x86, UV: Fix macros for multiple coherency domains
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / cgroup.c
bloba7267bfd3765b930f5b544bbcaf8df23fab3cd06
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
50 #include <asm/atomic.h>
52 static DEFINE_MUTEX(cgroup_mutex);
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
66 struct cgroupfs_root {
67 struct super_block *sb;
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
73 unsigned long subsys_bits;
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
87 /* A list running through the active hierarchies */
88 struct list_head root_list;
90 /* Hierarchy-specific flags */
91 unsigned long flags;
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
98 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
99 * subsystems that are otherwise unattached - it never has more than a
100 * single cgroup, and all tasks are part of that cgroup.
102 static struct cgroupfs_root rootnode;
105 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
106 * cgroup_subsys->use_id != 0.
108 #define CSS_ID_MAX (65535)
109 struct css_id {
111 * The css to which this ID points. This pointer is set to valid value
112 * after cgroup is populated. If cgroup is removed, this will be NULL.
113 * This pointer is expected to be RCU-safe because destroy()
114 * is called after synchronize_rcu(). But for safe use, css_is_removed()
115 * css_tryget() should be used for avoiding race.
117 struct cgroup_subsys_state *css;
119 * ID of this css.
121 unsigned short id;
123 * Depth in hierarchy which this ID belongs to.
125 unsigned short depth;
127 * ID is freed by RCU. (and lookup routine is RCU safe.)
129 struct rcu_head rcu_head;
131 * Hierarchy of CSS ID belongs to.
133 unsigned short stack[0]; /* Array of Length (depth+1) */
137 /* The list of hierarchy roots */
139 static LIST_HEAD(roots);
140 static int root_count;
142 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
143 #define dummytop (&rootnode.top_cgroup)
145 /* This flag indicates whether tasks in the fork and exit paths should
146 * check for fork/exit handlers to call. This avoids us having to do
147 * extra work in the fork/exit path if none of the subsystems need to
148 * be called.
150 static int need_forkexit_callback __read_mostly;
152 /* convenient tests for these bits */
153 inline int cgroup_is_removed(const struct cgroup *cgrp)
155 return test_bit(CGRP_REMOVED, &cgrp->flags);
158 /* bits in struct cgroupfs_root flags field */
159 enum {
160 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
163 static int cgroup_is_releasable(const struct cgroup *cgrp)
165 const int bits =
166 (1 << CGRP_RELEASABLE) |
167 (1 << CGRP_NOTIFY_ON_RELEASE);
168 return (cgrp->flags & bits) == bits;
171 static int notify_on_release(const struct cgroup *cgrp)
173 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
177 * for_each_subsys() allows you to iterate on each subsystem attached to
178 * an active hierarchy
180 #define for_each_subsys(_root, _ss) \
181 list_for_each_entry(_ss, &_root->subsys_list, sibling)
183 /* for_each_active_root() allows you to iterate across the active hierarchies */
184 #define for_each_active_root(_root) \
185 list_for_each_entry(_root, &roots, root_list)
187 /* the list of cgroups eligible for automatic release. Protected by
188 * release_list_lock */
189 static LIST_HEAD(release_list);
190 static DEFINE_SPINLOCK(release_list_lock);
191 static void cgroup_release_agent(struct work_struct *work);
192 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
193 static void check_for_release(struct cgroup *cgrp);
195 /* Link structure for associating css_set objects with cgroups */
196 struct cg_cgroup_link {
198 * List running through cg_cgroup_links associated with a
199 * cgroup, anchored on cgroup->css_sets
201 struct list_head cgrp_link_list;
203 * List running through cg_cgroup_links pointing at a
204 * single css_set object, anchored on css_set->cg_links
206 struct list_head cg_link_list;
207 struct css_set *cg;
210 /* The default css_set - used by init and its children prior to any
211 * hierarchies being mounted. It contains a pointer to the root state
212 * for each subsystem. Also used to anchor the list of css_sets. Not
213 * reference-counted, to improve performance when child cgroups
214 * haven't been created.
217 static struct css_set init_css_set;
218 static struct cg_cgroup_link init_css_set_link;
220 static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
222 /* css_set_lock protects the list of css_set objects, and the
223 * chain of tasks off each css_set. Nests outside task->alloc_lock
224 * due to cgroup_iter_start() */
225 static DEFINE_RWLOCK(css_set_lock);
226 static int css_set_count;
228 /* hash table for cgroup groups. This improves the performance to
229 * find an existing css_set */
230 #define CSS_SET_HASH_BITS 7
231 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
232 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
234 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
236 int i;
237 int index;
238 unsigned long tmp = 0UL;
240 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
241 tmp += (unsigned long)css[i];
242 tmp = (tmp >> 16) ^ tmp;
244 index = hash_long(tmp, CSS_SET_HASH_BITS);
246 return &css_set_table[index];
249 /* We don't maintain the lists running through each css_set to its
250 * task until after the first call to cgroup_iter_start(). This
251 * reduces the fork()/exit() overhead for people who have cgroups
252 * compiled into their kernel but not actually in use */
253 static int use_task_css_set_links __read_mostly;
255 /* When we create or destroy a css_set, the operation simply
256 * takes/releases a reference count on all the cgroups referenced
257 * by subsystems in this css_set. This can end up multiple-counting
258 * some cgroups, but that's OK - the ref-count is just a
259 * busy/not-busy indicator; ensuring that we only count each cgroup
260 * once would require taking a global lock to ensure that no
261 * subsystems moved between hierarchies while we were doing so.
263 * Possible TODO: decide at boot time based on the number of
264 * registered subsystems and the number of CPUs or NUMA nodes whether
265 * it's better for performance to ref-count every subsystem, or to
266 * take a global lock and only add one ref count to each hierarchy.
270 * unlink a css_set from the list and free it
272 static void unlink_css_set(struct css_set *cg)
274 struct cg_cgroup_link *link;
275 struct cg_cgroup_link *saved_link;
277 hlist_del(&cg->hlist);
278 css_set_count--;
280 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
281 cg_link_list) {
282 list_del(&link->cg_link_list);
283 list_del(&link->cgrp_link_list);
284 kfree(link);
288 static void __put_css_set(struct css_set *cg, int taskexit)
290 int i;
292 * Ensure that the refcount doesn't hit zero while any readers
293 * can see it. Similar to atomic_dec_and_lock(), but for an
294 * rwlock
296 if (atomic_add_unless(&cg->refcount, -1, 1))
297 return;
298 write_lock(&css_set_lock);
299 if (!atomic_dec_and_test(&cg->refcount)) {
300 write_unlock(&css_set_lock);
301 return;
303 unlink_css_set(cg);
304 write_unlock(&css_set_lock);
306 rcu_read_lock();
307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
308 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
309 if (atomic_dec_and_test(&cgrp->count) &&
310 notify_on_release(cgrp)) {
311 if (taskexit)
312 set_bit(CGRP_RELEASABLE, &cgrp->flags);
313 check_for_release(cgrp);
316 rcu_read_unlock();
317 kfree(cg);
321 * refcounted get/put for css_set objects
323 static inline void get_css_set(struct css_set *cg)
325 atomic_inc(&cg->refcount);
328 static inline void put_css_set(struct css_set *cg)
330 __put_css_set(cg, 0);
333 static inline void put_css_set_taskexit(struct css_set *cg)
335 __put_css_set(cg, 1);
339 * find_existing_css_set() is a helper for
340 * find_css_set(), and checks to see whether an existing
341 * css_set is suitable.
343 * oldcg: the cgroup group that we're using before the cgroup
344 * transition
346 * cgrp: the cgroup that we're moving into
348 * template: location in which to build the desired set of subsystem
349 * state objects for the new cgroup group
351 static struct css_set *find_existing_css_set(
352 struct css_set *oldcg,
353 struct cgroup *cgrp,
354 struct cgroup_subsys_state *template[])
356 int i;
357 struct cgroupfs_root *root = cgrp->root;
358 struct hlist_head *hhead;
359 struct hlist_node *node;
360 struct css_set *cg;
362 /* Built the set of subsystem state objects that we want to
363 * see in the new css_set */
364 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
365 if (root->subsys_bits & (1UL << i)) {
366 /* Subsystem is in this hierarchy. So we want
367 * the subsystem state from the new
368 * cgroup */
369 template[i] = cgrp->subsys[i];
370 } else {
371 /* Subsystem is not in this hierarchy, so we
372 * don't want to change the subsystem state */
373 template[i] = oldcg->subsys[i];
377 hhead = css_set_hash(template);
378 hlist_for_each_entry(cg, node, hhead, hlist) {
379 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
380 /* All subsystems matched */
381 return cg;
385 /* No existing cgroup group matched */
386 return NULL;
389 static void free_cg_links(struct list_head *tmp)
391 struct cg_cgroup_link *link;
392 struct cg_cgroup_link *saved_link;
394 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
395 list_del(&link->cgrp_link_list);
396 kfree(link);
401 * allocate_cg_links() allocates "count" cg_cgroup_link structures
402 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
403 * success or a negative error
405 static int allocate_cg_links(int count, struct list_head *tmp)
407 struct cg_cgroup_link *link;
408 int i;
409 INIT_LIST_HEAD(tmp);
410 for (i = 0; i < count; i++) {
411 link = kmalloc(sizeof(*link), GFP_KERNEL);
412 if (!link) {
413 free_cg_links(tmp);
414 return -ENOMEM;
416 list_add(&link->cgrp_link_list, tmp);
418 return 0;
422 * link_css_set - a helper function to link a css_set to a cgroup
423 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
424 * @cg: the css_set to be linked
425 * @cgrp: the destination cgroup
427 static void link_css_set(struct list_head *tmp_cg_links,
428 struct css_set *cg, struct cgroup *cgrp)
430 struct cg_cgroup_link *link;
432 BUG_ON(list_empty(tmp_cg_links));
433 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
434 cgrp_link_list);
435 link->cg = cg;
436 list_move(&link->cgrp_link_list, &cgrp->css_sets);
437 list_add(&link->cg_link_list, &cg->cg_links);
441 * find_css_set() takes an existing cgroup group and a
442 * cgroup object, and returns a css_set object that's
443 * equivalent to the old group, but with the given cgroup
444 * substituted into the appropriate hierarchy. Must be called with
445 * cgroup_mutex held
447 static struct css_set *find_css_set(
448 struct css_set *oldcg, struct cgroup *cgrp)
450 struct css_set *res;
451 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
452 int i;
454 struct list_head tmp_cg_links;
456 struct hlist_head *hhead;
458 /* First see if we already have a cgroup group that matches
459 * the desired set */
460 read_lock(&css_set_lock);
461 res = find_existing_css_set(oldcg, cgrp, template);
462 if (res)
463 get_css_set(res);
464 read_unlock(&css_set_lock);
466 if (res)
467 return res;
469 res = kmalloc(sizeof(*res), GFP_KERNEL);
470 if (!res)
471 return NULL;
473 /* Allocate all the cg_cgroup_link objects that we'll need */
474 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
475 kfree(res);
476 return NULL;
479 atomic_set(&res->refcount, 1);
480 INIT_LIST_HEAD(&res->cg_links);
481 INIT_LIST_HEAD(&res->tasks);
482 INIT_HLIST_NODE(&res->hlist);
484 /* Copy the set of subsystem state objects generated in
485 * find_existing_css_set() */
486 memcpy(res->subsys, template, sizeof(res->subsys));
488 write_lock(&css_set_lock);
489 /* Add reference counts and links from the new css_set. */
490 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
491 struct cgroup *cgrp = res->subsys[i]->cgroup;
492 struct cgroup_subsys *ss = subsys[i];
493 atomic_inc(&cgrp->count);
495 * We want to add a link once per cgroup, so we
496 * only do it for the first subsystem in each
497 * hierarchy
499 if (ss->root->subsys_list.next == &ss->sibling)
500 link_css_set(&tmp_cg_links, res, cgrp);
502 if (list_empty(&rootnode.subsys_list))
503 link_css_set(&tmp_cg_links, res, dummytop);
505 BUG_ON(!list_empty(&tmp_cg_links));
507 css_set_count++;
509 /* Add this cgroup group to the hash table */
510 hhead = css_set_hash(res->subsys);
511 hlist_add_head(&res->hlist, hhead);
513 write_unlock(&css_set_lock);
515 return res;
519 * There is one global cgroup mutex. We also require taking
520 * task_lock() when dereferencing a task's cgroup subsys pointers.
521 * See "The task_lock() exception", at the end of this comment.
