2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/log2.h>
17 #include <linux/workqueue.h>
19 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
20 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
22 static int __rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
27 else if (!rtc
->ops
->read_time
)
30 memset(tm
, 0, sizeof(struct rtc_time
));
31 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, tm
);
36 int rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
40 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
44 err
= __rtc_read_time(rtc
, tm
);
45 mutex_unlock(&rtc
->ops_lock
);
48 EXPORT_SYMBOL_GPL(rtc_read_time
);
50 int rtc_set_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
54 err
= rtc_valid_tm(tm
);
58 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
64 else if (rtc
->ops
->set_time
)
65 err
= rtc
->ops
->set_time(rtc
->dev
.parent
, tm
);
66 else if (rtc
->ops
->set_mmss
) {
68 err
= rtc_tm_to_time(tm
, &secs
);
70 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs
);
74 mutex_unlock(&rtc
->ops_lock
);
77 EXPORT_SYMBOL_GPL(rtc_set_time
);
79 int rtc_set_mmss(struct rtc_device
*rtc
, unsigned long secs
)
83 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
89 else if (rtc
->ops
->set_mmss
)
90 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs
);
91 else if (rtc
->ops
->read_time
&& rtc
->ops
->set_time
) {
92 struct rtc_time
new, old
;
94 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, &old
);
96 rtc_time_to_tm(secs
, &new);
99 * avoid writing when we're going to change the day of
100 * the month. We will retry in the next minute. This
101 * basically means that if the RTC must not drift
102 * by more than 1 minute in 11 minutes.
104 if (!((old
.tm_hour
== 23 && old
.tm_min
== 59) ||
105 (new.tm_hour
== 23 && new.tm_min
== 59)))
106 err
= rtc
->ops
->set_time(rtc
->dev
.parent
,
113 mutex_unlock(&rtc
->ops_lock
);
117 EXPORT_SYMBOL_GPL(rtc_set_mmss
);
119 static int rtc_read_alarm_internal(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
123 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
127 if (rtc
->ops
== NULL
)
129 else if (!rtc
->ops
->read_alarm
)
132 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
133 err
= rtc
->ops
->read_alarm(rtc
->dev
.parent
, alarm
);
136 mutex_unlock(&rtc
->ops_lock
);
140 int __rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
143 struct rtc_time before
, now
;
145 unsigned long t_now
, t_alm
;
146 enum { none
, day
, month
, year
} missing
= none
;
149 /* The lower level RTC driver may return -1 in some fields,
150 * creating invalid alarm->time values, for reasons like:
152 * - The hardware may not be capable of filling them in;
153 * many alarms match only on time-of-day fields, not
154 * day/month/year calendar data.
156 * - Some hardware uses illegal values as "wildcard" match
157 * values, which non-Linux firmware (like a BIOS) may try
158 * to set up as e.g. "alarm 15 minutes after each hour".
159 * Linux uses only oneshot alarms.
161 * When we see that here, we deal with it by using values from
162 * a current RTC timestamp for any missing (-1) values. The
163 * RTC driver prevents "periodic alarm" modes.
165 * But this can be racey, because some fields of the RTC timestamp
166 * may have wrapped in the interval since we read the RTC alarm,
167 * which would lead to us inserting inconsistent values in place
170 * Reading the alarm and timestamp in the reverse sequence
171 * would have the same race condition, and not solve the issue.
173 * So, we must first read the RTC timestamp,
174 * then read the RTC alarm value,
175 * and then read a second RTC timestamp.
177 * If any fields of the second timestamp have changed
178 * when compared with the first timestamp, then we know
179 * our timestamp may be inconsistent with that used by
180 * the low-level rtc_read_alarm_internal() function.
182 * So, when the two timestamps disagree, we just loop and do
183 * the process again to get a fully consistent set of values.
185 * This could all instead be done in the lower level driver,
186 * but since more than one lower level RTC implementation needs it,
187 * then it's probably best best to do it here instead of there..
190 /* Get the "before" timestamp */
191 err
= rtc_read_time(rtc
, &before
);
196 memcpy(&before
, &now
, sizeof(struct rtc_time
));
199 /* get the RTC alarm values, which may be incomplete */
200 err
= rtc_read_alarm_internal(rtc
, alarm
);
204 /* full-function RTCs won't have such missing fields */
205 if (rtc_valid_tm(&alarm
->time
) == 0)
208 /* get the "after" timestamp, to detect wrapped fields */
209 err
= rtc_read_time(rtc
, &now
);
213 /* note that tm_sec is a "don't care" value here: */
214 } while ( before
.tm_min
!= now
.tm_min
215 || before
.tm_hour
!= now
.tm_hour
216 || before
.tm_mon
!= now
.tm_mon
217 || before
.tm_year
!= now
.tm_year
);
219 /* Fill in the missing alarm fields using the timestamp; we
220 * know there's at least one since alarm->time is invalid.
