x86: UV BAU messaging timeouts
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kernel / tlb_uv.c
blobfced96e94e228a2e2be522ed7727be5265e3583a
1 /*
2 * SGI UltraViolet TLB flush routines.
4 * (c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/kernel.h>
13 #include <asm/mmu_context.h>
14 #include <asm/uv/uv.h>
15 #include <asm/uv/uv_mmrs.h>
16 #include <asm/uv/uv_hub.h>
17 #include <asm/uv/uv_bau.h>
18 #include <asm/apic.h>
19 #include <asm/idle.h>
20 #include <asm/tsc.h>
21 #include <asm/irq_vectors.h>
23 static struct bau_control **uv_bau_table_bases __read_mostly;
24 static int uv_bau_retry_limit __read_mostly;
26 /* position of pnode (which is nasid>>1): */
27 static int uv_nshift __read_mostly;
29 static unsigned long uv_mmask __read_mostly;
31 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
32 static DEFINE_PER_CPU(struct bau_control, bau_control);
35 * Determine the first node on a blade.
37 static int __init blade_to_first_node(int blade)
39 int node, b;
41 for_each_online_node(node) {
42 b = uv_node_to_blade_id(node);
43 if (blade == b)
44 return node;
46 BUG();
50 * Determine the apicid of the first cpu on a blade.
52 static int __init blade_to_first_apicid(int blade)
54 int cpu;
56 for_each_present_cpu(cpu)
57 if (blade == uv_cpu_to_blade_id(cpu))
58 return per_cpu(x86_cpu_to_apicid, cpu);
59 return -1;
63 * Free a software acknowledge hardware resource by clearing its Pending
64 * bit. This will return a reply to the sender.
65 * If the message has timed out, a reply has already been sent by the
66 * hardware but the resource has not been released. In that case our
67 * clear of the Timeout bit (as well) will free the resource. No reply will
68 * be sent (the hardware will only do one reply per message).
70 static void uv_reply_to_message(int resource,
71 struct bau_payload_queue_entry *msg,
72 struct bau_msg_status *msp)
74 unsigned long dw;
76 dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
77 msg->replied_to = 1;
78 msg->sw_ack_vector = 0;
79 if (msp)
80 msp->seen_by.bits = 0;
81 uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
85 * Do all the things a cpu should do for a TLB shootdown message.
86 * Other cpu's may come here at the same time for this message.
88 static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
89 int msg_slot, int sw_ack_slot)
91 unsigned long this_cpu_mask;
92 struct bau_msg_status *msp;
93 int cpu;
95 msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
96 cpu = uv_blade_processor_id();
97 msg->number_of_cpus =
98 uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
99 this_cpu_mask = 1UL << cpu;
100 if (msp->seen_by.bits & this_cpu_mask)
101 return;
102 atomic_or_long(&msp->seen_by.bits, this_cpu_mask);
104 if (msg->replied_to == 1)
105 return;
107 if (msg->address == TLB_FLUSH_ALL) {
108 local_flush_tlb();
109 __get_cpu_var(ptcstats).alltlb++;
110 } else {
111 __flush_tlb_one(msg->address);
112 __get_cpu_var(ptcstats).onetlb++;
115 __get_cpu_var(ptcstats).requestee++;
117 atomic_inc_short(&msg->acknowledge_count);
118 if (msg->number_of_cpus == msg->acknowledge_count)
119 uv_reply_to_message(sw_ack_slot, msg, msp);
123 * Examine the payload queue on one distribution node to see
124 * which messages have not been seen, and which cpu(s) have not seen them.
126 * Returns the number of cpu's that have not responded.