523 * A task must hold cgroup_mutex to modify cgroups.
525 * Any task can increment and decrement the count field without lock.
526 * So in general, code holding cgroup_mutex can't rely on the count
527 * field not changing. However, if the count goes to zero, then only
528 * cgroup_attach_task() can increment it again. Because a count of zero
529 * means that no tasks are currently attached, therefore there is no
530 * way a task attached to that cgroup can fork (the other way to
531 * increment the count). So code holding cgroup_mutex can safely
532 * assume that if the count is zero, it will stay zero. Similarly, if
533 * a task holds cgroup_mutex on a cgroup with zero count, it
534 * knows that the cgroup won't be removed, as cgroup_rmdir()
535 * needs that mutex.
537 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
538 * (usually) take cgroup_mutex. These are the two most performance
539 * critical pieces of code here. The exception occurs on cgroup_exit(),
540 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
541 * is taken, and if the cgroup count is zero, a usermode call made
542 * to the release agent with the name of the cgroup (path relative to
543 * the root of cgroup file system) as the argument.
545 * A cgroup can only be deleted if both its 'count' of using tasks
546 * is zero, and its list of 'children' cgroups is empty. Since all
547 * tasks in the system use _some_ cgroup, and since there is always at
548 * least one task in the system (init, pid == 1), therefore, top_cgroup
549 * always has either children cgroups and/or using tasks. So we don't
550 * need a special hack to ensure that top_cgroup cannot be deleted.
552 * The task_lock() exception
554 * The need for this exception arises from the action of
555 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
556 * another. It does so using cgroup_mutex, however there are
557 * several performance critical places that need to reference
558 * task->cgroup without the expense of grabbing a system global
559 * mutex. Therefore except as noted below, when dereferencing or, as
560 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
561 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
562 * the task_struct routinely used for such matters.
564 * P.S. One more locking exception. RCU is used to guard the
565 * update of a tasks cgroup pointer by cgroup_attach_task()
569 * cgroup_lock - lock out any changes to cgroup structures
572 void cgroup_lock(void)
574 mutex_lock(&cgroup_mutex);
578 * cgroup_unlock - release lock on cgroup changes
580 * Undo the lock taken in a previous cgroup_lock() call.
582 void cgroup_unlock(void)
584 mutex_unlock(&cgroup_mutex);
588 * A couple of forward declarations required, due to cyclic reference loop:
589 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
590 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
591 * -> cgroup_mkdir.
594 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
595 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
596 static int cgroup_populate_dir(struct cgroup *cgrp);
597 static struct inode_operations cgroup_dir_inode_operations;
598 static struct file_operations proc_cgroupstats_operations;
600 static struct backing_dev_info cgroup_backing_dev_info = {
601 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
604 static int alloc_css_id(struct cgroup_subsys *ss,
605 struct cgroup *parent, struct cgroup *child);
607 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
609 struct inode *inode = new_inode(sb);
611 if (inode) {
612 inode->i_mode = mode;
613 inode->i_uid = current_fsuid();
614 inode->i_gid = current_fsgid();
615 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
616 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
618 return inode;
622 * Call subsys's pre_destroy handler.
623 * This is called before css refcnt check.
625 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
627 struct cgroup_subsys *ss;
628 int ret = 0;
630 for_each_subsys(cgrp->root, ss)
631 if (ss->pre_destroy) {
632 ret = ss->pre_destroy(ss, cgrp);
633 if (ret)
634 break;
636 return ret;
639 static void free_cgroup_rcu(struct rcu_head *obj)
641 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
643 kfree(cgrp);
646 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
648 /* is dentry a directory ? if so, kfree() associated cgroup */
649 if (S_ISDIR(inode->i_mode)) {
650 struct cgroup *cgrp = dentry->d_fsdata;
651 struct cgroup_subsys *ss;
652 BUG_ON(!(cgroup_is_removed(cgrp)));
653 /* It's possible for external users to be holding css
654 * reference counts on a cgroup; css_put() needs to
655 * be able to access the cgroup after decrementing
656 * the reference count in order to know if it needs to
657 * queue the cgroup to be handled by the release
658 * agent */
659 synchronize_rcu();
661 mutex_lock(&cgroup_mutex);
663 * Release the subsystem state objects.
665 for_each_subsys(cgrp->root, ss)
666 ss->destroy(ss, cgrp);
668 cgrp->root->number_of_cgroups--;
669 mutex_unlock(&cgroup_mutex);
672 * Drop the active superblock reference that we took when we
673 * created the cgroup
675 deactivate_super(cgrp->root->sb);
677 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
679 iput(inode);
682 static void remove_dir(struct dentry *d)
684 struct dentry *parent = dget(d->d_parent);
686 d_delete(d);
687 simple_rmdir(parent->d_inode, d);
688 dput(parent);
691 static void cgroup_clear_directory(struct dentry *dentry)
693 struct list_head *node;
695 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
696 spin_lock(&dcache_lock);
697 node = dentry->d_subdirs.next;
698 while (node != &dentry->d_subdirs) {
699 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
700 list_del_init(node);
701 if (d->d_inode) {
702 /* This should never be called on a cgroup
703 * directory with child cgroups */
704 BUG_ON(d->d_inode->i_mode & S_IFDIR);
705 d = dget_locked(d);
706 spin_unlock(&dcache_lock);
707 d_delete(d);
708 simple_unlink(dentry->d_inode, d);
709 dput(d);
710 spin_lock(&dcache_lock);
712 node = dentry->d_subdirs.next;
714 spin_unlock(&dcache_lock);
718 * NOTE : the dentry must have been dget()'ed
720 static void cgroup_d_remove_dir(struct dentry *dentry)
722 cgroup_clear_directory(dentry);
724 spin_lock(&dcache_lock);
725 list_del_init(&dentry->d_u.d_child);
726 spin_unlock(&dcache_lock);
727 remove_dir(dentry);
731 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
732 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
733 * reference to css->refcnt. In general, this refcnt is expected to goes down
734 * to zero, soon.
736 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
738 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
740 static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
742 if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
743 wake_up_all(&cgroup_rmdir_waitq);
746 static int rebind_subsystems(struct cgroupfs_root *root,
747 unsigned long final_bits)
749 unsigned long added_bits, removed_bits;
750 struct cgroup *cgrp = &root->top_cgroup;
751 int i;
753 removed_bits = root->actual_subsys_bits & ~final_bits;
754 added_bits = final_bits & ~root->actual_subsys_bits;
755 /* Check that any added subsystems are currently free */
756 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
757 unsigned long bit = 1UL << i;
758 struct cgroup_subsys *ss = subsys[i];
759 if (!(bit & added_bits))
760 continue;
761 if (ss->root != &rootnode) {
762 /* Subsystem isn't free */
763 return -EBUSY;
767 /* Currently we don't handle adding/removing subsystems when
768 * any child cgroups exist. This is theoretically supportable
769 * but involves complex error handling, so it's being left until
770 * later */
771 if (root->number_of_cgroups > 1)
772 return -EBUSY;
774 /* Process each subsystem */
775 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
776 struct cgroup_subsys *ss = subsys[i];
777 unsigned long bit = 1UL << i;
778 if (bit & added_bits) {
779 /* We're binding this subsystem to this hierarchy */
780 BUG_ON(cgrp->subsys[i]);
781 BUG_ON(!dummytop->subsys[i]);
782 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
783 mutex_lock(&ss->hierarchy_mutex);
784 cgrp->subsys[i] = dummytop->subsys[i];
785 cgrp->subsys[i]->cgroup = cgrp;
786 list_move(&ss->sibling, &root->subsys_list);
787 ss->root = root;
788 if (ss->bind)
789 ss->bind(ss, cgrp);
790 mutex_unlock(&ss->hierarchy_mutex);
791 } else if (bit & removed_bits) {
792 /* We're removing this subsystem */
793 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
794 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
795 mutex_lock(&ss->hierarchy_mutex);
796 if (ss->bind)
797 ss->bind(ss, dummytop);
798 dummytop->subsys[i]->cgroup = dummytop;
799 cgrp->subsys[i] = NULL;
800 subsys[i]->root = &rootnode;
801 list_move(&ss->sibling, &rootnode.subsys_list);
802 mutex_unlock(&ss->hierarchy_mutex);
803 } else if (bit & final_bits) {
804 /* Subsystem state should already exist */
805 BUG_ON(!cgrp->subsys[i]);
806 } else {
807 /* Subsystem state shouldn't exist */
808 BUG_ON(cgrp->subsys[i]);
811 root->subsys_bits = root->actual_subsys_bits = final_bits;
812 synchronize_rcu();
814 return 0;
817 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
819 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
820 struct cgroup_subsys *ss;
822 mutex_lock(&cgroup_mutex);
823 for_each_subsys(root, ss)
824 seq_printf(seq, ",%s", ss->name);
825 if (test_bit(ROOT_NOPREFIX, &root->flags))
826 seq_puts(seq, ",noprefix");
827 if (strlen(root->release_agent_path))
828 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
829 mutex_unlock(&cgroup_mutex);
830 return 0;
833 struct cgroup_sb_opts {
834 unsigned long subsys_bits;
835 unsigned long flags;
836 char *release_agent;
839 /* Convert a hierarchy specifier into a bitmask of subsystems and
840 * flags. */
841 static int parse_cgroupfs_options(char *data,
842 struct cgroup_sb_opts *opts)
844 char *token, *o = data ?: "all";
846 opts->subsys_bits = 0;
847 opts->flags = 0;
848 opts->release_agent = NULL;
850 while ((token = strsep(&o, ",")) != NULL) {
851 if (!*token)
852 return -EINVAL;
853 if (!strcmp(token, "all")) {
854 /* Add all non-disabled subsystems */
855 int i;
856 opts->subsys_bits = 0;
857 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
858 struct cgroup_subsys *ss = subsys[i];
859 if (!ss->disabled)
860 opts->subsys_bits |= 1ul << i;
862 } else if (!strcmp(token, "noprefix")) {
863 set_bit(ROOT_NOPREFIX, &opts->flags);
864 } else if (!strncmp(token, "release_agent=", 14)) {
865 /* Specifying two release agents is forbidden */
866 if (opts->release_agent)
867 return -EINVAL;
868 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
869 if (!opts->release_agent)
870 return -ENOMEM;
871 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
872 opts->release_agent[PATH_MAX - 1] = 0;
873 } else {
874 struct cgroup_subsys *ss;
875 int i;
876 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
877 ss = subsys[i];
878 if (!strcmp(token, ss->name)) {
879 if (!ss->disabled)
880 set_bit(i, &opts->subsys_bits);
881 break;
884 if (i == CGROUP_SUBSYS_COUNT)
885 return -ENOENT;
889 /* We can't have an empty hierarchy */
890 if (!opts->subsys_bits)
891 return -EINVAL;
893 return 0;
896 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
898 int ret = 0;
899 struct cgroupfs_root *root = sb->s_fs_info;
900 struct cgroup *cgrp = &root->top_cgroup;
901 struct cgroup_sb_opts opts;
903 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
904 mutex_lock(&cgroup_mutex);
906 /* See what subsystems are wanted */
907 ret = parse_cgroupfs_options(data, &opts);
908 if (ret)
909 goto out_unlock;
911 /* Don't allow flags to change at remount */
912 if (opts.flags != root->flags) {
913 ret = -EINVAL;
914 goto out_unlock;
917 ret = rebind_subsystems(root, opts.subsys_bits);
918 if (ret)