222 if (alarm
->time
.tm_sec
== -1)
223 alarm
->time
.tm_sec
= now
.tm_sec
;
224 if (alarm
->time
.tm_min
== -1)
225 alarm
->time
.tm_min
= now
.tm_min
;
226 if (alarm
->time
.tm_hour
== -1)
227 alarm
->time
.tm_hour
= now
.tm_hour
;
229 /* For simplicity, only support date rollover for now */
230 if (alarm
->time
.tm_mday
== -1) {
231 alarm
->time
.tm_mday
= now
.tm_mday
;
234 if (alarm
->time
.tm_mon
== -1) {
235 alarm
->time
.tm_mon
= now
.tm_mon
;
239 if (alarm
->time
.tm_year
== -1) {
240 alarm
->time
.tm_year
= now
.tm_year
;
245 /* with luck, no rollover is needed */
246 rtc_tm_to_time(&now
, &t_now
);
247 rtc_tm_to_time(&alarm
->time
, &t_alm
);
253 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
254 * that will trigger at 5am will do so at 5am Tuesday, which
255 * could also be in the next month or year. This is a common
256 * case, especially for PCs.
259 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "day");
260 t_alm
+= 24 * 60 * 60;
261 rtc_time_to_tm(t_alm
, &alarm
->time
);
264 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
265 * be next month. An alarm matching on the 30th, 29th, or 28th
266 * may end up in the month after that! Many newer PCs support
267 * this type of alarm.
270 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "month");
272 if (alarm
->time
.tm_mon
< 11)
273 alarm
->time
.tm_mon
++;
275 alarm
->time
.tm_mon
= 0;
276 alarm
->time
.tm_year
++;
278 days
= rtc_month_days(alarm
->time
.tm_mon
,
279 alarm
->time
.tm_year
);
280 } while (days
< alarm
->time
.tm_mday
);
283 /* Year rollover ... easy except for leap years! */
285 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "year");
287 alarm
->time
.tm_year
++;
288 } while (rtc_valid_tm(&alarm
->time
) != 0);
292 dev_warn(&rtc
->dev
, "alarm rollover not handled\n");
299 int rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
303 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
306 if (rtc
->ops
== NULL
)
308 else if (!rtc
->ops
->read_alarm
)
311 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
312 alarm
->enabled
= rtc
->aie_timer
.enabled
;
313 alarm
->time
= rtc_ktime_to_tm(rtc
->aie_timer
.node
.expires
);
315 mutex_unlock(&rtc
->ops_lock
);
319 EXPORT_SYMBOL_GPL(rtc_read_alarm
);
321 static int ___rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
327 else if (!rtc
->ops
->set_alarm
)
330 err
= rtc
->ops
->set_alarm(rtc
->dev
.parent
, alarm
);
335 static int __rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
341 err
= rtc_valid_tm(&alarm
->time
);
344 rtc_tm_to_time(&alarm
->time
, &scheduled
);
346 /* Make sure we're not setting alarms in the past */
347 err
= __rtc_read_time(rtc
, &tm
);
348 rtc_tm_to_time(&tm
, &now
);
349 if (scheduled
<= now
)
352 * XXX - We just checked to make sure the alarm time is not
353 * in the past, but there is still a race window where if
354 * the is alarm set for the next second and the second ticks
355 * over right here, before we set the alarm.
