2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
57 #include <asm/tlbflush.h>
58 #include <asm/div64.h>
61 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62 DEFINE_PER_CPU(int, numa_node
);
63 EXPORT_PER_CPU_SYMBOL(numa_node
);
66 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
73 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
74 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
78 * Array of node states.
80 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
81 [N_POSSIBLE
] = NODE_MASK_ALL
,
82 [N_ONLINE
] = { { [0] = 1UL } },
84 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
86 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
88 [N_CPU
] = { { [0] = 1UL } },
91 EXPORT_SYMBOL(node_states
);
93 unsigned long totalram_pages __read_mostly
;
94 unsigned long totalreserve_pages __read_mostly
;
95 int percpu_pagelist_fraction
;
96 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
98 #ifdef CONFIG_PM_SLEEP
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
107 void set_gfp_allowed_mask(gfp_t mask
)
109 WARN_ON(!mutex_is_locked(&pm_mutex
));
110 gfp_allowed_mask
= mask
;
113 gfp_t
clear_gfp_allowed_mask(gfp_t mask
)
115 gfp_t ret
= gfp_allowed_mask
;
117 WARN_ON(!mutex_is_locked(&pm_mutex
));
118 gfp_allowed_mask
&= ~mask
;
121 #endif /* CONFIG_PM_SLEEP */
123 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
124 int pageblock_order __read_mostly
;
127 static void __free_pages_ok(struct page
*page
, unsigned int order
);
130 * results with 256, 32 in the lowmem_reserve sysctl:
131 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
132 * 1G machine -> (16M dma, 784M normal, 224M high)
133 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
134 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
135 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
137 * TBD: should special case ZONE_DMA32 machines here - in those we normally
138 * don't need any ZONE_NORMAL reservation
140 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
141 #ifdef CONFIG_ZONE_DMA
144 #ifdef CONFIG_ZONE_DMA32
147 #ifdef CONFIG_HIGHMEM
153 EXPORT_SYMBOL(totalram_pages
);
155 static char * const zone_names
[MAX_NR_ZONES
] = {
156 #ifdef CONFIG_ZONE_DMA
159 #ifdef CONFIG_ZONE_DMA32
163 #ifdef CONFIG_HIGHMEM
169 int min_free_kbytes
= 1024;
171 static unsigned long __meminitdata nr_kernel_pages
;
172 static unsigned long __meminitdata nr_all_pages
;
173 static unsigned long __meminitdata dma_reserve
;
175 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
177 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
178 * ranges of memory (RAM) that may be registered with add_active_range().
179 * Ranges passed to add_active_range() will be merged if possible
180 * so the number of times add_active_range() can be called is
181 * related to the number of nodes and the number of holes
183 #ifdef CONFIG_MAX_ACTIVE_REGIONS
184 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
185 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
187 #if MAX_NUMNODES >= 32
188 /* If there can be many nodes, allow up to 50 holes per node */
189 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
191 /* By default, allow up to 256 distinct regions */
192 #define MAX_ACTIVE_REGIONS 256
196 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
197 static int __meminitdata nr_nodemap_entries
;
198 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
199 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
200 static unsigned long __initdata required_kernelcore
;
201 static unsigned long __initdata required_movablecore
;
202 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
204 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
206 EXPORT_SYMBOL(movable_zone
);
207 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
210 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
211 int nr_online_nodes __read_mostly
= 1;
212 EXPORT_SYMBOL(nr_node_ids
);
213 EXPORT_SYMBOL(nr_online_nodes
);
216 int page_group_by_mobility_disabled __read_mostly
;
218 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
221 if (unlikely(page_group_by_mobility_disabled
))
222 migratetype
= MIGRATE_UNMOVABLE
;
224 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
225 PB_migrate
, PB_migrate_end
);
228 bool oom_killer_disabled __read_mostly
;
230 #ifdef CONFIG_DEBUG_VM
231 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
235 unsigned long pfn
= page_to_pfn(page
);
238 seq
= zone_span_seqbegin(zone
);
239 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
241 else if (pfn
< zone
->zone_start_pfn
)
243 } while (zone_span_seqretry(zone
, seq
));
248 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
250 if (!pfn_valid_within(page_to_pfn(page
)))
252 if (zone
!= page_zone(page
))
258 * Temporary debugging check for pages not lying within a given zone.
260 static int bad_range(struct zone
*zone
, struct page
*page
)
262 if (page_outside_zone_boundaries(zone
, page
))
264 if (!page_is_consistent(zone
, page
))
270 static inline int bad_range(struct zone
*zone
, struct page
*page
)
276 static void bad_page(struct page
*page
)
278 static unsigned long resume
;
279 static unsigned long nr_shown
;
280 static unsigned long nr_unshown
;
282 /* Don't complain about poisoned pages */
283 if (PageHWPoison(page
)) {
284 __ClearPageBuddy(page
);
289 * Allow a burst of 60 reports, then keep quiet for that minute;
290 * or allow a steady drip of one report per second.
292 if (nr_shown
== 60) {
293 if (time_before(jiffies
, resume
)) {
299 "BUG: Bad page state: %lu messages suppressed\n",
306 resume
= jiffies
+ 60 * HZ
;
308 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
309 current
->comm
, page_to_pfn(page
));
314 /* Leave bad fields for debug, except PageBuddy could make trouble */
315 __ClearPageBuddy(page
);
316 add_taint(TAINT_BAD_PAGE
);
320 * Higher-order pages are called "compound pages". They are structured thusly:
322 * The first PAGE_SIZE page is called the "head page".
324 * The remaining PAGE_SIZE pages are called "tail pages".
326 * All pages have PG_compound set. All pages have their ->private pointing at
327 * the head page (even the head page has this).
329 * The first tail page's ->lru.next holds the address of the compound page's
330 * put_page() function. Its ->lru.prev holds the order of allocation.
331 * This usage means that zero-order pages may not be compound.
334 static void free_compound_page(struct page
*page
)
336 __free_pages_ok(page
, compound_order(page
));
339 void prep_compound_page(struct page
*page
, unsigned long order
)
342 int nr_pages
= 1 << order
;
344 set_compound_page_dtor(page
, free_compound_page
);
345 set_compound_order(page
, order
);
347 for (i
= 1; i
< nr_pages
; i
++) {
348 struct page
*p
= page
+ i
;
351 p
->first_page
= page
;
355 static int destroy_compound_page(struct page
*page
, unsigned long order
)
358 int nr_pages
= 1 << order
;
361 if (unlikely(compound_order(page
) != order
) ||
362 unlikely(!PageHead(page
))) {
367 __ClearPageHead(page
);
369 for (i
= 1; i
< nr_pages
; i
++) {
370 struct page
*p
= page
+ i
;
372 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
382 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
387 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
388 * and __GFP_HIGHMEM from hard or soft interrupt context.
390 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
391 for (i
= 0; i
< (1 << order
); i
++)
392 clear_highpage(page
+ i
);
395 static inline void set_page_order(struct page
*page
, int order
)
397 set_page_private(page
, order
);
398 __SetPageBuddy(page
);
401 static inline void rmv_page_order(struct page
*page
)
403 __ClearPageBuddy(page
);
404 set_page_private(page
, 0);
408 * Locate the struct page for both the matching buddy in our
409 * pair (buddy1) and the combined O(n+1) page they form (page).
411 * 1) Any buddy B1 will have an order O twin B2 which satisfies
412 * the following equation:
414 * For example, if the starting buddy (buddy2) is #8 its order
416 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
418 * 2) Any buddy B will have an order O+1 parent P which
419 * satisfies the following equation:
422 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
424 static inline struct page
*
425 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
427 unsigned long buddy_idx
= page_idx
^ (1 << order
);
429 return page
+ (buddy_idx
- page_idx
);
432 static inline unsigned long
433 __find_combined_index(unsigned long page_idx
, unsigned int order
)
435 return (page_idx
& ~(1 << order
));
439 * This function checks whether a page is free && is the buddy
440 * we can do coalesce a page and its buddy if
441 * (a) the buddy is not in a hole &&
442 * (b) the buddy is in the buddy system &&
443 * (c) a page and its buddy have the same order &&
444 * (d) a page and its buddy are in the same zone.
446 * For recording whether a page is in the buddy system, we use PG_buddy.
447 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
449 * For recording page's order, we use page_private(page).
451 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
454 if (!pfn_valid_within(page_to_pfn(buddy
)))
457 if (page_zone_id(page
) != page_zone_id(buddy
))
460 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
461 VM_BUG_ON(page_count(buddy
) != 0);
468 * Freeing function for a buddy system allocator.
470 * The concept of a buddy system is to maintain direct-mapped table
471 * (containing bit values) for memory blocks of various "orders".
472 * The bottom level table contains the map for the smallest allocatable
473 * units of memory (here, pages), and each level above it describes
474 * pairs of units from the levels below, hence, "buddies".
475 * At a high level, all that happens here is marking the table entry
476 * at the bottom level available, and propagating the changes upward
477 * as necessary, plus some accounting needed to play nicely with other
478 * parts of the VM system.
479 * At each level, we keep a list of pages, which are heads of continuous
480 * free pages of length of (1 << order) and marked with PG_buddy. Page's
481 * order is recorded in page_private(page) field.
482 * So when we are allocating or freeing one, we can derive the state of the
483 * other. That is, if we allocate a small block, and both were
484 * free, the remainder of the region must be split into blocks.
485 * If a block is freed, and its buddy is also free, then this
486 * triggers coalescing into a block of larger size.
491 static inline void __free_one_page(struct page
*page
,
492 struct zone
*zone
, unsigned int order
,
495 unsigned long page_idx
;
496 unsigned long combined_idx
;
499 if (unlikely(PageCompound(page
)))
500 if (unlikely(destroy_compound_page(page
, order
)))
503 VM_BUG_ON(migratetype
== -1);
505 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
507 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
508 VM_BUG_ON(bad_range(zone
, page
));
510 while (order
< MAX_ORDER
-1) {
511 buddy
= __page_find_buddy(page
, page_idx
, order
);
512 if (!page_is_buddy(page
, buddy
, order
))
515 /* Our buddy is free, merge with it and move up one order. */
516 list_del(&buddy
->lru
);
517 zone
->free_area
[order
].nr_free
--;
518 rmv_page_order(buddy
);
519 combined_idx
= __find_combined_index(page_idx
, order
);
520 page
= page
+ (combined_idx
- page_idx
);
521 page_idx
= combined_idx
;
524 set_page_order(page
, order
);
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
534 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
535 struct page
*higher_page
, *higher_buddy
;
536 combined_idx
= __find_combined_index(page_idx
, order
);
537 higher_page
= page
+ combined_idx
- page_idx
;
538 higher_buddy
= __page_find_buddy(higher_page
, combined_idx
, order
+ 1);
539 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
540 list_add_tail(&page
->lru
,
541 &zone
->free_area
[order
].free_list
[migratetype
]);
546 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
548 zone
->free_area
[order
].nr_free
++;
552 * free_page_mlock() -- clean up attempts to free and mlocked() page.
553 * Page should not be on lru, so no need to fix that up.
554 * free_pages_check() will verify...
556 static inline void free_page_mlock(struct page
*page
)
558 __dec_zone_page_state(page
, NR_MLOCK
);
559 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
562 static inline int free_pages_check(struct page
*page
)
564 if (unlikely(page_mapcount(page
) |
565 (page
->mapping
!= NULL
) |
566 (atomic_read(&page
->_count
) != 0) |
567 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
571 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
572 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
577 * Frees a number of pages from the PCP lists
578 * Assumes all pages on list are in same zone, and of same order.
579 * count is the number of pages to free.
581 * If the zone was previously in an "all pages pinned" state then look to
582 * see if this freeing clears that state.
584 * And clear the zone's pages_scanned counter, to hold off the "all pages are
585 * pinned" detection logic.
587 static void free_pcppages_bulk(struct zone
*zone
, int count
,
588 struct per_cpu_pages
*pcp
)
594 spin_lock(&zone
->lock
);
595 zone
->all_unreclaimable
= 0;
596 zone
->pages_scanned
= 0;
600 struct list_head
*list
;
603 * Remove pages from lists in a round-robin fashion. A
604 * batch_free count is maintained that is incremented when an
605 * empty list is encountered. This is so more pages are freed
606 * off fuller lists instead of spinning excessively around empty
611 if (++migratetype
== MIGRATE_PCPTYPES
)
613 list
= &pcp
->lists
[migratetype
];
614 } while (list_empty(list
));
617 page
= list_entry(list
->prev
, struct page
, lru
);
618 /* must delete as __free_one_page list manipulates */
619 list_del(&page
->lru
);
620 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
621 __free_one_page(page
, zone
, 0, page_private(page
));
622 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
623 } while (--to_free
&& --batch_free
&& !list_empty(list
));
625 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
626 spin_unlock(&zone
->lock
);
629 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
632 spin_lock(&zone
->lock
);
633 zone
->all_unreclaimable
= 0;
634 zone
->pages_scanned
= 0;
636 __free_one_page(page
, zone
, order
, migratetype
);
637 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
638 spin_unlock(&zone
->lock
);
641 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
646 trace_mm_page_free_direct(page
, order
);
647 kmemcheck_free_shadow(page
, order
);
649 for (i
= 0; i
< (1 << order
); i
++) {
650 struct page
*pg
= page
+ i
;
654 bad
+= free_pages_check(pg
);
659 if (!PageHighMem(page
)) {
660 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
661 debug_check_no_obj_freed(page_address(page
),
664 arch_free_page(page
, order
);
665 kernel_map_pages(page
, 1 << order
, 0);
670 static void __free_pages_ok(struct page
*page
, unsigned int order
)
673 int wasMlocked
= __TestClearPageMlocked(page
);
675 if (!free_pages_prepare(page
, order
))
678 local_irq_save(flags
);
679 if (unlikely(wasMlocked
))
680 free_page_mlock(page
);
681 __count_vm_events(PGFREE
, 1 << order
);
682 free_one_page(page_zone(page
), page
, order
,
683 get_pageblock_migratetype(page
));
684 local_irq_restore(flags
);
688 * permit the bootmem allocator to evade page validation on high-order frees
690 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
693 __ClearPageReserved(page
);
694 set_page_count(page
, 0);
695 set_page_refcounted(page
);
701 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
702 struct page
*p
= &page
[loop
];
704 if (loop
+ 1 < BITS_PER_LONG
)
706 __ClearPageReserved(p
);
707 set_page_count(p
, 0);
710 set_page_refcounted(page
);
711 __free_pages(page
, order
);
717 * The order of subdivision here is critical for the IO subsystem.
718 * Please do not alter this order without good reasons and regression
719 * testing. Specifically, as large blocks of memory are subdivided,
720 * the order in which smaller blocks are delivered depends on the order
721 * they're subdivided in this function. This is the primary factor
722 * influencing the order in which pages are delivered to the IO
723 * subsystem according to empirical testing, and this is also justified
724 * by considering the behavior of a buddy system containing a single
725 * large block of memory acted on by a series of small allocations.
726 * This behavior is a critical factor in sglist merging's success.