919 goto out_unlock;
921 /* (re)populate subsystem files */
922 cgroup_populate_dir(cgrp);
924 if (opts.release_agent)
925 strcpy(root->release_agent_path, opts.release_agent);
926 out_unlock:
927 kfree(opts.release_agent);
928 mutex_unlock(&cgroup_mutex);
929 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
930 return ret;
933 static struct super_operations cgroup_ops = {
934 .statfs = simple_statfs,
935 .drop_inode = generic_delete_inode,
936 .show_options = cgroup_show_options,
937 .remount_fs = cgroup_remount,
940 static void init_cgroup_housekeeping(struct cgroup *cgrp)
942 INIT_LIST_HEAD(&cgrp->sibling);
943 INIT_LIST_HEAD(&cgrp->children);
944 INIT_LIST_HEAD(&cgrp->css_sets);
945 INIT_LIST_HEAD(&cgrp->release_list);
946 init_rwsem(&cgrp->pids_mutex);
948 static void init_cgroup_root(struct cgroupfs_root *root)
950 struct cgroup *cgrp = &root->top_cgroup;
951 INIT_LIST_HEAD(&root->subsys_list);
952 INIT_LIST_HEAD(&root->root_list);
953 root->number_of_cgroups = 1;
954 cgrp->root = root;
955 cgrp->top_cgroup = cgrp;
956 init_cgroup_housekeeping(cgrp);
959 static int cgroup_test_super(struct super_block *sb, void *data)
961 struct cgroupfs_root *new = data;
962 struct cgroupfs_root *root = sb->s_fs_info;
964 /* First check subsystems */
965 if (new->subsys_bits != root->subsys_bits)
966 return 0;
968 /* Next check flags */
969 if (new->flags != root->flags)
970 return 0;
972 return 1;
975 static int cgroup_set_super(struct super_block *sb, void *data)
977 int ret;
978 struct cgroupfs_root *root = data;
980 ret = set_anon_super(sb, NULL);
981 if (ret)
982 return ret;
984 sb->s_fs_info = root;
985 root->sb = sb;
987 sb->s_blocksize = PAGE_CACHE_SIZE;
988 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
989 sb->s_magic = CGROUP_SUPER_MAGIC;
990 sb->s_op = &cgroup_ops;
992 return 0;
995 static int cgroup_get_rootdir(struct super_block *sb)
997 struct inode *inode =
998 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
999 struct dentry *dentry;
1001 if (!inode)
1002 return -ENOMEM;
1004 inode->i_fop = &simple_dir_operations;
1005 inode->i_op = &cgroup_dir_inode_operations;
1006 /* directories start off with i_nlink == 2 (for "." entry) */
1007 inc_nlink(inode);
1008 dentry = d_alloc_root(inode);
1009 if (!dentry) {
1010 iput(inode);
1011 return -ENOMEM;
1013 sb->s_root = dentry;
1014 return 0;
1017 static int cgroup_get_sb(struct file_system_type *fs_type,
1018 int flags, const char *unused_dev_name,
1019 void *data, struct vfsmount *mnt)
1021 struct cgroup_sb_opts opts;
1022 int ret = 0;
1023 struct super_block *sb;
1024 struct cgroupfs_root *root;
1025 struct list_head tmp_cg_links;
1027 /* First find the desired set of subsystems */
1028 ret = parse_cgroupfs_options(data, &opts);
1029 if (ret) {
1030 kfree(opts.release_agent);
1031 return ret;
1034 root = kzalloc(sizeof(*root), GFP_KERNEL);
1035 if (!root) {
1036 kfree(opts.release_agent);
1037 return -ENOMEM;
1040 init_cgroup_root(root);
1041 root->subsys_bits = opts.subsys_bits;
1042 root->flags = opts.flags;
1043 if (opts.release_agent) {
1044 strcpy(root->release_agent_path, opts.release_agent);
1045 kfree(opts.release_agent);
1048 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
1050 if (IS_ERR(sb)) {
1051 kfree(root);
1052 return PTR_ERR(sb);
1055 if (sb->s_fs_info != root) {
1056 /* Reusing an existing superblock */
1057 BUG_ON(sb->s_root == NULL);
1058 kfree(root);
1059 root = NULL;
1060 } else {
1061 /* New superblock */
1062 struct cgroup *root_cgrp = &root->top_cgroup;
1063 struct inode *inode;
1064 int i;
1066 BUG_ON(sb->s_root != NULL);
1068 ret = cgroup_get_rootdir(sb);
1069 if (ret)
1070 goto drop_new_super;
1071 inode = sb->s_root->d_inode;
1073 mutex_lock(&inode->i_mutex);
1074 mutex_lock(&cgroup_mutex);
1077 * We're accessing css_set_count without locking
1078 * css_set_lock here, but that's OK - it can only be
1079 * increased by someone holding cgroup_lock, and
1080 * that's us. The worst that can happen is that we
1081 * have some link structures left over
1083 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1084 if (ret) {
1085 mutex_unlock(&cgroup_mutex);
1086 mutex_unlock(&inode->i_mutex);
1087 goto drop_new_super;
1090 ret = rebind_subsystems(root, root->subsys_bits);
1091 if (ret == -EBUSY) {
1092 mutex_unlock(&cgroup_mutex);
1093 mutex_unlock(&inode->i_mutex);
1094 goto free_cg_links;
1097 /* EBUSY should be the only error here */
1098 BUG_ON(ret);
1100 list_add(&root->root_list, &roots);
1101 root_count++;
1103 sb->s_root->d_fsdata = root_cgrp;
1104 root->top_cgroup.dentry = sb->s_root;
1106 /* Link the top cgroup in this hierarchy into all
1107 * the css_set objects */
1108 write_lock(&css_set_lock);
1109 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1110 struct hlist_head *hhead = &css_set_table[i];
1111 struct hlist_node *node;
1112 struct css_set *cg;
1114 hlist_for_each_entry(cg, node, hhead, hlist)
1115 link_css_set(&tmp_cg_links, cg, root_cgrp);
1117 write_unlock(&css_set_lock);
1119 free_cg_links(&tmp_cg_links);
1121 BUG_ON(!list_empty(&root_cgrp->sibling));
1122 BUG_ON(!list_empty(&root_cgrp->children));
1123 BUG_ON(root->number_of_cgroups != 1);
1125 cgroup_populate_dir(root_cgrp);
1126 mutex_unlock(&inode->i_mutex);
1127 mutex_unlock(&cgroup_mutex);
1130 simple_set_mnt(mnt, sb);
1131 return 0;
1133 free_cg_links:
1134 free_cg_links(&tmp_cg_links);
1135 drop_new_super:
1136 deactivate_locked_super(sb);
1137 return ret;
1140 static void cgroup_kill_sb(struct super_block *sb) {
1141 struct cgroupfs_root *root = sb->s_fs_info;
1142 struct cgroup *cgrp = &root->top_cgroup;
1143 int ret;
1144 struct cg_cgroup_link *link;
1145 struct cg_cgroup_link *saved_link;
1147 BUG_ON(!root);
1149 BUG_ON(root->number_of_cgroups != 1);
1150 BUG_ON(!list_empty(&cgrp->children));
1151 BUG_ON(!list_empty(&cgrp->sibling));
1153 mutex_lock(&cgroup_mutex);
1155 /* Rebind all subsystems back to the default hierarchy */
1156 ret = rebind_subsystems(root, 0);
1157 /* Shouldn't be able to fail ... */
1158 BUG_ON(ret);
1161 * Release all the links from css_sets to this hierarchy's
1162 * root cgroup
1164 write_lock(&css_set_lock);
1166 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1167 cgrp_link_list) {
1168 list_del(&link->cg_link_list);
1169 list_del(&link->cgrp_link_list);
1170 kfree(link);
1172 write_unlock(&css_set_lock);
1174 if (!list_empty(&root->root_list)) {
1175 list_del(&root->root_list);
1176 root_count--;
1179 mutex_unlock(&cgroup_mutex);
1181 kill_litter_super(sb);
1182 kfree(root);
1185 static struct file_system_type cgroup_fs_type = {
1186 .name = "cgroup",
1187 .get_sb = cgroup_get_sb,
1188 .kill_sb = cgroup_kill_sb,
1191 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1193 return dentry->d_fsdata;
1196 static inline struct cftype *__d_cft(struct dentry *dentry)
1198 return dentry->d_fsdata;
1202 * cgroup_path - generate the path of a cgroup
1203 * @cgrp: the cgroup in question
1204 * @buf: the buffer to write the path into
1205 * @buflen: the length of the buffer
1207 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1208 * reference. Writes path of cgroup into buf. Returns 0 on success,
1209 * -errno on error.
1211 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1213 char *start;
1214 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1216 if (!dentry || cgrp == dummytop) {
1218 * Inactive subsystems have no dentry for their root
1219 * cgroup
1221 strcpy(buf, "/");
1222 return 0;
1225 start = buf + buflen;
1227 *--start = '\0';
1228 for (;;) {
1229 int len = dentry->d_name.len;
1230 if ((start -= len) < buf)
1231 return -ENAMETOOLONG;
1232 memcpy(start, cgrp->dentry->d_name.name, len);
1233 cgrp = cgrp->parent;
1234 if (!cgrp)
1235 break;
1236 dentry = rcu_dereference(cgrp->dentry);
1237 if (!cgrp->parent)
1238 continue;
1239 if (--start < buf)
1240 return -ENAMETOOLONG;
1241 *start = '/';
1243 memmove(buf, start, buf + buflen - start);
1244 return 0;
1248 * Return the first subsystem attached to a cgroup's hierarchy, and
1249 * its subsystem id.
1252 static void get_first_subsys(const struct cgroup *cgrp,
1253 struct cgroup_subsys_state **css, int *subsys_id)
1255 const struct cgroupfs_root *root = cgrp->root;
1256 const struct cgroup_subsys *test_ss;
1257 BUG_ON(list_empty(&root->subsys_list));
1258 test_ss = list_entry(root->subsys_list.next,
1259 struct cgroup_subsys, sibling);
1260 if (css) {
1261 *css = cgrp->subsys[test_ss->subsys_id];
1262 BUG_ON(!*css);
1264 if (subsys_id)
1265 *subsys_id = test_ss->subsys_id;
1269 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1270 * @cgrp: the cgroup the task is attaching to
1271 * @tsk: the task to be attached
1273 * Call holding cgroup_mutex. May take task_lock of
1274 * the task 'tsk' during call.
1276 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1278 int retval = 0;
1279 struct cgroup_subsys *ss;
1280 struct cgroup *oldcgrp;
1281 struct css_set *cg;
1282 struct css_set *newcg;
1283 struct cgroupfs_root *root = cgrp->root;
1284 int subsys_id;
1286 get_first_subsys(cgrp, NULL, &subsys_id);
1288 /* Nothing to do if the task is already in that cgroup */
1289 oldcgrp = task_cgroup(tsk, subsys_id);
1290 if (cgrp == oldcgrp)
1291 return 0;
1293 for_each_subsys(root, ss) {
1294 if (ss->can_attach) {
1295 retval = ss->can_attach(ss, cgrp, tsk);
1296 if (retval)
1297 return retval;
1301 task_lock(tsk);
1302 cg = tsk->cgroups;
1303 get_css_set(cg);
1304 task_unlock(tsk);
1306 * Locate or allocate a new css_set for this task,
1307 * based on its final set of cgroups
1309 newcg = find_css_set(cg, cgrp);
1310 put_css_set(cg);
1311 if (!newcg)
1312 return -ENOMEM;
1314 task_lock(tsk);
1315 if (tsk->flags & PF_EXITING) {
1316 task_unlock(tsk);
1317 put_css_set(newcg);
1318 return -ESRCH;
1320 rcu_assign_pointer(tsk->cgroups, newcg);
1321 task_unlock(tsk);
1323 /* Update the css_set linked lists if we're using them */
1324 write_lock(&css_set_lock);
1325 if (!list_empty(&tsk->cg_list)) {
1326 list_del(&tsk->cg_list);
1327 list_add(&tsk->cg_list, &newcg->tasks);
1329 write_unlock(&css_set_lock);
1331 for_each_subsys(root, ss) {
1332 if (ss->attach)
1333 ss->attach(ss, cgrp, oldcgrp, tsk);
1335 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1336 synchronize_rcu();
1337 put_css_set(cg);
1340 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1341 * is no longer empty.
1343 cgroup_wakeup_rmdir_waiters(cgrp);
1344 return 0;
1348 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1349 * held. May take task_lock of task
1351 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1353 struct task_struct *tsk;
1354 const struct cred *cred = current_cred(), *tcred;
1355 int ret;
1357 if (pid) {
1358 rcu_read_lock();
1359 tsk = find_task_by_vpid(pid);
1360 if (!tsk || tsk->flags & PF_EXITING) {
1361 rcu_read_unlock();
1362 return -ESRCH;
1365 tcred = __task_cred(tsk);
1366 if (cred->euid &&
1367 cred->euid != tcred->uid &&
1368 cred->euid != tcred->suid) {
1369 rcu_read_unlock();
1370 return -EACCES;
1372 get_task_struct(tsk);
1373 rcu_read_unlock();
1374 } else {
1375 tsk = current;
1376 get_task_struct(tsk);
1379 ret = cgroup_attach_task(cgrp, tsk);
1380 put_task_struct(tsk);
1381 return ret;
1384 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1386 int ret;
1387 if (!cgroup_lock_live_group(cgrp))
1388 return -ENODEV;
1389 ret = attach_task_by_pid(cgrp, pid);
1390 cgroup_unlock();
1391 return ret;
1394 /* The various types of files and directories in a cgroup file system */
1395 enum cgroup_filetype {
1396 FILE_ROOT,
1397 FILE_DIR,
1398 FILE_TASKLIST,
1399 FILE_NOTIFY_ON_RELEASE,
1400 FILE_RELEASE_AGENT,
1404 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1405 * @cgrp: the cgroup to be checked for liveness
1407 * On success, returns true; the lock should be later released with
1408 * cgroup_unlock(). On failure returns false with no lock held.
