2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <asm/atomic.h>
23 #include <linux/scatterlist.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
30 #include <linux/device-mapper.h>
32 #define DM_MSG_PREFIX "crypt"
33 #define MESG_STR(x) x, sizeof(x)
36 * context holding the current state of a multi-part conversion
38 struct convert_context
{
39 struct completion restart
;
42 unsigned int offset_in
;
43 unsigned int offset_out
;
51 * per bio private data
54 struct dm_target
*target
;
56 struct work_struct work
;
58 struct convert_context ctx
;
63 struct dm_crypt_io
*base_io
;
66 struct dm_crypt_request
{
67 struct convert_context
*ctx
;
68 struct scatterlist sg_in
;
69 struct scatterlist sg_out
;
75 struct crypt_iv_operations
{
76 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
78 void (*dtr
)(struct crypt_config
*cc
);
79 int (*init
)(struct crypt_config
*cc
);
80 int (*wipe
)(struct crypt_config
*cc
);
81 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
82 struct dm_crypt_request
*dmreq
);
83 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
84 struct dm_crypt_request
*dmreq
);
87 struct iv_essiv_private
{
88 struct crypto_hash
*hash_tfm
;
92 struct iv_benbi_private
{
96 #define LMK_SEED_SIZE 64 /* hash + 0 */
97 struct iv_lmk_private
{
98 struct crypto_shash
*hash_tfm
;
103 * Crypt: maps a linear range of a block device
104 * and encrypts / decrypts at the same time.
106 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
};
109 * Duplicated per-CPU state for cipher.
112 struct ablkcipher_request
*req
;
113 /* ESSIV: struct crypto_cipher *essiv_tfm */
115 struct crypto_ablkcipher
*tfms
[0];
119 * The fields in here must be read only after initialization,
120 * changing state should be in crypt_cpu.
122 struct crypt_config
{
127 * pool for per bio private data, crypto requests and
128 * encryption requeusts/buffer pages
132 mempool_t
*page_pool
;
135 struct workqueue_struct
*io_queue
;
136 struct workqueue_struct
*crypt_queue
;
141 struct crypt_iv_operations
*iv_gen_ops
;
143 struct iv_essiv_private essiv
;
144 struct iv_benbi_private benbi
;
145 struct iv_lmk_private lmk
;
148 unsigned int iv_size
;
151 * Duplicated per cpu state. Access through
152 * per_cpu_ptr() only.
154 struct crypt_cpu __percpu
*cpu
;
158 * Layout of each crypto request:
160 * struct ablkcipher_request
163 * struct dm_crypt_request
167 * The padding is added so that dm_crypt_request and the IV are
170 unsigned int dmreq_start
;
173 unsigned int key_size
;
174 unsigned int key_parts
;
179 #define MIN_POOL_PAGES 32
180 #define MIN_BIO_PAGES 8
182 static struct kmem_cache
*_crypt_io_pool
;
184 static void clone_init(struct dm_crypt_io
*, struct bio
*);
185 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
186 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
188 static struct crypt_cpu
*this_crypt_config(struct crypt_config
*cc
)
190 return this_cpu_ptr(cc
->cpu
);
194 * Use this to access cipher attributes that are the same for each CPU.
196 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
198 return __this_cpu_ptr(cc
->cpu
)->tfms
[0];
202 * Different IV generation algorithms:
204 * plain: the initial vector is the 32-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
207 * plain64: the initial vector is the 64-bit little-endian version of the sector
208 * number, padded with zeros if necessary.
210 * essiv: "encrypted sector|salt initial vector", the sector number is
211 * encrypted with the bulk cipher using a salt as key. The salt
212 * should be derived from the bulk cipher's key via hashing.
214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
215 * (needed for LRW-32-AES and possible other narrow block modes)
217 * null: the initial vector is always zero. Provides compatibility with
218 * obsolete loop_fish2 devices. Do not use for new devices.
220 * lmk: Compatible implementation of the block chaining mode used
221 * by the Loop-AES block device encryption system
222 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
223 * It operates on full 512 byte sectors and uses CBC
224 * with an IV derived from the sector number, the data and
225 * optionally extra IV seed.
226 * This means that after decryption the first block
227 * of sector must be tweaked according to decrypted data.