730 static inline void expand(struct zone
*zone
, struct page
*page
,
731 int low
, int high
, struct free_area
*area
,
734 unsigned long size
= 1 << high
;
740 VM_BUG_ON(bad_range(zone
, &page
[size
]));
741 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
743 set_page_order(&page
[size
], high
);
748 * This page is about to be returned from the page allocator
750 static inline int check_new_page(struct page
*page
)
752 if (unlikely(page_mapcount(page
) |
753 (page
->mapping
!= NULL
) |
754 (atomic_read(&page
->_count
) != 0) |
755 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
762 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
766 for (i
= 0; i
< (1 << order
); i
++) {
767 struct page
*p
= page
+ i
;
768 if (unlikely(check_new_page(p
)))
772 set_page_private(page
, 0);
773 set_page_refcounted(page
);
775 arch_alloc_page(page
, order
);
776 kernel_map_pages(page
, 1 << order
, 1);
778 if (gfp_flags
& __GFP_ZERO
)
779 prep_zero_page(page
, order
, gfp_flags
);
781 if (order
&& (gfp_flags
& __GFP_COMP
))
782 prep_compound_page(page
, order
);
788 * Go through the free lists for the given migratetype and remove
789 * the smallest available page from the freelists
792 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
795 unsigned int current_order
;
796 struct free_area
* area
;
799 /* Find a page of the appropriate size in the preferred list */
800 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
801 area
= &(zone
->free_area
[current_order
]);
802 if (list_empty(&area
->free_list
[migratetype
]))
805 page
= list_entry(area
->free_list
[migratetype
].next
,
807 list_del(&page
->lru
);
808 rmv_page_order(page
);
810 expand(zone
, page
, order
, current_order
, area
, migratetype
);
819 * This array describes the order lists are fallen back to when
820 * the free lists for the desirable migrate type are depleted
822 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
823 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
824 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
825 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
826 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
830 * Move the free pages in a range to the free lists of the requested type.
831 * Note that start_page and end_pages are not aligned on a pageblock
832 * boundary. If alignment is required, use move_freepages_block()
834 static int move_freepages(struct zone
*zone
,
835 struct page
*start_page
, struct page
*end_page
,
842 #ifndef CONFIG_HOLES_IN_ZONE
844 * page_zone is not safe to call in this context when
845 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
846 * anyway as we check zone boundaries in move_freepages_block().
847 * Remove at a later date when no bug reports exist related to
848 * grouping pages by mobility
850 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
853 for (page
= start_page
; page
<= end_page
;) {
854 /* Make sure we are not inadvertently changing nodes */
855 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
857 if (!pfn_valid_within(page_to_pfn(page
))) {
862 if (!PageBuddy(page
)) {
867 order
= page_order(page
);
868 list_del(&page
->lru
);
870 &zone
->free_area
[order
].free_list
[migratetype
]);
872 pages_moved
+= 1 << order
;
878 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
881 unsigned long start_pfn
, end_pfn
;
882 struct page
*start_page
, *end_page
;
884 start_pfn
= page_to_pfn(page
);
885 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
886 start_page
= pfn_to_page(start_pfn
);
887 end_page
= start_page
+ pageblock_nr_pages
- 1;
888 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
890 /* Do not cross zone boundaries */
891 if (start_pfn
< zone
->zone_start_pfn
)
893 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
896 return move_freepages(zone
, start_page
, end_page
, migratetype
);
899 static void change_pageblock_range(struct page
*pageblock_page
,
900 int start_order
, int migratetype
)
902 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
904 while (nr_pageblocks
--) {
905 set_pageblock_migratetype(pageblock_page
, migratetype
);
906 pageblock_page
+= pageblock_nr_pages
;
910 /* Remove an element from the buddy allocator from the fallback list */
911 static inline struct page
*
912 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
914 struct free_area
* area
;
919 /* Find the largest possible block of pages in the other list */
920 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
922 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
923 migratetype
= fallbacks
[start_migratetype
][i
];
925 /* MIGRATE_RESERVE handled later if necessary */
926 if (migratetype
== MIGRATE_RESERVE
)
929 area
= &(zone
->free_area
[current_order
]);
930 if (list_empty(&area
->free_list
[migratetype
]))
933 page
= list_entry(area
->free_list
[migratetype
].next
,
938 * If breaking a large block of pages, move all free
939 * pages to the preferred allocation list. If falling
940 * back for a reclaimable kernel allocation, be more
941 * agressive about taking ownership of free pages
943 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
944 start_migratetype
== MIGRATE_RECLAIMABLE
||
945 page_group_by_mobility_disabled
) {
947 pages
= move_freepages_block(zone
, page
,
950 /* Claim the whole block if over half of it is free */
951 if (pages
>= (1 << (pageblock_order
-1)) ||
952 page_group_by_mobility_disabled
)
953 set_pageblock_migratetype(page
,
956 migratetype
= start_migratetype
;
959 /* Remove the page from the freelists */
960 list_del(&page
->lru
);
961 rmv_page_order(page
);
963 /* Take ownership for orders >= pageblock_order */
964 if (current_order
>= pageblock_order
)
965 change_pageblock_range(page
, current_order
,
968 expand(zone
, page
, order
, current_order
, area
, migratetype
);
970 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
971 start_migratetype
, migratetype
);
981 * Do the hard work of removing an element from the buddy allocator.
982 * Call me with the zone->lock already held.
984 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
990 page
= __rmqueue_smallest(zone
, order
, migratetype
);
992 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
993 page
= __rmqueue_fallback(zone
, order
, migratetype
);
996 * Use MIGRATE_RESERVE rather than fail an allocation. goto
997 * is used because __rmqueue_smallest is an inline function
998 * and we want just one call site
1001 migratetype
= MIGRATE_RESERVE
;
1006 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1011 * Obtain a specified number of elements from the buddy allocator, all under
1012 * a single hold of the lock, for efficiency. Add them to the supplied list.
1013 * Returns the number of new pages which were placed at *list.
1015 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1016 unsigned long count
, struct list_head
*list
,
1017 int migratetype
, int cold
)
1021 spin_lock(&zone
->lock
);
1022 for (i
= 0; i
< count
; ++i
) {
1023 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1024 if (unlikely(page
== NULL
))
1028 * Split buddy pages returned by expand() are received here
1029 * in physical page order. The page is added to the callers and
1030 * list and the list head then moves forward. From the callers
1031 * perspective, the linked list is ordered by page number in
1032 * some conditions. This is useful for IO devices that can
1033 * merge IO requests if the physical pages are ordered
1036 if (likely(cold
== 0))
1037 list_add(&page
->lru
, list
);
1039 list_add_tail(&page
->lru
, list
);
1040 set_page_private(page
, migratetype
);
1043 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1044 spin_unlock(&zone
->lock
);
1050 * Called from the vmstat counter updater to drain pagesets of this
1051 * currently executing processor on remote nodes after they have
1054 * Note that this function must be called with the thread pinned to
1055 * a single processor.
1057 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1059 unsigned long flags
;
1062 local_irq_save(flags
);
1063 if (pcp
->count
>= pcp
->batch
)
1064 to_drain
= pcp
->batch
;
1066 to_drain
= pcp
->count
;
1067 free_pcppages_bulk(zone
, to_drain
, pcp
);
1068 pcp
->count
-= to_drain
;
1069 local_irq_restore(flags
);
1074 * Drain pages of the indicated processor.
1076 * The processor must either be the current processor and the
1077 * thread pinned to the current processor or a processor that
1080 static void drain_pages(unsigned int cpu
)
1082 unsigned long flags
;
1085 for_each_populated_zone(zone
) {
1086 struct per_cpu_pageset
*pset
;
1087 struct per_cpu_pages
*pcp
;
1089 local_irq_save(flags
);
1090 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1093 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1095 local_irq_restore(flags
);
1100 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1102 void drain_local_pages(void *arg
)
1104 drain_pages(smp_processor_id());
1108 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1110 void drain_all_pages(void)
1112 on_each_cpu(drain_local_pages
, NULL
, 1);
1115 #ifdef CONFIG_HIBERNATION
1117 void mark_free_pages(struct zone
*zone
)
1119 unsigned long pfn
, max_zone_pfn
;
1120 unsigned long flags
;
1122 struct list_head
*curr
;
1124 if (!zone
->spanned_pages
)
1127 spin_lock_irqsave(&zone
->lock
, flags
);
1129 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1130 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1131 if (pfn_valid(pfn
)) {
1132 struct page
*page
= pfn_to_page(pfn
);
1134 if (!swsusp_page_is_forbidden(page
))
1135 swsusp_unset_page_free(page
);
1138 for_each_migratetype_order(order
, t
) {
1139 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1142 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1143 for (i
= 0; i
< (1UL << order
); i
++)
1144 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1147 spin_unlock_irqrestore(&zone
->lock
, flags
);
1149 #endif /* CONFIG_PM */
1152 * Free a 0-order page
1153 * cold == 1 ? free a cold page : free a hot page
1155 void free_hot_cold_page(struct page
*page
, int cold
)
1157 struct zone
*zone
= page_zone(page
);
1158 struct per_cpu_pages
*pcp
;
1159 unsigned long flags
;
1161 int wasMlocked
= __TestClearPageMlocked(page
);
1163 if (!free_pages_prepare(page
, 0))
1166 migratetype
= get_pageblock_migratetype(page
);
1167 set_page_private(page
, migratetype
);
1168 local_irq_save(flags
);
1169 if (unlikely(wasMlocked
))
1170 free_page_mlock(page
);
1171 __count_vm_event(PGFREE
);
1174 * We only track unmovable, reclaimable and movable on pcp lists.
1175 * Free ISOLATE pages back to the allocator because they are being
1176 * offlined but treat RESERVE as movable pages so we can get those
1177 * areas back if necessary. Otherwise, we may have to free
1178 * excessively into the page allocator
1180 if (migratetype
>= MIGRATE_PCPTYPES
) {
1181 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1182 free_one_page(zone
, page
, 0, migratetype
);
1185 migratetype
= MIGRATE_MOVABLE
;
1188 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1190 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1192 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1194 if (pcp
->count
>= pcp
->high
) {
1195 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1196 pcp
->count
-= pcp
->batch
;
1200 local_irq_restore(flags
);
1204 * split_page takes a non-compound higher-order page, and splits it into
1205 * n (1<<order) sub-pages: page[0..n]
1206 * Each sub-page must be freed individually.
1208 * Note: this is probably too low level an operation for use in drivers.
1209 * Please consult with lkml before using this in your driver.
1211 void split_page(struct page
*page
, unsigned int order
)
1215 VM_BUG_ON(PageCompound(page
));
1216 VM_BUG_ON(!page_count(page
));
1218 #ifdef CONFIG_KMEMCHECK
1220 * Split shadow pages too, because free(page[0]) would
1221 * otherwise free the whole shadow.
1223 if (kmemcheck_page_is_tracked(page
))
1224 split_page(virt_to_page(page
[0].shadow
), order
);
1227 for (i
= 1; i
< (1 << order
); i
++)
1228 set_page_refcounted(page
+ i
);
1232 * Similar to split_page except the page is already free. As this is only
1233 * being used for migration, the migratetype of the block also changes.
1234 * As this is called with interrupts disabled, the caller is responsible
1235 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1238 * Note: this is probably too low level an operation for use in drivers.
1239 * Please consult with lkml before using this in your driver.
1241 int split_free_page(struct page
*page
)
1244 unsigned long watermark
;
1247 BUG_ON(!PageBuddy(page
));
1249 zone
= page_zone(page
);
1250 order
= page_order(page
);
1252 /* Obey watermarks as if the page was being allocated */
1253 watermark
= low_wmark_pages(zone
) + (1 << order
);
1254 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1257 /* Remove page from free list */
1258 list_del(&page
->lru
);
1259 zone
->free_area
[order
].nr_free
--;
1260 rmv_page_order(page
);
1261 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1263 /* Split into individual pages */
1264 set_page_refcounted(page
);
1265 split_page(page
, order
);
1267 if (order
>= pageblock_order
- 1) {
1268 struct page
*endpage
= page
+ (1 << order
) - 1;
1269 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1270 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1277 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1278 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1282 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1283 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1286 unsigned long flags
;
1288 int cold
= !!(gfp_flags
& __GFP_COLD
);
1291 if (likely(order
== 0)) {
1292 struct per_cpu_pages
*pcp
;
1293 struct list_head
*list
;
1295 local_irq_save(flags
);
1296 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1297 list
= &pcp
->lists
[migratetype
];
1298 if (list_empty(list
)) {
1299 pcp
->count
+= rmqueue_bulk(zone
, 0,
1302 if (unlikely(list_empty(list
)))
1307 page
= list_entry(list
->prev
, struct page
, lru
);
1309 page
= list_entry(list
->next
, struct page
, lru
);
1311 list_del(&page
->lru
);
1314 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1316 * __GFP_NOFAIL is not to be used in new code.
1318 * All __GFP_NOFAIL callers should be fixed so that they
1319 * properly detect and handle allocation failures.
1321 * We most definitely don't want callers attempting to
1322 * allocate greater than order-1 page units with
1325 WARN_ON_ONCE(order
> 1);
1327 spin_lock_irqsave(&zone
->lock
, flags
);
1328 page
= __rmqueue(zone
, order
, migratetype
);
1329 spin_unlock(&zone
->lock
);
1332 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1335 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1336 zone_statistics(preferred_zone
, zone
);
1337 local_irq_restore(flags
);
1339 VM_BUG_ON(bad_range(zone
, page
));
1340 if (prep_new_page(page
, order
, gfp_flags
))
1345 local_irq_restore(flags
);
1349 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1350 #define ALLOC_WMARK_MIN WMARK_MIN
1351 #define ALLOC_WMARK_LOW WMARK_LOW
1352 #define ALLOC_WMARK_HIGH WMARK_HIGH
1353 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1355 /* Mask to get the watermark bits */
1356 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1358 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1359 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1360 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1362 #ifdef CONFIG_FAIL_PAGE_ALLOC
1364 static struct fail_page_alloc_attr
{
1365 struct fault_attr attr
;
1367 u32 ignore_gfp_highmem
;
1368 u32 ignore_gfp_wait
;
1371 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1373 struct dentry
*ignore_gfp_highmem_file
;
1374 struct dentry
*ignore_gfp_wait_file
;
1375 struct dentry
*min_order_file
;
1377 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1379 } fail_page_alloc
= {
1380 .attr
= FAULT_ATTR_INITIALIZER
,
1381 .ignore_gfp_wait
= 1,
1382 .ignore_gfp_highmem
= 1,
1386 static int __init
setup_fail_page_alloc(char *str
)
1388 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1390 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1392 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1394 if (order
< fail_page_alloc
.min_order
)
1396 if (gfp_mask
& __GFP_NOFAIL
)
1398 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1400 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1403 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408 static int __init
fail_page_alloc_debugfs(void)
1410 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1414 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1418 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1420 fail_page_alloc
.ignore_gfp_wait_file
=
1421 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1422 &fail_page_alloc
.ignore_gfp_wait
);
1424 fail_page_alloc
.ignore_gfp_highmem_file
=
1425 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1426 &fail_page_alloc
.ignore_gfp_highmem
);
1427 fail_page_alloc
.min_order_file
=
1428 debugfs_create_u32("min-order", mode
, dir
,
1429 &fail_page_alloc
.min_order
);
1431 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1432 !fail_page_alloc
.ignore_gfp_highmem_file
||
1433 !fail_page_alloc
.min_order_file
) {
1435 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1436 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1437 debugfs_remove(fail_page_alloc
.min_order_file
);
1438 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1444 late_initcall(fail_page_alloc_debugfs
);
1446 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1448 #else /* CONFIG_FAIL_PAGE_ALLOC */
1450 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1455 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1458 * Return 1 if free pages are above 'mark'. This takes into account the order
1459 * of the allocation.
1461 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1462 int classzone_idx
, int alloc_flags
)
1464 /* free_pages my go negative - that's OK */
1466 long free_pages
= zone_nr_free_pages(z
) - (1 << order
) + 1;
1469 if (alloc_flags
& ALLOC_HIGH
)
1471 if (alloc_flags
& ALLOC_HARDER
)
1474 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1476 for (o
= 0; o
< order
; o
++) {
1477 /* At the next order, this order's pages become unavailable */
1478 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1480 /* Require fewer higher order pages to be free */
1483 if (free_pages
<= min
)
1491 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1492 * skip over zones that are not allowed by the cpuset, or that have
1493 * been recently (in last second) found to be nearly full. See further
1494 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1495 * that have to skip over a lot of full or unallowed zones.