358 return ___rtc_set_alarm(rtc
, alarm
);
361 int rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
365 err
= rtc_valid_tm(&alarm
->time
);
369 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
372 if (rtc
->aie_timer
.enabled
) {
373 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
375 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
376 rtc
->aie_timer
.period
= ktime_set(0, 0);
377 if (alarm
->enabled
) {
378 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
380 mutex_unlock(&rtc
->ops_lock
);
383 EXPORT_SYMBOL_GPL(rtc_set_alarm
);
385 /* Called once per device from rtc_device_register */
386 int rtc_initialize_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
390 err
= rtc_valid_tm(&alarm
->time
);
394 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
398 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
399 rtc
->aie_timer
.period
= ktime_set(0, 0);
400 if (alarm
->enabled
) {
401 rtc
->aie_timer
.enabled
= 1;
402 timerqueue_add(&rtc
->timerqueue
, &rtc
->aie_timer
.node
);
404 mutex_unlock(&rtc
->ops_lock
);
407 EXPORT_SYMBOL_GPL(rtc_initialize_alarm
);
411 int rtc_alarm_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
413 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
417 if (rtc
->aie_timer
.enabled
!= enabled
) {
419 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
421 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
428 else if (!rtc
->ops
->alarm_irq_enable
)
431 err
= rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, enabled
);
433 mutex_unlock(&rtc
->ops_lock
);
436 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable
);
438 int rtc_update_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
440 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
444 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
445 if (enabled
== 0 && rtc
->uie_irq_active
) {
446 mutex_unlock(&rtc
->ops_lock
);
447 return rtc_dev_update_irq_enable_emul(rtc
, 0);
450 /* make sure we're changing state */
451 if (rtc
->uie_rtctimer
.enabled
== enabled
)
458 __rtc_read_time(rtc
, &tm
);
459 onesec
= ktime_set(1, 0);
460 now
= rtc_tm_to_ktime(tm
);
461 rtc
->uie_rtctimer
.node
.expires
= ktime_add(now
, onesec
);
462 rtc
->uie_rtctimer
.period
= ktime_set(1, 0);
463 err
= rtc_timer_enqueue(rtc
, &rtc
->uie_rtctimer
);
465 rtc_timer_remove(rtc
, &rtc
->uie_rtctimer
);
468 mutex_unlock(&rtc
->ops_lock
);
469 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
471 * Enable emulation if the driver did not provide
472 * the update_irq_enable function pointer or if returned
473 * -EINVAL to signal that it has been configured without
474 * interrupts or that are not available at the moment.
477 err
= rtc_dev_update_irq_enable_emul(rtc
, enabled
);
482 EXPORT_SYMBOL_GPL(rtc_update_irq_enable
);
486 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
487 * @rtc: pointer to the rtc device
489 * This function is called when an AIE, UIE or PIE mode interrupt
490 * has occurred (or been emulated).
492 * Triggers the registered irq_task function callback.
494 void rtc_handle_legacy_irq(struct rtc_device
*rtc
, int num
, int mode
)
498 /* mark one irq of the appropriate mode */
499 spin_lock_irqsave(&rtc
->irq_lock
, flags
);
500 rtc
->irq_data
= (rtc
->irq_data
+ (num
<< 8)) | (RTC_IRQF
|mode
);
501 spin_unlock_irqrestore(&rtc
->irq_lock
, flags
);
503 /* call the task func */
504 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
506 rtc
->irq_task
->func(rtc
->irq_task
->private_data
);
507 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
509 wake_up_interruptible(&rtc
->irq_queue
);
510 kill_fasync(&rtc
->async_queue
, SIGIO
, POLL_IN
);
515 * rtc_aie_update_irq - AIE mode rtctimer hook
516 * @private: pointer to the rtc_device
518 * This functions is called when the aie_timer expires.
520 void rtc_aie_update_irq(void *private)
522 struct rtc_device
*rtc
= (struct rtc_device
*)private;
523 rtc_handle_legacy_irq(rtc
, 1, RTC_AF
);
528 * rtc_uie_update_irq - UIE mode rtctimer hook
529 * @private: pointer to the rtc_device
531 * This functions is called when the uie_timer expires.
533 void rtc_uie_update_irq(void *private)
535 struct rtc_device
*rtc
= (struct rtc_device
*)private;
536 rtc_handle_legacy_irq(rtc
, 1, RTC_UF
);
541 * rtc_pie_update_irq - PIE mode hrtimer hook
542 * @timer: pointer to the pie mode hrtimer
544 * This function is used to emulate PIE mode interrupts
545 * using an hrtimer. This function is called when the periodic
548 enum hrtimer_restart
rtc_pie_update_irq(struct hrtimer
*timer
)
550 struct rtc_device
*rtc
;
553 rtc
= container_of(timer
, struct rtc_device
, pie_timer
);
555 period
= ktime_set(0, NSEC_PER_SEC
/rtc
->irq_freq
);
556 count
= hrtimer_forward_now(timer
, period
);
558 rtc_handle_legacy_irq(rtc
, count
, RTC_PF
);
560 return HRTIMER_RESTART
;
564 * rtc_update_irq - Triggered when a RTC interrupt occurs.