228 * Loop-AES can use three encryption schemes:
229 * version 1: is plain aes-cbc mode
230 * version 2: uses 64 multikey scheme with lmk IV generator
231 * version 3: the same as version 2 with additional IV seed
232 * (it uses 65 keys, last key is used as IV seed)
234 * plumb: unimplemented, see:
235 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
238 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
239 struct dm_crypt_request
*dmreq
)
241 memset(iv
, 0, cc
->iv_size
);
242 *(u32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
247 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
248 struct dm_crypt_request
*dmreq
)
250 memset(iv
, 0, cc
->iv_size
);
251 *(u64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
256 /* Initialise ESSIV - compute salt but no local memory allocations */
257 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
259 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
260 struct hash_desc desc
;
261 struct scatterlist sg
;
262 struct crypto_cipher
*essiv_tfm
;
265 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
266 desc
.tfm
= essiv
->hash_tfm
;
267 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
269 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
273 for_each_possible_cpu(cpu
) {
274 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
,
276 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
277 crypto_hash_digestsize(essiv
->hash_tfm
));
285 /* Wipe salt and reset key derived from volume key */
286 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
288 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
289 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
290 struct crypto_cipher
*essiv_tfm
;
293 memset(essiv
->salt
, 0, salt_size
);
295 for_each_possible_cpu(cpu
) {
296 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
;
297 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
305 /* Set up per cpu cipher state */
306 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
307 struct dm_target
*ti
,
308 u8
*salt
, unsigned saltsize
)
310 struct crypto_cipher
*essiv_tfm
;
313 /* Setup the essiv_tfm with the given salt */
314 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
315 if (IS_ERR(essiv_tfm
)) {
316 ti
->error
= "Error allocating crypto tfm for ESSIV";
320 if (crypto_cipher_blocksize(essiv_tfm
) !=
321 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
322 ti
->error
= "Block size of ESSIV cipher does "
323 "not match IV size of block cipher";
324 crypto_free_cipher(essiv_tfm
);
325 return ERR_PTR(-EINVAL
);
328 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
330 ti
->error
= "Failed to set key for ESSIV cipher";
331 crypto_free_cipher(essiv_tfm
);
338 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
341 struct crypt_cpu
*cpu_cc
;
342 struct crypto_cipher
*essiv_tfm
;
343 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
345 crypto_free_hash(essiv
->hash_tfm
);
346 essiv
->hash_tfm
= NULL
;
351 for_each_possible_cpu(cpu
) {
352 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
353 essiv_tfm
= cpu_cc
->iv_private
;
356 crypto_free_cipher(essiv_tfm
);
358 cpu_cc
->iv_private
= NULL
;
362 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
365 struct crypto_cipher
*essiv_tfm
= NULL
;
366 struct crypto_hash
*hash_tfm
= NULL
;
371 ti
->error
= "Digest algorithm missing for ESSIV mode";
375 /* Allocate hash algorithm */
376 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
377 if (IS_ERR(hash_tfm
)) {
378 ti
->error
= "Error initializing ESSIV hash";
379 err
= PTR_ERR(hash_tfm
);
383 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
385 ti
->error
= "Error kmallocing salt storage in ESSIV";
390 cc
->iv_gen_private
.essiv
.salt
= salt
;
391 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
393 for_each_possible_cpu(cpu
) {
394 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
395 crypto_hash_digestsize(hash_tfm
));
396 if (IS_ERR(essiv_tfm
)) {
397 crypt_iv_essiv_dtr(cc
);
398 return PTR_ERR(essiv_tfm
);
400 per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
= essiv_tfm
;
406 if (hash_tfm
&& !IS_ERR(hash_tfm
))
407 crypto_free_hash(hash_tfm
);
412 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
413 struct dm_crypt_request
*dmreq
)
415 struct crypto_cipher
*essiv_tfm
= this_crypt_config(cc
)->iv_private
;
417 memset(iv
, 0, cc
->iv_size
);
418 *(u64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
419 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
424 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
427 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
430 /* we need to calculate how far we must shift the sector count
431 * to get the cipher block count, we use this shift in _gen */
433 if (1 << log
!= bs
) {
434 ti
->error
= "cypher blocksize is not a power of 2";
439 ti
->error
= "cypher blocksize is > 512";
443 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
448 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
452 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
453 struct dm_crypt_request
*dmreq
)
457 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
459 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
460 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
465 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
466 struct dm_crypt_request
*dmreq
)
468 memset(iv
, 0, cc
->iv_size
);
473 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
475 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
477 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
478 crypto_free_shash(lmk
->hash_tfm
);
479 lmk
->hash_tfm
= NULL
;
485 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
488 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
490 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
491 if (IS_ERR(lmk
->hash_tfm
)) {
492 ti
->error
= "Error initializing LMK hash";
493 return PTR_ERR(lmk
->hash_tfm
);
496 /* No seed in LMK version 2 */
497 if (cc
->key_parts
== cc
->tfms_count
) {
502 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
504 crypt_iv_lmk_dtr(cc
);
505 ti
->error
= "Error kmallocing seed storage in LMK";
512 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
514 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
515 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
517 /* LMK seed is on the position of LMK_KEYS + 1 key */
519 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
520 crypto_shash_digestsize(lmk
->hash_tfm
));
525 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
527 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
530 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