1497 * If the zonelist cache is present in the passed in zonelist, then
1498 * returns a pointer to the allowed node mask (either the current
1499 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1501 * If the zonelist cache is not available for this zonelist, does
1502 * nothing and returns NULL.
1504 * If the fullzones BITMAP in the zonelist cache is stale (more than
1505 * a second since last zap'd) then we zap it out (clear its bits.)
1507 * We hold off even calling zlc_setup, until after we've checked the
1508 * first zone in the zonelist, on the theory that most allocations will
1509 * be satisfied from that first zone, so best to examine that zone as
1510 * quickly as we can.
1512 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1514 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1515 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1517 zlc
= zonelist
->zlcache_ptr
;
1521 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1522 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1523 zlc
->last_full_zap
= jiffies
;
1526 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1527 &cpuset_current_mems_allowed
:
1528 &node_states
[N_HIGH_MEMORY
];
1529 return allowednodes
;
1533 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1534 * if it is worth looking at further for free memory:
1535 * 1) Check that the zone isn't thought to be full (doesn't have its
1536 * bit set in the zonelist_cache fullzones BITMAP).
1537 * 2) Check that the zones node (obtained from the zonelist_cache
1538 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1539 * Return true (non-zero) if zone is worth looking at further, or
1540 * else return false (zero) if it is not.
1542 * This check -ignores- the distinction between various watermarks,
1543 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1544 * found to be full for any variation of these watermarks, it will
1545 * be considered full for up to one second by all requests, unless
1546 * we are so low on memory on all allowed nodes that we are forced
1547 * into the second scan of the zonelist.
1549 * In the second scan we ignore this zonelist cache and exactly
1550 * apply the watermarks to all zones, even it is slower to do so.
1551 * We are low on memory in the second scan, and should leave no stone
1552 * unturned looking for a free page.
1554 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1555 nodemask_t
*allowednodes
)
1557 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1558 int i
; /* index of *z in zonelist zones */
1559 int n
; /* node that zone *z is on */
1561 zlc
= zonelist
->zlcache_ptr
;
1565 i
= z
- zonelist
->_zonerefs
;
1568 /* This zone is worth trying if it is allowed but not full */
1569 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1573 * Given 'z' scanning a zonelist, set the corresponding bit in
1574 * zlc->fullzones, so that subsequent attempts to allocate a page
1575 * from that zone don't waste time re-examining it.
1577 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1579 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1580 int i
; /* index of *z in zonelist zones */
1582 zlc
= zonelist
->zlcache_ptr
;
1586 i
= z
- zonelist
->_zonerefs
;
1588 set_bit(i
, zlc
->fullzones
);
1591 #else /* CONFIG_NUMA */
1593 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1598 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1599 nodemask_t
*allowednodes
)
1604 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1607 #endif /* CONFIG_NUMA */
1610 * get_page_from_freelist goes through the zonelist trying to allocate
1613 static struct page
*
1614 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1615 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1616 struct zone
*preferred_zone
, int migratetype
)
1619 struct page
*page
= NULL
;
1622 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1623 int zlc_active
= 0; /* set if using zonelist_cache */
1624 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1626 classzone_idx
= zone_idx(preferred_zone
);
1629 * Scan zonelist, looking for a zone with enough free.
1630 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1632 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1633 high_zoneidx
, nodemask
) {
1634 if (NUMA_BUILD
&& zlc_active
&&
1635 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1637 if ((alloc_flags
& ALLOC_CPUSET
) &&
1638 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1641 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1642 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1646 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1647 if (zone_watermark_ok(zone
, order
, mark
,
1648 classzone_idx
, alloc_flags
))
1651 if (zone_reclaim_mode
== 0)
1652 goto this_zone_full
;
1654 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1656 case ZONE_RECLAIM_NOSCAN
:
1659 case ZONE_RECLAIM_FULL
:
1660 /* scanned but unreclaimable */
1661 goto this_zone_full
;
1663 /* did we reclaim enough */
1664 if (!zone_watermark_ok(zone
, order
, mark
,
1665 classzone_idx
, alloc_flags
))
1666 goto this_zone_full
;
1671 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1672 gfp_mask
, migratetype
);
1677 zlc_mark_zone_full(zonelist
, z
);
1679 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1681 * we do zlc_setup after the first zone is tried but only
1682 * if there are multiple nodes make it worthwhile
1684 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1690 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1691 /* Disable zlc cache for second zonelist scan */
1699 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1700 unsigned long pages_reclaimed
)
1702 /* Do not loop if specifically requested */
1703 if (gfp_mask
& __GFP_NORETRY
)
1707 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1708 * means __GFP_NOFAIL, but that may not be true in other
1711 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1715 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1716 * specified, then we retry until we no longer reclaim any pages
1717 * (above), or we've reclaimed an order of pages at least as
1718 * large as the allocation's order. In both cases, if the
1719 * allocation still fails, we stop retrying.
1721 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1725 * Don't let big-order allocations loop unless the caller
1726 * explicitly requests that.
1728 if (gfp_mask
& __GFP_NOFAIL
)
1734 static inline struct page
*
1735 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1736 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1737 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1742 /* Acquire the OOM killer lock for the zones in zonelist */
1743 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1744 schedule_timeout_uninterruptible(1);
1749 * Go through the zonelist yet one more time, keep very high watermark
1750 * here, this is only to catch a parallel oom killing, we must fail if
1751 * we're still under heavy pressure.
1753 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1754 order
, zonelist
, high_zoneidx
,
1755 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1756 preferred_zone
, migratetype
);
1760 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1761 /* The OOM killer will not help higher order allocs */
1762 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1764 /* The OOM killer does not needlessly kill tasks for lowmem */
1765 if (high_zoneidx
< ZONE_NORMAL
)
1768 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1769 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1770 * The caller should handle page allocation failure by itself if
1771 * it specifies __GFP_THISNODE.
1772 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1774 if (gfp_mask
& __GFP_THISNODE
)
1777 /* Exhausted what can be done so it's blamo time */
1778 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1781 clear_zonelist_oom(zonelist
, gfp_mask
);
1785 #ifdef CONFIG_COMPACTION
1786 /* Try memory compaction for high-order allocations before reclaim */
1787 static struct page
*
1788 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1789 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1790 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1791 int migratetype
, unsigned long *did_some_progress
)
1795 if (!order
|| compaction_deferred(preferred_zone
))
1798 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1800 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1802 /* Page migration frees to the PCP lists but we want merging */
1803 drain_pages(get_cpu());
1806 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1807 order
, zonelist
, high_zoneidx
,
1808 alloc_flags
, preferred_zone
,
1811 preferred_zone
->compact_considered
= 0;
1812 preferred_zone
->compact_defer_shift
= 0;
1813 count_vm_event(COMPACTSUCCESS
);
1818 * It's bad if compaction run occurs and fails.
1819 * The most likely reason is that pages exist,
1820 * but not enough to satisfy watermarks.
1822 count_vm_event(COMPACTFAIL
);
1823 defer_compaction(preferred_zone
);
1831 static inline struct page
*
1832 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1833 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1834 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1835 int migratetype
, unsigned long *did_some_progress
)
1839 #endif /* CONFIG_COMPACTION */
1841 /* The really slow allocator path where we enter direct reclaim */
1842 static inline struct page
*
1843 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1844 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1845 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1846 int migratetype
, unsigned long *did_some_progress
)
1848 struct page
*page
= NULL
;
1849 struct reclaim_state reclaim_state
;
1850 struct task_struct
*p
= current
;
1851 bool drained
= false;
1855 /* We now go into synchronous reclaim */
1856 cpuset_memory_pressure_bump();
1857 p
->flags
|= PF_MEMALLOC
;
1858 lockdep_set_current_reclaim_state(gfp_mask
);
1859 reclaim_state
.reclaimed_slab
= 0;
1860 p
->reclaim_state
= &reclaim_state
;
1862 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1864 p
->reclaim_state
= NULL
;
1865 lockdep_clear_current_reclaim_state();
1866 p
->flags
&= ~PF_MEMALLOC
;
1870 if (unlikely(!(*did_some_progress
)))
1874 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1875 zonelist
, high_zoneidx
,
1876 alloc_flags
, preferred_zone
,
1880 * If an allocation failed after direct reclaim, it could be because
1881 * pages are pinned on the per-cpu lists. Drain them and try again
1883 if (!page
&& !drained
) {
1893 * This is called in the allocator slow-path if the allocation request is of
1894 * sufficient urgency to ignore watermarks and take other desperate measures
1896 static inline struct page
*
1897 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1898 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1899 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1905 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1906 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1907 preferred_zone
, migratetype
);
1909 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1910 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
1911 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1917 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1918 enum zone_type high_zoneidx
)
1923 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1924 wakeup_kswapd(zone
, order
);
1928 gfp_to_alloc_flags(gfp_t gfp_mask
)
1930 struct task_struct
*p
= current
;
1931 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1932 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1934 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1935 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
1938 * The caller may dip into page reserves a bit more if the caller
1939 * cannot run direct reclaim, or if the caller has realtime scheduling
1940 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1941 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1943 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
1946 alloc_flags
|= ALLOC_HARDER
;
1948 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1949 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1951 alloc_flags
&= ~ALLOC_CPUSET
;
1952 } else if (unlikely(rt_task(p
)) && !in_interrupt())
1953 alloc_flags
|= ALLOC_HARDER
;
1955 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1956 if (!in_interrupt() &&
1957 ((p
->flags
& PF_MEMALLOC
) ||
1958 unlikely(test_thread_flag(TIF_MEMDIE
))))
1959 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1965 static inline struct page
*
1966 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1967 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1968 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1971 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1972 struct page
*page
= NULL
;
1974 unsigned long pages_reclaimed
= 0;
1975 unsigned long did_some_progress
;
1976 struct task_struct
*p
= current
;
1979 * In the slowpath, we sanity check order to avoid ever trying to
1980 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1981 * be using allocators in order of preference for an area that is
1984 if (order
>= MAX_ORDER
) {
1985 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1990 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1991 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1992 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1993 * using a larger set of nodes after it has established that the
1994 * allowed per node queues are empty and that nodes are
1997 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2001 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
2004 * OK, we're below the kswapd watermark and have kicked background
2005 * reclaim. Now things get more complex, so set up alloc_flags according
2006 * to how we want to proceed.
2008 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2010 /* This is the last chance, in general, before the goto nopage. */
2011 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2012 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2013 preferred_zone
, migratetype
);
2018 /* Allocate without watermarks if the context allows */
2019 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2020 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2021 zonelist
, high_zoneidx
, nodemask
,
2022 preferred_zone
, migratetype
);
2027 /* Atomic allocations - we can't balance anything */
2031 /* Avoid recursion of direct reclaim */
2032 if (p
->flags
& PF_MEMALLOC
)
2035 /* Avoid allocations with no watermarks from looping endlessly */
2036 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2039 /* Try direct compaction */
2040 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2041 zonelist
, high_zoneidx
,
2043 alloc_flags
, preferred_zone
,
2044 migratetype
, &did_some_progress
);
2048 /* Try direct reclaim and then allocating */
2049 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2050 zonelist
, high_zoneidx
,
2052 alloc_flags
, preferred_zone
,
2053 migratetype
, &did_some_progress
);
2058 * If we failed to make any progress reclaiming, then we are
2059 * running out of options and have to consider going OOM
2061 if (!did_some_progress
) {
2062 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2063 if (oom_killer_disabled
)
2065 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2066 zonelist
, high_zoneidx
,
2067 nodemask
, preferred_zone
,
2072 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2074 * The oom killer is not called for high-order
2075 * allocations that may fail, so if no progress
2076 * is being made, there are no other options and
2077 * retrying is unlikely to help.
2079 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2082 * The oom killer is not called for lowmem
2083 * allocations to prevent needlessly killing
2086 if (high_zoneidx
< ZONE_NORMAL
)
2094 /* Check if we should retry the allocation */
2095 pages_reclaimed
+= did_some_progress
;
2096 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2097 /* Wait for some write requests to complete then retry */
2098 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2103 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2104 printk(KERN_WARNING
"%s: page allocation failure."
2105 " order:%d, mode:0x%x\n",
2106 p
->comm
, order
, gfp_mask
);
2112 if (kmemcheck_enabled
)
2113 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2119 * This is the 'heart' of the zoned buddy allocator.
2122 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2123 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2125 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2126 struct zone
*preferred_zone
;
2128 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2130 gfp_mask
&= gfp_allowed_mask
;
2132 lockdep_trace_alloc(gfp_mask
);
2134 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2136 if (should_fail_alloc_page(gfp_mask
, order
))
2140 * Check the zones suitable for the gfp_mask contain at least one
2141 * valid zone. It's possible to have an empty zonelist as a result
2142 * of GFP_THISNODE and a memoryless node
2144 if (unlikely(!zonelist
->_zonerefs
->zone
))
2148 /* The preferred zone is used for statistics later */
2149 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
2150 if (!preferred_zone
) {
2155 /* First allocation attempt */
2156 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2157 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2158 preferred_zone
, migratetype
);
2159 if (unlikely(!page
))
2160 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2161 zonelist
, high_zoneidx
, nodemask
,
2162 preferred_zone
, migratetype
);
2165 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2168 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2171 * Common helper functions.
2173 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2178 * __get_free_pages() returns a 32-bit address, which cannot represent
2181 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2183 page
= alloc_pages(gfp_mask
, order
);
2186 return (unsigned long) page_address(page
);
2188 EXPORT_SYMBOL(__get_free_pages
);
2190 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2192 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2194 EXPORT_SYMBOL(get_zeroed_page
);
2196 void __pagevec_free(struct pagevec
*pvec
)
2198 int i
= pagevec_count(pvec
);
2201 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2202 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2206 void __free_pages(struct page
*page
, unsigned int order
)
2208 if (put_page_testzero(page
)) {
2210 free_hot_cold_page(page
, 0);
2212 __free_pages_ok(page
, order
);
2216 EXPORT_SYMBOL(__free_pages
);
2218 void free_pages(unsigned long addr
, unsigned int order
)
2221 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2222 __free_pages(virt_to_page((void *)addr
), order
);
2226 EXPORT_SYMBOL(free_pages
);
2229 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2230 * @size: the number of bytes to allocate
2231 * @gfp_mask: GFP flags for the allocation
2233 * This function is similar to alloc_pages(), except that it allocates the
2234 * minimum number of pages to satisfy the request. alloc_pages() can only
2235 * allocate memory in power-of-two pages.
2237 * This function is also limited by MAX_ORDER.
2239 * Memory allocated by this function must be released by free_pages_exact().
2241 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2243 unsigned int order
= get_order(size
);
2246 addr
= __get_free_pages(gfp_mask
, order
);
2248 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2249 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2251 split_page(virt_to_page((void *)addr
), order
);
2252 while (used
< alloc_end
) {
2258 return (void *)addr
;
2260 EXPORT_SYMBOL(alloc_pages_exact
);
2263 * free_pages_exact - release memory allocated via alloc_pages_exact()
2264 * @virt: the value returned by alloc_pages_exact.
2265 * @size: size of allocation, same value as passed to alloc_pages_exact().
2267 * Release the memory allocated by a previous call to alloc_pages_exact.