128 static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
130 struct bau_payload_queue_entry *msg;
131 struct bau_msg_status *msp;
132 int count = 0;
133 int i;
134 int j;
136 for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
137 msg++, i++) {
138 if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
139 msp = bau_tablesp->msg_statuses + i;
140 printk(KERN_DEBUG
141 "blade %d: address:%#lx %d of %d, not cpu(s): ",
142 i, msg->address, msg->acknowledge_count,
143 msg->number_of_cpus);
144 for (j = 0; j < msg->number_of_cpus; j++) {
145 if (!((1L << j) & msp->seen_by.bits)) {
146 count++;
147 printk("%d ", j);
150 printk("\n");
153 return count;
157 * Examine the payload queue on all the distribution nodes to see
158 * which messages have not been seen, and which cpu(s) have not seen them.
160 * Returns the number of cpu's that have not responded.
162 static int uv_examine_destinations(struct bau_target_nodemask *distribution)
164 int sender;
165 int i;
166 int count = 0;
168 sender = smp_processor_id();
169 for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
170 if (!bau_node_isset(i, distribution))
171 continue;
172 count += uv_examine_destination(uv_bau_table_bases[i], sender);
174 return count;
178 * wait for completion of a broadcast message
180 * return COMPLETE, RETRY or GIVEUP
182 static int uv_wait_completion(struct bau_desc *bau_desc,
183 unsigned long mmr_offset, int right_shift)
185 int exams = 0;
186 long destination_timeouts = 0;
187 long source_timeouts = 0;
188 unsigned long descriptor_status;
190 while ((descriptor_status = (((unsigned long)
191 uv_read_local_mmr(mmr_offset) >>
192 right_shift) & UV_ACT_STATUS_MASK)) !=
193 DESC_STATUS_IDLE) {
194 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
195 source_timeouts++;
196 if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
197 source_timeouts = 0;
198 __get_cpu_var(ptcstats).s_retry++;
199 return FLUSH_RETRY;
202 * spin here looking for progress at the destinations
204 if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
205 destination_timeouts++;
206 if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
208 * returns number of cpus not responding
210 if (uv_examine_destinations
211 (&bau_desc->distribution) == 0) {
212 __get_cpu_var(ptcstats).d_retry++;
213 return FLUSH_RETRY;
215 exams++;
216 if (exams >= uv_bau_retry_limit) {
217 printk(KERN_DEBUG
218 "uv_flush_tlb_others");
219 printk("giving up on cpu %d\n",
220 smp_processor_id());
221 return FLUSH_GIVEUP;
224 * delays can hang the simulator
225 udelay(1000);
227 destination_timeouts = 0;
230 cpu_relax();
232 return FLUSH_COMPLETE;
236 * uv_flush_send_and_wait
238 * Send a broadcast and wait for a broadcast message to complete.
240 * The flush_mask contains the cpus the broadcast was sent to.
242 * Returns NULL if all remote flushing was done. The mask is zeroed.
243 * Returns @flush_mask if some remote flushing remains to be done. The
244 * mask will have some bits still set.
246 const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
247 struct bau_desc *bau_desc,
248 struct cpumask *flush_mask)
250 int completion_status = 0;
251 int right_shift;
252 int tries = 0;
253 int pnode;
254 int bit;
255 unsigned long mmr_offset;
256 unsigned long index;
257 cycles_t time1;
258 cycles_t time2;
260 if (cpu < UV_CPUS_PER_ACT_STATUS) {
261 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
262 right_shift = cpu * UV_ACT_STATUS_SIZE;
263 } else {
264 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
265 right_shift =
266 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
268 time1 = get_cycles();
269 do {
270 tries++;
271 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
272 cpu;
273 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
274 completion_status = uv_wait_completion(bau_desc, mmr_offset,
275 right_shift);
276 } while (completion_status == FLUSH_RETRY);
277 time2 = get_cycles();
278 __get_cpu_var(ptcstats).sflush += (time2 - time1);
279 if (tries > 1)
280 __get_cpu_var(ptcstats).retriesok++;
282 if (completion_status == FLUSH_GIVEUP) {
284 * Cause the caller to do an IPI-style TLB shootdown on
285 * the cpu's, all of which are still in the mask.