535 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
536 struct dm_crypt_request
*dmreq
,
539 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
541 struct shash_desc desc
;
542 char ctx
[crypto_shash_descsize(lmk
->hash_tfm
)];
544 struct md5_state md5state
;
548 sdesc
.desc
.tfm
= lmk
->hash_tfm
;
549 sdesc
.desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
551 r
= crypto_shash_init(&sdesc
.desc
);
556 r
= crypto_shash_update(&sdesc
.desc
, lmk
->seed
, LMK_SEED_SIZE
);
561 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
562 r
= crypto_shash_update(&sdesc
.desc
, data
+ 16, 16 * 31);
566 /* Sector is cropped to 56 bits here */
567 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
568 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
569 buf
[2] = cpu_to_le32(4024);
571 r
= crypto_shash_update(&sdesc
.desc
, (u8
*)buf
, sizeof(buf
));
575 /* No MD5 padding here */
576 r
= crypto_shash_export(&sdesc
.desc
, &md5state
);
580 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
581 __cpu_to_le32s(&md5state
.hash
[i
]);
582 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
587 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
588 struct dm_crypt_request
*dmreq
)
593 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
594 src
= kmap_atomic(sg_page(&dmreq
->sg_in
), KM_USER0
);
595 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
596 kunmap_atomic(src
, KM_USER0
);
598 memset(iv
, 0, cc
->iv_size
);
603 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
604 struct dm_crypt_request
*dmreq
)
609 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
612 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
), KM_USER0
);
613 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
615 /* Tweak the first block of plaintext sector */
617 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
619 kunmap_atomic(dst
, KM_USER0
);
623 static struct crypt_iv_operations crypt_iv_plain_ops
= {
624 .generator
= crypt_iv_plain_gen
627 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
628 .generator
= crypt_iv_plain64_gen
631 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
632 .ctr
= crypt_iv_essiv_ctr
,
633 .dtr
= crypt_iv_essiv_dtr
,
634 .init
= crypt_iv_essiv_init
,
635 .wipe
= crypt_iv_essiv_wipe
,
636 .generator
= crypt_iv_essiv_gen
639 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
640 .ctr
= crypt_iv_benbi_ctr
,
641 .dtr
= crypt_iv_benbi_dtr
,
642 .generator
= crypt_iv_benbi_gen
645 static struct crypt_iv_operations crypt_iv_null_ops
= {
646 .generator
= crypt_iv_null_gen
649 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
650 .ctr
= crypt_iv_lmk_ctr
,
651 .dtr
= crypt_iv_lmk_dtr
,
652 .init
= crypt_iv_lmk_init
,
653 .wipe
= crypt_iv_lmk_wipe
,
654 .generator
= crypt_iv_lmk_gen
,
655 .post
= crypt_iv_lmk_post
658 static void crypt_convert_init(struct crypt_config
*cc
,
659 struct convert_context
*ctx
,
660 struct bio
*bio_out
, struct bio
*bio_in
,
663 ctx
->bio_in
= bio_in
;
664 ctx
->bio_out
= bio_out
;
667 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
668 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
669 ctx
->sector
= sector
+ cc
->iv_offset
;
670 init_completion(&ctx
->restart
);
673 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
674 struct ablkcipher_request
*req
)
676 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
679 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
680 struct dm_crypt_request
*dmreq
)
682 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
685 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
686 struct dm_crypt_request
*dmreq
)
688 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
689 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
692 static int crypt_convert_block(struct crypt_config
*cc
,
693 struct convert_context
*ctx
,
694 struct ablkcipher_request
*req
)
696 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
697 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
698 struct dm_crypt_request
*dmreq
;
702 dmreq
= dmreq_of_req(cc
, req
);
703 iv
= iv_of_dmreq(cc
, dmreq
);
705 dmreq
->iv_sector
= ctx
->sector
;
707 sg_init_table(&dmreq
->sg_in
, 1);
708 sg_set_page(&dmreq
->sg_in
, bv_in
->bv_page
, 1 << SECTOR_SHIFT
,
709 bv_in
->bv_offset
+ ctx
->offset_in
);
711 sg_init_table(&dmreq
->sg_out
, 1);
712 sg_set_page(&dmreq
->sg_out
, bv_out
->bv_page
, 1 << SECTOR_SHIFT
,
713 bv_out
->bv_offset
+ ctx
->offset_out
);
715 ctx
->offset_in
+= 1 << SECTOR_SHIFT
;
716 if (ctx
->offset_in
>= bv_in
->bv_len
) {
721 ctx
->offset_out
+= 1 << SECTOR_SHIFT
;
722 if (ctx
->offset_out
>= bv_out
->bv_len
) {
727 if (cc
->iv_gen_ops
) {
728 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
733 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
734 1 << SECTOR_SHIFT
, iv
);
736 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
737 r
= crypto_ablkcipher_encrypt(req
);
739 r
= crypto_ablkcipher_decrypt(req
);
741 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
742 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
747 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
750 static void crypt_alloc_req(struct crypt_config
*cc
,
751 struct convert_context
*ctx
)
753 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
754 unsigned key_index
= ctx
->sector
& (cc
->tfms_count
- 1);
757 this_cc
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
759 ablkcipher_request_set_tfm(this_cc
->req
, this_cc
->tfms
[key_index
]);
760 ablkcipher_request_set_callback(this_cc
->req
,
761 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
762 kcryptd_async_done
, dmreq_of_req(cc
, this_cc
->req
));
766 * Encrypt / decrypt data from one bio to another one (can be the same one)
768 static int crypt_convert(struct crypt_config
*cc
,
769 struct convert_context
*ctx
)
771 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
774 atomic_set(&ctx
->pending
, 1);
776 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
777 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
779 crypt_alloc_req(cc
, ctx
);
781 atomic_inc(&ctx
->pending
);
783 r
= crypt_convert_block(cc
, ctx
, this_cc
->req
);
788 wait_for_completion(&ctx
->restart
);
789 INIT_COMPLETION(ctx
->restart
);
798 atomic_dec(&ctx
->pending
);
805 atomic_dec(&ctx
->pending
);
813 static void dm_crypt_bio_destructor(struct bio
*bio
)
815 struct dm_crypt_io
*io
= bio
->bi_private
;
816 struct crypt_config
*cc
= io
->target
->private;
818 bio_free(bio
, cc
->bs
);
822 * Generate a new unfragmented bio with the given size
823 * This should never violate the device limitations
824 * May return a smaller bio when running out of pages, indicated by
825 * *out_of_pages set to 1.