2269 void free_pages_exact(void *virt
, size_t size
)
2271 unsigned long addr
= (unsigned long)virt
;
2272 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2274 while (addr
< end
) {
2279 EXPORT_SYMBOL(free_pages_exact
);
2281 static unsigned int nr_free_zone_pages(int offset
)
2286 /* Just pick one node, since fallback list is circular */
2287 unsigned int sum
= 0;
2289 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2291 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2292 unsigned long size
= zone
->present_pages
;
2293 unsigned long high
= high_wmark_pages(zone
);
2302 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2304 unsigned int nr_free_buffer_pages(void)
2306 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2308 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2311 * Amount of free RAM allocatable within all zones
2313 unsigned int nr_free_pagecache_pages(void)
2315 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2318 static inline void show_node(struct zone
*zone
)
2321 printk("Node %d ", zone_to_nid(zone
));
2324 void si_meminfo(struct sysinfo
*val
)
2326 val
->totalram
= totalram_pages
;
2328 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2329 val
->bufferram
= nr_blockdev_pages();
2330 val
->totalhigh
= totalhigh_pages
;
2331 val
->freehigh
= nr_free_highpages();
2332 val
->mem_unit
= PAGE_SIZE
;
2335 EXPORT_SYMBOL(si_meminfo
);
2338 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2340 pg_data_t
*pgdat
= NODE_DATA(nid
);
2342 val
->totalram
= pgdat
->node_present_pages
;
2343 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2344 #ifdef CONFIG_HIGHMEM
2345 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2346 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2352 val
->mem_unit
= PAGE_SIZE
;
2356 #define K(x) ((x) << (PAGE_SHIFT-10))
2359 * Show free area list (used inside shift_scroll-lock stuff)
2360 * We also calculate the percentage fragmentation. We do this by counting the
2361 * memory on each free list with the exception of the first item on the list.
2363 void show_free_areas(void)
2368 for_each_populated_zone(zone
) {
2370 printk("%s per-cpu:\n", zone
->name
);
2372 for_each_online_cpu(cpu
) {
2373 struct per_cpu_pageset
*pageset
;
2375 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2377 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2378 cpu
, pageset
->pcp
.high
,
2379 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2383 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2384 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2386 " dirty:%lu writeback:%lu unstable:%lu\n"
2387 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2388 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2389 global_page_state(NR_ACTIVE_ANON
),
2390 global_page_state(NR_INACTIVE_ANON
),
2391 global_page_state(NR_ISOLATED_ANON
),
2392 global_page_state(NR_ACTIVE_FILE
),
2393 global_page_state(NR_INACTIVE_FILE
),
2394 global_page_state(NR_ISOLATED_FILE
),
2395 global_page_state(NR_UNEVICTABLE
),
2396 global_page_state(NR_FILE_DIRTY
),
2397 global_page_state(NR_WRITEBACK
),
2398 global_page_state(NR_UNSTABLE_NFS
),
2399 global_page_state(NR_FREE_PAGES
),
2400 global_page_state(NR_SLAB_RECLAIMABLE
),
2401 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2402 global_page_state(NR_FILE_MAPPED
),
2403 global_page_state(NR_SHMEM
),
2404 global_page_state(NR_PAGETABLE
),
2405 global_page_state(NR_BOUNCE
));
2407 for_each_populated_zone(zone
) {
2416 " active_anon:%lukB"
2417 " inactive_anon:%lukB"
2418 " active_file:%lukB"
2419 " inactive_file:%lukB"
2420 " unevictable:%lukB"
2421 " isolated(anon):%lukB"
2422 " isolated(file):%lukB"
2429 " slab_reclaimable:%lukB"
2430 " slab_unreclaimable:%lukB"
2431 " kernel_stack:%lukB"
2435 " writeback_tmp:%lukB"
2436 " pages_scanned:%lu"
2437 " all_unreclaimable? %s"
2440 K(zone_nr_free_pages(zone
)),
2441 K(min_wmark_pages(zone
)),
2442 K(low_wmark_pages(zone
)),
2443 K(high_wmark_pages(zone
)),
2444 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2445 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2446 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2447 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2448 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2449 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2450 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2451 K(zone
->present_pages
),
2452 K(zone_page_state(zone
, NR_MLOCK
)),
2453 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2454 K(zone_page_state(zone
, NR_WRITEBACK
)),
2455 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2456 K(zone_page_state(zone
, NR_SHMEM
)),
2457 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2458 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2459 zone_page_state(zone
, NR_KERNEL_STACK
) *
2461 K(zone_page_state(zone
, NR_PAGETABLE
)),
2462 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2463 K(zone_page_state(zone
, NR_BOUNCE
)),
2464 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2465 zone
->pages_scanned
,
2466 (zone
->all_unreclaimable
? "yes" : "no")
2468 printk("lowmem_reserve[]:");
2469 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2470 printk(" %lu", zone
->lowmem_reserve
[i
]);
2474 for_each_populated_zone(zone
) {
2475 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2478 printk("%s: ", zone
->name
);
2480 spin_lock_irqsave(&zone
->lock
, flags
);
2481 for (order
= 0; order
< MAX_ORDER
; order
++) {
2482 nr
[order
] = zone
->free_area
[order
].nr_free
;
2483 total
+= nr
[order
] << order
;
2485 spin_unlock_irqrestore(&zone
->lock
, flags
);
2486 for (order
= 0; order
< MAX_ORDER
; order
++)
2487 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2488 printk("= %lukB\n", K(total
));
2491 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2493 show_swap_cache_info();
2496 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2498 zoneref
->zone
= zone
;
2499 zoneref
->zone_idx
= zone_idx(zone
);
2503 * Builds allocation fallback zone lists.
2505 * Add all populated zones of a node to the zonelist.
2507 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2508 int nr_zones
, enum zone_type zone_type
)
2512 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2517 zone
= pgdat
->node_zones
+ zone_type
;
2518 if (populated_zone(zone
)) {
2519 zoneref_set_zone(zone
,
2520 &zonelist
->_zonerefs
[nr_zones
++]);
2521 check_highest_zone(zone_type
);
2524 } while (zone_type
);
2531 * 0 = automatic detection of better ordering.
2532 * 1 = order by ([node] distance, -zonetype)
2533 * 2 = order by (-zonetype, [node] distance)
2535 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2536 * the same zonelist. So only NUMA can configure this param.
2538 #define ZONELIST_ORDER_DEFAULT 0
2539 #define ZONELIST_ORDER_NODE 1
2540 #define ZONELIST_ORDER_ZONE 2
2542 /* zonelist order in the kernel.
2543 * set_zonelist_order() will set this to NODE or ZONE.
2545 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2546 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2550 /* The value user specified ....changed by config */
2551 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2552 /* string for sysctl */
2553 #define NUMA_ZONELIST_ORDER_LEN 16
2554 char numa_zonelist_order
[16] = "default";
2557 * interface for configure zonelist ordering.
2558 * command line option "numa_zonelist_order"
2559 * = "[dD]efault - default, automatic configuration.
2560 * = "[nN]ode - order by node locality, then by zone within node
2561 * = "[zZ]one - order by zone, then by locality within zone
2564 static int __parse_numa_zonelist_order(char *s
)
2566 if (*s
== 'd' || *s
== 'D') {
2567 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2568 } else if (*s
== 'n' || *s
== 'N') {
2569 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2570 } else if (*s
== 'z' || *s
== 'Z') {
2571 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2574 "Ignoring invalid numa_zonelist_order value: "
2581 static __init
int setup_numa_zonelist_order(char *s
)
2584 return __parse_numa_zonelist_order(s
);
2587 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2590 * sysctl handler for numa_zonelist_order
2592 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2593 void __user
*buffer
, size_t *length
,
2596 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2598 static DEFINE_MUTEX(zl_order_mutex
);
2600 mutex_lock(&zl_order_mutex
);
2602 strcpy(saved_string
, (char*)table
->data
);
2603 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2607 int oldval
= user_zonelist_order
;
2608 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2610 * bogus value. restore saved string
2612 strncpy((char*)table
->data
, saved_string
,
2613 NUMA_ZONELIST_ORDER_LEN
);
2614 user_zonelist_order
= oldval
;
2615 } else if (oldval
!= user_zonelist_order
) {
2616 mutex_lock(&zonelists_mutex
);
2617 build_all_zonelists(NULL
);
2618 mutex_unlock(&zonelists_mutex
);
2622 mutex_unlock(&zl_order_mutex
);
2627 #define MAX_NODE_LOAD (nr_online_nodes)
2628 static int node_load
[MAX_NUMNODES
];
2631 * find_next_best_node - find the next node that should appear in a given node's fallback list
2632 * @node: node whose fallback list we're appending
2633 * @used_node_mask: nodemask_t of already used nodes
2635 * We use a number of factors to determine which is the next node that should
2636 * appear on a given node's fallback list. The node should not have appeared
2637 * already in @node's fallback list, and it should be the next closest node
2638 * according to the distance array (which contains arbitrary distance values
2639 * from each node to each node in the system), and should also prefer nodes
2640 * with no CPUs, since presumably they'll have very little allocation pressure
2641 * on them otherwise.
2642 * It returns -1 if no node is found.
2644 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2647 int min_val
= INT_MAX
;
2649 const struct cpumask
*tmp
= cpumask_of_node(0);
2651 /* Use the local node if we haven't already */
2652 if (!node_isset(node
, *used_node_mask
)) {
2653 node_set(node
, *used_node_mask
);
2657 for_each_node_state(n
, N_HIGH_MEMORY
) {
2659 /* Don't want a node to appear more than once */
2660 if (node_isset(n
, *used_node_mask
))
2663 /* Use the distance array to find the distance */
2664 val
= node_distance(node
, n
);
2666 /* Penalize nodes under us ("prefer the next node") */
2669 /* Give preference to headless and unused nodes */
2670 tmp
= cpumask_of_node(n
);
2671 if (!cpumask_empty(tmp
))
2672 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2674 /* Slight preference for less loaded node */
2675 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2676 val
+= node_load
[n
];
2678 if (val
< min_val
) {
2685 node_set(best_node
, *used_node_mask
);
2692 * Build zonelists ordered by node and zones within node.
2693 * This results in maximum locality--normal zone overflows into local
2694 * DMA zone, if any--but risks exhausting DMA zone.
2696 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2699 struct zonelist
*zonelist
;
2701 zonelist
= &pgdat
->node_zonelists
[0];
2702 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2704 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2706 zonelist
->_zonerefs
[j
].zone
= NULL
;
2707 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2711 * Build gfp_thisnode zonelists
2713 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2716 struct zonelist
*zonelist
;
2718 zonelist
= &pgdat
->node_zonelists
[1];
2719 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2720 zonelist
->_zonerefs
[j
].zone
= NULL
;
2721 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2725 * Build zonelists ordered by zone and nodes within zones.
2726 * This results in conserving DMA zone[s] until all Normal memory is
2727 * exhausted, but results in overflowing to remote node while memory
2728 * may still exist in local DMA zone.
2730 static int node_order
[MAX_NUMNODES
];
2732 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2735 int zone_type
; /* needs to be signed */
2737 struct zonelist
*zonelist
;
2739 zonelist
= &pgdat
->node_zonelists
[0];
2741 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2742 for (j
= 0; j
< nr_nodes
; j
++) {
2743 node
= node_order
[j
];
2744 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2745 if (populated_zone(z
)) {
2747 &zonelist
->_zonerefs
[pos
++]);
2748 check_highest_zone(zone_type
);
2752 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2753 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2756 static int default_zonelist_order(void)
2759 unsigned long low_kmem_size
,total_size
;
2763 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2764 * If they are really small and used heavily, the system can fall
2765 * into OOM very easily.
2766 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2768 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2771 for_each_online_node(nid
) {
2772 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2773 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2774 if (populated_zone(z
)) {
2775 if (zone_type
< ZONE_NORMAL
)
2776 low_kmem_size
+= z
->present_pages
;
2777 total_size
+= z
->present_pages
;
2778 } else if (zone_type
== ZONE_NORMAL
) {
2780 * If any node has only lowmem, then node order
2781 * is preferred to allow kernel allocations
2782 * locally; otherwise, they can easily infringe
2783 * on other nodes when there is an abundance of
2784 * lowmem available to allocate from.
2786 return ZONELIST_ORDER_NODE
;
2790 if (!low_kmem_size
|| /* there are no DMA area. */
2791 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2792 return ZONELIST_ORDER_NODE
;
2794 * look into each node's config.
2795 * If there is a node whose DMA/DMA32 memory is very big area on
2796 * local memory, NODE_ORDER may be suitable.
2798 average_size
= total_size
/
2799 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2800 for_each_online_node(nid
) {
2803 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2804 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2805 if (populated_zone(z
)) {
2806 if (zone_type
< ZONE_NORMAL
)
2807 low_kmem_size
+= z
->present_pages
;
2808 total_size
+= z
->present_pages
;
2811 if (low_kmem_size
&&
2812 total_size
> average_size
&& /* ignore small node */
2813 low_kmem_size
> total_size
* 70/100)
2814 return ZONELIST_ORDER_NODE
;
2816 return ZONELIST_ORDER_ZONE
;
2819 static void set_zonelist_order(void)
2821 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2822 current_zonelist_order
= default_zonelist_order();
2824 current_zonelist_order
= user_zonelist_order
;
2827 static void build_zonelists(pg_data_t
*pgdat
)
2831 nodemask_t used_mask
;
2832 int local_node
, prev_node
;
2833 struct zonelist
*zonelist
;
2834 int order
= current_zonelist_order
;
2836 /* initialize zonelists */
2837 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2838 zonelist
= pgdat
->node_zonelists
+ i
;
2839 zonelist
->_zonerefs
[0].zone
= NULL
;
2840 zonelist
->_zonerefs
[0].zone_idx
= 0;
2843 /* NUMA-aware ordering of nodes */
2844 local_node
= pgdat
->node_id
;
2845 load
= nr_online_nodes
;
2846 prev_node
= local_node
;
2847 nodes_clear(used_mask
);
2849 memset(node_order
, 0, sizeof(node_order
));
2852 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2853 int distance
= node_distance(local_node
, node
);
2856 * If another node is sufficiently far away then it is better
2857 * to reclaim pages in a zone before going off node.
2859 if (distance
> RECLAIM_DISTANCE
)
2860 zone_reclaim_mode
= 1;
2863 * We don't want to pressure a particular node.
2864 * So adding penalty to the first node in same
2865 * distance group to make it round-robin.
2867 if (distance
!= node_distance(local_node
, prev_node
))
2868 node_load
[node
] = load
;
2872 if (order
== ZONELIST_ORDER_NODE
)
2873 build_zonelists_in_node_order(pgdat
, node
);
2875 node_order
[j
++] = node
; /* remember order */
2878 if (order
== ZONELIST_ORDER_ZONE
) {
2879 /* calculate node order -- i.e., DMA last! */
2880 build_zonelists_in_zone_order(pgdat
, j
);
2883 build_thisnode_zonelists(pgdat
);
2886 /* Construct the zonelist performance cache - see further mmzone.h */
2887 static void build_zonelist_cache(pg_data_t
*pgdat
)
2889 struct zonelist
*zonelist
;
2890 struct zonelist_cache
*zlc
;
2893 zonelist
= &pgdat
->node_zonelists
[0];
2894 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2895 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2896 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2897 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2900 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2902 * Return node id of node used for "local" allocations.
2903 * I.e., first node id of first zone in arg node's generic zonelist.
2904 * Used for initializing percpu 'numa_mem', which is used primarily
2905 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2907 int local_memory_node(int node
)
2911 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
2912 gfp_zone(GFP_KERNEL
),
2919 #else /* CONFIG_NUMA */
2921 static void set_zonelist_order(void)
2923 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2926 static void build_zonelists(pg_data_t
*pgdat
)
2928 int node
, local_node
;
2930 struct zonelist
*zonelist
;
2932 local_node
= pgdat
->node_id
;
2934 zonelist
= &pgdat
->node_zonelists
[0];
2935 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2938 * Now we build the zonelist so that it contains the zones
2939 * of all the other nodes.