287 __get_cpu_var(ptcstats).ptc_i++;
288 return flush_mask;
292 * Success, so clear the remote cpu's from the mask so we don't
293 * use the IPI method of shootdown on them.
295 for_each_cpu(bit, flush_mask) {
296 pnode = uv_cpu_to_pnode(bit);
297 if (pnode == this_pnode)
298 continue;
299 cpumask_clear_cpu(bit, flush_mask);
301 if (!cpumask_empty(flush_mask))
302 return flush_mask;
303 return NULL;
307 * uv_flush_tlb_others - globally purge translation cache of a virtual
308 * address or all TLB's
309 * @cpumask: mask of all cpu's in which the address is to be removed
310 * @mm: mm_struct containing virtual address range
311 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
312 * @cpu: the current cpu
314 * This is the entry point for initiating any UV global TLB shootdown.
316 * Purges the translation caches of all specified processors of the given
317 * virtual address, or purges all TLB's on specified processors.
319 * The caller has derived the cpumask from the mm_struct. This function
320 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
322 * The cpumask is converted into a nodemask of the nodes containing
323 * the cpus.
325 * Note that this function should be called with preemption disabled.
327 * Returns NULL if all remote flushing was done.
328 * Returns pointer to cpumask if some remote flushing remains to be
329 * done. The returned pointer is valid till preemption is re-enabled.
331 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
332 struct mm_struct *mm,
333 unsigned long va, unsigned int cpu)
335 static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
336 struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
337 int i;
338 int bit;
339 int pnode;
340 int uv_cpu;
341 int this_pnode;
342 int locals = 0;
343 struct bau_desc *bau_desc;
345 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
347 uv_cpu = uv_blade_processor_id();
348 this_pnode = uv_hub_info->pnode;
349 bau_desc = __get_cpu_var(bau_control).descriptor_base;
350 bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
352 bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
354 i = 0;
355 for_each_cpu(bit, flush_mask) {
356 pnode = uv_cpu_to_pnode(bit);
357 BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
358 if (pnode == this_pnode) {
359 locals++;
360 continue;
362 bau_node_set(pnode, &bau_desc->distribution);
363 i++;
365 if (i == 0) {
367 * no off_node flushing; return status for local node
369 if (locals)
370 return flush_mask;
371 else
372 return NULL;
374 __get_cpu_var(ptcstats).requestor++;
375 __get_cpu_var(ptcstats).ntargeted += i;
377 bau_desc->payload.address = va;
378 bau_desc->payload.sending_cpu = cpu;
380 return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
384 * The BAU message interrupt comes here. (registered by set_intr_gate)
385 * See entry_64.S
387 * We received a broadcast assist message.
389 * Interrupts may have been disabled; this interrupt could represent
390 * the receipt of several messages.
392 * All cores/threads on this node get this interrupt.
393 * The last one to see it does the s/w ack.
394 * (the resource will not be freed until noninterruptable cpus see this
395 * interrupt; hardware will timeout the s/w ack and reply ERROR)
397 void uv_bau_message_interrupt(struct pt_regs *regs)
399 struct bau_payload_queue_entry *va_queue_first;
400 struct bau_payload_queue_entry *va_queue_last;
401 struct bau_payload_queue_entry *msg;
402 struct pt_regs *old_regs = set_irq_regs(regs);
403 cycles_t time1;
404 cycles_t time2;
405 int msg_slot;
406 int sw_ack_slot;
407 int fw;
408 int count = 0;
409 unsigned long local_pnode;
411 ack_APIC_irq();
412 exit_idle();
413 irq_enter();
415 time1 = get_cycles();
417 local_pnode = uv_blade_to_pnode(uv_numa_blade_id());
419 va_queue_first = __get_cpu_var(bau_control).va_queue_first;
420 va_queue_last = __get_cpu_var(bau_control).va_queue_last;
422 msg = __get_cpu_var(bau_control).bau_msg_head;
423 while (msg->sw_ack_vector) {
424 count++;
425 fw = msg->sw_ack_vector;
426 msg_slot = msg - va_queue_first;
427 sw_ack_slot = ffs(fw) - 1;
429 uv_bau_process_message(msg, msg_slot, sw_ack_slot);
431 msg++;
432 if (msg > va_queue_last)
433 msg = va_queue_first;
434 __get_cpu_var(bau_control).bau_msg_head = msg;
436 if (!count)
437 __get_cpu_var(ptcstats).nomsg++;
438 else if (count > 1)
439 __get_cpu_var(ptcstats).multmsg++;
441 time2 = get_cycles();
442 __get_cpu_var(ptcstats).dflush += (time2 - time1);
444 irq_exit();
445 set_irq_regs(old_regs);
449 * uv_enable_timeouts
451 * Each target blade (i.e. blades that have cpu's) needs to have
452 * shootdown message timeouts enabled. The timeout does not cause
453 * an interrupt, but causes an error message to be returned to
454 * the sender.
