KVM: MMU: fix apf prefault if nested guest is enabled
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / x86.c
blobc673e726fbdb26639749e9c2f40da3ffc7842ee9
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define CR0_RESERVED_BITS \
64 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
65 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
66 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
67 #define CR4_RESERVED_BITS \
68 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
69 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
70 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
71 | X86_CR4_OSXSAVE \
72 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
74 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
76 #define KVM_MAX_MCE_BANKS 32
77 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
79 /* EFER defaults:
80 * - enable syscall per default because its emulated by KVM
81 * - enable LME and LMA per default on 64 bit KVM
83 #ifdef CONFIG_X86_64
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
85 #else
86 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
87 #endif
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
94 struct kvm_cpuid_entry2 __user *entries);
96 struct kvm_x86_ops *kvm_x86_ops;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
99 int ignore_msrs = 0;
100 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
102 #define KVM_NR_SHARED_MSRS 16
104 struct kvm_shared_msrs_global {
105 int nr;
106 u32 msrs[KVM_NR_SHARED_MSRS];
109 struct kvm_shared_msrs {
110 struct user_return_notifier urn;
111 bool registered;
112 struct kvm_shared_msr_values {
113 u64 host;
114 u64 curr;
115 } values[KVM_NR_SHARED_MSRS];
118 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
119 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
121 struct kvm_stats_debugfs_item debugfs_entries[] = {
122 { "pf_fixed", VCPU_STAT(pf_fixed) },
123 { "pf_guest", VCPU_STAT(pf_guest) },
124 { "tlb_flush", VCPU_STAT(tlb_flush) },
125 { "invlpg", VCPU_STAT(invlpg) },
126 { "exits", VCPU_STAT(exits) },
127 { "io_exits", VCPU_STAT(io_exits) },
128 { "mmio_exits", VCPU_STAT(mmio_exits) },
129 { "signal_exits", VCPU_STAT(signal_exits) },
130 { "irq_window", VCPU_STAT(irq_window_exits) },
131 { "nmi_window", VCPU_STAT(nmi_window_exits) },
132 { "halt_exits", VCPU_STAT(halt_exits) },
133 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
134 { "hypercalls", VCPU_STAT(hypercalls) },
135 { "request_irq", VCPU_STAT(request_irq_exits) },
136 { "irq_exits", VCPU_STAT(irq_exits) },
137 { "host_state_reload", VCPU_STAT(host_state_reload) },
138 { "efer_reload", VCPU_STAT(efer_reload) },
139 { "fpu_reload", VCPU_STAT(fpu_reload) },
140 { "insn_emulation", VCPU_STAT(insn_emulation) },
141 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
142 { "irq_injections", VCPU_STAT(irq_injections) },
143 { "nmi_injections", VCPU_STAT(nmi_injections) },
144 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
145 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
146 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
147 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
148 { "mmu_flooded", VM_STAT(mmu_flooded) },
149 { "mmu_recycled", VM_STAT(mmu_recycled) },
150 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
151 { "mmu_unsync", VM_STAT(mmu_unsync) },
152 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
153 { "largepages", VM_STAT(lpages) },
154 { NULL }
157 u64 __read_mostly host_xcr0;
159 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
161 int i;
162 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
163 vcpu->arch.apf.gfns[i] = ~0;
166 static void kvm_on_user_return(struct user_return_notifier *urn)
168 unsigned slot;
169 struct kvm_shared_msrs *locals
170 = container_of(urn, struct kvm_shared_msrs, urn);
171 struct kvm_shared_msr_values *values;
173 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
174 values = &locals->values[slot];
175 if (values->host != values->curr) {
176 wrmsrl(shared_msrs_global.msrs[slot], values->host);
177 values->curr = values->host;
180 locals->registered = false;
181 user_return_notifier_unregister(urn);
184 static void shared_msr_update(unsigned slot, u32 msr)
186 struct kvm_shared_msrs *smsr;
187 u64 value;
189 smsr = &__get_cpu_var(shared_msrs);
190 /* only read, and nobody should modify it at this time,
191 * so don't need lock */
192 if (slot >= shared_msrs_global.nr) {
193 printk(KERN_ERR "kvm: invalid MSR slot!");
194 return;
196 rdmsrl_safe(msr, &value);
197 smsr->values[slot].host = value;
198 smsr->values[slot].curr = value;
201 void kvm_define_shared_msr(unsigned slot, u32 msr)
203 if (slot >= shared_msrs_global.nr)
204 shared_msrs_global.nr = slot + 1;
205 shared_msrs_global.msrs[slot] = msr;
206 /* we need ensured the shared_msr_global have been updated */
207 smp_wmb();
209 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
211 static void kvm_shared_msr_cpu_online(void)
213 unsigned i;
215 for (i = 0; i < shared_msrs_global.nr; ++i)
216 shared_msr_update(i, shared_msrs_global.msrs[i]);
219 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
221 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
223 if (((value ^ smsr->values[slot].curr) & mask) == 0)
224 return;
225 smsr->values[slot].curr = value;
226 wrmsrl(shared_msrs_global.msrs[slot], value);
227 if (!smsr->registered) {
228 smsr->urn.on_user_return = kvm_on_user_return;
229 user_return_notifier_register(&smsr->urn);
230 smsr->registered = true;
233 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
235 static void drop_user_return_notifiers(void *ignore)
237 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
239 if (smsr->registered)
240 kvm_on_user_return(&smsr->urn);
243 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
245 if (irqchip_in_kernel(vcpu->kvm))
246 return vcpu->arch.apic_base;
247 else
248 return vcpu->arch.apic_base;
250 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
252 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
254 /* TODO: reserve bits check */
255 if (irqchip_in_kernel(vcpu->kvm))
256 kvm_lapic_set_base(vcpu, data);
257 else
258 vcpu->arch.apic_base = data;
260 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
262 #define EXCPT_BENIGN 0
263 #define EXCPT_CONTRIBUTORY 1
264 #define EXCPT_PF 2
266 static int exception_class(int vector)
268 switch (vector) {
269 case PF_VECTOR:
270 return EXCPT_PF;
271 case DE_VECTOR:
272 case TS_VECTOR:
273 case NP_VECTOR:
274 case SS_VECTOR:
275 case GP_VECTOR:
276 return EXCPT_CONTRIBUTORY;
277 default:
278 break;
280 return EXCPT_BENIGN;
283 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
284 unsigned nr, bool has_error, u32 error_code,
285 bool reinject)
287 u32 prev_nr;
288 int class1, class2;
290 kvm_make_request(KVM_REQ_EVENT, vcpu);
292 if (!vcpu->arch.exception.pending) {
293 queue:
294 vcpu->arch.exception.pending = true;
295 vcpu->arch.exception.has_error_code = has_error;
296 vcpu->arch.exception.nr = nr;
297 vcpu->arch.exception.error_code = error_code;