565 * @rtc: the rtc device
566 * @num: how many irqs are being reported (usually one)
567 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
570 void rtc_update_irq(struct rtc_device
*rtc
,
571 unsigned long num
, unsigned long events
)
573 schedule_work(&rtc
->irqwork
);
575 EXPORT_SYMBOL_GPL(rtc_update_irq
);
577 static int __rtc_match(struct device
*dev
, void *data
)
579 char *name
= (char *)data
;
581 if (strcmp(dev_name(dev
), name
) == 0)
586 struct rtc_device
*rtc_class_open(char *name
)
589 struct rtc_device
*rtc
= NULL
;
591 dev
= class_find_device(rtc_class
, NULL
, name
, __rtc_match
);
593 rtc
= to_rtc_device(dev
);
596 if (!try_module_get(rtc
->owner
)) {
604 EXPORT_SYMBOL_GPL(rtc_class_open
);
606 void rtc_class_close(struct rtc_device
*rtc
)
608 module_put(rtc
->owner
);
609 put_device(&rtc
->dev
);
611 EXPORT_SYMBOL_GPL(rtc_class_close
);
613 int rtc_irq_register(struct rtc_device
*rtc
, struct rtc_task
*task
)
617 if (task
== NULL
|| task
->func
== NULL
)
620 /* Cannot register while the char dev is in use */
621 if (test_and_set_bit_lock(RTC_DEV_BUSY
, &rtc
->flags
))
624 spin_lock_irq(&rtc
->irq_task_lock
);
625 if (rtc
->irq_task
== NULL
) {
626 rtc
->irq_task
= task
;
629 spin_unlock_irq(&rtc
->irq_task_lock
);
631 clear_bit_unlock(RTC_DEV_BUSY
, &rtc
->flags
);
635 EXPORT_SYMBOL_GPL(rtc_irq_register
);
637 void rtc_irq_unregister(struct rtc_device
*rtc
, struct rtc_task
*task
)
639 spin_lock_irq(&rtc
->irq_task_lock
);
640 if (rtc
->irq_task
== task
)
641 rtc
->irq_task
= NULL
;
642 spin_unlock_irq(&rtc
->irq_task_lock
);
644 EXPORT_SYMBOL_GPL(rtc_irq_unregister
);
646 static int rtc_update_hrtimer(struct rtc_device
*rtc
, int enabled
)
649 * We unconditionally cancel the timer here, because otherwise
650 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
651 * when we manage to start the timer before the callback
652 * returns HRTIMER_RESTART.
654 * We cannot use hrtimer_cancel() here as a running callback
655 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
656 * would spin forever.
658 if (hrtimer_try_to_cancel(&rtc
->pie_timer
) < 0)
662 ktime_t period
= ktime_set(0, NSEC_PER_SEC
/ rtc
->irq_freq
);
664 hrtimer_start(&rtc
->pie_timer
, period
, HRTIMER_MODE_REL
);
670 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
671 * @rtc: the rtc device
672 * @task: currently registered with rtc_irq_register()
673 * @enabled: true to enable periodic IRQs
676 * Note that rtc_irq_set_freq() should previously have been used to
677 * specify the desired frequency of periodic IRQ task->func() callbacks.
679 int rtc_irq_set_state(struct rtc_device
*rtc
, struct rtc_task
*task
, int enabled
)
685 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
686 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
688 if (rtc
->irq_task
!= task
)
691 if (rtc_update_hrtimer(rtc
, enabled
) < 0) {
692 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
696 rtc
->pie_enabled
= enabled
;
698 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
701 EXPORT_SYMBOL_GPL(rtc_irq_set_state
);
704 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
705 * @rtc: the rtc device
706 * @task: currently registered with rtc_irq_register()
707 * @freq: positive frequency with which task->func() will be called
710 * Note that rtc_irq_set_state() is used to enable or disable the
713 int rtc_irq_set_freq(struct rtc_device
*rtc
, struct rtc_task
*task
, int freq
)
718 if (freq
<= 0 || freq
> RTC_MAX_FREQ
)
721 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
722 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
724 if (rtc
->irq_task
!= task
)
727 rtc
->irq_freq
= freq
;
728 if (rtc
->pie_enabled
&& rtc_update_hrtimer(rtc
, 1) < 0) {
729 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
734 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
737 EXPORT_SYMBOL_GPL(rtc_irq_set_freq
);
740 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
742 * @timer timer being added.
744 * Enqueues a timer onto the rtc devices timerqueue and sets
745 * the next alarm event appropriately.
747 * Sets the enabled bit on the added timer.