2940 * We don't want to pressure a particular node, so when
2941 * building the zones for node N, we make sure that the
2942 * zones coming right after the local ones are those from
2943 * node N+1 (modulo N)
2945 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2946 if (!node_online(node
))
2948 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2951 for (node
= 0; node
< local_node
; node
++) {
2952 if (!node_online(node
))
2954 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2958 zonelist
->_zonerefs
[j
].zone
= NULL
;
2959 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2962 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2963 static void build_zonelist_cache(pg_data_t
*pgdat
)
2965 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2968 #endif /* CONFIG_NUMA */
2971 * Boot pageset table. One per cpu which is going to be used for all
2972 * zones and all nodes. The parameters will be set in such a way
2973 * that an item put on a list will immediately be handed over to
2974 * the buddy list. This is safe since pageset manipulation is done
2975 * with interrupts disabled.
2977 * The boot_pagesets must be kept even after bootup is complete for
2978 * unused processors and/or zones. They do play a role for bootstrapping
2979 * hotplugged processors.
2981 * zoneinfo_show() and maybe other functions do
2982 * not check if the processor is online before following the pageset pointer.
2983 * Other parts of the kernel may not check if the zone is available.
2985 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
2986 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
2987 static void setup_zone_pageset(struct zone
*zone
);
2990 * Global mutex to protect against size modification of zonelists
2991 * as well as to serialize pageset setup for the new populated zone.
2993 DEFINE_MUTEX(zonelists_mutex
);
2995 /* return values int ....just for stop_machine() */
2996 static __init_refok
int __build_all_zonelists(void *data
)
3002 memset(node_load
, 0, sizeof(node_load
));
3004 for_each_online_node(nid
) {
3005 pg_data_t
*pgdat
= NODE_DATA(nid
);
3007 build_zonelists(pgdat
);
3008 build_zonelist_cache(pgdat
);
3011 #ifdef CONFIG_MEMORY_HOTPLUG
3012 /* Setup real pagesets for the new zone */
3014 struct zone
*zone
= data
;
3015 setup_zone_pageset(zone
);
3020 * Initialize the boot_pagesets that are going to be used
3021 * for bootstrapping processors. The real pagesets for
3022 * each zone will be allocated later when the per cpu
3023 * allocator is available.
3025 * boot_pagesets are used also for bootstrapping offline
3026 * cpus if the system is already booted because the pagesets
3027 * are needed to initialize allocators on a specific cpu too.
3028 * F.e. the percpu allocator needs the page allocator which
3029 * needs the percpu allocator in order to allocate its pagesets
3030 * (a chicken-egg dilemma).
3032 for_each_possible_cpu(cpu
) {
3033 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3035 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3037 * We now know the "local memory node" for each node--
3038 * i.e., the node of the first zone in the generic zonelist.
3039 * Set up numa_mem percpu variable for on-line cpus. During
3040 * boot, only the boot cpu should be on-line; we'll init the
3041 * secondary cpus' numa_mem as they come on-line. During
3042 * node/memory hotplug, we'll fixup all on-line cpus.
3044 if (cpu_online(cpu
))
3045 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3053 * Called with zonelists_mutex held always
3054 * unless system_state == SYSTEM_BOOTING.
3056 void build_all_zonelists(void *data
)
3058 set_zonelist_order();
3060 if (system_state
== SYSTEM_BOOTING
) {
3061 __build_all_zonelists(NULL
);
3062 mminit_verify_zonelist();
3063 cpuset_init_current_mems_allowed();
3065 /* we have to stop all cpus to guarantee there is no user
3067 stop_machine(__build_all_zonelists
, data
, NULL
);
3068 /* cpuset refresh routine should be here */
3070 vm_total_pages
= nr_free_pagecache_pages();
3072 * Disable grouping by mobility if the number of pages in the
3073 * system is too low to allow the mechanism to work. It would be
3074 * more accurate, but expensive to check per-zone. This check is
3075 * made on memory-hotadd so a system can start with mobility
3076 * disabled and enable it later
3078 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3079 page_group_by_mobility_disabled
= 1;
3081 page_group_by_mobility_disabled
= 0;
3083 printk("Built %i zonelists in %s order, mobility grouping %s. "
3084 "Total pages: %ld\n",
3086 zonelist_order_name
[current_zonelist_order
],
3087 page_group_by_mobility_disabled
? "off" : "on",
3090 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3095 * Helper functions to size the waitqueue hash table.
3096 * Essentially these want to choose hash table sizes sufficiently
3097 * large so that collisions trying to wait on pages are rare.
3098 * But in fact, the number of active page waitqueues on typical
3099 * systems is ridiculously low, less than 200. So this is even
3100 * conservative, even though it seems large.
3102 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3103 * waitqueues, i.e. the size of the waitq table given the number of pages.
3105 #define PAGES_PER_WAITQUEUE 256
3107 #ifndef CONFIG_MEMORY_HOTPLUG
3108 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3110 unsigned long size
= 1;
3112 pages
/= PAGES_PER_WAITQUEUE
;
3114 while (size
< pages
)
3118 * Once we have dozens or even hundreds of threads sleeping
3119 * on IO we've got bigger problems than wait queue collision.
3120 * Limit the size of the wait table to a reasonable size.
3122 size
= min(size
, 4096UL);
3124 return max(size
, 4UL);
3128 * A zone's size might be changed by hot-add, so it is not possible to determine
3129 * a suitable size for its wait_table. So we use the maximum size now.
3131 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3133 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3134 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3135 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3137 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3138 * or more by the traditional way. (See above). It equals:
3140 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3141 * ia64(16K page size) : = ( 8G + 4M)byte.
3142 * powerpc (64K page size) : = (32G +16M)byte.
3144 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3151 * This is an integer logarithm so that shifts can be used later
3152 * to extract the more random high bits from the multiplicative
3153 * hash function before the remainder is taken.
3155 static inline unsigned long wait_table_bits(unsigned long size
)
3160 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3163 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3164 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3165 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3166 * higher will lead to a bigger reserve which will get freed as contiguous
3167 * blocks as reclaim kicks in
3169 static void setup_zone_migrate_reserve(struct zone
*zone
)
3171 unsigned long start_pfn
, pfn
, end_pfn
;
3173 unsigned long block_migratetype
;
3176 /* Get the start pfn, end pfn and the number of blocks to reserve */
3177 start_pfn
= zone
->zone_start_pfn
;
3178 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3179 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3183 * Reserve blocks are generally in place to help high-order atomic
3184 * allocations that are short-lived. A min_free_kbytes value that
3185 * would result in more than 2 reserve blocks for atomic allocations
3186 * is assumed to be in place to help anti-fragmentation for the
3187 * future allocation of hugepages at runtime.
3189 reserve
= min(2, reserve
);
3191 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3192 if (!pfn_valid(pfn
))
3194 page
= pfn_to_page(pfn
);
3196 /* Watch out for overlapping nodes */
3197 if (page_to_nid(page
) != zone_to_nid(zone
))
3200 /* Blocks with reserved pages will never free, skip them. */
3201 if (PageReserved(page
))
3204 block_migratetype
= get_pageblock_migratetype(page
);
3206 /* If this block is reserved, account for it */
3207 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3212 /* Suitable for reserving if this block is movable */
3213 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3214 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3215 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3221 * If the reserve is met and this is a previous reserved block,
3224 if (block_migratetype
== MIGRATE_RESERVE
) {
3225 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3226 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3232 * Initially all pages are reserved - free ones are freed
3233 * up by free_all_bootmem() once the early boot process is
3234 * done. Non-atomic initialization, single-pass.
3236 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3237 unsigned long start_pfn
, enum memmap_context context
)
3240 unsigned long end_pfn
= start_pfn
+ size
;
3244 if (highest_memmap_pfn
< end_pfn
- 1)
3245 highest_memmap_pfn
= end_pfn
- 1;
3247 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3248 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3250 * There can be holes in boot-time mem_map[]s
3251 * handed to this function. They do not
3252 * exist on hotplugged memory.
3254 if (context
== MEMMAP_EARLY
) {
3255 if (!early_pfn_valid(pfn
))
3257 if (!early_pfn_in_nid(pfn
, nid
))
3260 page
= pfn_to_page(pfn
);
3261 set_page_links(page
, zone
, nid
, pfn
);
3262 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3263 init_page_count(page
);
3264 reset_page_mapcount(page
);
3265 SetPageReserved(page
);
3267 * Mark the block movable so that blocks are reserved for
3268 * movable at startup. This will force kernel allocations
3269 * to reserve their blocks rather than leaking throughout
3270 * the address space during boot when many long-lived
3271 * kernel allocations are made. Later some blocks near
3272 * the start are marked MIGRATE_RESERVE by
3273 * setup_zone_migrate_reserve()
3275 * bitmap is created for zone's valid pfn range. but memmap
3276 * can be created for invalid pages (for alignment)
3277 * check here not to call set_pageblock_migratetype() against
3280 if ((z
->zone_start_pfn
<= pfn
)
3281 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3282 && !(pfn
& (pageblock_nr_pages
- 1)))
3283 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3285 INIT_LIST_HEAD(&page
->lru
);
3286 #ifdef WANT_PAGE_VIRTUAL
3287 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3288 if (!is_highmem_idx(zone
))
3289 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3294 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3297 for_each_migratetype_order(order
, t
) {
3298 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3299 zone
->free_area
[order
].nr_free
= 0;
3303 #ifndef __HAVE_ARCH_MEMMAP_INIT
3304 #define memmap_init(size, nid, zone, start_pfn) \
3305 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3308 static int zone_batchsize(struct zone
*zone
)
3314 * The per-cpu-pages pools are set to around 1000th of the
3315 * size of the zone. But no more than 1/2 of a meg.
3317 * OK, so we don't know how big the cache is. So guess.
3319 batch
= zone
->present_pages
/ 1024;
3320 if (batch
* PAGE_SIZE
> 512 * 1024)
3321 batch
= (512 * 1024) / PAGE_SIZE
;
3322 batch
/= 4; /* We effectively *= 4 below */
3327 * Clamp the batch to a 2^n - 1 value. Having a power
3328 * of 2 value was found to be more likely to have
3329 * suboptimal cache aliasing properties in some cases.
3331 * For example if 2 tasks are alternately allocating
3332 * batches of pages, one task can end up with a lot
3333 * of pages of one half of the possible page colors
3334 * and the other with pages of the other colors.
3336 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3341 /* The deferral and batching of frees should be suppressed under NOMMU
3344 * The problem is that NOMMU needs to be able to allocate large chunks
3345 * of contiguous memory as there's no hardware page translation to
3346 * assemble apparent contiguous memory from discontiguous pages.
3348 * Queueing large contiguous runs of pages for batching, however,
3349 * causes the pages to actually be freed in smaller chunks. As there
3350 * can be a significant delay between the individual batches being
3351 * recycled, this leads to the once large chunks of space being
3352 * fragmented and becoming unavailable for high-order allocations.
3358 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3360 struct per_cpu_pages
*pcp
;
3363 memset(p
, 0, sizeof(*p
));
3367 pcp
->high
= 6 * batch
;
3368 pcp
->batch
= max(1UL, 1 * batch
);
3369 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3370 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3374 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3375 * to the value high for the pageset p.
3378 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3381 struct per_cpu_pages
*pcp
;
3385 pcp
->batch
= max(1UL, high
/4);
3386 if ((high
/4) > (PAGE_SHIFT
* 8))
3387 pcp
->batch
= PAGE_SHIFT
* 8;
3390 static __meminit
void setup_zone_pageset(struct zone
*zone
)
3394 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3396 for_each_possible_cpu(cpu
) {
3397 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3399 setup_pageset(pcp
, zone_batchsize(zone
));
3401 if (percpu_pagelist_fraction
)
3402 setup_pagelist_highmark(pcp
,
3403 (zone
->present_pages
/
3404 percpu_pagelist_fraction
));
3409 * Allocate per cpu pagesets and initialize them.
3410 * Before this call only boot pagesets were available.
3412 void __init
setup_per_cpu_pageset(void)
3416 for_each_populated_zone(zone
)
3417 setup_zone_pageset(zone
);
3420 static noinline __init_refok
3421 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3424 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3428 * The per-page waitqueue mechanism uses hashed waitqueues
3431 zone
->wait_table_hash_nr_entries
=
3432 wait_table_hash_nr_entries(zone_size_pages
);
3433 zone
->wait_table_bits
=
3434 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3435 alloc_size
= zone
->wait_table_hash_nr_entries
3436 * sizeof(wait_queue_head_t
);
3438 if (!slab_is_available()) {
3439 zone
->wait_table
= (wait_queue_head_t
*)
3440 alloc_bootmem_node(pgdat
, alloc_size
);
3443 * This case means that a zone whose size was 0 gets new memory
3444 * via memory hot-add.
3445 * But it may be the case that a new node was hot-added. In
3446 * this case vmalloc() will not be able to use this new node's
3447 * memory - this wait_table must be initialized to use this new
3448 * node itself as well.
3449 * To use this new node's memory, further consideration will be
3452 zone
->wait_table
= vmalloc(alloc_size
);
3454 if (!zone
->wait_table
)
3457 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3458 init_waitqueue_head(zone
->wait_table
+ i
);
3463 static int __zone_pcp_update(void *data
)
3465 struct zone
*zone
= data
;
3467 unsigned long batch
= zone_batchsize(zone
), flags
;
3469 for_each_possible_cpu(cpu
) {
3470 struct per_cpu_pageset
*pset
;
3471 struct per_cpu_pages
*pcp
;
3473 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3476 local_irq_save(flags
);
3477 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3478 setup_pageset(pset
, batch
);
3479 local_irq_restore(flags
);
3484 void zone_pcp_update(struct zone
*zone
)
3486 stop_machine(__zone_pcp_update
, zone
, NULL
);
3489 static __meminit
void zone_pcp_init(struct zone
*zone
)
3492 * per cpu subsystem is not up at this point. The following code
3493 * relies on the ability of the linker to provide the
3494 * offset of a (static) per cpu variable into the per cpu area.
3496 zone
->pageset
= &boot_pageset
;
3498 if (zone
->present_pages
)
3499 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3500 zone
->name
, zone
->present_pages
,
3501 zone_batchsize(zone
));
3504 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3505 unsigned long zone_start_pfn
,
3507 enum memmap_context context
)
3509 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3511 ret
= zone_wait_table_init(zone
, size
);
3514 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3516 zone
->zone_start_pfn
= zone_start_pfn
;
3518 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3519 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3521 (unsigned long)zone_idx(zone
),
3522 zone_start_pfn
, (zone_start_pfn
+ size
));
3524 zone_init_free_lists(zone
);
3529 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3531 * Basic iterator support. Return the first range of PFNs for a node
3532 * Note: nid == MAX_NUMNODES returns first region regardless of node
3534 static int __meminit
first_active_region_index_in_nid(int nid
)
3538 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3539 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3546 * Basic iterator support. Return the next active range of PFNs for a node
3547 * Note: nid == MAX_NUMNODES returns next region regardless of node
3549 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3551 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3552 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3558 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3560 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3561 * Architectures may implement their own version but if add_active_range()
3562 * was used and there are no special requirements, this is a convenient
3565 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3569 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3570 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3571 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3573 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3574 return early_node_map
[i
].nid
;
3576 /* This is a memory hole */
3579 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3581 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3585 nid
= __early_pfn_to_nid(pfn
);
3588 /* just returns 0 */
3592 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3593 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3597 nid
= __early_pfn_to_nid(pfn
);
3598 if (nid
>= 0 && nid
!= node
)
3604 /* Basic iterator support to walk early_node_map[] */
3605 #define for_each_active_range_index_in_nid(i, nid) \
3606 for (i = first_active_region_index_in_nid(nid); i != -1; \
3607 i = next_active_region_index_in_nid(i, nid))
3610 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3611 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3612 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3614 * If an architecture guarantees that all ranges registered with
3615 * add_active_ranges() contain no holes and may be freed, this
3616 * this function may be used instead of calling free_bootmem() manually.