456 static void uv_enable_timeouts(void)
458 int blade;
459 int nblades;
460 int pnode;
461 unsigned long mmr_image;
463 nblades = uv_num_possible_blades();
465 for (blade = 0; blade < nblades; blade++) {
466 if (!uv_blade_nr_possible_cpus(blade))
467 continue;
469 pnode = uv_blade_to_pnode(blade);
470 mmr_image =
471 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
473 * Set the timeout period and then lock it in, in three
474 * steps; captures and locks in the period.
476 * To program the period, the SOFT_ACK_MODE must be off.
478 mmr_image &= ~((unsigned long)1 <<
479 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
480 uv_write_global_mmr64
481 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
483 * Set the 4-bit period.
485 mmr_image &= ~((unsigned long)0xf <<
486 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
487 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
488 UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
489 uv_write_global_mmr64
490 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
492 * Subsequent reversals of the timebase bit (3) cause an
493 * immediate timeout of one or all INTD resources as
494 * indicated in bits 2:0 (7 causes all of them to timeout).
496 mmr_image |= ((unsigned long)1 <<
497 UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
498 uv_write_global_mmr64
499 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
503 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
505 if (*offset < num_possible_cpus())
506 return offset;
507 return NULL;
510 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
512 (*offset)++;
513 if (*offset < num_possible_cpus())
514 return offset;
515 return NULL;
518 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
523 * Display the statistics thru /proc
524 * data points to the cpu number
526 static int uv_ptc_seq_show(struct seq_file *file, void *data)
528 struct ptc_stats *stat;
529 int cpu;
531 cpu = *(loff_t *)data;
533 if (!cpu) {
534 seq_printf(file,
535 "# cpu requestor requestee one all sretry dretry ptc_i ");
536 seq_printf(file,
537 "sw_ack sflush dflush sok dnomsg dmult starget\n");
539 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
540 stat = &per_cpu(ptcstats, cpu);
541 seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
542 cpu, stat->requestor,
543 stat->requestee, stat->onetlb, stat->alltlb,
544 stat->s_retry, stat->d_retry, stat->ptc_i);
545 seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
546 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
547 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
548 stat->sflush, stat->dflush,
549 stat->retriesok, stat->nomsg,
550 stat->multmsg, stat->ntargeted);
553 return 0;
557 * 0: display meaning of the statistics
558 * >0: retry limit
560 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
561 size_t count, loff_t *data)
563 long newmode;
564 char optstr[64];
566 if (count == 0 || count > sizeof(optstr))
567 return -EINVAL;
568 if (copy_from_user(optstr, user, count))
569 return -EFAULT;
570 optstr[count - 1] = '\0';
571 if (strict_strtoul(optstr, 10, &newmode) < 0) {
572 printk(KERN_DEBUG "%s is invalid\n", optstr);
573 return -EINVAL;
576 if (newmode == 0) {
577 printk(KERN_DEBUG "# cpu: cpu number\n");
578 printk(KERN_DEBUG
579 "requestor: times this cpu was the flush requestor\n");
580 printk(KERN_DEBUG
581 "requestee: times this cpu was requested to flush its TLBs\n");
582 printk(KERN_DEBUG