827 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
,
828 unsigned *out_of_pages
)
830 struct crypt_config
*cc
= io
->target
->private;
832 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
833 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
837 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
841 clone_init(io
, clone
);
844 for (i
= 0; i
< nr_iovecs
; i
++) {
845 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
852 * if additional pages cannot be allocated without waiting,
853 * return a partially allocated bio, the caller will then try
854 * to allocate additional bios while submitting this partial bio
856 if (i
== (MIN_BIO_PAGES
- 1))
857 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
859 len
= (size
> PAGE_SIZE
) ? PAGE_SIZE
: size
;
861 if (!bio_add_page(clone
, page
, len
, 0)) {
862 mempool_free(page
, cc
->page_pool
);
869 if (!clone
->bi_size
) {
877 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
882 for (i
= 0; i
< clone
->bi_vcnt
; i
++) {
883 bv
= bio_iovec_idx(clone
, i
);
884 BUG_ON(!bv
->bv_page
);
885 mempool_free(bv
->bv_page
, cc
->page_pool
);
890 static struct dm_crypt_io
*crypt_io_alloc(struct dm_target
*ti
,
891 struct bio
*bio
, sector_t sector
)
893 struct crypt_config
*cc
= ti
->private;
894 struct dm_crypt_io
*io
;
896 io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
902 atomic_set(&io
->pending
, 0);
907 static void crypt_inc_pending(struct dm_crypt_io
*io
)
909 atomic_inc(&io
->pending
);
913 * One of the bios was finished. Check for completion of
914 * the whole request and correctly clean up the buffer.
915 * If base_io is set, wait for the last fragment to complete.
917 static void crypt_dec_pending(struct dm_crypt_io
*io
)
919 struct crypt_config
*cc
= io
->target
->private;
920 struct bio
*base_bio
= io
->base_bio
;
921 struct dm_crypt_io
*base_io
= io
->base_io
;
922 int error
= io
->error
;
924 if (!atomic_dec_and_test(&io
->pending
))
927 mempool_free(io
, cc
->io_pool
);
929 if (likely(!base_io
))
930 bio_endio(base_bio
, error
);
932 if (error
&& !base_io
->error
)
933 base_io
->error
= error
;
934 crypt_dec_pending(base_io
);
939 * kcryptd/kcryptd_io:
941 * Needed because it would be very unwise to do decryption in an
944 * kcryptd performs the actual encryption or decryption.
946 * kcryptd_io performs the IO submission.
948 * They must be separated as otherwise the final stages could be
949 * starved by new requests which can block in the first stages due
950 * to memory allocation.
952 * The work is done per CPU global for all dm-crypt instances.
953 * They should not depend on each other and do not block.
955 static void crypt_endio(struct bio
*clone
, int error
)
957 struct dm_crypt_io
*io
= clone
->bi_private
;
958 struct crypt_config
*cc
= io
->target
->private;
959 unsigned rw
= bio_data_dir(clone
);
961 if (unlikely(!bio_flagged(clone
, BIO_UPTODATE
) && !error
))
965 * free the processed pages
968 crypt_free_buffer_pages(cc
, clone
);
972 if (rw
== READ
&& !error
) {
973 kcryptd_queue_crypt(io
);
980 crypt_dec_pending(io
);
983 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
985 struct crypt_config
*cc
= io
->target
->private;
987 clone
->bi_private
= io
;
988 clone
->bi_end_io
= crypt_endio
;
989 clone
->bi_bdev
= cc
->dev
->bdev
;
990 clone
->bi_rw
= io
->base_bio
->bi_rw
;
991 clone
->bi_destructor
= dm_crypt_bio_destructor
;
994 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
996 struct crypt_config
*cc
= io
->target
->private;
997 struct bio
*base_bio
= io
->base_bio
;
1001 * The block layer might modify the bvec array, so always
1002 * copy the required bvecs because we need the original
1003 * one in order to decrypt the whole bio data *afterwards*.