3618 void __init
free_bootmem_with_active_regions(int nid
,
3619 unsigned long max_low_pfn
)
3623 for_each_active_range_index_in_nid(i
, nid
) {
3624 unsigned long size_pages
= 0;
3625 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3627 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3630 if (end_pfn
> max_low_pfn
)
3631 end_pfn
= max_low_pfn
;
3633 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3634 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3635 PFN_PHYS(early_node_map
[i
].start_pfn
),
3636 size_pages
<< PAGE_SHIFT
);
3640 #ifdef CONFIG_HAVE_MEMBLOCK
3641 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3642 u64 goal
, u64 limit
)
3646 /* Need to go over early_node_map to find out good range for node */
3647 for_each_active_range_index_in_nid(i
, nid
) {
3649 u64 ei_start
, ei_last
;
3650 u64 final_start
, final_end
;
3652 ei_last
= early_node_map
[i
].end_pfn
;
3653 ei_last
<<= PAGE_SHIFT
;
3654 ei_start
= early_node_map
[i
].start_pfn
;
3655 ei_start
<<= PAGE_SHIFT
;
3657 final_start
= max(ei_start
, goal
);
3658 final_end
= min(ei_last
, limit
);
3660 if (final_start
>= final_end
)
3663 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3665 if (addr
== MEMBLOCK_ERROR
)
3671 return MEMBLOCK_ERROR
;
3675 int __init
add_from_early_node_map(struct range
*range
, int az
,
3676 int nr_range
, int nid
)
3681 /* need to go over early_node_map to find out good range for node */
3682 for_each_active_range_index_in_nid(i
, nid
) {
3683 start
= early_node_map
[i
].start_pfn
;
3684 end
= early_node_map
[i
].end_pfn
;
3685 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3690 #ifdef CONFIG_NO_BOOTMEM
3691 void * __init
__alloc_memory_core_early(int nid
, u64 size
, u64 align
,
3692 u64 goal
, u64 limit
)
3697 if (limit
> memblock
.current_limit
)
3698 limit
= memblock
.current_limit
;
3700 addr
= find_memory_core_early(nid
, size
, align
, goal
, limit
);
3702 if (addr
== MEMBLOCK_ERROR
)
3705 ptr
= phys_to_virt(addr
);
3706 memset(ptr
, 0, size
);
3707 memblock_x86_reserve_range(addr
, addr
+ size
, "BOOTMEM");
3709 * The min_count is set to 0 so that bootmem allocated blocks
3710 * are never reported as leaks.
3712 kmemleak_alloc(ptr
, size
, 0, 0);
3718 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3723 for_each_active_range_index_in_nid(i
, nid
) {
3724 ret
= work_fn(early_node_map
[i
].start_pfn
,
3725 early_node_map
[i
].end_pfn
, data
);
3731 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3732 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3734 * If an architecture guarantees that all ranges registered with
3735 * add_active_ranges() contain no holes and may be freed, this
3736 * function may be used instead of calling memory_present() manually.
3738 void __init
sparse_memory_present_with_active_regions(int nid
)
3742 for_each_active_range_index_in_nid(i
, nid
)
3743 memory_present(early_node_map
[i
].nid
,
3744 early_node_map
[i
].start_pfn
,
3745 early_node_map
[i
].end_pfn
);
3749 * get_pfn_range_for_nid - Return the start and end page frames for a node
3750 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3751 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3752 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3754 * It returns the start and end page frame of a node based on information
3755 * provided by an arch calling add_active_range(). If called for a node
3756 * with no available memory, a warning is printed and the start and end
3759 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3760 unsigned long *start_pfn
, unsigned long *end_pfn
)
3766 for_each_active_range_index_in_nid(i
, nid
) {
3767 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3768 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3771 if (*start_pfn
== -1UL)
3776 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3777 * assumption is made that zones within a node are ordered in monotonic
3778 * increasing memory addresses so that the "highest" populated zone is used
3780 static void __init
find_usable_zone_for_movable(void)
3783 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3784 if (zone_index
== ZONE_MOVABLE
)
3787 if (arch_zone_highest_possible_pfn
[zone_index
] >
3788 arch_zone_lowest_possible_pfn
[zone_index
])
3792 VM_BUG_ON(zone_index
== -1);
3793 movable_zone
= zone_index
;
3797 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3798 * because it is sized independant of architecture. Unlike the other zones,
3799 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3800 * in each node depending on the size of each node and how evenly kernelcore
3801 * is distributed. This helper function adjusts the zone ranges
3802 * provided by the architecture for a given node by using the end of the
3803 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3804 * zones within a node are in order of monotonic increases memory addresses
3806 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3807 unsigned long zone_type
,
3808 unsigned long node_start_pfn
,
3809 unsigned long node_end_pfn
,
3810 unsigned long *zone_start_pfn
,
3811 unsigned long *zone_end_pfn
)
3813 /* Only adjust if ZONE_MOVABLE is on this node */
3814 if (zone_movable_pfn
[nid
]) {
3815 /* Size ZONE_MOVABLE */
3816 if (zone_type
== ZONE_MOVABLE
) {
3817 *zone_start_pfn
= zone_movable_pfn
[nid
];
3818 *zone_end_pfn
= min(node_end_pfn
,
3819 arch_zone_highest_possible_pfn
[movable_zone
]);
3821 /* Adjust for ZONE_MOVABLE starting within this range */
3822 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3823 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3824 *zone_end_pfn
= zone_movable_pfn
[nid
];
3826 /* Check if this whole range is within ZONE_MOVABLE */
3827 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3828 *zone_start_pfn
= *zone_end_pfn
;
3833 * Return the number of pages a zone spans in a node, including holes
3834 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3836 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3837 unsigned long zone_type
,
3838 unsigned long *ignored
)
3840 unsigned long node_start_pfn
, node_end_pfn
;
3841 unsigned long zone_start_pfn
, zone_end_pfn
;
3843 /* Get the start and end of the node and zone */
3844 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3845 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3846 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3847 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3848 node_start_pfn
, node_end_pfn
,
3849 &zone_start_pfn
, &zone_end_pfn
);
3851 /* Check that this node has pages within the zone's required range */
3852 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3855 /* Move the zone boundaries inside the node if necessary */
3856 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3857 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3859 /* Return the spanned pages */
3860 return zone_end_pfn
- zone_start_pfn
;
3864 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3865 * then all holes in the requested range will be accounted for.
3867 unsigned long __meminit
__absent_pages_in_range(int nid
,
3868 unsigned long range_start_pfn
,
3869 unsigned long range_end_pfn
)
3872 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3873 unsigned long start_pfn
;
3875 /* Find the end_pfn of the first active range of pfns in the node */
3876 i
= first_active_region_index_in_nid(nid
);
3880 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3882 /* Account for ranges before physical memory on this node */
3883 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3884 hole_pages
= prev_end_pfn
- range_start_pfn
;
3886 /* Find all holes for the zone within the node */
3887 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3889 /* No need to continue if prev_end_pfn is outside the zone */
3890 if (prev_end_pfn
>= range_end_pfn
)
3893 /* Make sure the end of the zone is not within the hole */
3894 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3895 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3897 /* Update the hole size cound and move on */
3898 if (start_pfn
> range_start_pfn
) {
3899 BUG_ON(prev_end_pfn
> start_pfn
);
3900 hole_pages
+= start_pfn
- prev_end_pfn
;
3902 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3905 /* Account for ranges past physical memory on this node */
3906 if (range_end_pfn
> prev_end_pfn
)
3907 hole_pages
+= range_end_pfn
-
3908 max(range_start_pfn
, prev_end_pfn
);
3914 * absent_pages_in_range - Return number of page frames in holes within a range
3915 * @start_pfn: The start PFN to start searching for holes
3916 * @end_pfn: The end PFN to stop searching for holes
3918 * It returns the number of pages frames in memory holes within a range.
3920 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3921 unsigned long end_pfn
)
3923 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3926 /* Return the number of page frames in holes in a zone on a node */
3927 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3928 unsigned long zone_type
,
3929 unsigned long *ignored
)
3931 unsigned long node_start_pfn
, node_end_pfn
;
3932 unsigned long zone_start_pfn
, zone_end_pfn
;
3934 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3935 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3937 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3940 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3941 node_start_pfn
, node_end_pfn
,
3942 &zone_start_pfn
, &zone_end_pfn
);
3943 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3947 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3948 unsigned long zone_type
,
3949 unsigned long *zones_size
)
3951 return zones_size
[zone_type
];
3954 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3955 unsigned long zone_type
,
3956 unsigned long *zholes_size
)
3961 return zholes_size
[zone_type
];
3966 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3967 unsigned long *zones_size
, unsigned long *zholes_size
)
3969 unsigned long realtotalpages
, totalpages
= 0;
3972 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3973 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3975 pgdat
->node_spanned_pages
= totalpages
;
3977 realtotalpages
= totalpages
;
3978 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3980 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3982 pgdat
->node_present_pages
= realtotalpages
;
3983 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3987 #ifndef CONFIG_SPARSEMEM
3989 * Calculate the size of the zone->blockflags rounded to an unsigned long
3990 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3991 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3992 * round what is now in bits to nearest long in bits, then return it in
3995 static unsigned long __init
usemap_size(unsigned long zonesize
)
3997 unsigned long usemapsize
;
3999 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4000 usemapsize
= usemapsize
>> pageblock_order
;
4001 usemapsize
*= NR_PAGEBLOCK_BITS
;
4002 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4004 return usemapsize
/ 8;
4007 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4008 struct zone
*zone
, unsigned long zonesize
)
4010 unsigned long usemapsize
= usemap_size(zonesize
);
4011 zone
->pageblock_flags
= NULL
;
4013 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
4016 static void inline setup_usemap(struct pglist_data
*pgdat
,
4017 struct zone
*zone
, unsigned long zonesize
) {}
4018 #endif /* CONFIG_SPARSEMEM */
4020 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4022 /* Return a sensible default order for the pageblock size. */
4023 static inline int pageblock_default_order(void)
4025 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4026 return HUGETLB_PAGE_ORDER
;
4031 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4032 static inline void __init
set_pageblock_order(unsigned int order
)
4034 /* Check that pageblock_nr_pages has not already been setup */
4035 if (pageblock_order
)
4039 * Assume the largest contiguous order of interest is a huge page.
4040 * This value may be variable depending on boot parameters on IA64
4042 pageblock_order
= order
;
4044 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4047 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4048 * and pageblock_default_order() are unused as pageblock_order is set
4049 * at compile-time. See include/linux/pageblock-flags.h for the values of
4050 * pageblock_order based on the kernel config
4052 static inline int pageblock_default_order(unsigned int order
)
4056 #define set_pageblock_order(x) do {} while (0)
4058 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4061 * Set up the zone data structures:
4062 * - mark all pages reserved
4063 * - mark all memory queues empty
4064 * - clear the memory bitmaps
4066 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4067 unsigned long *zones_size
, unsigned long *zholes_size
)
4070 int nid
= pgdat
->node_id
;
4071 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4074 pgdat_resize_init(pgdat
);
4075 pgdat
->nr_zones
= 0;
4076 init_waitqueue_head(&pgdat
->kswapd_wait
);
4077 pgdat
->kswapd_max_order
= 0;
4078 pgdat_page_cgroup_init(pgdat
);
4080 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4081 struct zone
*zone
= pgdat
->node_zones
+ j
;
4082 unsigned long size
, realsize
, memmap_pages
;
4085 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4086 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4090 * Adjust realsize so that it accounts for how much memory
4091 * is used by this zone for memmap. This affects the watermark
4092 * and per-cpu initialisations
4095 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4096 if (realsize
>= memmap_pages
) {
4097 realsize
-= memmap_pages
;
4100 " %s zone: %lu pages used for memmap\n",
4101 zone_names
[j
], memmap_pages
);
4104 " %s zone: %lu pages exceeds realsize %lu\n",
4105 zone_names
[j
], memmap_pages
, realsize
);
4107 /* Account for reserved pages */
4108 if (j
== 0 && realsize
> dma_reserve
) {
4109 realsize
-= dma_reserve
;
4110 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4111 zone_names
[0], dma_reserve
);
4114 if (!is_highmem_idx(j
))
4115 nr_kernel_pages
+= realsize
;
4116 nr_all_pages
+= realsize
;
4118 zone
->spanned_pages
= size
;
4119 zone
->present_pages
= realsize
;
4122 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4124 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4126 zone
->name
= zone_names
[j
];
4127 spin_lock_init(&zone
->lock
);
4128 spin_lock_init(&zone
->lru_lock
);
4129 zone_seqlock_init(zone
);
4130 zone
->zone_pgdat
= pgdat
;
4132 zone_pcp_init(zone
);
4134 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4135 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4137 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4138 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4139 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4140 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4141 zap_zone_vm_stats(zone
);
4146 set_pageblock_order(pageblock_default_order());
4147 setup_usemap(pgdat
, zone
, size
);
4148 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4149 size
, MEMMAP_EARLY
);
4151 memmap_init(size
, nid
, j
, zone_start_pfn
);
4152 zone_start_pfn
+= size
;
4156 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4158 /* Skip empty nodes */
4159 if (!pgdat
->node_spanned_pages
)
4162 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4163 /* ia64 gets its own node_mem_map, before this, without bootmem */
4164 if (!pgdat
->node_mem_map
) {
4165 unsigned long size
, start
, end
;
4169 * The zone's endpoints aren't required to be MAX_ORDER
4170 * aligned but the node_mem_map endpoints must be in order
4171 * for the buddy allocator to function correctly.
4173 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4174 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4175 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4176 size
= (end
- start
) * sizeof(struct page
);
4177 map
= alloc_remap(pgdat
->node_id
, size
);
4179 map
= alloc_bootmem_node(pgdat
, size
);
4180 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4182 #ifndef CONFIG_NEED_MULTIPLE_NODES
4184 * With no DISCONTIG, the global mem_map is just set as node 0's
4186 if (pgdat
== NODE_DATA(0)) {
4187 mem_map
= NODE_DATA(0)->node_mem_map
;
4188 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4189 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4190 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4191 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4194 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4197 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4198 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4200 pg_data_t
*pgdat
= NODE_DATA(nid
);
4202 pgdat
->node_id
= nid
;
4203 pgdat
->node_start_pfn
= node_start_pfn
;
4204 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4206 alloc_node_mem_map(pgdat
);
4207 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4208 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4209 nid
, (unsigned long)pgdat
,
4210 (unsigned long)pgdat
->node_mem_map
);
4213 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4216 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4218 #if MAX_NUMNODES > 1
4220 * Figure out the number of possible node ids.
4222 static void __init
setup_nr_node_ids(void)
4225 unsigned int highest
= 0;
4227 for_each_node_mask(node
, node_possible_map
)
4229 nr_node_ids
= highest
+ 1;
4232 static inline void setup_nr_node_ids(void)
4238 * add_active_range - Register a range of PFNs backed by physical memory
4239 * @nid: The node ID the range resides on
4240 * @start_pfn: The start PFN of the available physical memory
4241 * @end_pfn: The end PFN of the available physical memory
4243 * These ranges are stored in an early_node_map[] and later used by
4244 * free_area_init_nodes() to calculate zone sizes and holes. If the
4245 * range spans a memory hole, it is up to the architecture to ensure
4246 * the memory is not freed by the bootmem allocator. If possible
4247 * the range being registered will be merged with existing ranges.