1410 bool cgroup_lock_live_group(struct cgroup *cgrp)
1412 mutex_lock(&cgroup_mutex);
1413 if (cgroup_is_removed(cgrp)) {
1414 mutex_unlock(&cgroup_mutex);
1415 return false;
1417 return true;
1420 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1421 const char *buffer)
1423 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1424 if (!cgroup_lock_live_group(cgrp))
1425 return -ENODEV;
1426 strcpy(cgrp->root->release_agent_path, buffer);
1427 cgroup_unlock();
1428 return 0;
1431 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1432 struct seq_file *seq)
1434 if (!cgroup_lock_live_group(cgrp))
1435 return -ENODEV;
1436 seq_puts(seq, cgrp->root->release_agent_path);
1437 seq_putc(seq, '\n');
1438 cgroup_unlock();
1439 return 0;
1442 /* A buffer size big enough for numbers or short strings */
1443 #define CGROUP_LOCAL_BUFFER_SIZE 64
1445 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1446 struct file *file,
1447 const char __user *userbuf,
1448 size_t nbytes, loff_t *unused_ppos)
1450 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1451 int retval = 0;
1452 char *end;
1454 if (!nbytes)
1455 return -EINVAL;
1456 if (nbytes >= sizeof(buffer))
1457 return -E2BIG;
1458 if (copy_from_user(buffer, userbuf, nbytes))
1459 return -EFAULT;
1461 buffer[nbytes] = 0; /* nul-terminate */
1462 strstrip(buffer);
1463 if (cft->write_u64) {
1464 u64 val = simple_strtoull(buffer, &end, 0);
1465 if (*end)
1466 return -EINVAL;
1467 retval = cft->write_u64(cgrp, cft, val);
1468 } else {
1469 s64 val = simple_strtoll(buffer, &end, 0);
1470 if (*end)
1471 return -EINVAL;
1472 retval = cft->write_s64(cgrp, cft, val);
1474 if (!retval)
1475 retval = nbytes;
1476 return retval;
1479 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1480 struct file *file,
1481 const char __user *userbuf,
1482 size_t nbytes, loff_t *unused_ppos)
1484 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1485 int retval = 0;
1486 size_t max_bytes = cft->max_write_len;
1487 char *buffer = local_buffer;
1489 if (!max_bytes)
1490 max_bytes = sizeof(local_buffer) - 1;
1491 if (nbytes >= max_bytes)
1492 return -E2BIG;
1493 /* Allocate a dynamic buffer if we need one */
1494 if (nbytes >= sizeof(local_buffer)) {
1495 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1496 if (buffer == NULL)
1497 return -ENOMEM;
1499 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1500 retval = -EFAULT;
1501 goto out;
1504 buffer[nbytes] = 0; /* nul-terminate */
1505 strstrip(buffer);
1506 retval = cft->write_string(cgrp, cft, buffer);
1507 if (!retval)
1508 retval = nbytes;
1509 out:
1510 if (buffer != local_buffer)
1511 kfree(buffer);
1512 return retval;
1515 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1516 size_t nbytes, loff_t *ppos)
1518 struct cftype *cft = __d_cft(file->f_dentry);
1519 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1521 if (cgroup_is_removed(cgrp))
1522 return -ENODEV;
1523 if (cft->write)
1524 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1525 if (cft->write_u64 || cft->write_s64)
1526 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1527 if (cft->write_string)
1528 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1529 if (cft->trigger) {
1530 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1531 return ret ? ret : nbytes;
1533 return -EINVAL;
1536 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1537 struct file *file,
1538 char __user *buf, size_t nbytes,
1539 loff_t *ppos)
1541 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1542 u64 val = cft->read_u64(cgrp, cft);
1543 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1545 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1548 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1549 struct file *file,
1550 char __user *buf, size_t nbytes,
1551 loff_t *ppos)
1553 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1554 s64 val = cft->read_s64(cgrp, cft);
1555 int len = sprintf(tmp, "%lld\n", (long long) val);
1557 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1560 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1561 size_t nbytes, loff_t *ppos)
1563 struct cftype *cft = __d_cft(file->f_dentry);
1564 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1566 if (cgroup_is_removed(cgrp))
1567 return -ENODEV;
1569 if (cft->read)
1570 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1571 if (cft->read_u64)
1572 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1573 if (cft->read_s64)
1574 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1575 return -EINVAL;
1579 * seqfile ops/methods for returning structured data. Currently just
1580 * supports string->u64 maps, but can be extended in future.
1583 struct cgroup_seqfile_state {
1584 struct cftype *cft;
1585 struct cgroup *cgroup;
1588 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1590 struct seq_file *sf = cb->state;
1591 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1594 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1596 struct cgroup_seqfile_state *state = m->private;
1597 struct cftype *cft = state->cft;
1598 if (cft->read_map) {
1599 struct cgroup_map_cb cb = {
1600 .fill = cgroup_map_add,
1601 .state = m,
1603 return cft->read_map(state->cgroup, cft, &cb);
1605 return cft->read_seq_string(state->cgroup, cft, m);
1608 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1610 struct seq_file *seq = file->private_data;
1611 kfree(seq->private);
1612 return single_release(inode, file);
1615 static struct file_operations cgroup_seqfile_operations = {
1616 .read = seq_read,
1617 .write = cgroup_file_write,
1618 .llseek = seq_lseek,
1619 .release = cgroup_seqfile_release,
1622 static int cgroup_file_open(struct inode *inode, struct file *file)
1624 int err;
1625 struct cftype *cft;
1627 err = generic_file_open(inode, file);
1628 if (err)
1629 return err;
1630 cft = __d_cft(file->f_dentry);
1632 if (cft->read_map || cft->read_seq_string) {
1633 struct cgroup_seqfile_state *state =
1634 kzalloc(sizeof(*state), GFP_USER);
1635 if (!state)
1636 return -ENOMEM;
1637 state->cft = cft;
1638 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1639 file->f_op = &cgroup_seqfile_operations;
1640 err = single_open(file, cgroup_seqfile_show, state);
1641 if (err < 0)
1642 kfree(state);
1643 } else if (cft->open)
1644 err = cft->open(inode, file);
1645 else
1646 err = 0;
1648 return err;
1651 static int cgroup_file_release(struct inode *inode, struct file *file)
1653 struct cftype *cft = __d_cft(file->f_dentry);
1654 if (cft->release)
1655 return cft->release(inode, file);
1656 return 0;
1660 * cgroup_rename - Only allow simple rename of directories in place.
1662 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1663 struct inode *new_dir, struct dentry *new_dentry)
1665 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1666 return -ENOTDIR;
1667 if (new_dentry->d_inode)
1668 return -EEXIST;
1669 if (old_dir != new_dir)
1670 return -EIO;
1671 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1674 static struct file_operations cgroup_file_operations = {
1675 .read = cgroup_file_read,
1676 .write = cgroup_file_write,
1677 .llseek = generic_file_llseek,
1678 .open = cgroup_file_open,
1679 .release = cgroup_file_release,
1682 static struct inode_operations cgroup_dir_inode_operations = {
1683 .lookup = simple_lookup,
1684 .mkdir = cgroup_mkdir,
1685 .rmdir = cgroup_rmdir,
1686 .rename = cgroup_rename,
1689 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1690 struct super_block *sb)
1692 static const struct dentry_operations cgroup_dops = {
1693 .d_iput = cgroup_diput,
1696 struct inode *inode;
1698 if (!dentry)
1699 return -ENOENT;
1700 if (dentry->d_inode)
1701 return -EEXIST;
1703 inode = cgroup_new_inode(mode, sb);
1704 if (!inode)
1705 return -ENOMEM;
1707 if (S_ISDIR(mode)) {
1708 inode->i_op = &cgroup_dir_inode_operations;
1709 inode->i_fop = &simple_dir_operations;
1711 /* start off with i_nlink == 2 (for "." entry) */
1712 inc_nlink(inode);
1714 /* start with the directory inode held, so that we can
1715 * populate it without racing with another mkdir */
1716 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1717 } else if (S_ISREG(mode)) {
1718 inode->i_size = 0;
1719 inode->i_fop = &cgroup_file_operations;
1721 dentry->d_op = &cgroup_dops;
1722 d_instantiate(dentry, inode);
1723 dget(dentry); /* Extra count - pin the dentry in core */
1724 return 0;
1728 * cgroup_create_dir - create a directory for an object.
1729 * @cgrp: the cgroup we create the directory for. It must have a valid
1730 * ->parent field. And we are going to fill its ->dentry field.
1731 * @dentry: dentry of the new cgroup
1732 * @mode: mode to set on new directory.
1734 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1735 mode_t mode)
1737 struct dentry *parent;
1738 int error = 0;
1740 parent = cgrp->parent->dentry;
1741 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1742 if (!error) {
1743 dentry->d_fsdata = cgrp;
1744 inc_nlink(parent->d_inode);
1745 rcu_assign_pointer(cgrp->dentry, dentry);
1746 dget(dentry);
1748 dput(dentry);
1750 return error;
1754 * cgroup_file_mode - deduce file mode of a control file
1755 * @cft: the control file in question
1757 * returns cft->mode if ->mode is not 0
1758 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1759 * returns S_IRUGO if it has only a read handler
1760 * returns S_IWUSR if it has only a write hander
1762 static mode_t cgroup_file_mode(const struct cftype *cft)
1764 mode_t mode = 0;
1766 if (cft->mode)
1767 return cft->mode;
1769 if (cft->read || cft->read_u64 || cft->read_s64 ||
1770 cft->read_map || cft->read_seq_string)
1771 mode |= S_IRUGO;
1773 if (cft->write || cft->write_u64 || cft->write_s64 ||
1774 cft->write_string || cft->trigger)
1775 mode |= S_IWUSR;
1777 return mode;
1780 int cgroup_add_file(struct cgroup *cgrp,
1781 struct cgroup_subsys *subsys,
1782 const struct cftype *cft)
1784 struct dentry *dir = cgrp->dentry;
1785 struct dentry *dentry;
1786 int error;
1787 mode_t mode;
1789 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1790 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1791 strcpy(name, subsys->name);
1792 strcat(name, ".");
1794 strcat(name, cft->name);
1795 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1796 dentry = lookup_one_len(name, dir, strlen(name));
1797 if (!IS_ERR(dentry)) {
1798 mode = cgroup_file_mode(cft);
1799 error = cgroup_create_file(dentry, mode | S_IFREG,
1800 cgrp->root->sb);
1801 if (!error)
1802 dentry->d_fsdata = (void *)cft;
1803 dput(dentry);
1804 } else
1805 error = PTR_ERR(dentry);
1806 return error;
1809 int cgroup_add_files(struct cgroup *cgrp,
1810 struct cgroup_subsys *subsys,
1811 const struct cftype cft[],
1812 int count)
1814 int i, err;
1815 for (i = 0; i < count; i++) {
1816 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1817 if (err)
1818 return err;
1820 return 0;
1824 * cgroup_task_count - count the number of tasks in a cgroup.
1825 * @cgrp: the cgroup in question
1827 * Return the number of tasks in the cgroup.
1829 int cgroup_task_count(const struct cgroup *cgrp)
1831 int count = 0;
1832 struct cg_cgroup_link *link;
1834 read_lock(&css_set_lock);
1835 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1836 count += atomic_read(&link->cg->refcount);
1838 read_unlock(&css_set_lock);
1839 return count;
1843 * Advance a list_head iterator. The iterator should be positioned at
1844 * the start of a css_set
1846 static void cgroup_advance_iter(struct cgroup *cgrp,
1847 struct cgroup_iter *it)
1849 struct list_head *l = it->cg_link;
1850 struct cg_cgroup_link *link;
1851 struct css_set *cg;
1853 /* Advance to the next non-empty css_set */
1854 do {
1855 l = l->next;
1856 if (l == &cgrp->css_sets) {
1857 it->cg_link = NULL;
1858 return;
1860 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1861 cg = link->cg;
1862 } while (list_empty(&cg->tasks));
1863 it->cg_link = l;
1864 it->task = cg->tasks.next;
1868 * To reduce the fork() overhead for systems that are not actually
1869 * using their cgroups capability, we don't maintain the lists running
1870 * through each css_set to its tasks until we see the list actually
1871 * used - in other words after the first call to cgroup_iter_start().