749 * Must hold ops_lock for proper serialization of timerqueue
751 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
754 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
755 if (&timer
->node
== timerqueue_getnext(&rtc
->timerqueue
)) {
756 struct rtc_wkalrm alarm
;
758 alarm
.time
= rtc_ktime_to_tm(timer
->node
.expires
);
760 err
= __rtc_set_alarm(rtc
, &alarm
);
762 schedule_work(&rtc
->irqwork
);
764 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
772 static void rtc_alarm_disable(struct rtc_device
*rtc
)
774 struct rtc_wkalrm alarm
;
777 __rtc_read_time(rtc
, &tm
);
779 alarm
.time
= rtc_ktime_to_tm(ktime_add(rtc_tm_to_ktime(tm
),
783 ___rtc_set_alarm(rtc
, &alarm
);
787 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
789 * @timer timer being removed.
791 * Removes a timer onto the rtc devices timerqueue and sets
792 * the next alarm event appropriately.
794 * Clears the enabled bit on the removed timer.
796 * Must hold ops_lock for proper serialization of timerqueue
798 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
800 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
801 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
803 if (next
== &timer
->node
) {
804 struct rtc_wkalrm alarm
;
806 next
= timerqueue_getnext(&rtc
->timerqueue
);
808 rtc_alarm_disable(rtc
);
811 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
813 err
= __rtc_set_alarm(rtc
, &alarm
);
815 schedule_work(&rtc
->irqwork
);
820 * rtc_timer_do_work - Expires rtc timers
822 * @timer timer being removed.
824 * Expires rtc timers. Reprograms next alarm event if needed.
825 * Called via worktask.
827 * Serializes access to timerqueue via ops_lock mutex
829 void rtc_timer_do_work(struct work_struct
*work
)
831 struct rtc_timer
*timer
;
832 struct timerqueue_node
*next
;
836 struct rtc_device
*rtc
=
837 container_of(work
, struct rtc_device
, irqwork
);
839 mutex_lock(&rtc
->ops_lock
);
841 __rtc_read_time(rtc
, &tm
);
842 now
= rtc_tm_to_ktime(tm
);
843 while ((next
= timerqueue_getnext(&rtc
->timerqueue
))) {
844 if (next
->expires
.tv64
> now
.tv64
)
848 timer
= container_of(next
, struct rtc_timer
, node
);
849 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
851 if (timer
->task
.func
)
852 timer
->task
.func(timer
->task
.private_data
);
854 /* Re-add/fwd periodic timers */
855 if (ktime_to_ns(timer
->period
)) {
856 timer
->node
.expires
= ktime_add(timer
->node
.expires
,
859 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
865 struct rtc_wkalrm alarm
;
867 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
869 err
= __rtc_set_alarm(rtc
, &alarm
);
873 rtc_alarm_disable(rtc
);
875 mutex_unlock(&rtc
->ops_lock
);
879 /* rtc_timer_init - Initializes an rtc_timer
880 * @timer: timer to be intiialized
881 * @f: function pointer to be called when timer fires
882 * @data: private data passed to function pointer
884 * Kernel interface to initializing an rtc_timer.
886 void rtc_timer_init(struct rtc_timer
*timer
, void (*f
)(void* p
), void* data
)
888 timerqueue_init(&timer
->node
);
890 timer
->task
.func
= f
;
891 timer
->task
.private_data
= data
;
894 /* rtc_timer_start - Sets an rtc_timer to fire in the future
895 * @ rtc: rtc device to be used
896 * @ timer: timer being set
897 * @ expires: time at which to expire the timer
898 * @ period: period that the timer will recur
900 * Kernel interface to set an rtc_timer
902 int rtc_timer_start(struct rtc_device
*rtc
, struct rtc_timer
* timer
,
903 ktime_t expires
, ktime_t period
)
906 mutex_lock(&rtc
->ops_lock
);
908 rtc_timer_remove(rtc
, timer
);
910 timer
->node
.expires
= expires
;
911 timer
->period
= period
;
913 ret
= rtc_timer_enqueue(rtc
, timer
);
915 mutex_unlock(&rtc
->ops_lock
);
919 /* rtc_timer_cancel - Stops an rtc_timer
920 * @ rtc: rtc device to be used
921 * @ timer: timer being set
923 * Kernel interface to cancel an rtc_timer
925 int rtc_timer_cancel(struct rtc_device
*rtc
, struct rtc_timer
* timer
)
928 mutex_lock(&rtc
->ops_lock
);
930 rtc_timer_remove(rtc
, timer
);
931 mutex_unlock(&rtc
->ops_lock
);