1005 clone
= bio_alloc_bioset(gfp
, bio_segments(base_bio
), cc
->bs
);
1009 crypt_inc_pending(io
);
1011 clone_init(io
, clone
);
1013 clone
->bi_vcnt
= bio_segments(base_bio
);
1014 clone
->bi_size
= base_bio
->bi_size
;
1015 clone
->bi_sector
= cc
->start
+ io
->sector
;
1016 memcpy(clone
->bi_io_vec
, bio_iovec(base_bio
),
1017 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
1019 generic_make_request(clone
);
1023 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1025 struct bio
*clone
= io
->ctx
.bio_out
;
1026 generic_make_request(clone
);
1029 static void kcryptd_io(struct work_struct
*work
)
1031 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1033 if (bio_data_dir(io
->base_bio
) == READ
) {
1034 crypt_inc_pending(io
);
1035 if (kcryptd_io_read(io
, GFP_NOIO
))
1036 io
->error
= -ENOMEM
;
1037 crypt_dec_pending(io
);
1039 kcryptd_io_write(io
);
1042 static void kcryptd_queue_io(struct dm_crypt_io
*io
)
1044 struct crypt_config
*cc
= io
->target
->private;
1046 INIT_WORK(&io
->work
, kcryptd_io
);
1047 queue_work(cc
->io_queue
, &io
->work
);
1050 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
,
1051 int error
, int async
)
1053 struct bio
*clone
= io
->ctx
.bio_out
;
1054 struct crypt_config
*cc
= io
->target
->private;
1056 if (unlikely(error
< 0)) {
1057 crypt_free_buffer_pages(cc
, clone
);
1060 crypt_dec_pending(io
);
1064 /* crypt_convert should have filled the clone bio */
1065 BUG_ON(io
->ctx
.idx_out
< clone
->bi_vcnt
);
1067 clone
->bi_sector
= cc
->start
+ io
->sector
;
1070 kcryptd_queue_io(io
);
1072 generic_make_request(clone
);
1075 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1077 struct crypt_config
*cc
= io
->target
->private;
1079 struct dm_crypt_io
*new_io
;
1081 unsigned out_of_pages
= 0;
1082 unsigned remaining
= io
->base_bio
->bi_size
;
1083 sector_t sector
= io
->sector
;
1087 * Prevent io from disappearing until this function completes.
1089 crypt_inc_pending(io
);
1090 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1093 * The allocated buffers can be smaller than the whole bio,
1094 * so repeat the whole process until all the data can be handled.
1097 clone
= crypt_alloc_buffer(io
, remaining
, &out_of_pages
);
1098 if (unlikely(!clone
)) {
1099 io
->error
= -ENOMEM
;
1103 io
->ctx
.bio_out
= clone
;
1104 io
->ctx
.idx_out
= 0;
1106 remaining
-= clone
->bi_size
;
1107 sector
+= bio_sectors(clone
);
1109 crypt_inc_pending(io
);
1110 r
= crypt_convert(cc
, &io
->ctx
);
1111 crypt_finished
= atomic_dec_and_test(&io
->ctx
.pending
);
1113 /* Encryption was already finished, submit io now */
1114 if (crypt_finished
) {
1115 kcryptd_crypt_write_io_submit(io
, r
, 0);
1118 * If there was an error, do not try next fragments.
1119 * For async, error is processed in async handler.
1121 if (unlikely(r
< 0))
1124 io
->sector
= sector
;
1128 * Out of memory -> run queues
1129 * But don't wait if split was due to the io size restriction
1131 if (unlikely(out_of_pages
))
1132 congestion_wait(BLK_RW_ASYNC
, HZ
/100);
1135 * With async crypto it is unsafe to share the crypto context
1136 * between fragments, so switch to a new dm_crypt_io structure.