298 vcpu->arch.exception.reinject = reinject;
299 return;
302 /* to check exception */
303 prev_nr = vcpu->arch.exception.nr;
304 if (prev_nr == DF_VECTOR) {
305 /* triple fault -> shutdown */
306 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
307 return;
309 class1 = exception_class(prev_nr);
310 class2 = exception_class(nr);
311 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
312 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
313 /* generate double fault per SDM Table 5-5 */
314 vcpu->arch.exception.pending = true;
315 vcpu->arch.exception.has_error_code = true;
316 vcpu->arch.exception.nr = DF_VECTOR;
317 vcpu->arch.exception.error_code = 0;
318 } else
319 /* replace previous exception with a new one in a hope
320 that instruction re-execution will regenerate lost
321 exception */
322 goto queue;
325 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
327 kvm_multiple_exception(vcpu, nr, false, 0, false);
329 EXPORT_SYMBOL_GPL(kvm_queue_exception);
331 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
333 kvm_multiple_exception(vcpu, nr, false, 0, true);
335 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
337 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
339 unsigned error_code = vcpu->arch.fault.error_code;
341 ++vcpu->stat.pf_guest;
342 vcpu->arch.cr2 = vcpu->arch.fault.address;
343 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
346 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
348 if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
349 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
350 else
351 vcpu->arch.mmu.inject_page_fault(vcpu);
353 vcpu->arch.fault.nested = false;
356 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
358 kvm_make_request(KVM_REQ_EVENT, vcpu);
359 vcpu->arch.nmi_pending = 1;
361 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
363 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
365 kvm_multiple_exception(vcpu, nr, true, error_code, false);
367 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
369 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
371 kvm_multiple_exception(vcpu, nr, true, error_code, true);
373 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
376 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
377 * a #GP and return false.
379 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
381 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
382 return true;
383 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
384 return false;
386 EXPORT_SYMBOL_GPL(kvm_require_cpl);
389 * This function will be used to read from the physical memory of the currently
390 * running guest. The difference to kvm_read_guest_page is that this function
391 * can read from guest physical or from the guest's guest physical memory.
393 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
394 gfn_t ngfn, void *data, int offset, int len,
395 u32 access)
397 gfn_t real_gfn;
398 gpa_t ngpa;
400 ngpa = gfn_to_gpa(ngfn);
401 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
402 if (real_gfn == UNMAPPED_GVA)
403 return -EFAULT;
405 real_gfn = gpa_to_gfn(real_gfn);
407 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
409 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
411 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
412 void *data, int offset, int len, u32 access)
414 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
415 data, offset, len, access);
419 * Load the pae pdptrs. Return true is they are all valid.
421 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
423 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
424 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
425 int i;
426 int ret;
427 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
429 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
430 offset * sizeof(u64), sizeof(pdpte),
431 PFERR_USER_MASK|PFERR_WRITE_MASK);
432 if (ret < 0) {
433 ret = 0;
434 goto out;
436 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
437 if (is_present_gpte(pdpte[i]) &&
438 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
439 ret = 0;
440 goto out;
443 ret = 1;
445 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
446 __set_bit(VCPU_EXREG_PDPTR,
447 (unsigned long *)&vcpu->arch.regs_avail);
448 __set_bit(VCPU_EXREG_PDPTR,
449 (unsigned long *)&vcpu->arch.regs_dirty);
450 out:
452 return ret;
454 EXPORT_SYMBOL_GPL(load_pdptrs);
456 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
458 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
459 bool changed = true;
460 int offset;
461 gfn_t gfn;
462 int r;
464 if (is_long_mode(vcpu) || !is_pae(vcpu))
465 return false;
467 if (!test_bit(VCPU_EXREG_PDPTR,
468 (unsigned long *)&vcpu->arch.regs_avail))
469 return true;
471 gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
472 offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
473 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
474 PFERR_USER_MASK | PFERR_WRITE_MASK);
475 if (r < 0)
476 goto out;
477 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
478 out:
480 return changed;
483 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
485 unsigned long old_cr0 = kvm_read_cr0(vcpu);
486 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
487 X86_CR0_CD | X86_CR0_NW;
489 cr0 |= X86_CR0_ET;
491 #ifdef CONFIG_X86_64
492 if (cr0 & 0xffffffff00000000UL)
493 return 1;
494 #endif
496 cr0 &= ~CR0_RESERVED_BITS;
498 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
499 return 1;
501 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
502 return 1;
504 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
505 #ifdef CONFIG_X86_64
506 if ((vcpu->arch.efer & EFER_LME)) {
507 int cs_db, cs_l;
509 if (!is_pae(vcpu))
510 return 1;
511 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
512 if (cs_l)
513 return 1;
514 } else
515 #endif
516 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
517 vcpu->arch.cr3))
518 return 1;
521 kvm_x86_ops->set_cr0(vcpu, cr0);
523 if ((cr0 ^ old_cr0) & X86_CR0_PG)
524 kvm_clear_async_pf_completion_queue(vcpu);
526 if ((cr0 ^ old_cr0) & update_bits)
527 kvm_mmu_reset_context(vcpu);
528 return 0;
530 EXPORT_SYMBOL_GPL(kvm_set_cr0);
532 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
534 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
536 EXPORT_SYMBOL_GPL(kvm_lmsw);
538 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
540 u64 xcr0;
542 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
543 if (index != XCR_XFEATURE_ENABLED_MASK)
544 return 1;
545 xcr0 = xcr;
546 if (kvm_x86_ops->get_cpl(vcpu) != 0)
547 return 1;
548 if (!(xcr0 & XSTATE_FP))
549 return 1;
550 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
551 return 1;
552 if (xcr0 & ~host_xcr0)
553 return 1;
554 vcpu->arch.xcr0 = xcr0;
555 vcpu->guest_xcr0_loaded = 0;
556 return 0;
559 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
561 if (__kvm_set_xcr(vcpu, index, xcr)) {
562 kvm_inject_gp(vcpu, 0);
563 return 1;
565 return 0;
567 EXPORT_SYMBOL_GPL(kvm_set_xcr);