583 "one: times requested to flush a single address\n");
584 printk(KERN_DEBUG
585 "all: times requested to flush all TLB's\n");
586 printk(KERN_DEBUG
587 "sretry: number of retries of source-side timeouts\n");
588 printk(KERN_DEBUG
589 "dretry: number of retries of destination-side timeouts\n");
590 printk(KERN_DEBUG
591 "ptc_i: times UV fell through to IPI-style flushes\n");
592 printk(KERN_DEBUG
593 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
594 printk(KERN_DEBUG
595 "sflush_us: cycles spent in uv_flush_tlb_others()\n");
596 printk(KERN_DEBUG
597 "dflush_us: cycles spent in handling flush requests\n");
598 printk(KERN_DEBUG "sok: successes on retry\n");
599 printk(KERN_DEBUG "dnomsg: interrupts with no message\n");
600 printk(KERN_DEBUG
601 "dmult: interrupts with multiple messages\n");
602 printk(KERN_DEBUG "starget: nodes targeted\n");
603 } else {
604 uv_bau_retry_limit = newmode;
605 printk(KERN_DEBUG "timeout retry limit:%d\n",
606 uv_bau_retry_limit);
609 return count;
612 static const struct seq_operations uv_ptc_seq_ops = {
613 .start = uv_ptc_seq_start,
614 .next = uv_ptc_seq_next,
615 .stop = uv_ptc_seq_stop,
616 .show = uv_ptc_seq_show
619 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
621 return seq_open(file, &uv_ptc_seq_ops);
624 static const struct file_operations proc_uv_ptc_operations = {
625 .open = uv_ptc_proc_open,
626 .read = seq_read,
627 .write = uv_ptc_proc_write,
628 .llseek = seq_lseek,
629 .release = seq_release,
632 static int __init uv_ptc_init(void)
634 struct proc_dir_entry *proc_uv_ptc;
636 if (!is_uv_system())
637 return 0;
639 proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
640 if (!proc_uv_ptc) {
641 printk(KERN_ERR "unable to create %s proc entry\n",
642 UV_PTC_BASENAME);
643 return -EINVAL;
645 proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
646 return 0;
650 * begin the initialization of the per-blade control structures
652 static struct bau_control * __init uv_table_bases_init(int blade, int node)
654 int i;
655 struct bau_msg_status *msp;
656 struct bau_control *bau_tabp;
658 bau_tabp =
659 kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
660 BUG_ON(!bau_tabp);
662 bau_tabp->msg_statuses =
663 kmalloc_node(sizeof(struct bau_msg_status) *
664 DEST_Q_SIZE, GFP_KERNEL, node);
665 BUG_ON(!bau_tabp->msg_statuses);
667 for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
668 bau_cpubits_clear(&msp->seen_by, (int)
669 uv_blade_nr_possible_cpus(blade));
671 uv_bau_table_bases[blade] = bau_tabp;
673 return bau_tabp;
677 * finish the initialization of the per-blade control structures
679 static void __init
680 uv_table_bases_finish(int blade,
681 struct bau_control *bau_tablesp,
682 struct bau_desc *adp)
684 struct bau_control *bcp;
685 int cpu;
687 for_each_present_cpu(cpu) {
688 if (blade != uv_cpu_to_blade_id(cpu))
689 continue;
691 bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
692 bcp->bau_msg_head = bau_tablesp->va_queue_first;
693 bcp->va_queue_first = bau_tablesp->va_queue_first;
694 bcp->va_queue_last = bau_tablesp->va_queue_last;
695 bcp->msg_statuses = bau_tablesp->msg_statuses;
696 bcp->descriptor_base = adp;
701 * initialize the sending side's sending buffers
703 static struct bau_desc * __init
704 uv_activation_descriptor_init(int node, int pnode)
706 int i;
707 unsigned long pa;
708 unsigned long m;
709 unsigned long n;
710 unsigned long mmr_image;
711 struct bau_desc *adp;
712 struct bau_desc *ad2;