1873 * The tasklist_lock is not held here, as do_each_thread() and
1874 * while_each_thread() are protected by RCU.
1876 static void cgroup_enable_task_cg_lists(void)
1878 struct task_struct *p, *g;
1879 write_lock(&css_set_lock);
1880 use_task_css_set_links = 1;
1881 do_each_thread(g, p) {
1882 task_lock(p);
1884 * We should check if the process is exiting, otherwise
1885 * it will race with cgroup_exit() in that the list
1886 * entry won't be deleted though the process has exited.
1888 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1889 list_add(&p->cg_list, &p->cgroups->tasks);
1890 task_unlock(p);
1891 } while_each_thread(g, p);
1892 write_unlock(&css_set_lock);
1895 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1898 * The first time anyone tries to iterate across a cgroup,
1899 * we need to enable the list linking each css_set to its
1900 * tasks, and fix up all existing tasks.
1902 if (!use_task_css_set_links)
1903 cgroup_enable_task_cg_lists();
1905 read_lock(&css_set_lock);
1906 it->cg_link = &cgrp->css_sets;
1907 cgroup_advance_iter(cgrp, it);
1910 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1911 struct cgroup_iter *it)
1913 struct task_struct *res;
1914 struct list_head *l = it->task;
1915 struct cg_cgroup_link *link;
1917 /* If the iterator cg is NULL, we have no tasks */
1918 if (!it->cg_link)
1919 return NULL;
1920 res = list_entry(l, struct task_struct, cg_list);
1921 /* Advance iterator to find next entry */
1922 l = l->next;
1923 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1924 if (l == &link->cg->tasks) {
1925 /* We reached the end of this task list - move on to
1926 * the next cg_cgroup_link */
1927 cgroup_advance_iter(cgrp, it);
1928 } else {
1929 it->task = l;
1931 return res;
1934 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1936 read_unlock(&css_set_lock);
1939 static inline int started_after_time(struct task_struct *t1,
1940 struct timespec *time,
1941 struct task_struct *t2)
1943 int start_diff = timespec_compare(&t1->start_time, time);
1944 if (start_diff > 0) {
1945 return 1;
1946 } else if (start_diff < 0) {
1947 return 0;
1948 } else {
1950 * Arbitrarily, if two processes started at the same
1951 * time, we'll say that the lower pointer value
1952 * started first. Note that t2 may have exited by now
1953 * so this may not be a valid pointer any longer, but
1954 * that's fine - it still serves to distinguish
1955 * between two tasks started (effectively) simultaneously.
1957 return t1 > t2;
1962 * This function is a callback from heap_insert() and is used to order
1963 * the heap.
1964 * In this case we order the heap in descending task start time.
1966 static inline int started_after(void *p1, void *p2)
1968 struct task_struct *t1 = p1;
1969 struct task_struct *t2 = p2;
1970 return started_after_time(t1, &t2->start_time, t2);
1974 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1975 * @scan: struct cgroup_scanner containing arguments for the scan
1977 * Arguments include pointers to callback functions test_task() and
1978 * process_task().
1979 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1980 * and if it returns true, call process_task() for it also.
1981 * The test_task pointer may be NULL, meaning always true (select all tasks).
1982 * Effectively duplicates cgroup_iter_{start,next,end}()
1983 * but does not lock css_set_lock for the call to process_task().
1984 * The struct cgroup_scanner may be embedded in any structure of the caller's
1985 * creation.
1986 * It is guaranteed that process_task() will act on every task that
1987 * is a member of the cgroup for the duration of this call. This
1988 * function may or may not call process_task() for tasks that exit
1989 * or move to a different cgroup during the call, or are forked or
1990 * move into the cgroup during the call.
1992 * Note that test_task() may be called with locks held, and may in some
1993 * situations be called multiple times for the same task, so it should
1994 * be cheap.
1995 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1996 * pre-allocated and will be used for heap operations (and its "gt" member will
1997 * be overwritten), else a temporary heap will be used (allocation of which
1998 * may cause this function to fail).
2000 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2002 int retval, i;
2003 struct cgroup_iter it;
2004 struct task_struct *p, *dropped;
2005 /* Never dereference latest_task, since it's not refcounted */
2006 struct task_struct *latest_task = NULL;
2007 struct ptr_heap tmp_heap;
2008 struct ptr_heap *heap;
2009 struct timespec latest_time = { 0, 0 };
2011 if (scan->heap) {
2012 /* The caller supplied our heap and pre-allocated its memory */
2013 heap = scan->heap;
2014 heap->gt = &started_after;
2015 } else {
2016 /* We need to allocate our own heap memory */
2017 heap = &tmp_heap;
2018 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2019 if (retval)
2020 /* cannot allocate the heap */
2021 return retval;
2024 again:
2026 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2027 * to determine which are of interest, and using the scanner's
2028 * "process_task" callback to process any of them that need an update.
2029 * Since we don't want to hold any locks during the task updates,
2030 * gather tasks to be processed in a heap structure.
2031 * The heap is sorted by descending task start time.
2032 * If the statically-sized heap fills up, we overflow tasks that
2033 * started later, and in future iterations only consider tasks that
2034 * started after the latest task in the previous pass. This
2035 * guarantees forward progress and that we don't miss any tasks.
2037 heap->size = 0;
2038 cgroup_iter_start(scan->cg, &it);
2039 while ((p = cgroup_iter_next(scan->cg, &it))) {
2041 * Only affect tasks that qualify per the caller's callback,
2042 * if he provided one
2044 if (scan->test_task && !scan->test_task(p, scan))
2045 continue;
2047 * Only process tasks that started after the last task
2048 * we processed
2050 if (!started_after_time(p, &latest_time, latest_task))
2051 continue;
2052 dropped = heap_insert(heap, p);
2053 if (dropped == NULL) {
2055 * The new task was inserted; the heap wasn't
2056 * previously full
2058 get_task_struct(p);
2059 } else if (dropped != p) {
2061 * The new task was inserted, and pushed out a
2062 * different task
2064 get_task_struct(p);
2065 put_task_struct(dropped);
2068 * Else the new task was newer than anything already in
2069 * the heap and wasn't inserted
2072 cgroup_iter_end(scan->cg, &it);
2074 if (heap->size) {
2075 for (i = 0; i < heap->size; i++) {
2076 struct task_struct *q = heap->ptrs[i];
2077 if (i == 0) {
2078 latest_time = q->start_time;
2079 latest_task = q;
2081 /* Process the task per the caller's callback */
2082 scan->process_task(q, scan);
2083 put_task_struct(q);
2086 * If we had to process any tasks at all, scan again
2087 * in case some of them were in the middle of forking
2088 * children that didn't get processed.
2089 * Not the most efficient way to do it, but it avoids
2090 * having to take callback_mutex in the fork path
2092 goto again;
2094 if (heap == &tmp_heap)
2095 heap_free(&tmp_heap);
2096 return 0;
2100 * Stuff for reading the 'tasks' file.
2102 * Reading this file can return large amounts of data if a cgroup has
2103 * *lots* of attached tasks. So it may need several calls to read(),
2104 * but we cannot guarantee that the information we produce is correct
2105 * unless we produce it entirely atomically.
2110 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2111 * 'cgrp'. Return actual number of pids loaded. No need to
2112 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2113 * read section, so the css_set can't go away, and is
2114 * immutable after creation.
2116 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2118 int n = 0, pid;
2119 struct cgroup_iter it;
2120 struct task_struct *tsk;
2121 cgroup_iter_start(cgrp, &it);
2122 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2123 if (unlikely(n == npids))
2124 break;
2125 pid = task_pid_vnr(tsk);
2126 if (pid > 0)
2127 pidarray[n++] = pid;
2129 cgroup_iter_end(cgrp, &it);
2130 return n;
2134 * cgroupstats_build - build and fill cgroupstats
2135 * @stats: cgroupstats to fill information into
2136 * @dentry: A dentry entry belonging to the cgroup for which stats have
2137 * been requested.
2139 * Build and fill cgroupstats so that taskstats can export it to user
2140 * space.
2142 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2144 int ret = -EINVAL;
2145 struct cgroup *cgrp;
2146 struct cgroup_iter it;
2147 struct task_struct *tsk;
2150 * Validate dentry by checking the superblock operations,
2151 * and make sure it's a directory.
2153 if (dentry->d_sb->s_op != &cgroup_ops ||
2154 !S_ISDIR(dentry->d_inode->i_mode))
2155 goto err;
2157 ret = 0;
2158 cgrp = dentry->d_fsdata;
2160 cgroup_iter_start(cgrp, &it);
2161 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2162 switch (tsk->state) {
2163 case TASK_RUNNING:
2164 stats->nr_running++;
2165 break;
2166 case TASK_INTERRUPTIBLE:
2167 stats->nr_sleeping++;
2168 break;
2169 case TASK_UNINTERRUPTIBLE:
2170 stats->nr_uninterruptible++;
2171 break;
2172 case TASK_STOPPED:
2173 stats->nr_stopped++;
2174 break;
2175 default:
2176 if (delayacct_is_task_waiting_on_io(tsk))
2177 stats->nr_io_wait++;
2178 break;
2181 cgroup_iter_end(cgrp, &it);
2183 err:
2184 return ret;
2187 static int cmppid(const void *a, const void *b)
2189 return *(pid_t *)a - *(pid_t *)b;
2194 * seq_file methods for the "tasks" file. The seq_file position is the
2195 * next pid to display; the seq_file iterator is a pointer to the pid
2196 * in the cgroup->tasks_pids array.
2199 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2202 * Initially we receive a position value that corresponds to
2203 * one more than the last pid shown (or 0 on the first call or
2204 * after a seek to the start). Use a binary-search to find the
2205 * next pid to display, if any
2207 struct cgroup *cgrp = s->private;
2208 int index = 0, pid = *pos;
2209 int *iter;
2211 down_read(&cgrp->pids_mutex);
2212 if (pid) {
2213 int end = cgrp->pids_length;
2215 while (index < end) {
2216 int mid = (index + end) / 2;
2217 if (cgrp->tasks_pids[mid] == pid) {
2218 index = mid;
2219 break;
2220 } else if (cgrp->tasks_pids[mid] <= pid)
2221 index = mid + 1;
2222 else
2223 end = mid;
2226 /* If we're off the end of the array, we're done */
2227 if (index >= cgrp->pids_length)
2228 return NULL;
2229 /* Update the abstract position to be the actual pid that we found */
2230 iter = cgrp->tasks_pids + index;
2231 *pos = *iter;
2232 return iter;
2235 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2237 struct cgroup *cgrp = s->private;
2238 up_read(&cgrp->pids_mutex);
2241 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2243 struct cgroup *cgrp = s->private;
2244 int *p = v;
2245 int *end = cgrp->tasks_pids + cgrp->pids_length;
2248 * Advance to the next pid in the array. If this goes off the
2249 * end, we're done
2251 p++;
2252 if (p >= end) {
2253 return NULL;
2254 } else {
2255 *pos = *p;
2256 return p;
2260 static int cgroup_tasks_show(struct seq_file *s, void *v)
2262 return seq_printf(s, "%d\n", *(int *)v);
2265 static struct seq_operations cgroup_tasks_seq_operations = {
2266 .start = cgroup_tasks_start,
2267 .stop = cgroup_tasks_stop,
2268 .next = cgroup_tasks_next,
2269 .show = cgroup_tasks_show,
2272 static void release_cgroup_pid_array(struct cgroup *cgrp)
2274 down_write(&cgrp->pids_mutex);
2275 BUG_ON(!cgrp->pids_use_count);
2276 if (!--cgrp->pids_use_count) {
2277 kfree(cgrp->tasks_pids);
2278 cgrp->tasks_pids = NULL;
2279 cgrp->pids_length = 0;
2281 up_write(&cgrp->pids_mutex);
2284 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2286 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2288 if (!(file->f_mode & FMODE_READ))
2289 return 0;
2291 release_cgroup_pid_array(cgrp);
2292 return seq_release(inode, file);
2295 static struct file_operations cgroup_tasks_operations = {
2296 .read = seq_read,
2297 .llseek = seq_lseek,
2298 .write = cgroup_file_write,
2299 .release = cgroup_tasks_release,
2303 * Handle an open on 'tasks' file. Prepare an array containing the
2304 * process id's of tasks currently attached to the cgroup being opened.