569 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
571 struct kvm_cpuid_entry2 *best;
573 best = kvm_find_cpuid_entry(vcpu, 1, 0);
574 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
577 static void update_cpuid(struct kvm_vcpu *vcpu)
579 struct kvm_cpuid_entry2 *best;
581 best = kvm_find_cpuid_entry(vcpu, 1, 0);
582 if (!best)
583 return;
585 /* Update OSXSAVE bit */
586 if (cpu_has_xsave && best->function == 0x1) {
587 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
588 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
589 best->ecx |= bit(X86_FEATURE_OSXSAVE);
593 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
595 unsigned long old_cr4 = kvm_read_cr4(vcpu);
596 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
598 if (cr4 & CR4_RESERVED_BITS)
599 return 1;
601 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
602 return 1;
604 if (is_long_mode(vcpu)) {
605 if (!(cr4 & X86_CR4_PAE))
606 return 1;
607 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
608 && ((cr4 ^ old_cr4) & pdptr_bits)
609 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
610 return 1;
612 if (cr4 & X86_CR4_VMXE)
613 return 1;
615 kvm_x86_ops->set_cr4(vcpu, cr4);
617 if ((cr4 ^ old_cr4) & pdptr_bits)
618 kvm_mmu_reset_context(vcpu);
620 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
621 update_cpuid(vcpu);
623 return 0;
625 EXPORT_SYMBOL_GPL(kvm_set_cr4);
627 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
629 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
630 kvm_mmu_sync_roots(vcpu);
631 kvm_mmu_flush_tlb(vcpu);
632 return 0;
635 if (is_long_mode(vcpu)) {
636 if (cr3 & CR3_L_MODE_RESERVED_BITS)
637 return 1;
638 } else {
639 if (is_pae(vcpu)) {
640 if (cr3 & CR3_PAE_RESERVED_BITS)
641 return 1;
642 if (is_paging(vcpu) &&
643 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
644 return 1;
647 * We don't check reserved bits in nonpae mode, because
648 * this isn't enforced, and VMware depends on this.
653 * Does the new cr3 value map to physical memory? (Note, we
654 * catch an invalid cr3 even in real-mode, because it would
655 * cause trouble later on when we turn on paging anyway.)
657 * A real CPU would silently accept an invalid cr3 and would
658 * attempt to use it - with largely undefined (and often hard
659 * to debug) behavior on the guest side.
661 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
662 return 1;
663 vcpu->arch.cr3 = cr3;
664 vcpu->arch.mmu.new_cr3(vcpu);
665 return 0;
667 EXPORT_SYMBOL_GPL(kvm_set_cr3);
669 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
671 if (cr8 & CR8_RESERVED_BITS)
672 return 1;
673 if (irqchip_in_kernel(vcpu->kvm))
674 kvm_lapic_set_tpr(vcpu, cr8);
675 else
676 vcpu->arch.cr8 = cr8;
677 return 0;
680 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
682 if (__kvm_set_cr8(vcpu, cr8))
683 kvm_inject_gp(vcpu, 0);
685 EXPORT_SYMBOL_GPL(kvm_set_cr8);
687 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
689 if (irqchip_in_kernel(vcpu->kvm))
690 return kvm_lapic_get_cr8(vcpu);
691 else
692 return vcpu->arch.cr8;
694 EXPORT_SYMBOL_GPL(kvm_get_cr8);
696 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
698 switch (dr) {
699 case 0 ... 3:
700 vcpu->arch.db[dr] = val;
701 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
702 vcpu->arch.eff_db[dr] = val;
703 break;
704 case 4:
705 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
706 return 1; /* #UD */
707 /* fall through */
708 case 6:
709 if (val & 0xffffffff00000000ULL)
710 return -1; /* #GP */
711 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
712 break;
713 case 5:
714 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
715 return 1; /* #UD */
716 /* fall through */
717 default: /* 7 */
718 if (val & 0xffffffff00000000ULL)
719 return -1; /* #GP */
720 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
721 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
722 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
723 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
725 break;
728 return 0;
731 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
733 int res;
735 res = __kvm_set_dr(vcpu, dr, val);
736 if (res > 0)
737 kvm_queue_exception(vcpu, UD_VECTOR);
738 else if (res < 0)
739 kvm_inject_gp(vcpu, 0);
741 return res;
743 EXPORT_SYMBOL_GPL(kvm_set_dr);
745 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
747 switch (dr) {
748 case 0 ... 3:
749 *val = vcpu->arch.db[dr];
750 break;
751 case 4:
752 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753 return 1;
754 /* fall through */
755 case 6:
756 *val = vcpu->arch.dr6;
757 break;
758 case 5:
759 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
760 return 1;
761 /* fall through */
762 default: /* 7 */
763 *val = vcpu->arch.dr7;
764 break;
767 return 0;
770 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
772 if (_kvm_get_dr(vcpu, dr, val)) {
773 kvm_queue_exception(vcpu, UD_VECTOR);
774 return 1;
776 return 0;
778 EXPORT_SYMBOL_GPL(kvm_get_dr);
781 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
782 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
784 * This list is modified at module load time to reflect the
785 * capabilities of the host cpu. This capabilities test skips MSRs that are
786 * kvm-specific. Those are put in the beginning of the list.
789 #define KVM_SAVE_MSRS_BEGIN 8
790 static u32 msrs_to_save[] = {
791 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
792 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
793 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
794 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
795 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
796 MSR_STAR,
797 #ifdef CONFIG_X86_64
798 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
799 #endif
800 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
803 static unsigned num_msrs_to_save;
805 static u32 emulated_msrs[] = {
806 MSR_IA32_MISC_ENABLE,
807 MSR_IA32_MCG_STATUS,
808 MSR_IA32_MCG_CTL,
811 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
813 u64 old_efer = vcpu->arch.efer;
815 if (efer & efer_reserved_bits)
816 return 1;
818 if (is_paging(vcpu)
819 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
820 return 1;
822 if (efer & EFER_FFXSR) {
823 struct kvm_cpuid_entry2 *feat;
825 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
826 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
827 return 1;
830 if (efer & EFER_SVME) {
831 struct kvm_cpuid_entry2 *feat;
833 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
834 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
835 return 1;
838 efer &= ~EFER_LMA;
839 efer |= vcpu->arch.efer & EFER_LMA;
841 kvm_x86_ops->set_efer(vcpu, efer);
843 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
845 /* Update reserved bits */
846 if ((efer ^ old_efer) & EFER_NX)
847 kvm_mmu_reset_context(vcpu);
849 return 0;
852 void kvm_enable_efer_bits(u64 mask)
854 efer_reserved_bits &= ~mask;
856 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
860 * Writes msr value into into the appropriate "register".