714 adp = (struct bau_desc *)kmalloc_node(16384, GFP_KERNEL, node);
715 BUG_ON(!adp);
717 pa = __pa((unsigned long)adp);
718 n = pa >> uv_nshift;
719 m = pa & uv_mmask;
721 mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
722 if (mmr_image) {
723 uv_write_global_mmr64(pnode, (unsigned long)
724 UVH_LB_BAU_SB_DESCRIPTOR_BASE,
725 (n << UV_DESC_BASE_PNODE_SHIFT | m));
728 for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
729 memset(ad2, 0, sizeof(struct bau_desc));
730 ad2->header.sw_ack_flag = 1;
731 ad2->header.base_dest_nodeid = uv_cpu_to_pnode(0);
732 ad2->header.command = UV_NET_ENDPOINT_INTD;
733 ad2->header.int_both = 1;
735 * all others need to be set to zero:
736 * fairness chaining multilevel count replied_to
739 return adp;
743 * initialize the destination side's receiving buffers
745 static struct bau_payload_queue_entry * __init
746 uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
748 struct bau_payload_queue_entry *pqp;
749 char *cp;
751 pqp = (struct bau_payload_queue_entry *) kmalloc_node(
752 (DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
753 GFP_KERNEL, node);
754 BUG_ON(!pqp);
756 cp = (char *)pqp + 31;
757 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
758 bau_tablesp->va_queue_first = pqp;
759 uv_write_global_mmr64(pnode,
760 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
761 ((unsigned long)pnode <<
762 UV_PAYLOADQ_PNODE_SHIFT) |
763 uv_physnodeaddr(pqp));
764 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
765 uv_physnodeaddr(pqp));
766 bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
767 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
768 (unsigned long)
769 uv_physnodeaddr(bau_tablesp->va_queue_last));
770 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
772 return pqp;
776 * Initialization of each UV blade's structures
778 static int __init uv_init_blade(int blade)
780 int node;
781 int pnode;
782 unsigned long pa;
783 unsigned long apicid;
784 struct bau_desc *adp;
785 struct bau_payload_queue_entry *pqp;
786 struct bau_control *bau_tablesp;
788 node = blade_to_first_node(blade);
789 bau_tablesp = uv_table_bases_init(blade, node);
790 pnode = uv_blade_to_pnode(blade);
791 adp = uv_activation_descriptor_init(node, pnode);
792 pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
793 uv_table_bases_finish(blade, bau_tablesp, adp);
795 * the below initialization can't be in firmware because the
796 * messaging IRQ will be determined by the OS
798 apicid = blade_to_first_apicid(blade);
799 pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
800 if ((pa & 0xff) != UV_BAU_MESSAGE) {
801 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
802 ((apicid << 32) | UV_BAU_MESSAGE));
804 return 0;
808 * Initialization of BAU-related structures
810 static int __init uv_bau_init(void)
812 int blade;
813 int nblades;
814 int cur_cpu;
816 if (!is_uv_system())
817 return 0;
819 uv_bau_retry_limit = 1;
820 uv_nshift = uv_hub_info->n_val;
821 uv_mmask = (1UL << uv_hub_info->n_val) - 1;
822 nblades = uv_num_possible_blades();
824 uv_bau_table_bases = (struct bau_control **)
825 kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
826 BUG_ON(!uv_bau_table_bases);
828 for (blade = 0; blade < nblades; blade++)
829 if (uv_blade_nr_possible_cpus(blade))
830 uv_init_blade(blade);
832 alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
833 uv_enable_timeouts();
835 return 0;
837 __initcall(uv_bau_init);
838 __initcall(uv_ptc_init);