4249 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4250 unsigned long end_pfn
)
4254 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4255 "Entering add_active_range(%d, %#lx, %#lx) "
4256 "%d entries of %d used\n",
4257 nid
, start_pfn
, end_pfn
,
4258 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4260 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4262 /* Merge with existing active regions if possible */
4263 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4264 if (early_node_map
[i
].nid
!= nid
)
4267 /* Skip if an existing region covers this new one */
4268 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4269 end_pfn
<= early_node_map
[i
].end_pfn
)
4272 /* Merge forward if suitable */
4273 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4274 end_pfn
> early_node_map
[i
].end_pfn
) {
4275 early_node_map
[i
].end_pfn
= end_pfn
;
4279 /* Merge backward if suitable */
4280 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4281 end_pfn
>= early_node_map
[i
].start_pfn
) {
4282 early_node_map
[i
].start_pfn
= start_pfn
;
4287 /* Check that early_node_map is large enough */
4288 if (i
>= MAX_ACTIVE_REGIONS
) {
4289 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4290 MAX_ACTIVE_REGIONS
);
4294 early_node_map
[i
].nid
= nid
;
4295 early_node_map
[i
].start_pfn
= start_pfn
;
4296 early_node_map
[i
].end_pfn
= end_pfn
;
4297 nr_nodemap_entries
= i
+ 1;
4301 * remove_active_range - Shrink an existing registered range of PFNs
4302 * @nid: The node id the range is on that should be shrunk
4303 * @start_pfn: The new PFN of the range
4304 * @end_pfn: The new PFN of the range
4306 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4307 * The map is kept near the end physical page range that has already been
4308 * registered. This function allows an arch to shrink an existing registered
4311 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4312 unsigned long end_pfn
)
4317 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4318 nid
, start_pfn
, end_pfn
);
4320 /* Find the old active region end and shrink */
4321 for_each_active_range_index_in_nid(i
, nid
) {
4322 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4323 early_node_map
[i
].end_pfn
<= end_pfn
) {
4325 early_node_map
[i
].start_pfn
= 0;
4326 early_node_map
[i
].end_pfn
= 0;
4330 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4331 early_node_map
[i
].end_pfn
> start_pfn
) {
4332 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4333 early_node_map
[i
].end_pfn
= start_pfn
;
4334 if (temp_end_pfn
> end_pfn
)
4335 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4338 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4339 early_node_map
[i
].end_pfn
> end_pfn
&&
4340 early_node_map
[i
].start_pfn
< end_pfn
) {
4341 early_node_map
[i
].start_pfn
= end_pfn
;
4349 /* remove the blank ones */
4350 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4351 if (early_node_map
[i
].nid
!= nid
)
4353 if (early_node_map
[i
].end_pfn
)
4355 /* we found it, get rid of it */
4356 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4357 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4358 sizeof(early_node_map
[j
]));
4359 j
= nr_nodemap_entries
- 1;
4360 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4361 nr_nodemap_entries
--;
4366 * remove_all_active_ranges - Remove all currently registered regions
4368 * During discovery, it may be found that a table like SRAT is invalid
4369 * and an alternative discovery method must be used. This function removes
4370 * all currently registered regions.
4372 void __init
remove_all_active_ranges(void)
4374 memset(early_node_map
, 0, sizeof(early_node_map
));
4375 nr_nodemap_entries
= 0;
4378 /* Compare two active node_active_regions */
4379 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4381 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4382 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4384 /* Done this way to avoid overflows */
4385 if (arange
->start_pfn
> brange
->start_pfn
)
4387 if (arange
->start_pfn
< brange
->start_pfn
)
4393 /* sort the node_map by start_pfn */
4394 void __init
sort_node_map(void)
4396 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4397 sizeof(struct node_active_region
),
4398 cmp_node_active_region
, NULL
);
4401 /* Find the lowest pfn for a node */
4402 static unsigned long __init
find_min_pfn_for_node(int nid
)
4405 unsigned long min_pfn
= ULONG_MAX
;
4407 /* Assuming a sorted map, the first range found has the starting pfn */
4408 for_each_active_range_index_in_nid(i
, nid
)
4409 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4411 if (min_pfn
== ULONG_MAX
) {
4413 "Could not find start_pfn for node %d\n", nid
);
4421 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4423 * It returns the minimum PFN based on information provided via
4424 * add_active_range().
4426 unsigned long __init
find_min_pfn_with_active_regions(void)
4428 return find_min_pfn_for_node(MAX_NUMNODES
);
4432 * early_calculate_totalpages()
4433 * Sum pages in active regions for movable zone.
4434 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4436 static unsigned long __init
early_calculate_totalpages(void)
4439 unsigned long totalpages
= 0;
4441 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4442 unsigned long pages
= early_node_map
[i
].end_pfn
-
4443 early_node_map
[i
].start_pfn
;
4444 totalpages
+= pages
;
4446 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4452 * Find the PFN the Movable zone begins in each node. Kernel memory
4453 * is spread evenly between nodes as long as the nodes have enough
4454 * memory. When they don't, some nodes will have more kernelcore than
4457 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4460 unsigned long usable_startpfn
;
4461 unsigned long kernelcore_node
, kernelcore_remaining
;
4462 /* save the state before borrow the nodemask */
4463 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4464 unsigned long totalpages
= early_calculate_totalpages();
4465 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4468 * If movablecore was specified, calculate what size of
4469 * kernelcore that corresponds so that memory usable for
4470 * any allocation type is evenly spread. If both kernelcore
4471 * and movablecore are specified, then the value of kernelcore
4472 * will be used for required_kernelcore if it's greater than
4473 * what movablecore would have allowed.
4475 if (required_movablecore
) {
4476 unsigned long corepages
;
4479 * Round-up so that ZONE_MOVABLE is at least as large as what
4480 * was requested by the user
4482 required_movablecore
=
4483 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4484 corepages
= totalpages
- required_movablecore
;
4486 required_kernelcore
= max(required_kernelcore
, corepages
);
4489 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4490 if (!required_kernelcore
)
4493 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4494 find_usable_zone_for_movable();
4495 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4498 /* Spread kernelcore memory as evenly as possible throughout nodes */
4499 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4500 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4502 * Recalculate kernelcore_node if the division per node
4503 * now exceeds what is necessary to satisfy the requested
4504 * amount of memory for the kernel
4506 if (required_kernelcore
< kernelcore_node
)
4507 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4510 * As the map is walked, we track how much memory is usable
4511 * by the kernel using kernelcore_remaining. When it is
4512 * 0, the rest of the node is usable by ZONE_MOVABLE
4514 kernelcore_remaining
= kernelcore_node
;
4516 /* Go through each range of PFNs within this node */
4517 for_each_active_range_index_in_nid(i
, nid
) {
4518 unsigned long start_pfn
, end_pfn
;
4519 unsigned long size_pages
;
4521 start_pfn
= max(early_node_map
[i
].start_pfn
,
4522 zone_movable_pfn
[nid
]);
4523 end_pfn
= early_node_map
[i
].end_pfn
;
4524 if (start_pfn
>= end_pfn
)
4527 /* Account for what is only usable for kernelcore */
4528 if (start_pfn
< usable_startpfn
) {
4529 unsigned long kernel_pages
;
4530 kernel_pages
= min(end_pfn
, usable_startpfn
)
4533 kernelcore_remaining
-= min(kernel_pages
,
4534 kernelcore_remaining
);
4535 required_kernelcore
-= min(kernel_pages
,
4536 required_kernelcore
);
4538 /* Continue if range is now fully accounted */
4539 if (end_pfn
<= usable_startpfn
) {
4542 * Push zone_movable_pfn to the end so
4543 * that if we have to rebalance
4544 * kernelcore across nodes, we will
4545 * not double account here
4547 zone_movable_pfn
[nid
] = end_pfn
;
4550 start_pfn
= usable_startpfn
;
4554 * The usable PFN range for ZONE_MOVABLE is from
4555 * start_pfn->end_pfn. Calculate size_pages as the
4556 * number of pages used as kernelcore
4558 size_pages
= end_pfn
- start_pfn
;
4559 if (size_pages
> kernelcore_remaining
)
4560 size_pages
= kernelcore_remaining
;
4561 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4564 * Some kernelcore has been met, update counts and
4565 * break if the kernelcore for this node has been
4568 required_kernelcore
-= min(required_kernelcore
,
4570 kernelcore_remaining
-= size_pages
;
4571 if (!kernelcore_remaining
)
4577 * If there is still required_kernelcore, we do another pass with one
4578 * less node in the count. This will push zone_movable_pfn[nid] further
4579 * along on the nodes that still have memory until kernelcore is
4583 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4586 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4587 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4588 zone_movable_pfn
[nid
] =
4589 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4592 /* restore the node_state */
4593 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4596 /* Any regular memory on that node ? */
4597 static void check_for_regular_memory(pg_data_t
*pgdat
)
4599 #ifdef CONFIG_HIGHMEM
4600 enum zone_type zone_type
;
4602 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4603 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4604 if (zone
->present_pages
)
4605 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4611 * free_area_init_nodes - Initialise all pg_data_t and zone data
4612 * @max_zone_pfn: an array of max PFNs for each zone
4614 * This will call free_area_init_node() for each active node in the system.
4615 * Using the page ranges provided by add_active_range(), the size of each
4616 * zone in each node and their holes is calculated. If the maximum PFN
4617 * between two adjacent zones match, it is assumed that the zone is empty.
4618 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4619 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4620 * starts where the previous one ended. For example, ZONE_DMA32 starts
4621 * at arch_max_dma_pfn.
4623 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4628 /* Sort early_node_map as initialisation assumes it is sorted */
4631 /* Record where the zone boundaries are */
4632 memset(arch_zone_lowest_possible_pfn
, 0,
4633 sizeof(arch_zone_lowest_possible_pfn
));
4634 memset(arch_zone_highest_possible_pfn
, 0,
4635 sizeof(arch_zone_highest_possible_pfn
));
4636 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4637 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4638 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4639 if (i
== ZONE_MOVABLE
)
4641 arch_zone_lowest_possible_pfn
[i
] =
4642 arch_zone_highest_possible_pfn
[i
-1];
4643 arch_zone_highest_possible_pfn
[i
] =
4644 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4646 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4647 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4649 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4650 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4651 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4653 /* Print out the zone ranges */
4654 printk("Zone PFN ranges:\n");
4655 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4656 if (i
== ZONE_MOVABLE
)
4658 printk(" %-8s ", zone_names
[i
]);
4659 if (arch_zone_lowest_possible_pfn
[i
] ==
4660 arch_zone_highest_possible_pfn
[i
])
4663 printk("%0#10lx -> %0#10lx\n",
4664 arch_zone_lowest_possible_pfn
[i
],
4665 arch_zone_highest_possible_pfn
[i
]);
4668 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4669 printk("Movable zone start PFN for each node\n");
4670 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4671 if (zone_movable_pfn
[i
])
4672 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4675 /* Print out the early_node_map[] */
4676 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4677 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4678 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4679 early_node_map
[i
].start_pfn
,
4680 early_node_map
[i
].end_pfn
);
4682 /* Initialise every node */
4683 mminit_verify_pageflags_layout();
4684 setup_nr_node_ids();
4685 for_each_online_node(nid
) {
4686 pg_data_t
*pgdat
= NODE_DATA(nid
);
4687 free_area_init_node(nid
, NULL
,
4688 find_min_pfn_for_node(nid
), NULL
);
4690 /* Any memory on that node */
4691 if (pgdat
->node_present_pages
)
4692 node_set_state(nid
, N_HIGH_MEMORY
);
4693 check_for_regular_memory(pgdat
);
4697 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4699 unsigned long long coremem
;
4703 coremem
= memparse(p
, &p
);
4704 *core
= coremem
>> PAGE_SHIFT
;
4706 /* Paranoid check that UL is enough for the coremem value */
4707 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4713 * kernelcore=size sets the amount of memory for use for allocations that
4714 * cannot be reclaimed or migrated.
4716 static int __init
cmdline_parse_kernelcore(char *p
)
4718 return cmdline_parse_core(p
, &required_kernelcore
);
4722 * movablecore=size sets the amount of memory for use for allocations that
4723 * can be reclaimed or migrated.
4725 static int __init
cmdline_parse_movablecore(char *p
)
4727 return cmdline_parse_core(p
, &required_movablecore
);
4730 early_param("kernelcore", cmdline_parse_kernelcore
);
4731 early_param("movablecore", cmdline_parse_movablecore
);
4733 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4736 * set_dma_reserve - set the specified number of pages reserved in the first zone
4737 * @new_dma_reserve: The number of pages to mark reserved
4739 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4740 * In the DMA zone, a significant percentage may be consumed by kernel image
4741 * and other unfreeable allocations which can skew the watermarks badly. This
4742 * function may optionally be used to account for unfreeable pages in the
4743 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4744 * smaller per-cpu batchsize.
4746 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4748 dma_reserve
= new_dma_reserve
;
4751 #ifndef CONFIG_NEED_MULTIPLE_NODES
4752 struct pglist_data __refdata contig_page_data
= {
4753 #ifndef CONFIG_NO_BOOTMEM
4754 .bdata
= &bootmem_node_data
[0]
4757 EXPORT_SYMBOL(contig_page_data
);
4760 void __init
free_area_init(unsigned long *zones_size
)
4762 free_area_init_node(0, zones_size
,
4763 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4766 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4767 unsigned long action
, void *hcpu
)
4769 int cpu
= (unsigned long)hcpu
;
4771 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4775 * Spill the event counters of the dead processor
4776 * into the current processors event counters.
4777 * This artificially elevates the count of the current
4780 vm_events_fold_cpu(cpu
);
4783 * Zero the differential counters of the dead processor
4784 * so that the vm statistics are consistent.
4786 * This is only okay since the processor is dead and cannot
4787 * race with what we are doing.
4789 refresh_cpu_vm_stats(cpu
);
4794 void __init
page_alloc_init(void)
4796 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4800 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4801 * or min_free_kbytes changes.
4803 static void calculate_totalreserve_pages(void)
4805 struct pglist_data
*pgdat
;
4806 unsigned long reserve_pages
= 0;
4807 enum zone_type i
, j
;
4809 for_each_online_pgdat(pgdat
) {
4810 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4811 struct zone
*zone
= pgdat
->node_zones
+ i
;
4812 unsigned long max
= 0;
4814 /* Find valid and maximum lowmem_reserve in the zone */
4815 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4816 if (zone
->lowmem_reserve
[j
] > max
)
4817 max
= zone
->lowmem_reserve
[j
];
4820 /* we treat the high watermark as reserved pages. */
4821 max
+= high_wmark_pages(zone
);
4823 if (max
> zone
->present_pages
)
4824 max
= zone
->present_pages
;
4825 reserve_pages
+= max
;
4828 totalreserve_pages
= reserve_pages
;
4832 * setup_per_zone_lowmem_reserve - called whenever
4833 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4834 * has a correct pages reserved value, so an adequate number of
4835 * pages are left in the zone after a successful __alloc_pages().
4837 static void setup_per_zone_lowmem_reserve(void)
4839 struct pglist_data
*pgdat
;
4840 enum zone_type j
, idx
;
4842 for_each_online_pgdat(pgdat
) {
4843 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4844 struct zone
*zone
= pgdat
->node_zones
+ j
;
4845 unsigned long present_pages
= zone
->present_pages
;
4847 zone
->lowmem_reserve
[j
] = 0;
4851 struct zone
*lower_zone
;
4855 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4856 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4858 lower_zone
= pgdat
->node_zones
+ idx
;
4859 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4860 sysctl_lowmem_reserve_ratio
[idx
];
4861 present_pages
+= lower_zone
->present_pages
;
4866 /* update totalreserve_pages */
4867 calculate_totalreserve_pages();
4871 * setup_per_zone_wmarks - called when min_free_kbytes changes
4872 * or when memory is hot-{added|removed}
4874 * Ensures that the watermark[min,low,high] values for each zone are set
4875 * correctly with respect to min_free_kbytes.