861 * Returns 0 on success, non-0 otherwise.
862 * Assumes vcpu_load() was already called.
864 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
866 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
870 * Adapt set_msr() to msr_io()'s calling convention
872 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
874 return kvm_set_msr(vcpu, index, *data);
877 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
879 int version;
880 int r;
881 struct pvclock_wall_clock wc;
882 struct timespec boot;
884 if (!wall_clock)
885 return;
887 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
888 if (r)
889 return;
891 if (version & 1)
892 ++version; /* first time write, random junk */
894 ++version;
896 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
899 * The guest calculates current wall clock time by adding
900 * system time (updated by kvm_guest_time_update below) to the
901 * wall clock specified here. guest system time equals host
902 * system time for us, thus we must fill in host boot time here.
904 getboottime(&boot);
906 wc.sec = boot.tv_sec;
907 wc.nsec = boot.tv_nsec;
908 wc.version = version;
910 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
912 version++;
913 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
916 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
918 uint32_t quotient, remainder;
920 /* Don't try to replace with do_div(), this one calculates
921 * "(dividend << 32) / divisor" */
922 __asm__ ( "divl %4"
923 : "=a" (quotient), "=d" (remainder)
924 : "0" (0), "1" (dividend), "r" (divisor) );
925 return quotient;
928 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
929 s8 *pshift, u32 *pmultiplier)
931 uint64_t scaled64;
932 int32_t shift = 0;
933 uint64_t tps64;
934 uint32_t tps32;
936 tps64 = base_khz * 1000LL;
937 scaled64 = scaled_khz * 1000LL;
938 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
939 tps64 >>= 1;
940 shift--;
943 tps32 = (uint32_t)tps64;
944 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
945 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
946 scaled64 >>= 1;
947 else
948 tps32 <<= 1;
949 shift++;
952 *pshift = shift;
953 *pmultiplier = div_frac(scaled64, tps32);
955 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
956 __func__, base_khz, scaled_khz, shift, *pmultiplier);
959 static inline u64 get_kernel_ns(void)
961 struct timespec ts;
963 WARN_ON(preemptible());
964 ktime_get_ts(&ts);
965 monotonic_to_bootbased(&ts);
966 return timespec_to_ns(&ts);
969 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
970 unsigned long max_tsc_khz;
972 static inline int kvm_tsc_changes_freq(void)
974 int cpu = get_cpu();
975 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
976 cpufreq_quick_get(cpu) != 0;
977 put_cpu();
978 return ret;
981 static inline u64 nsec_to_cycles(u64 nsec)
983 u64 ret;
985 WARN_ON(preemptible());
986 if (kvm_tsc_changes_freq())
987 printk_once(KERN_WARNING
988 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
989 ret = nsec * __get_cpu_var(cpu_tsc_khz);
990 do_div(ret, USEC_PER_SEC);
991 return ret;
994 static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
996 /* Compute a scale to convert nanoseconds in TSC cycles */
997 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
998 &kvm->arch.virtual_tsc_shift,
999 &kvm->arch.virtual_tsc_mult);
1000 kvm->arch.virtual_tsc_khz = this_tsc_khz;
1003 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1005 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1006 vcpu->kvm->arch.virtual_tsc_mult,
1007 vcpu->kvm->arch.virtual_tsc_shift);
1008 tsc += vcpu->arch.last_tsc_write;
1009 return tsc;
1012 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1014 struct kvm *kvm = vcpu->kvm;
1015 u64 offset, ns, elapsed;
1016 unsigned long flags;
1017 s64 sdiff;
1019 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1020 offset = data - native_read_tsc();
1021 ns = get_kernel_ns();
1022 elapsed = ns - kvm->arch.last_tsc_nsec;
1023 sdiff = data - kvm->arch.last_tsc_write;
1024 if (sdiff < 0)
1025 sdiff = -sdiff;
1028 * Special case: close write to TSC within 5 seconds of
1029 * another CPU is interpreted as an attempt to synchronize
1030 * The 5 seconds is to accomodate host load / swapping as
1031 * well as any reset of TSC during the boot process.
1033 * In that case, for a reliable TSC, we can match TSC offsets,
1034 * or make a best guest using elapsed value.
1036 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1037 elapsed < 5ULL * NSEC_PER_SEC) {
1038 if (!check_tsc_unstable()) {
1039 offset = kvm->arch.last_tsc_offset;
1040 pr_debug("kvm: matched tsc offset for %llu\n", data);
1041 } else {
1042 u64 delta = nsec_to_cycles(elapsed);
1043 offset += delta;
1044 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1046 ns = kvm->arch.last_tsc_nsec;
1048 kvm->arch.last_tsc_nsec = ns;
1049 kvm->arch.last_tsc_write = data;
1050 kvm->arch.last_tsc_offset = offset;
1051 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1052 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1054 /* Reset of TSC must disable overshoot protection below */
1055 vcpu->arch.hv_clock.tsc_timestamp = 0;
1056 vcpu->arch.last_tsc_write = data;
1057 vcpu->arch.last_tsc_nsec = ns;
1059 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1061 static int kvm_guest_time_update(struct kvm_vcpu *v)
1063 unsigned long flags;
1064 struct kvm_vcpu_arch *vcpu = &v->arch;
1065 void *shared_kaddr;
1066 unsigned long this_tsc_khz;
1067 s64 kernel_ns, max_kernel_ns;
1068 u64 tsc_timestamp;
1070 /* Keep irq disabled to prevent changes to the clock */
1071 local_irq_save(flags);
1072 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1073 kernel_ns = get_kernel_ns();
1074 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1076 if (unlikely(this_tsc_khz == 0)) {
1077 local_irq_restore(flags);
1078 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1079 return 1;
1083 * We may have to catch up the TSC to match elapsed wall clock
1084 * time for two reasons, even if kvmclock is used.