2307 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2309 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2310 pid_t *pidarray;
2311 int npids;
2312 int retval;
2314 /* Nothing to do for write-only files */
2315 if (!(file->f_mode & FMODE_READ))
2316 return 0;
2319 * If cgroup gets more users after we read count, we won't have
2320 * enough space - tough. This race is indistinguishable to the
2321 * caller from the case that the additional cgroup users didn't
2322 * show up until sometime later on.
2324 npids = cgroup_task_count(cgrp);
2325 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2326 if (!pidarray)
2327 return -ENOMEM;
2328 npids = pid_array_load(pidarray, npids, cgrp);
2329 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2332 * Store the array in the cgroup, freeing the old
2333 * array if necessary
2335 down_write(&cgrp->pids_mutex);
2336 kfree(cgrp->tasks_pids);
2337 cgrp->tasks_pids = pidarray;
2338 cgrp->pids_length = npids;
2339 cgrp->pids_use_count++;
2340 up_write(&cgrp->pids_mutex);
2342 file->f_op = &cgroup_tasks_operations;
2344 retval = seq_open(file, &cgroup_tasks_seq_operations);
2345 if (retval) {
2346 release_cgroup_pid_array(cgrp);
2347 return retval;
2349 ((struct seq_file *)file->private_data)->private = cgrp;
2350 return 0;
2353 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2354 struct cftype *cft)
2356 return notify_on_release(cgrp);
2359 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2360 struct cftype *cft,
2361 u64 val)
2363 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2364 if (val)
2365 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2366 else
2367 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2368 return 0;
2372 * for the common functions, 'private' gives the type of file
2374 static struct cftype files[] = {
2376 .name = "tasks",
2377 .open = cgroup_tasks_open,
2378 .write_u64 = cgroup_tasks_write,
2379 .release = cgroup_tasks_release,
2380 .private = FILE_TASKLIST,
2381 .mode = S_IRUGO | S_IWUSR,
2385 .name = "notify_on_release",
2386 .read_u64 = cgroup_read_notify_on_release,
2387 .write_u64 = cgroup_write_notify_on_release,
2388 .private = FILE_NOTIFY_ON_RELEASE,
2392 static struct cftype cft_release_agent = {
2393 .name = "release_agent",
2394 .read_seq_string = cgroup_release_agent_show,
2395 .write_string = cgroup_release_agent_write,
2396 .max_write_len = PATH_MAX,
2397 .private = FILE_RELEASE_AGENT,
2400 static int cgroup_populate_dir(struct cgroup *cgrp)
2402 int err;
2403 struct cgroup_subsys *ss;
2405 /* First clear out any existing files */
2406 cgroup_clear_directory(cgrp->dentry);
2408 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2409 if (err < 0)
2410 return err;
2412 if (cgrp == cgrp->top_cgroup) {
2413 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2414 return err;
2417 for_each_subsys(cgrp->root, ss) {
2418 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2419 return err;
2421 /* This cgroup is ready now */
2422 for_each_subsys(cgrp->root, ss) {
2423 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2425 * Update id->css pointer and make this css visible from
2426 * CSS ID functions. This pointer will be dereferened
2427 * from RCU-read-side without locks.
2429 if (css->id)
2430 rcu_assign_pointer(css->id->css, css);
2433 return 0;
2436 static void init_cgroup_css(struct cgroup_subsys_state *css,
2437 struct cgroup_subsys *ss,
2438 struct cgroup *cgrp)
2440 css->cgroup = cgrp;
2441 atomic_set(&css->refcnt, 1);
2442 css->flags = 0;
2443 css->id = NULL;
2444 if (cgrp == dummytop)
2445 set_bit(CSS_ROOT, &css->flags);
2446 BUG_ON(cgrp->subsys[ss->subsys_id]);
2447 cgrp->subsys[ss->subsys_id] = css;
2450 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2452 /* We need to take each hierarchy_mutex in a consistent order */
2453 int i;
2455 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2456 struct cgroup_subsys *ss = subsys[i];
2457 if (ss->root == root)
2458 mutex_lock(&ss->hierarchy_mutex);
2462 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2464 int i;
2466 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2467 struct cgroup_subsys *ss = subsys[i];
2468 if (ss->root == root)
2469 mutex_unlock(&ss->hierarchy_mutex);
2474 * cgroup_create - create a cgroup
2475 * @parent: cgroup that will be parent of the new cgroup
2476 * @dentry: dentry of the new cgroup
2477 * @mode: mode to set on new inode
2479 * Must be called with the mutex on the parent inode held
2481 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2482 mode_t mode)
2484 struct cgroup *cgrp;
2485 struct cgroupfs_root *root = parent->root;
2486 int err = 0;
2487 struct cgroup_subsys *ss;
2488 struct super_block *sb = root->sb;
2490 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2491 if (!cgrp)
2492 return -ENOMEM;
2494 /* Grab a reference on the superblock so the hierarchy doesn't
2495 * get deleted on unmount if there are child cgroups. This
2496 * can be done outside cgroup_mutex, since the sb can't
2497 * disappear while someone has an open control file on the
2498 * fs */
2499 atomic_inc(&sb->s_active);
2501 mutex_lock(&cgroup_mutex);
2503 init_cgroup_housekeeping(cgrp);
2505 cgrp->parent = parent;
2506 cgrp->root = parent->root;
2507 cgrp->top_cgroup = parent->top_cgroup;
2509 if (notify_on_release(parent))
2510 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2512 for_each_subsys(root, ss) {
2513 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2514 if (IS_ERR(css)) {
2515 err = PTR_ERR(css);
2516 goto err_destroy;
2518 init_cgroup_css(css, ss, cgrp);
2519 if (ss->use_id)
2520 if (alloc_css_id(ss, parent, cgrp))
2521 goto err_destroy;
2522 /* At error, ->destroy() callback has to free assigned ID. */
2525 cgroup_lock_hierarchy(root);
2526 list_add(&cgrp->sibling, &cgrp->parent->children);
2527 cgroup_unlock_hierarchy(root);
2528 root->number_of_cgroups++;
2530 err = cgroup_create_dir(cgrp, dentry, mode);
2531 if (err < 0)
2532 goto err_remove;
2534 /* The cgroup directory was pre-locked for us */
2535 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2537 err = cgroup_populate_dir(cgrp);
2538 /* If err < 0, we have a half-filled directory - oh well ;) */
2540 mutex_unlock(&cgroup_mutex);
2541 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2543 return 0;
2545 err_remove:
2547 cgroup_lock_hierarchy(root);
2548 list_del(&cgrp->sibling);
2549 cgroup_unlock_hierarchy(root);
2550 root->number_of_cgroups--;
2552 err_destroy:
2554 for_each_subsys(root, ss) {
2555 if (cgrp->subsys[ss->subsys_id])
2556 ss->destroy(ss, cgrp);
2559 mutex_unlock(&cgroup_mutex);
2561 /* Release the reference count that we took on the superblock */
2562 deactivate_super(sb);
2564 kfree(cgrp);
2565 return err;
2568 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2570 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2572 /* the vfs holds inode->i_mutex already */
2573 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2576 static int cgroup_has_css_refs(struct cgroup *cgrp)
2578 /* Check the reference count on each subsystem. Since we
2579 * already established that there are no tasks in the
2580 * cgroup, if the css refcount is also 1, then there should
2581 * be no outstanding references, so the subsystem is safe to
2582 * destroy. We scan across all subsystems rather than using
2583 * the per-hierarchy linked list of mounted subsystems since
2584 * we can be called via check_for_release() with no
2585 * synchronization other than RCU, and the subsystem linked
2586 * list isn't RCU-safe */
2587 int i;
2588 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2589 struct cgroup_subsys *ss = subsys[i];
2590 struct cgroup_subsys_state *css;
2591 /* Skip subsystems not in this hierarchy */
2592 if (ss->root != cgrp->root)
2593 continue;
2594 css = cgrp->subsys[ss->subsys_id];
2595 /* When called from check_for_release() it's possible
2596 * that by this point the cgroup has been removed
2597 * and the css deleted. But a false-positive doesn't
2598 * matter, since it can only happen if the cgroup
2599 * has been deleted and hence no longer needs the
2600 * release agent to be called anyway. */
2601 if (css && (atomic_read(&css->refcnt) > 1))
2602 return 1;
2604 return 0;
2608 * Atomically mark all (or else none) of the cgroup's CSS objects as
2609 * CSS_REMOVED. Return true on success, or false if the cgroup has
2610 * busy subsystems. Call with cgroup_mutex held
2613 static int cgroup_clear_css_refs(struct cgroup *cgrp)
2615 struct cgroup_subsys *ss;
2616 unsigned long flags;
2617 bool failed = false;
2618 local_irq_save(flags);
2619 for_each_subsys(cgrp->root, ss) {
2620 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2621 int refcnt;
2622 while (1) {
2623 /* We can only remove a CSS with a refcnt==1 */
2624 refcnt = atomic_read(&css->refcnt);
2625 if (refcnt > 1) {
2626 failed = true;
2627 goto done;
2629 BUG_ON(!refcnt);
2631 * Drop the refcnt to 0 while we check other
2632 * subsystems. This will cause any racing
2633 * css_tryget() to spin until we set the
2634 * CSS_REMOVED bits or abort
2636 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2637 break;
2638 cpu_relax();
2641 done:
2642 for_each_subsys(cgrp->root, ss) {
2643 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2644 if (failed) {
2646 * Restore old refcnt if we previously managed
2647 * to clear it from 1 to 0
2649 if (!atomic_read(&css->refcnt))
2650 atomic_set(&css->refcnt, 1);
2651 } else {
2652 /* Commit the fact that the CSS is removed */
2653 set_bit(CSS_REMOVED, &css->flags);
2656 local_irq_restore(flags);
2657 return !failed;
2660 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2662 struct cgroup *cgrp = dentry->d_fsdata;
2663 struct dentry *d;
2664 struct cgroup *parent;
2665 DEFINE_WAIT(wait);
2666 int ret;
2668 /* the vfs holds both inode->i_mutex already */
2669 again:
2670 mutex_lock(&cgroup_mutex);
2671 if (atomic_read(&cgrp->count) != 0) {
2672 mutex_unlock(&cgroup_mutex);
2673 return -EBUSY;
2675 if (!list_empty(&cgrp->children)) {
2676 mutex_unlock(&cgroup_mutex);
2677 return -EBUSY;
2679 mutex_unlock(&cgroup_mutex);
2682 * Call pre_destroy handlers of subsys. Notify subsystems
2683 * that rmdir() request comes.
2685 ret = cgroup_call_pre_destroy(cgrp);
2686 if (ret)
2687 return ret;
2689 mutex_lock(&cgroup_mutex);
2690 parent = cgrp->parent;
2691 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2692 mutex_unlock(&cgroup_mutex);
2693 return -EBUSY;
2696 * css_put/get is provided for subsys to grab refcnt to css. In typical
2697 * case, subsystem has no reference after pre_destroy(). But, under
2698 * hierarchy management, some *temporal* refcnt can be hold.
2699 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
2700 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
2701 * is called when css_put() is called and refcnt goes down to 0.
2703 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2704 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
2706 if (!cgroup_clear_css_refs(cgrp)) {
2707 mutex_unlock(&cgroup_mutex);
2708 schedule();
2709 finish_wait(&cgroup_rmdir_waitq, &wait);
2710 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2711 if (signal_pending(current))
2712 return -EINTR;
2713 goto again;
2715 /* NO css_tryget() can success after here. */
2716 finish_wait(&cgroup_rmdir_waitq, &wait);
2717 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2719 spin_lock(&release_list_lock);
2720 set_bit(CGRP_REMOVED, &cgrp->flags);
2721 if (!list_empty(&cgrp->release_list))
2722 list_del(&cgrp->release_list);
2723 spin_unlock(&release_list_lock);
2725 cgroup_lock_hierarchy(cgrp->root);
2726 /* delete this cgroup from parent->children */
2727 list_del(&cgrp->sibling);
2728 cgroup_unlock_hierarchy(cgrp->root);
2730 spin_lock(&cgrp->dentry->d_lock);
2731 d = dget(cgrp->dentry);
2732 spin_unlock(&d->d_lock);
2734 cgroup_d_remove_dir(d);
2735 dput(d);
2737 set_bit(CGRP_RELEASABLE, &parent->flags);
2738 check_for_release(parent);
2740 mutex_unlock(&cgroup_mutex);
2741 return 0;
2744 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2746 struct cgroup_subsys_state *css;
2748 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2750 /* Create the top cgroup state for this subsystem */
2751 list_add(&ss->sibling, &rootnode.subsys_list);
2752 ss->root = &rootnode;
2753 css = ss->create(ss, dummytop);
2754 /* We don't handle early failures gracefully */
2755 BUG_ON(IS_ERR(css));
2756 init_cgroup_css(css, ss, dummytop);
2758 /* Update the init_css_set to contain a subsys
2759 * pointer to this state - since the subsystem is
2760 * newly registered, all tasks and hence the
2761 * init_css_set is in the subsystem's top cgroup. */
2762 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2764 need_forkexit_callback |= ss->fork || ss->exit;
2766 /* At system boot, before all subsystems have been
2767 * registered, no tasks have been forked, so we don't
2768 * need to invoke fork callbacks here. */
2769 BUG_ON(!list_empty(&init_task.tasks));
2771 mutex_init(&ss->hierarchy_mutex);
2772 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2773 ss->active = 1;
2777 * cgroup_init_early - cgroup initialization at system boot
2779 * Initialize cgroups at system boot, and initialize any
2780 * subsystems that request early init.