4877 void setup_per_zone_wmarks(void)
4879 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4880 unsigned long lowmem_pages
= 0;
4882 unsigned long flags
;
4884 /* Calculate total number of !ZONE_HIGHMEM pages */
4885 for_each_zone(zone
) {
4886 if (!is_highmem(zone
))
4887 lowmem_pages
+= zone
->present_pages
;
4890 for_each_zone(zone
) {
4893 spin_lock_irqsave(&zone
->lock
, flags
);
4894 tmp
= (u64
)pages_min
* zone
->present_pages
;
4895 do_div(tmp
, lowmem_pages
);
4896 if (is_highmem(zone
)) {
4898 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4899 * need highmem pages, so cap pages_min to a small
4902 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4903 * deltas controls asynch page reclaim, and so should
4904 * not be capped for highmem.
4908 min_pages
= zone
->present_pages
/ 1024;
4909 if (min_pages
< SWAP_CLUSTER_MAX
)
4910 min_pages
= SWAP_CLUSTER_MAX
;
4911 if (min_pages
> 128)
4913 zone
->watermark
[WMARK_MIN
] = min_pages
;
4916 * If it's a lowmem zone, reserve a number of pages
4917 * proportionate to the zone's size.
4919 zone
->watermark
[WMARK_MIN
] = tmp
;
4922 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4923 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4924 setup_zone_migrate_reserve(zone
);
4925 spin_unlock_irqrestore(&zone
->lock
, flags
);
4928 /* update totalreserve_pages */
4929 calculate_totalreserve_pages();
4933 * The inactive anon list should be small enough that the VM never has to
4934 * do too much work, but large enough that each inactive page has a chance
4935 * to be referenced again before it is swapped out.
4937 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4938 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4939 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4940 * the anonymous pages are kept on the inactive list.
4943 * memory ratio inactive anon
4944 * -------------------------------------
4953 void calculate_zone_inactive_ratio(struct zone
*zone
)
4955 unsigned int gb
, ratio
;
4957 /* Zone size in gigabytes */
4958 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4960 ratio
= int_sqrt(10 * gb
);
4964 zone
->inactive_ratio
= ratio
;
4967 static void __init
setup_per_zone_inactive_ratio(void)
4972 calculate_zone_inactive_ratio(zone
);
4976 * Initialise min_free_kbytes.
4978 * For small machines we want it small (128k min). For large machines
4979 * we want it large (64MB max). But it is not linear, because network
4980 * bandwidth does not increase linearly with machine size. We use
4982 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4983 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4999 static int __init
init_per_zone_wmark_min(void)
5001 unsigned long lowmem_kbytes
;
5003 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5005 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5006 if (min_free_kbytes
< 128)
5007 min_free_kbytes
= 128;
5008 if (min_free_kbytes
> 65536)
5009 min_free_kbytes
= 65536;
5010 setup_per_zone_wmarks();
5011 setup_per_zone_lowmem_reserve();
5012 setup_per_zone_inactive_ratio();
5015 module_init(init_per_zone_wmark_min
)
5018 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5019 * that we can call two helper functions whenever min_free_kbytes
5022 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5023 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5025 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5027 setup_per_zone_wmarks();
5032 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5033 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5038 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5043 zone
->min_unmapped_pages
= (zone
->present_pages
*
5044 sysctl_min_unmapped_ratio
) / 100;
5048 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5049 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5054 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5059 zone
->min_slab_pages
= (zone
->present_pages
*
5060 sysctl_min_slab_ratio
) / 100;
5066 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5067 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5068 * whenever sysctl_lowmem_reserve_ratio changes.
5070 * The reserve ratio obviously has absolutely no relation with the
5071 * minimum watermarks. The lowmem reserve ratio can only make sense
5072 * if in function of the boot time zone sizes.
5074 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5075 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5077 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5078 setup_per_zone_lowmem_reserve();
5083 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5084 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5085 * can have before it gets flushed back to buddy allocator.
5088 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5089 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5095 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5096 if (!write
|| (ret
== -EINVAL
))
5098 for_each_populated_zone(zone
) {
5099 for_each_possible_cpu(cpu
) {
5101 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5102 setup_pagelist_highmark(
5103 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5109 int hashdist
= HASHDIST_DEFAULT
;
5112 static int __init
set_hashdist(char *str
)
5116 hashdist
= simple_strtoul(str
, &str
, 0);
5119 __setup("hashdist=", set_hashdist
);
5123 * allocate a large system hash table from bootmem
5124 * - it is assumed that the hash table must contain an exact power-of-2
5125 * quantity of entries
5126 * - limit is the number of hash buckets, not the total allocation size
5128 void *__init
alloc_large_system_hash(const char *tablename
,
5129 unsigned long bucketsize
,
5130 unsigned long numentries
,
5133 unsigned int *_hash_shift
,
5134 unsigned int *_hash_mask
,
5135 unsigned long limit
)
5137 unsigned long long max
= limit
;
5138 unsigned long log2qty
, size
;
5141 /* allow the kernel cmdline to have a say */
5143 /* round applicable memory size up to nearest megabyte */
5144 numentries
= nr_kernel_pages
;
5145 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5146 numentries
>>= 20 - PAGE_SHIFT
;
5147 numentries
<<= 20 - PAGE_SHIFT
;
5149 /* limit to 1 bucket per 2^scale bytes of low memory */
5150 if (scale
> PAGE_SHIFT
)
5151 numentries
>>= (scale
- PAGE_SHIFT
);
5153 numentries
<<= (PAGE_SHIFT
- scale
);
5155 /* Make sure we've got at least a 0-order allocation.. */
5156 if (unlikely(flags
& HASH_SMALL
)) {
5157 /* Makes no sense without HASH_EARLY */
5158 WARN_ON(!(flags
& HASH_EARLY
));
5159 if (!(numentries
>> *_hash_shift
)) {
5160 numentries
= 1UL << *_hash_shift
;
5161 BUG_ON(!numentries
);
5163 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5164 numentries
= PAGE_SIZE
/ bucketsize
;
5166 numentries
= roundup_pow_of_two(numentries
);
5168 /* limit allocation size to 1/16 total memory by default */
5170 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5171 do_div(max
, bucketsize
);
5174 if (numentries
> max
)
5177 log2qty
= ilog2(numentries
);
5180 size
= bucketsize
<< log2qty
;
5181 if (flags
& HASH_EARLY
)
5182 table
= alloc_bootmem_nopanic(size
);
5184 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5187 * If bucketsize is not a power-of-two, we may free
5188 * some pages at the end of hash table which
5189 * alloc_pages_exact() automatically does
5191 if (get_order(size
) < MAX_ORDER
) {
5192 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5193 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5196 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5199 panic("Failed to allocate %s hash table\n", tablename
);
5201 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5204 ilog2(size
) - PAGE_SHIFT
,
5208 *_hash_shift
= log2qty
;
5210 *_hash_mask
= (1 << log2qty
) - 1;
5215 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5216 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5219 #ifdef CONFIG_SPARSEMEM
5220 return __pfn_to_section(pfn
)->pageblock_flags
;
5222 return zone
->pageblock_flags
;
5223 #endif /* CONFIG_SPARSEMEM */
5226 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5228 #ifdef CONFIG_SPARSEMEM
5229 pfn
&= (PAGES_PER_SECTION
-1);
5230 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5232 pfn
= pfn
- zone
->zone_start_pfn
;
5233 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5234 #endif /* CONFIG_SPARSEMEM */
5238 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5239 * @page: The page within the block of interest
5240 * @start_bitidx: The first bit of interest to retrieve
5241 * @end_bitidx: The last bit of interest
5242 * returns pageblock_bits flags
5244 unsigned long get_pageblock_flags_group(struct page
*page
,
5245 int start_bitidx
, int end_bitidx
)
5248 unsigned long *bitmap
;
5249 unsigned long pfn
, bitidx
;
5250 unsigned long flags
= 0;
5251 unsigned long value
= 1;
5253 zone
= page_zone(page
);
5254 pfn
= page_to_pfn(page
);
5255 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5256 bitidx
= pfn_to_bitidx(zone
, pfn
);
5258 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5259 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5266 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5267 * @page: The page within the block of interest
5268 * @start_bitidx: The first bit of interest
5269 * @end_bitidx: The last bit of interest
5270 * @flags: The flags to set
5272 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5273 int start_bitidx
, int end_bitidx
)
5276 unsigned long *bitmap
;
5277 unsigned long pfn
, bitidx
;
5278 unsigned long value
= 1;
5280 zone
= page_zone(page
);
5281 pfn
= page_to_pfn(page
);
5282 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5283 bitidx
= pfn_to_bitidx(zone
, pfn
);
5284 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5285 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5287 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5289 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5291 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5295 * This is designed as sub function...plz see page_isolation.c also.
5296 * set/clear page block's type to be ISOLATE.
5297 * page allocater never alloc memory from ISOLATE block.
5301 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5303 unsigned long pfn
, iter
, found
;
5305 * For avoiding noise data, lru_add_drain_all() should be called
5306 * If ZONE_MOVABLE, the zone never contains immobile pages
5308 if (zone_idx(zone
) == ZONE_MOVABLE
)
5311 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5314 pfn
= page_to_pfn(page
);
5315 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5316 unsigned long check
= pfn
+ iter
;
5318 if (!pfn_valid_within(check
)) {
5322 page
= pfn_to_page(check
);
5323 if (!page_count(page
)) {
5324 if (PageBuddy(page
))
5325 iter
+= (1 << page_order(page
)) - 1;
5331 * If there are RECLAIMABLE pages, we need to check it.
5332 * But now, memory offline itself doesn't call shrink_slab()
5333 * and it still to be fixed.
5336 * If the page is not RAM, page_count()should be 0.
5337 * we don't need more check. This is an _used_ not-movable page.
5339 * The problematic thing here is PG_reserved pages. PG_reserved
5340 * is set to both of a memory hole page and a _used_ kernel
5349 bool is_pageblock_removable_nolock(struct page
*page
)
5351 struct zone
*zone
= page_zone(page
);
5352 return __count_immobile_pages(zone
, page
, 0);
5355 int set_migratetype_isolate(struct page
*page
)
5358 unsigned long flags
, pfn
;
5359 struct memory_isolate_notify arg
;
5364 zone
= page_zone(page
);
5365 zone_idx
= zone_idx(zone
);
5367 spin_lock_irqsave(&zone
->lock
, flags
);
5369 pfn
= page_to_pfn(page
);
5370 arg
.start_pfn
= pfn
;
5371 arg
.nr_pages
= pageblock_nr_pages
;
5372 arg
.pages_found
= 0;
5375 * It may be possible to isolate a pageblock even if the
5376 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5377 * notifier chain is used by balloon drivers to return the
5378 * number of pages in a range that are held by the balloon
5379 * driver to shrink memory. If all the pages are accounted for
5380 * by balloons, are free, or on the LRU, isolation can continue.
5381 * Later, for example, when memory hotplug notifier runs, these
5382 * pages reported as "can be isolated" should be isolated(freed)
5383 * by the balloon driver through the memory notifier chain.
5385 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5386 notifier_ret
= notifier_to_errno(notifier_ret
);
5390 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5391 * We just check MOVABLE pages.
5393 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5397 * immobile means "not-on-lru" paes. If immobile is larger than
5398 * removable-by-driver pages reported by notifier, we'll fail.
5403 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5404 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5407 spin_unlock_irqrestore(&zone
->lock
, flags
);
5413 void unset_migratetype_isolate(struct page
*page
)
5416 unsigned long flags
;
5417 zone
= page_zone(page
);
5418 spin_lock_irqsave(&zone
->lock
, flags
);
5419 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5421 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5422 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5424 spin_unlock_irqrestore(&zone
->lock
, flags
);
5427 #ifdef CONFIG_MEMORY_HOTREMOVE
5429 * All pages in the range must be isolated before calling this.
5432 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5438 unsigned long flags
;
5439 /* find the first valid pfn */
5440 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5445 zone
= page_zone(pfn_to_page(pfn
));
5446 spin_lock_irqsave(&zone
->lock
, flags
);
5448 while (pfn
< end_pfn
) {
5449 if (!pfn_valid(pfn
)) {
5453 page
= pfn_to_page(pfn
);
5454 BUG_ON(page_count(page
));
5455 BUG_ON(!PageBuddy(page
));
5456 order
= page_order(page
);
5457 #ifdef CONFIG_DEBUG_VM
5458 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5459 pfn
, 1 << order
, end_pfn
);
5461 list_del(&page
->lru
);
5462 rmv_page_order(page
);
5463 zone
->free_area
[order
].nr_free
--;
5464 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5466 for (i
= 0; i
< (1 << order
); i
++)
5467 SetPageReserved((page
+i
));
5468 pfn
+= (1 << order
);
5470 spin_unlock_irqrestore(&zone
->lock
, flags
);
5474 #ifdef CONFIG_MEMORY_FAILURE
5475 bool is_free_buddy_page(struct page
*page
)
5477 struct zone
*zone
= page_zone(page
);
5478 unsigned long pfn
= page_to_pfn(page
);
5479 unsigned long flags
;
5482 spin_lock_irqsave(&zone
->lock
, flags
);
5483 for (order
= 0; order
< MAX_ORDER
; order
++) {
5484 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5486 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5489 spin_unlock_irqrestore(&zone
->lock
, flags
);
5491 return order
< MAX_ORDER
;
5495 static struct trace_print_flags pageflag_names
[] = {
5496 {1UL << PG_locked
, "locked" },
5497 {1UL << PG_error
, "error" },
5498 {1UL << PG_referenced
, "referenced" },
5499 {1UL << PG_uptodate
, "uptodate" },
5500 {1UL << PG_dirty
, "dirty" },
5501 {1UL << PG_lru
, "lru" },
5502 {1UL << PG_active
, "active" },
5503 {1UL << PG_slab
, "slab" },
5504 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5505 {1UL << PG_arch_1
, "arch_1" },
5506 {1UL << PG_reserved
, "reserved" },
5507 {1UL << PG_private
, "private" },
5508 {1UL << PG_private_2
, "private_2" },
5509 {1UL << PG_writeback
, "writeback" },
5510 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5511 {1UL << PG_head
, "head" },
5512 {1UL << PG_tail
, "tail" },
5514 {1UL << PG_compound
, "compound" },
5516 {1UL << PG_swapcache
, "swapcache" },
5517 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5518 {1UL << PG_reclaim
, "reclaim" },
5519 {1UL << PG_buddy
, "buddy" },
5520 {1UL << PG_swapbacked
, "swapbacked" },
5521 {1UL << PG_unevictable
, "unevictable" },
5523 {1UL << PG_mlocked
, "mlocked" },
5525 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5526 {1UL << PG_uncached
, "uncached" },
5528 #ifdef CONFIG_MEMORY_FAILURE
5529 {1UL << PG_hwpoison
, "hwpoison" },
5534 static void dump_page_flags(unsigned long flags
)
5536 const char *delim
= "";
5540 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5542 /* remove zone id */
5543 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5545 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5547 mask
= pageflag_names
[i
].mask
;
5548 if ((flags
& mask
) != mask
)
5552 printk("%s%s", delim
, pageflag_names
[i
].name
);
5556 /* check for left over flags */
5558 printk("%s%#lx", delim
, flags
);
5563 void dump_page(struct page
*page
)
5566 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5567 page
, page_count(page
), page_mapcount(page
),
5568 page
->mapping
, page
->index
);
5569 dump_page_flags(page
->flags
);