1085 * 1) CPU could have been running below the maximum TSC rate
1086 * 2) Broken TSC compensation resets the base at each VCPU
1087 * entry to avoid unknown leaps of TSC even when running
1088 * again on the same CPU. This may cause apparent elapsed
1089 * time to disappear, and the guest to stand still or run
1090 * very slowly.
1092 if (vcpu->tsc_catchup) {
1093 u64 tsc = compute_guest_tsc(v, kernel_ns);
1094 if (tsc > tsc_timestamp) {
1095 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1096 tsc_timestamp = tsc;
1100 local_irq_restore(flags);
1102 if (!vcpu->time_page)
1103 return 0;
1106 * Time as measured by the TSC may go backwards when resetting the base
1107 * tsc_timestamp. The reason for this is that the TSC resolution is
1108 * higher than the resolution of the other clock scales. Thus, many
1109 * possible measurments of the TSC correspond to one measurement of any
1110 * other clock, and so a spread of values is possible. This is not a
1111 * problem for the computation of the nanosecond clock; with TSC rates
1112 * around 1GHZ, there can only be a few cycles which correspond to one
1113 * nanosecond value, and any path through this code will inevitably
1114 * take longer than that. However, with the kernel_ns value itself,
1115 * the precision may be much lower, down to HZ granularity. If the
1116 * first sampling of TSC against kernel_ns ends in the low part of the
1117 * range, and the second in the high end of the range, we can get:
1119 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1121 * As the sampling errors potentially range in the thousands of cycles,
1122 * it is possible such a time value has already been observed by the
1123 * guest. To protect against this, we must compute the system time as
1124 * observed by the guest and ensure the new system time is greater.
1126 max_kernel_ns = 0;
1127 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1128 max_kernel_ns = vcpu->last_guest_tsc -
1129 vcpu->hv_clock.tsc_timestamp;
1130 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1131 vcpu->hv_clock.tsc_to_system_mul,
1132 vcpu->hv_clock.tsc_shift);
1133 max_kernel_ns += vcpu->last_kernel_ns;
1136 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1137 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1138 &vcpu->hv_clock.tsc_shift,
1139 &vcpu->hv_clock.tsc_to_system_mul);
1140 vcpu->hw_tsc_khz = this_tsc_khz;
1143 if (max_kernel_ns > kernel_ns)
1144 kernel_ns = max_kernel_ns;
1146 /* With all the info we got, fill in the values */
1147 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1148 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1149 vcpu->last_kernel_ns = kernel_ns;
1150 vcpu->last_guest_tsc = tsc_timestamp;
1151 vcpu->hv_clock.flags = 0;
1154 * The interface expects us to write an even number signaling that the
1155 * update is finished. Since the guest won't see the intermediate
1156 * state, we just increase by 2 at the end.
1158 vcpu->hv_clock.version += 2;
1160 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1162 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1163 sizeof(vcpu->hv_clock));
1165 kunmap_atomic(shared_kaddr, KM_USER0);
1167 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1168 return 0;
1171 static bool msr_mtrr_valid(unsigned msr)
1173 switch (msr) {
1174 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1175 case MSR_MTRRfix64K_00000:
1176 case MSR_MTRRfix16K_80000:
1177 case MSR_MTRRfix16K_A0000:
1178 case MSR_MTRRfix4K_C0000:
1179 case MSR_MTRRfix4K_C8000:
1180 case MSR_MTRRfix4K_D0000:
1181 case MSR_MTRRfix4K_D8000:
1182 case MSR_MTRRfix4K_E0000:
1183 case MSR_MTRRfix4K_E8000:
1184 case MSR_MTRRfix4K_F0000:
1185 case MSR_MTRRfix4K_F8000:
1186 case MSR_MTRRdefType:
1187 case MSR_IA32_CR_PAT:
1188 return true;
1189 case 0x2f8:
1190 return true;
1192 return false;
1195 static bool valid_pat_type(unsigned t)
1197 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1200 static bool valid_mtrr_type(unsigned t)
1202 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1205 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1207 int i;
1209 if (!msr_mtrr_valid(msr))
1210 return false;
1212 if (msr == MSR_IA32_CR_PAT) {
1213 for (i = 0; i < 8; i++)
1214 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1215 return false;
1216 return true;
1217 } else if (msr == MSR_MTRRdefType) {
1218 if (data & ~0xcff)
1219 return false;
1220 return valid_mtrr_type(data & 0xff);
1221 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1222 for (i = 0; i < 8 ; i++)
1223 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1224 return false;
1225 return true;
1228 /* variable MTRRs */
1229 return valid_mtrr_type(data & 0xff);
1232 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1234 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1236 if (!mtrr_valid(vcpu, msr, data))
1237 return 1;
1239 if (msr == MSR_MTRRdefType) {
1240 vcpu->arch.mtrr_state.def_type = data;
1241 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1242 } else if (msr == MSR_MTRRfix64K_00000)
1243 p[0] = data;
1244 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1245 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1246 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1247 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1248 else if (msr == MSR_IA32_CR_PAT)
1249 vcpu->arch.pat = data;
1250 else { /* Variable MTRRs */
1251 int idx, is_mtrr_mask;
1252 u64 *pt;
1254 idx = (msr - 0x200) / 2;
1255 is_mtrr_mask = msr - 0x200 - 2 * idx;
1256 if (!is_mtrr_mask)
1257 pt =
1258 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1259 else
1260 pt =
1261 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1262 *pt = data;
1265 kvm_mmu_reset_context(vcpu);
1266 return 0;
1269 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1271 u64 mcg_cap = vcpu->arch.mcg_cap;
1272 unsigned bank_num = mcg_cap & 0xff;
1274 switch (msr) {
1275 case MSR_IA32_MCG_STATUS:
1276 vcpu->arch.mcg_status = data;
1277 break;
1278 case MSR_IA32_MCG_CTL:
1279 if (!(mcg_cap & MCG_CTL_P))
1280 return 1;
1281 if (data != 0 && data != ~(u64)0)
1282 return -1;
1283 vcpu->arch.mcg_ctl = data;
1284 break;
1285 default:
1286 if (msr >= MSR_IA32_MC0_CTL &&
1287 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1288 u32 offset = msr - MSR_IA32_MC0_CTL;
1289 /* only 0 or all 1s can be written to IA32_MCi_CTL
1290 * some Linux kernels though clear bit 10 in bank 4 to
1291 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1292 * this to avoid an uncatched #GP in the guest
1294 if ((offset & 0x3) == 0 &&
1295 data != 0 && (data | (1 << 10)) != ~(u64)0)
1296 return -1;
1297 vcpu->arch.mce_banks[offset] = data;