2782 int __init cgroup_init_early(void)
2784 int i;
2785 atomic_set(&init_css_set.refcount, 1);
2786 INIT_LIST_HEAD(&init_css_set.cg_links);
2787 INIT_LIST_HEAD(&init_css_set.tasks);
2788 INIT_HLIST_NODE(&init_css_set.hlist);
2789 css_set_count = 1;
2790 init_cgroup_root(&rootnode);
2791 root_count = 1;
2792 init_task.cgroups = &init_css_set;
2794 init_css_set_link.cg = &init_css_set;
2795 list_add(&init_css_set_link.cgrp_link_list,
2796 &rootnode.top_cgroup.css_sets);
2797 list_add(&init_css_set_link.cg_link_list,
2798 &init_css_set.cg_links);
2800 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2801 INIT_HLIST_HEAD(&css_set_table[i]);
2803 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2804 struct cgroup_subsys *ss = subsys[i];
2806 BUG_ON(!ss->name);
2807 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2808 BUG_ON(!ss->create);
2809 BUG_ON(!ss->destroy);
2810 if (ss->subsys_id != i) {
2811 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2812 ss->name, ss->subsys_id);
2813 BUG();
2816 if (ss->early_init)
2817 cgroup_init_subsys(ss);
2819 return 0;
2823 * cgroup_init - cgroup initialization
2825 * Register cgroup filesystem and /proc file, and initialize
2826 * any subsystems that didn't request early init.
2828 int __init cgroup_init(void)
2830 int err;
2831 int i;
2832 struct hlist_head *hhead;
2834 err = bdi_init(&cgroup_backing_dev_info);
2835 if (err)
2836 return err;
2838 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2839 struct cgroup_subsys *ss = subsys[i];
2840 if (!ss->early_init)
2841 cgroup_init_subsys(ss);
2842 if (ss->use_id)
2843 cgroup_subsys_init_idr(ss);
2846 /* Add init_css_set to the hash table */
2847 hhead = css_set_hash(init_css_set.subsys);
2848 hlist_add_head(&init_css_set.hlist, hhead);
2850 err = register_filesystem(&cgroup_fs_type);
2851 if (err < 0)
2852 goto out;
2854 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2856 out:
2857 if (err)
2858 bdi_destroy(&cgroup_backing_dev_info);
2860 return err;
2864 * proc_cgroup_show()
2865 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2866 * - Used for /proc/<pid>/cgroup.
2867 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2868 * doesn't really matter if tsk->cgroup changes after we read it,
2869 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2870 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2871 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2872 * cgroup to top_cgroup.
2875 /* TODO: Use a proper seq_file iterator */
2876 static int proc_cgroup_show(struct seq_file *m, void *v)
2878 struct pid *pid;
2879 struct task_struct *tsk;
2880 char *buf;
2881 int retval;
2882 struct cgroupfs_root *root;
2884 retval = -ENOMEM;
2885 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2886 if (!buf)
2887 goto out;
2889 retval = -ESRCH;
2890 pid = m->private;
2891 tsk = get_pid_task(pid, PIDTYPE_PID);
2892 if (!tsk)
2893 goto out_free;
2895 retval = 0;
2897 mutex_lock(&cgroup_mutex);
2899 for_each_active_root(root) {
2900 struct cgroup_subsys *ss;
2901 struct cgroup *cgrp;
2902 int subsys_id;
2903 int count = 0;
2905 seq_printf(m, "%lu:", root->subsys_bits);
2906 for_each_subsys(root, ss)
2907 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2908 seq_putc(m, ':');
2909 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2910 cgrp = task_cgroup(tsk, subsys_id);
2911 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2912 if (retval < 0)
2913 goto out_unlock;
2914 seq_puts(m, buf);
2915 seq_putc(m, '\n');
2918 out_unlock:
2919 mutex_unlock(&cgroup_mutex);
2920 put_task_struct(tsk);
2921 out_free:
2922 kfree(buf);
2923 out:
2924 return retval;
2927 static int cgroup_open(struct inode *inode, struct file *file)
2929 struct pid *pid = PROC_I(inode)->pid;
2930 return single_open(file, proc_cgroup_show, pid);
2933 struct file_operations proc_cgroup_operations = {
2934 .open = cgroup_open,
2935 .read = seq_read,
2936 .llseek = seq_lseek,
2937 .release = single_release,
2940 /* Display information about each subsystem and each hierarchy */
2941 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2943 int i;
2945 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2946 mutex_lock(&cgroup_mutex);
2947 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2948 struct cgroup_subsys *ss = subsys[i];
2949 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2950 ss->name, ss->root->subsys_bits,
2951 ss->root->number_of_cgroups, !ss->disabled);
2953 mutex_unlock(&cgroup_mutex);
2954 return 0;
2957 static int cgroupstats_open(struct inode *inode, struct file *file)
2959 return single_open(file, proc_cgroupstats_show, NULL);
2962 static struct file_operations proc_cgroupstats_operations = {
2963 .open = cgroupstats_open,
2964 .read = seq_read,
2965 .llseek = seq_lseek,
2966 .release = single_release,
2970 * cgroup_fork - attach newly forked task to its parents cgroup.
2971 * @child: pointer to task_struct of forking parent process.
2973 * Description: A task inherits its parent's cgroup at fork().
2975 * A pointer to the shared css_set was automatically copied in
2976 * fork.c by dup_task_struct(). However, we ignore that copy, since
2977 * it was not made under the protection of RCU or cgroup_mutex, so
2978 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2979 * have already changed current->cgroups, allowing the previously
2980 * referenced cgroup group to be removed and freed.
2982 * At the point that cgroup_fork() is called, 'current' is the parent
2983 * task, and the passed argument 'child' points to the child task.
2985 void cgroup_fork(struct task_struct *child)
2987 task_lock(current);
2988 child->cgroups = current->cgroups;
2989 get_css_set(child->cgroups);
2990 task_unlock(current);
2991 INIT_LIST_HEAD(&child->cg_list);
2995 * cgroup_fork_callbacks - run fork callbacks
2996 * @child: the new task
2998 * Called on a new task very soon before adding it to the
2999 * tasklist. No need to take any locks since no-one can
3000 * be operating on this task.
3002 void cgroup_fork_callbacks(struct task_struct *child)
3004 if (need_forkexit_callback) {
3005 int i;
3006 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3007 struct cgroup_subsys *ss = subsys[i];
3008 if (ss->fork)
3009 ss->fork(ss, child);
3015 * cgroup_post_fork - called on a new task after adding it to the task list
3016 * @child: the task in question
3018 * Adds the task to the list running through its css_set if necessary.
3019 * Has to be after the task is visible on the task list in case we race
3020 * with the first call to cgroup_iter_start() - to guarantee that the
3021 * new task ends up on its list.
3023 void cgroup_post_fork(struct task_struct *child)
3025 if (use_task_css_set_links) {
3026 write_lock(&css_set_lock);
3027 task_lock(child);
3028 if (list_empty(&child->cg_list))
3029 list_add(&child->cg_list, &child->cgroups->tasks);
3030 task_unlock(child);
3031 write_unlock(&css_set_lock);
3035 * cgroup_exit - detach cgroup from exiting task
3036 * @tsk: pointer to task_struct of exiting process
3037 * @run_callback: run exit callbacks?
3039 * Description: Detach cgroup from @tsk and release it.
3041 * Note that cgroups marked notify_on_release force every task in
3042 * them to take the global cgroup_mutex mutex when exiting.
3043 * This could impact scaling on very large systems. Be reluctant to
3044 * use notify_on_release cgroups where very high task exit scaling
3045 * is required on large systems.
3047 * the_top_cgroup_hack:
3049 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3051 * We call cgroup_exit() while the task is still competent to
3052 * handle notify_on_release(), then leave the task attached to the
3053 * root cgroup in each hierarchy for the remainder of its exit.
3055 * To do this properly, we would increment the reference count on
3056 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3057 * code we would add a second cgroup function call, to drop that
3058 * reference. This would just create an unnecessary hot spot on
3059 * the top_cgroup reference count, to no avail.
3061 * Normally, holding a reference to a cgroup without bumping its
3062 * count is unsafe. The cgroup could go away, or someone could
3063 * attach us to a different cgroup, decrementing the count on
3064 * the first cgroup that we never incremented. But in this case,
3065 * top_cgroup isn't going away, and either task has PF_EXITING set,
3066 * which wards off any cgroup_attach_task() attempts, or task is a failed
3067 * fork, never visible to cgroup_attach_task.
3069 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3071 int i;
3072 struct css_set *cg;
3074 if (run_callbacks && need_forkexit_callback) {
3075 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3076 struct cgroup_subsys *ss = subsys[i];
3077 if (ss->exit)
3078 ss->exit(ss, tsk);
3083 * Unlink from the css_set task list if necessary.
3084 * Optimistically check cg_list before taking
3085 * css_set_lock
3087 if (!list_empty(&tsk->cg_list)) {
3088 write_lock(&css_set_lock);
3089 if (!list_empty(&tsk->cg_list))
3090 list_del(&tsk->cg_list);
3091 write_unlock(&css_set_lock);
3094 /* Reassign the task to the init_css_set. */
3095 task_lock(tsk);
3096 cg = tsk->cgroups;
3097 tsk->cgroups = &init_css_set;
3098 task_unlock(tsk);
3099 if (cg)
3100 put_css_set_taskexit(cg);
3104 * cgroup_clone - clone the cgroup the given subsystem is attached to
3105 * @tsk: the task to be moved
3106 * @subsys: the given subsystem
3107 * @nodename: the name for the new cgroup
3109 * Duplicate the current cgroup in the hierarchy that the given
3110 * subsystem is attached to, and move this task into the new
3111 * child.