1138 if (unlikely(!crypt_finished
&& remaining
)) {
1139 new_io
= crypt_io_alloc(io
->target
, io
->base_bio
,
1141 crypt_inc_pending(new_io
);
1142 crypt_convert_init(cc
, &new_io
->ctx
, NULL
,
1143 io
->base_bio
, sector
);
1144 new_io
->ctx
.idx_in
= io
->ctx
.idx_in
;
1145 new_io
->ctx
.offset_in
= io
->ctx
.offset_in
;
1148 * Fragments after the first use the base_io
1152 new_io
->base_io
= io
;
1154 new_io
->base_io
= io
->base_io
;
1155 crypt_inc_pending(io
->base_io
);
1156 crypt_dec_pending(io
);
1163 crypt_dec_pending(io
);
1166 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
, int error
)
1168 if (unlikely(error
< 0))
1171 crypt_dec_pending(io
);
1174 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1176 struct crypt_config
*cc
= io
->target
->private;
1179 crypt_inc_pending(io
);
1181 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1184 r
= crypt_convert(cc
, &io
->ctx
);
1186 if (atomic_dec_and_test(&io
->ctx
.pending
))
1187 kcryptd_crypt_read_done(io
, r
);
1189 crypt_dec_pending(io
);
1192 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1195 struct dm_crypt_request
*dmreq
= async_req
->data
;
1196 struct convert_context
*ctx
= dmreq
->ctx
;
1197 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1198 struct crypt_config
*cc
= io
->target
->private;
1200 if (error
== -EINPROGRESS
) {
1201 complete(&ctx
->restart
);
1205 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1206 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1208 mempool_free(req_of_dmreq(cc
, dmreq
), cc
->req_pool
);
1210 if (!atomic_dec_and_test(&ctx
->pending
))
1213 if (bio_data_dir(io
->base_bio
) == READ
)
1214 kcryptd_crypt_read_done(io
, error
);
1216 kcryptd_crypt_write_io_submit(io
, error
, 1);
1219 static void kcryptd_crypt(struct work_struct
*work
)
1221 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1223 if (bio_data_dir(io
->base_bio
) == READ
)
1224 kcryptd_crypt_read_convert(io
);
1226 kcryptd_crypt_write_convert(io
);
1229 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1231 struct crypt_config
*cc
= io
->target
->private;
1233 INIT_WORK(&io
->work
, kcryptd_crypt
);
1234 queue_work(cc
->crypt_queue
, &io
->work
);
1238 * Decode key from its hex representation
1240 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1248 for (i
= 0; i
< size
; i
++) {
1252 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
1254 if (endp
!= &buffer
[2])
1265 * Encode key into its hex representation
1267 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
1271 for (i
= 0; i
< size
; i
++) {
1272 sprintf(hex
, "%02x", *key
);
1278 static void crypt_free_tfms(struct crypt_config
*cc
, int cpu
)
1280 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1283 for (i
= 0; i
< cc
->tfms_count
; i
++)
1284 if (cpu_cc
->tfms
[i
] && !IS_ERR(cpu_cc
->tfms
[i
])) {
1285 crypto_free_ablkcipher(cpu_cc
->tfms
[i
]);
1286 cpu_cc
->tfms
[i
] = NULL
;
1290 static int crypt_alloc_tfms(struct crypt_config
*cc
, int cpu
, char *ciphermode
)
1292 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1296 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1297 cpu_cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1298 if (IS_ERR(cpu_cc
->tfms
[i
])) {
1299 err
= PTR_ERR(cpu_cc
->tfms
[i
]);
1300 crypt_free_tfms(cc
, cpu
);
1308 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1310 unsigned subkey_size
= cc
->key_size
>> ilog2(cc
->tfms_count
);
1311 int cpu
, err
= 0, i
, r
;
1313 for_each_possible_cpu(cpu
) {
1314 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1315 r
= crypto_ablkcipher_setkey(per_cpu_ptr(cc
->cpu
, cpu
)->tfms
[i
],
1316 cc
->key
+ (i
* subkey_size
), subkey_size
);
1325 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1328 int key_string_len
= strlen(key
);
1330 /* The key size may not be changed. */
1331 if (cc
->key_size
!= (key_string_len
>> 1))
1334 /* Hyphen (which gives a key_size of zero) means there is no key. */
1335 if (!cc
->key_size
&& strcmp(key
, "-"))
1338 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1341 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1343 r
= crypt_setkey_allcpus(cc
);
1346 /* Hex key string not needed after here, so wipe it. */
1347 memset(key
, '0', key_string_len
);
1352 static int crypt_wipe_key(struct crypt_config
*cc
)
1354 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1355 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1357 return crypt_setkey_allcpus(cc
);
1360 static void crypt_dtr(struct dm_target
*ti
)
1362 struct crypt_config
*cc
= ti
->private;
1363 struct crypt_cpu
*cpu_cc
;
1372 destroy_workqueue(cc
->io_queue
);
1373 if (cc
->crypt_queue
)
1374 destroy_workqueue(cc
->crypt_queue
);
1377 for_each_possible_cpu(cpu
) {
1378 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1380 mempool_free(cpu_cc
->req
, cc
->req_pool
);
1381 crypt_free_tfms(cc
, cpu
);
1385 bioset_free(cc
->bs
);
1388 mempool_destroy(cc
->page_pool
);