1298 break;
1300 return 1;
1302 return 0;
1305 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1307 struct kvm *kvm = vcpu->kvm;
1308 int lm = is_long_mode(vcpu);
1309 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1310 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1311 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1312 : kvm->arch.xen_hvm_config.blob_size_32;
1313 u32 page_num = data & ~PAGE_MASK;
1314 u64 page_addr = data & PAGE_MASK;
1315 u8 *page;
1316 int r;
1318 r = -E2BIG;
1319 if (page_num >= blob_size)
1320 goto out;
1321 r = -ENOMEM;
1322 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1323 if (!page)
1324 goto out;
1325 r = -EFAULT;
1326 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1327 goto out_free;
1328 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1329 goto out_free;
1330 r = 0;
1331 out_free:
1332 kfree(page);
1333 out:
1334 return r;
1337 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1339 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1342 static bool kvm_hv_msr_partition_wide(u32 msr)
1344 bool r = false;
1345 switch (msr) {
1346 case HV_X64_MSR_GUEST_OS_ID:
1347 case HV_X64_MSR_HYPERCALL:
1348 r = true;
1349 break;
1352 return r;
1355 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1357 struct kvm *kvm = vcpu->kvm;
1359 switch (msr) {
1360 case HV_X64_MSR_GUEST_OS_ID:
1361 kvm->arch.hv_guest_os_id = data;
1362 /* setting guest os id to zero disables hypercall page */
1363 if (!kvm->arch.hv_guest_os_id)
1364 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1365 break;
1366 case HV_X64_MSR_HYPERCALL: {
1367 u64 gfn;
1368 unsigned long addr;
1369 u8 instructions[4];
1371 /* if guest os id is not set hypercall should remain disabled */
1372 if (!kvm->arch.hv_guest_os_id)
1373 break;
1374 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1375 kvm->arch.hv_hypercall = data;
1376 break;
1378 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1379 addr = gfn_to_hva(kvm, gfn);
1380 if (kvm_is_error_hva(addr))
1381 return 1;
1382 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1383 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1384 if (copy_to_user((void __user *)addr, instructions, 4))
1385 return 1;
1386 kvm->arch.hv_hypercall = data;
1387 break;
1389 default:
1390 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1391 "data 0x%llx\n", msr, data);
1392 return 1;
1394 return 0;
1397 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1399 switch (msr) {
1400 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1401 unsigned long addr;
1403 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1404 vcpu->arch.hv_vapic = data;
1405 break;
1407 addr = gfn_to_hva(vcpu->kvm, data >>
1408 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1409 if (kvm_is_error_hva(addr))
1410 return 1;
1411 if (clear_user((void __user *)addr, PAGE_SIZE))
1412 return 1;
1413 vcpu->arch.hv_vapic = data;
1414 break;
1416 case HV_X64_MSR_EOI:
1417 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1418 case HV_X64_MSR_ICR:
1419 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1420 case HV_X64_MSR_TPR:
1421 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1422 default:
1423 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1424 "data 0x%llx\n", msr, data);
1425 return 1;
1428 return 0;
1431 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1433 gpa_t gpa = data & ~0x3f;
1435 /* Bits 2:5 are resrved, Should be zero */
1436 if (data & 0x3c)
1437 return 1;
1439 vcpu->arch.apf.msr_val = data;
1441 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1442 kvm_clear_async_pf_completion_queue(vcpu);
1443 kvm_async_pf_hash_reset(vcpu);
1444 return 0;
1447 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1448 return 1;
1450 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1451 kvm_async_pf_wakeup_all(vcpu);
1452 return 0;
1455 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1457 switch (msr) {
1458 case MSR_EFER:
1459 return set_efer(vcpu, data);
1460 case MSR_K7_HWCR:
1461 data &= ~(u64)0x40; /* ignore flush filter disable */
1462 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1463 if (data != 0) {
1464 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1465 data);
1466 return 1;
1468 break;
1469 case MSR_FAM10H_MMIO_CONF_BASE:
1470 if (data != 0) {
1471 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1472 "0x%llx\n", data);
1473 return 1;
1475 break;
1476 case MSR_AMD64_NB_CFG:
1477 break;
1478 case MSR_IA32_DEBUGCTLMSR:
1479 if (!data) {
1480 /* We support the non-activated case already */
1481 break;
1482 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1483 /* Values other than LBR and BTF are vendor-specific,
1484 thus reserved and should throw a #GP */
1485 return 1;
1487 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1488 __func__, data);
1489 break;
1490 case MSR_IA32_UCODE_REV:
1491 case MSR_IA32_UCODE_WRITE:
1492 case MSR_VM_HSAVE_PA:
1493 case MSR_AMD64_PATCH_LOADER:
1494 break;
1495 case 0x200 ... 0x2ff:
1496 return set_msr_mtrr(vcpu, msr, data);
1497 case MSR_IA32_APICBASE:
1498 kvm_set_apic_base(vcpu, data);
1499 break;
1500 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1501 return kvm_x2apic_msr_write(vcpu, msr, data);
1502 case MSR_IA32_MISC_ENABLE:
1503 vcpu->arch.ia32_misc_enable_msr = data;
1504 break;
1505 case MSR_KVM_WALL_CLOCK_NEW:
1506 case MSR_KVM_WALL_CLOCK:
1507 vcpu->kvm->arch.wall_clock = data;
1508 kvm_write_wall_clock(vcpu->kvm, data);
1509 break;
1510 case MSR_KVM_SYSTEM_TIME_NEW:
1511 case MSR_KVM_SYSTEM_TIME: {
1512 if (vcpu->arch.time_page) {
1513 kvm_release_page_dirty(vcpu->arch.time_page);
1514 vcpu->arch.time_page = NULL;
1517 vcpu->arch.time = data;
1518 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1520 /* we verify if the enable bit is set... */
1521 if (!(data & 1))
1522 break;
1524 /* ...but clean it before doing the actual write */
1525 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1527 vcpu->arch.time_page =
1528 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1530 if (is_error_page(vcpu->arch.time_page)) {
1531 kvm_release_page_clean(vcpu->arch.time_page);
1532 vcpu->arch.time_page = NULL;
1534 break;
1536 case MSR_KVM_ASYNC_PF_EN:
1537 if (kvm_pv_enable_async_pf(vcpu, data))
1538 return 1;
1539 break;
1540 case MSR_IA32_MCG_CTL:
1541 case MSR_IA32_MCG_STATUS:
1542 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1543 return set_msr_mce(vcpu, msr, data);
1545 /* Performance counters are not protected by a CPUID bit,
1546 * so we should check all of them in the generic path for the sake of
1547 * cross vendor migration.
