /* ensure test happens before caller kfree */
9613 return;
9615 get_online_cpus();
9617 atomic_inc(&synchronize_sched_expedited_count);
9618 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9619 put_online_cpus();
9621 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9623 #endif /* #else #ifndef CONFIG_SMP */