3113 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3114 char *nodename)
3116 struct dentry *dentry;
3117 int ret = 0;
3118 struct cgroup *parent, *child;
3119 struct inode *inode;
3120 struct css_set *cg;
3121 struct cgroupfs_root *root;
3122 struct cgroup_subsys *ss;
3124 /* We shouldn't be called by an unregistered subsystem */
3125 BUG_ON(!subsys->active);
3127 /* First figure out what hierarchy and cgroup we're dealing
3128 * with, and pin them so we can drop cgroup_mutex */
3129 mutex_lock(&cgroup_mutex);
3130 again:
3131 root = subsys->root;
3132 if (root == &rootnode) {
3133 mutex_unlock(&cgroup_mutex);
3134 return 0;
3137 /* Pin the hierarchy */
3138 if (!atomic_inc_not_zero(&root->sb->s_active)) {
3139 /* We race with the final deactivate_super() */
3140 mutex_unlock(&cgroup_mutex);
3141 return 0;
3144 /* Keep the cgroup alive */
3145 task_lock(tsk);
3146 parent = task_cgroup(tsk, subsys->subsys_id);
3147 cg = tsk->cgroups;
3148 get_css_set(cg);
3149 task_unlock(tsk);
3151 mutex_unlock(&cgroup_mutex);
3153 /* Now do the VFS work to create a cgroup */
3154 inode = parent->dentry->d_inode;
3156 /* Hold the parent directory mutex across this operation to
3157 * stop anyone else deleting the new cgroup */
3158 mutex_lock(&inode->i_mutex);
3159 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3160 if (IS_ERR(dentry)) {
3161 printk(KERN_INFO
3162 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3163 PTR_ERR(dentry));
3164 ret = PTR_ERR(dentry);
3165 goto out_release;
3168 /* Create the cgroup directory, which also creates the cgroup */
3169 ret = vfs_mkdir(inode, dentry, 0755);
3170 child = __d_cgrp(dentry);
3171 dput(dentry);
3172 if (ret) {
3173 printk(KERN_INFO
3174 "Failed to create cgroup %s: %d\n", nodename,
3175 ret);
3176 goto out_release;
3179 /* The cgroup now exists. Retake cgroup_mutex and check
3180 * that we're still in the same state that we thought we
3181 * were. */
3182 mutex_lock(&cgroup_mutex);
3183 if ((root != subsys->root) ||
3184 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3185 /* Aargh, we raced ... */
3186 mutex_unlock(&inode->i_mutex);
3187 put_css_set(cg);
3189 deactivate_super(root->sb);
3190 /* The cgroup is still accessible in the VFS, but
3191 * we're not going to try to rmdir() it at this
3192 * point. */
3193 printk(KERN_INFO
3194 "Race in cgroup_clone() - leaking cgroup %s\n",
3195 nodename);
3196 goto again;
3199 /* do any required auto-setup */
3200 for_each_subsys(root, ss) {
3201 if (ss->post_clone)
3202 ss->post_clone(ss, child);
3205 /* All seems fine. Finish by moving the task into the new cgroup */
3206 ret = cgroup_attach_task(child, tsk);
3207 mutex_unlock(&cgroup_mutex);
3209 out_release:
3210 mutex_unlock(&inode->i_mutex);
3212 mutex_lock(&cgroup_mutex);
3213 put_css_set(cg);
3214 mutex_unlock(&cgroup_mutex);
3215 deactivate_super(root->sb);
3216 return ret;
3220 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3221 * @cgrp: the cgroup in question
3222 * @task: the task in question
3224 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3225 * hierarchy.
3227 * If we are sending in dummytop, then presumably we are creating
3228 * the top cgroup in the subsystem.
3230 * Called only by the ns (nsproxy) cgroup.
3232 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3234 int ret;
3235 struct cgroup *target;
3236 int subsys_id;
3238 if (cgrp == dummytop)
3239 return 1;
3241 get_first_subsys(cgrp, NULL, &subsys_id);
3242 target = task_cgroup(task, subsys_id);
3243 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3244 cgrp = cgrp->parent;
3245 ret = (cgrp == target);
3246 return ret;
3249 static void check_for_release(struct cgroup *cgrp)
3251 /* All of these checks rely on RCU to keep the cgroup
3252 * structure alive */
3253 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3254 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3255 /* Control Group is currently removeable. If it's not
3256 * already queued for a userspace notification, queue
3257 * it now */
3258 int need_schedule_work = 0;
3259 spin_lock(&release_list_lock);
3260 if (!cgroup_is_removed(cgrp) &&
3261 list_empty(&cgrp->release_list)) {
3262 list_add(&cgrp->release_list, &release_list);
3263 need_schedule_work = 1;
3265 spin_unlock(&release_list_lock);
3266 if (need_schedule_work)
3267 schedule_work(&release_agent_work);
3271 void __css_put(struct cgroup_subsys_state *css)
3273 struct cgroup *cgrp = css->cgroup;
3274 rcu_read_lock();
3275 if (atomic_dec_return(&css->refcnt) == 1) {
3276 if (notify_on_release(cgrp)) {
3277 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3278 check_for_release(cgrp);
3280 cgroup_wakeup_rmdir_waiters(cgrp);
3282 rcu_read_unlock();
3286 * Notify userspace when a cgroup is released, by running the
3287 * configured release agent with the name of the cgroup (path
3288 * relative to the root of cgroup file system) as the argument.
3290 * Most likely, this user command will try to rmdir this cgroup.
3292 * This races with the possibility that some other task will be
3293 * attached to this cgroup before it is removed, or that some other
3294 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3295 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3296 * unused, and this cgroup will be reprieved from its death sentence,
3297 * to continue to serve a useful existence. Next time it's released,
3298 * we will get notified again, if it still has 'notify_on_release' set.
3300 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3301 * means only wait until the task is successfully execve()'d. The
3302 * separate release agent task is forked by call_usermodehelper(),
3303 * then control in this thread returns here, without waiting for the
3304 * release agent task. We don't bother to wait because the caller of
3305 * this routine has no use for the exit status of the release agent
3306 * task, so no sense holding our caller up for that.
3308 static void cgroup_release_agent(struct work_struct *work)
3310 BUG_ON(work != &release_agent_work);
3311 mutex_lock(&cgroup_mutex);
3312 spin_lock(&release_list_lock);
3313 while (!list_empty(&release_list)) {
3314 char *argv[3], *envp[3];
3315 int i;
3316 char *pathbuf = NULL, *agentbuf = NULL;
3317 struct cgroup *cgrp = list_entry(release_list.next,
3318 struct cgroup,
3319 release_list);
3320 list_del_init(&cgrp->release_list);
3321 spin_unlock(&release_list_lock);
3322 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3323 if (!pathbuf)
3324 goto continue_free;
3325 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3326 goto continue_free;
3327 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3328 if (!agentbuf)
3329 goto continue_free;
3331 i = 0;
3332 argv[i++] = agentbuf;
3333 argv[i++] = pathbuf;
3334 argv[i] = NULL;
3336 i = 0;
3337 /* minimal command environment */
3338 envp[i++] = "HOME=/";
3339 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3340 envp[i] = NULL;
3342 /* Drop the lock while we invoke the usermode helper,
3343 * since the exec could involve hitting disk and hence
3344 * be a slow process */
3345 mutex_unlock(&cgroup_mutex);
3346 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3347 mutex_lock(&cgroup_mutex);
3348 continue_free:
3349 kfree(pathbuf);
3350 kfree(agentbuf);
3351 spin_lock(&release_list_lock);
3353 spin_unlock(&release_list_lock);
3354 mutex_unlock(&cgroup_mutex);
3357 static int __init cgroup_disable(char *str)
3359 int i;
3360 char *token;
3362 while ((token = strsep(&str, ",")) != NULL) {
3363 if (!*token)
3364 continue;
3366 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3367 struct cgroup_subsys *ss = subsys[i];
3369 if (!strcmp(token, ss->name)) {
3370 ss->disabled = 1;
3371 printk(KERN_INFO "Disabling %s control group"
3372 " subsystem\n", ss->name);
3373 break;
3377 return 1;
3379 __setup("cgroup_disable=", cgroup_disable);
3382 * Functons for CSS ID.
3386 *To get ID other than 0, this should be called when !cgroup_is_removed().
3388 unsigned short css_id(struct cgroup_subsys_state *css)
3390 struct css_id *cssid = rcu_dereference(css->id);
3392 if (cssid)
3393 return cssid->id;
3394 return 0;
3397 unsigned short css_depth(struct cgroup_subsys_state *css)
3399 struct css_id *cssid = rcu_dereference(css->id);
3401 if (cssid)
3402 return cssid->depth;
3403 return 0;
3406 bool css_is_ancestor(struct cgroup_subsys_state *child,
3407 const struct cgroup_subsys_state *root)
3409 struct css_id *child_id = rcu_dereference(child->id);
3410 struct css_id *root_id = rcu_dereference(root->id);
3412 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3413 return false;
3414 return child_id->stack[root_id->depth] == root_id->id;
3417 static void __free_css_id_cb(struct rcu_head *head)
3419 struct css_id *id;
3421 id = container_of(head, struct css_id, rcu_head);
3422 kfree(id);
3425 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3427 struct css_id *id = css->id;
3428 /* When this is called before css_id initialization, id can be NULL */
3429 if (!id)
3430 return;
3432 BUG_ON(!ss->use_id);
3434 rcu_assign_pointer(id->css, NULL);
3435 rcu_assign_pointer(css->id, NULL);
3436 spin_lock(&ss->id_lock);
3437 idr_remove(&ss->idr, id->id);
3438 spin_unlock(&ss->id_lock);
3439 call_rcu(&id->rcu_head, __free_css_id_cb);
3443 * This is called by init or create(). Then, calls to this function are
3444 * always serialized (By cgroup_mutex() at create()).
3447 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3449 struct css_id *newid;
3450 int myid, error, size;
3452 BUG_ON(!ss->use_id);
3454 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3455 newid = kzalloc(size, GFP_KERNEL);
3456 if (!newid)
3457 return ERR_PTR(-ENOMEM);
3458 /* get id */
3459 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3460 error = -ENOMEM;
3461 goto err_out;
3463 spin_lock(&ss->id_lock);
3464 /* Don't use 0. allocates an ID of 1-65535 */
3465 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3466 spin_unlock(&ss->id_lock);
3468 /* Returns error when there are no free spaces for new ID.*/
3469 if (error) {
3470 error = -ENOSPC;
3471 goto err_out;
3473 if (myid > CSS_ID_MAX)
3474 goto remove_idr;
3476 newid->id = myid;
3477 newid->depth = depth;
3478 return newid;
3479 remove_idr:
3480 error = -ENOSPC;
3481 spin_lock(&ss->id_lock);
3482 idr_remove(&ss->idr, myid);
3483 spin_unlock(&ss->id_lock);
3484 err_out:
3485 kfree(newid);
3486 return ERR_PTR(error);
3490 static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3492 struct css_id *newid;
3493 struct cgroup_subsys_state *rootcss;
3495 spin_lock_init(&ss->id_lock);
3496 idr_init(&ss->idr);
3498 rootcss = init_css_set.subsys[ss->subsys_id];
3499 newid = get_new_cssid(ss, 0);
3500 if (IS_ERR(newid))
3501 return PTR_ERR(newid);
3503 newid->stack[0] = newid->id;
3504 newid->css = rootcss;
3505 rootcss->id = newid;
3506 return 0;
3509 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3510 struct cgroup *child)
3512 int subsys_id, i, depth = 0;
3513 struct cgroup_subsys_state *parent_css, *child_css;
3514 struct css_id *child_id, *parent_id = NULL;
3516 subsys_id = ss->subsys_id;
3517 parent_css = parent->subsys[subsys_id];
3518 child_css = child->subsys[subsys_id];
3519 depth = css_depth(parent_css) + 1;
3520 parent_id = parent_css->id;
3522 child_id = get_new_cssid(ss, depth);
3523 if (IS_ERR(child_id))
3524 return PTR_ERR(child_id);
3526 for (i = 0; i < depth; i++)
3527 child_id->stack[i] = parent_id->stack[i];
3528 child_id->stack[depth] = child_id->id;
3530 * child_id->css pointer will be set after this cgroup is available
3531 * see cgroup_populate_dir()
3533 rcu_assign_pointer(child_css->id, child_id);
3535 return 0;
3539 * css_lookup - lookup css by id
3540 * @ss: cgroup subsys to be looked into.
3541 * @id: the id
3543 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3544 * NULL if not. Should be called under rcu_read_lock()
3546 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3548 struct css_id *cssid = NULL;
3550 BUG_ON(!ss->use_id);
3551 cssid = idr_find(&ss->idr, id);
3553 if (unlikely(!cssid))
3554 return NULL;
3556 return rcu_dereference(cssid->css);
3560 * css_get_next - lookup next cgroup under specified hierarchy.
3561 * @ss: pointer to subsystem
3562 * @id: current position of iteration.
3563 * @root: pointer to css. search tree under this.
3564 * @foundid: position of found object.
3566 * Search next css under the specified hierarchy of rootid. Calling under
3567 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3569 struct cgroup_subsys_state *
3570 css_get_next(struct cgroup_subsys *ss, int id,
3571 struct cgroup_subsys_state *root, int *foundid)
3573 struct cgroup_subsys_state *ret = NULL;
3574 struct css_id *tmp;
3575 int tmpid;
3576 int rootid = css_id(root);
3577 int depth = css_depth(root);
3579 if (!rootid)
3580 return NULL;
3582 BUG_ON(!ss->use_id);
3583 /* fill start point for scan */
3584 tmpid = id;
3585 while (1) {
3587 * scan next entry from bitmap(tree), tmpid is updated after
3588 * idr_get_next().
3590 spin_lock(&ss->id_lock);
3591 tmp = idr_get_next(&ss->idr, &tmpid);
3592 spin_unlock(&ss->id_lock);
3594 if (!tmp)
3595 break;
3596 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3597 ret = rcu_dereference(tmp->css);
3598 if (ret) {
3599 *foundid = tmpid;
3600 break;
3603 /* continue to scan from next id */
3604 tmpid = tmpid + 1;
3606 return ret;