1390 mempool_destroy(cc
->req_pool
);
1392 mempool_destroy(cc
->io_pool
);
1394 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1395 cc
->iv_gen_ops
->dtr(cc
);
1398 dm_put_device(ti
, cc
->dev
);
1401 free_percpu(cc
->cpu
);
1404 kzfree(cc
->cipher_string
);
1406 /* Must zero key material before freeing */
1410 static int crypt_ctr_cipher(struct dm_target
*ti
,
1411 char *cipher_in
, char *key
)
1413 struct crypt_config
*cc
= ti
->private;
1414 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1415 char *cipher_api
= NULL
;
1416 int cpu
, ret
= -EINVAL
;
1418 /* Convert to crypto api definition? */
1419 if (strchr(cipher_in
, '(')) {
1420 ti
->error
= "Bad cipher specification";
1424 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1425 if (!cc
->cipher_string
)
1429 * Legacy dm-crypt cipher specification
1430 * cipher[:keycount]-mode-iv:ivopts
1433 keycount
= strsep(&tmp
, "-");
1434 cipher
= strsep(&keycount
, ":");
1438 else if (sscanf(keycount
, "%u", &cc
->tfms_count
) != 1 ||
1439 !is_power_of_2(cc
->tfms_count
)) {
1440 ti
->error
= "Bad cipher key count specification";
1443 cc
->key_parts
= cc
->tfms_count
;
1445 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1449 chainmode
= strsep(&tmp
, "-");
1450 ivopts
= strsep(&tmp
, "-");
1451 ivmode
= strsep(&ivopts
, ":");
1454 DMWARN("Ignoring unexpected additional cipher options");
1456 cc
->cpu
= __alloc_percpu(sizeof(*(cc
->cpu
)) +
1457 cc
->tfms_count
* sizeof(*(cc
->cpu
->tfms
)),
1458 __alignof__(struct crypt_cpu
));
1460 ti
->error
= "Cannot allocate per cpu state";
1465 * For compatibility with the original dm-crypt mapping format, if
1466 * only the cipher name is supplied, use cbc-plain.
1468 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1473 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1474 ti
->error
= "IV mechanism required";
1478 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1482 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1483 "%s(%s)", chainmode
, cipher
);
1489 /* Allocate cipher */
1490 for_each_possible_cpu(cpu
) {
1491 ret
= crypt_alloc_tfms(cc
, cpu
, cipher_api
);
1493 ti
->error
= "Error allocating crypto tfm";
1498 /* Initialize and set key */
1499 ret
= crypt_set_key(cc
, key
);
1501 ti
->error
= "Error decoding and setting key";
1506 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1508 /* at least a 64 bit sector number should fit in our buffer */
1509 cc
->iv_size
= max(cc
->iv_size
,
1510 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1512 DMWARN("Selected cipher does not support IVs");
1516 /* Choose ivmode, see comments at iv code. */
1518 cc
->iv_gen_ops
= NULL
;
1519 else if (strcmp(ivmode
, "plain") == 0)
1520 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1521 else if (strcmp(ivmode
, "plain64") == 0)
1522 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1523 else if (strcmp(ivmode
, "essiv") == 0)
1524 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1525 else if (strcmp(ivmode
, "benbi") == 0)
1526 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1527 else if (strcmp(ivmode
, "null") == 0)
1528 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1529 else if (strcmp(ivmode
, "lmk") == 0) {
1530 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1531 /* Version 2 and 3 is recognised according
1532 * to length of provided multi-key string.
1533 * If present (version 3), last key is used as IV seed.
1535 if (cc
->key_size
% cc
->key_parts
)
1539 ti
->error
= "Invalid IV mode";
1544 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1545 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1547 ti
->error
= "Error creating IV";
1552 /* Initialize IV (set keys for ESSIV etc) */
1553 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1554 ret
= cc
->iv_gen_ops
->init(cc
);
1556 ti
->error
= "Error initialising IV";
1567 ti
->error
= "Cannot allocate cipher strings";
1572 * Construct an encryption mapping:
1573 * <cipher> <key> <iv_offset> <dev_path> <start>
1575 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1577 struct crypt_config
*cc
;
1578 unsigned int key_size
;
1579 unsigned long long tmpll
;
1583 ti
->error
= "Not enough arguments";
1587 key_size
= strlen(argv
[1]) >> 1;
1589 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1591 ti
->error
= "Cannot allocate encryption context";
1594 cc
->key_size
= key_size
;
1597 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1602 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
1604 ti
->error
= "Cannot allocate crypt io mempool";
1608 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1609 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1610 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, crypto_tfm_ctx_alignment());
1611 cc
->dmreq_start
+= crypto_ablkcipher_alignmask(any_tfm(cc
)) &
1612 ~(crypto_tfm_ctx_alignment() - 1);
1614 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1615 sizeof(struct dm_crypt_request