1548 * Writing a zero into the event select MSRs disables them,
1549 * which we perfectly emulate ;-). Any other value should be at least
1550 * reported, some guests depend on them.
1552 case MSR_P6_EVNTSEL0:
1553 case MSR_P6_EVNTSEL1:
1554 case MSR_K7_EVNTSEL0:
1555 case MSR_K7_EVNTSEL1:
1556 case MSR_K7_EVNTSEL2:
1557 case MSR_K7_EVNTSEL3:
1558 if (data != 0)
1559 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1560 "0x%x data 0x%llx\n", msr, data);
1561 break;
1562 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1563 * so we ignore writes to make it happy.
1565 case MSR_P6_PERFCTR0:
1566 case MSR_P6_PERFCTR1:
1567 case MSR_K7_PERFCTR0:
1568 case MSR_K7_PERFCTR1:
1569 case MSR_K7_PERFCTR2:
1570 case MSR_K7_PERFCTR3:
1571 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1572 "0x%x data 0x%llx\n", msr, data);
1573 break;
1574 case MSR_K7_CLK_CTL:
1576 * Ignore all writes to this no longer documented MSR.
1577 * Writes are only relevant for old K7 processors,
1578 * all pre-dating SVM, but a recommended workaround from
1579 * AMD for these chips. It is possible to speicify the
1580 * affected processor models on the command line, hence
1581 * the need to ignore the workaround.
1583 break;
1584 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1585 if (kvm_hv_msr_partition_wide(msr)) {
1586 int r;
1587 mutex_lock(&vcpu->kvm->lock);
1588 r = set_msr_hyperv_pw(vcpu, msr, data);
1589 mutex_unlock(&vcpu->kvm->lock);
1590 return r;
1591 } else
1592 return set_msr_hyperv(vcpu, msr, data);
1593 break;
1594 default:
1595 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1596 return xen_hvm_config(vcpu, data);
1597 if (!ignore_msrs) {
1598 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1599 msr, data);
1600 return 1;
1601 } else {
1602 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1603 msr, data);
1604 break;
1607 return 0;
1609 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1613 * Reads an msr value (of 'msr_index') into 'pdata'.
1614 * Returns 0 on success, non-0 otherwise.
1615 * Assumes vcpu_load() was already called.
1617 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1619 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1622 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1624 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1626 if (!msr_mtrr_valid(msr))
1627 return 1;
1629 if (msr == MSR_MTRRdefType)
1630 *pdata = vcpu->arch.mtrr_state.def_type +
1631 (vcpu->arch.mtrr_state.enabled << 10);
1632 else if (msr == MSR_MTRRfix64K_00000)
1633 *pdata = p[0];
1634 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1635 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1636 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1637 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1638 else if (msr == MSR_IA32_CR_PAT)
1639 *pdata = vcpu->arch.pat;
1640 else { /* Variable MTRRs */
1641 int idx, is_mtrr_mask;
1642 u64 *pt;
1644 idx = (msr - 0x200) / 2;
1645 is_mtrr_mask = msr - 0x200 - 2 * idx;
1646 if (!is_mtrr_mask)
1647 pt =
1648 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1649 else
1650 pt =
1651 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1652 *pdata = *pt;
1655 return 0;
1658 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1660 u64 data;
1661 u64 mcg_cap = vcpu->arch.mcg_cap;
1662 unsigned bank_num = mcg_cap & 0xff;
1664 switch (msr) {
1665 case MSR_IA32_P5_MC_ADDR:
1666 case MSR_IA32_P5_MC_TYPE:
1667 data = 0;
1668 break;
1669 case MSR_IA32_MCG_CAP:
1670 data = vcpu->arch.mcg_cap;
1671 break;
1672 case MSR_IA32_MCG_CTL:
1673 if (!(mcg_cap & MCG_CTL_P))
1674 return 1;
1675 data = vcpu->arch.mcg_ctl;
1676 break;
1677 case MSR_IA32_MCG_STATUS:
1678 data = vcpu->arch.mcg_status;
1679 break;
1680 default:
1681 if (msr >= MSR_IA32_MC0_CTL &&
1682 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1683 u32 offset = msr - MSR_IA32_MC0_CTL;
1684 data = vcpu->arch.mce_banks[offset];
1685 break;
1687 return 1;
1689 *pdata = data;
1690 return 0;
1693 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1695 u64 data = 0;
1696 struct kvm *kvm = vcpu->kvm;
1698 switch (msr) {
1699 case HV_X64_MSR_GUEST_OS_ID:
1700 data = kvm->arch.hv_guest_os_id;
1701 break;
1702 case HV_X64_MSR_HYPERCALL:
1703 data = kvm->arch.hv_hypercall;
1704 break;
1705 default:
1706 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1707 return 1;
1710 *pdata = data;
1711 return 0;
1714 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1716 u64 data = 0;
1718 switch (msr) {
1719 case HV_X64_MSR_VP_INDEX: {
1720 int r;
1721 struct kvm_vcpu *v;
1722 kvm_for_each_vcpu(r, v, vcpu->kvm)
1723 if (v == vcpu)
1724 data = r;
1725 break;
1727 case HV_X64_MSR_EOI:
1728 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1729 case HV_X64_MSR_ICR:
1730 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1731 case HV_X64_MSR_TPR:
1732 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1733 default:
1734 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1735 return 1;
1737 *pdata = data;
1738 return 0;
1741 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1743 u64 data;
1745 switch (msr) {
1746 case MSR_IA32_PLATFORM_ID:
1747 case MSR_IA32_UCODE_REV:
1748 case MSR_IA32_EBL_CR_POWERON:
1749 case MSR_IA32_DEBUGCTLMSR:
1750 case MSR_IA32_LASTBRANCHFROMIP:
1751 case MSR_IA32_LASTBRANCHTOIP:
1752 case MSR_IA32_LASTINTFROMIP:
1753 case MSR_IA32_LASTINTTOIP:
1754 case MSR_K8_SYSCFG:
1755 case MSR_K7_HWCR:
1756 case MSR_VM_HSAVE_PA:
1757 case MSR_P6_PERFCTR0:
1758 case MSR_P6_PERFCTR1:
1759 case MSR_P6_EVNTSEL0:
1760 case MSR_P6_EVNTSEL1:
1761 case MSR_K7_EVNTSEL0:
1762 case MSR_K7_PERFCTR0:
1763 case MSR_K8_INT_PENDING_MSG:
1764 case MSR_AMD64_NB_CFG:
1765 case MSR_FAM10H_MMIO_CONF_BASE:
1766 data = 0;
1767 break;
1768 case MSR_MTRRcap:
1769 data = 0x500 | KVM_NR_VAR_MTRR;
1770 break;
1771 case 0x200 ... 0x2ff:
1772 return get_msr_mtrr(vcpu, msr, pdata);
1773 case 0xcd: /* fsb frequency */
1774 data = 3;
1775 break;
1777 * MSR_EBC_FREQUENCY_ID
1778 * Conservative value valid for even the basic CPU models.