) + cc
->iv_size
);
1616 if (!cc
->req_pool
) {
1617 ti
->error
= "Cannot allocate crypt request mempool";
1621 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
1622 if (!cc
->page_pool
) {
1623 ti
->error
= "Cannot allocate page mempool";
1627 cc
->bs
= bioset_create(MIN_IOS
, 0);
1629 ti
->error
= "Cannot allocate crypt bioset";
1634 if (sscanf(argv
[2], "%llu", &tmpll
) != 1) {
1635 ti
->error
= "Invalid iv_offset sector";
1638 cc
->iv_offset
= tmpll
;
1640 if (dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
)) {
1641 ti
->error
= "Device lookup failed";
1645 if (sscanf(argv
[4], "%llu", &tmpll
) != 1) {
1646 ti
->error
= "Invalid device sector";
1652 cc
->io_queue
= alloc_workqueue("kcryptd_io",
1656 if (!cc
->io_queue
) {
1657 ti
->error
= "Couldn't create kcryptd io queue";
1661 cc
->crypt_queue
= alloc_workqueue("kcryptd",
1666 if (!cc
->crypt_queue
) {
1667 ti
->error
= "Couldn't create kcryptd queue";
1671 ti
->num_flush_requests
= 1;
1679 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
1680 union map_info
*map_context
)
1682 struct dm_crypt_io
*io
;
1683 struct crypt_config
*cc
;
1685 if (bio
->bi_rw
& REQ_FLUSH
) {
1687 bio
->bi_bdev
= cc
->dev
->bdev
;
1688 return DM_MAPIO_REMAPPED
;
1691 io
= crypt_io_alloc(ti
, bio
, dm_target_offset(ti
, bio
->bi_sector
));
1693 if (bio_data_dir(io
->base_bio
) == READ
) {
1694 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1695 kcryptd_queue_io(io
);
1697 kcryptd_queue_crypt(io
);
1699 return DM_MAPIO_SUBMITTED
;
1702 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
1703 char *result
, unsigned int maxlen
)
1705 struct crypt_config
*cc
= ti
->private;
1706 unsigned int sz
= 0;
1709 case STATUSTYPE_INFO
:
1713 case STATUSTYPE_TABLE
:
1714 DMEMIT("%s ", cc
->cipher_string
);
1716 if (cc
->key_size
> 0) {
1717 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
1720 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
1721 sz
+= cc
->key_size
<< 1;
1728 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1729 cc
->dev
->name
, (unsigned long long)cc
->start
);
1735 static void crypt_postsuspend(struct dm_target
*ti
)
1737 struct crypt_config
*cc
= ti
->private;
1739 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1742 static int crypt_preresume(struct dm_target
*ti
)
1744 struct crypt_config
*cc
= ti
->private;
1746 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1747 DMERR("aborting resume - crypt key is not set.");
1754 static void crypt_resume(struct dm_target
*ti
)
1756 struct crypt_config
*cc
= ti
->private;
1758 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1761 /* Message interface
1765 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
1767 struct crypt_config
*cc
= ti
->private;
1773 if (!strnicmp(argv
[0], MESG_STR("key"))) {
1774 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
1775 DMWARN("not suspended during key manipulation.");
1778 if (argc
== 3 && !strnicmp(argv
[1], MESG_STR("set"))) {
1779 ret
= crypt_set_key(cc
, argv
[2]);
1782 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
1783 ret
= cc
->iv_gen_ops
->init(cc
);
1786 if (argc
== 2 && !strnicmp(argv
[1], MESG_STR("wipe"))) {
1787 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
1788 ret
= cc
->iv_gen_ops
->wipe(cc
);
1792 return crypt_wipe_key(cc
);
1797 DMWARN("unrecognised message received.");
1801 static int crypt_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
1802 struct bio_vec
*biovec
, int max_size
)
1804 struct crypt_config
*cc
= ti
->private;
1805 struct request_queue
*q
= bdev_get_queue(cc
->dev
->bdev
);
1807 if (!q
->merge_bvec_fn
)
1810 bvm
->bi_bdev
= cc
->dev
->bdev
;
1811 bvm
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bvm
->bi_sector
);
1813 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
1816 static int crypt_iterate_devices(struct dm_target
*ti
,
1817 iterate_devices_callout_fn fn
, void *data
)
1819 struct crypt_config
*cc
= ti
->private;
1821 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
1824 static struct target_type crypt_target
= {
1826 .version
= {1, 10, 0},
1827 .module
= THIS_MODULE
,
1831 .status
= crypt_status
,
1832 .postsuspend
= crypt_postsuspend
,
1833 .preresume
= crypt_preresume
,
1834 .resume
= crypt_resume
,
1835 .message
= crypt_message
,
1836 .merge
= crypt_merge
,
1837 .iterate_devices
= crypt_iterate_devices
,
1840 static int __init
dm_crypt_init(void)
1844 _crypt_io_pool
= KMEM_CACHE(dm_crypt_io
, 0);
1845 if (!_crypt_io_pool
)
1848 r
= dm_register_target(&crypt_target
);
1850 DMERR("register failed %d", r
);
1851 kmem_cache_destroy(_crypt_io_pool
);
1857 static void __exit
dm_crypt_exit(void)
1859 dm_unregister_target(&crypt_target
);
1860 kmem_cache_destroy(_crypt_io_pool
);
1863 module_init(dm_crypt_init
);
1864 module_exit(dm_crypt_exit
);
1866 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1867 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
1868 MODULE_LICENSE("GPL");