1779 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1780 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1781 * and 266MHz for model 3, or 4. Set Core Clock
1782 * Frequency to System Bus Frequency Ratio to 1 (bits
1783 * 31:24) even though these are only valid for CPU
1784 * models > 2, however guests may end up dividing or
1785 * multiplying by zero otherwise.
1787 case MSR_EBC_FREQUENCY_ID:
1788 data = 1 << 24;
1789 break;
1790 case MSR_IA32_APICBASE:
1791 data = kvm_get_apic_base(vcpu);
1792 break;
1793 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1794 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1795 break;
1796 case MSR_IA32_MISC_ENABLE:
1797 data = vcpu->arch.ia32_misc_enable_msr;
1798 break;
1799 case MSR_IA32_PERF_STATUS:
1800 /* TSC increment by tick */
1801 data = 1000ULL;
1802 /* CPU multiplier */
1803 data |= (((uint64_t)4ULL) << 40);
1804 break;
1805 case MSR_EFER:
1806 data = vcpu->arch.efer;
1807 break;
1808 case MSR_KVM_WALL_CLOCK:
1809 case MSR_KVM_WALL_CLOCK_NEW:
1810 data = vcpu->kvm->arch.wall_clock;
1811 break;
1812 case MSR_KVM_SYSTEM_TIME:
1813 case MSR_KVM_SYSTEM_TIME_NEW:
1814 data = vcpu->arch.time;
1815 break;
1816 case MSR_KVM_ASYNC_PF_EN:
1817 data = vcpu->arch.apf.msr_val;
1818 break;
1819 case MSR_IA32_P5_MC_ADDR:
1820 case MSR_IA32_P5_MC_TYPE:
1821 case MSR_IA32_MCG_CAP:
1822 case MSR_IA32_MCG_CTL:
1823 case MSR_IA32_MCG_STATUS:
1824 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1825 return get_msr_mce(vcpu, msr, pdata);
1826 case MSR_K7_CLK_CTL:
1828 * Provide expected ramp-up count for K7. All other
1829 * are set to zero, indicating minimum divisors for
1830 * every field.
1832 * This prevents guest kernels on AMD host with CPU
1833 * type 6, model 8 and higher from exploding due to
1834 * the rdmsr failing.
1836 data = 0x20000000;
1837 break;
1838 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1839 if (kvm_hv_msr_partition_wide(msr)) {
1840 int r;
1841 mutex_lock(&vcpu->kvm->lock);
1842 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1843 mutex_unlock(&vcpu->kvm->lock);
1844 return r;
1845 } else
1846 return get_msr_hyperv(vcpu, msr, pdata);
1847 break;
1848 default:
1849 if (!ignore_msrs) {
1850 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1851 return 1;
1852 } else {
1853 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1854 data = 0;
1856 break;
1858 *pdata = data;
1859 return 0;
1861 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1864 * Read or write a bunch of msrs. All parameters are kernel addresses.
1866 * @return number of msrs set successfully.
1868 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1869 struct kvm_msr_entry *entries,
1870 int (*do_msr)(struct kvm_vcpu *vcpu,
1871 unsigned index, u64 *data))
1873 int i, idx;
1875 idx = srcu_read_lock(&vcpu->kvm->srcu);
1876 for (i = 0; i < msrs->nmsrs; ++i)
1877 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1878 break;
1879 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1881 return i;
1885 * Read or write a bunch of msrs. Parameters are user addresses.
1887 * @return number of msrs set successfully.
1889 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1890 int (*do_msr)(struct kvm_vcpu *vcpu,
1891 unsigned index, u64 *data),
1892 int writeback)
1894 struct kvm_msrs msrs;
1895 struct kvm_msr_entry *entries;
1896 int r, n;
1897 unsigned size;
1899 r = -EFAULT;
1900 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1901 goto out;
1903 r = -E2BIG;
1904 if (msrs.nmsrs >= MAX_IO_MSRS)
1905 goto out;
1907 r = -ENOMEM;
1908 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1909 entries = kmalloc(size, GFP_KERNEL);
1910 if (!entries)
1911 goto out;
1913 r = -EFAULT;
1914 if (copy_from_user(entries, user_msrs->entries, size))
1915 goto out_free;
1917 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1918 if (r < 0)
1919 goto out_free;
1921 r = -EFAULT;
1922 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1923 goto out_free;
1925 r = n;
1927 out_free:
1928 kfree(entries);
1929 out:
1930 return r;
1933 int kvm_dev_ioctl_check_extension(long ext)
1935 int r;
1937 switch (ext) {
1938 case KVM_CAP_IRQCHIP:
1939 case KVM_CAP_HLT:
1940 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1941 case KVM_CAP_SET_TSS_ADDR:
1942 case KVM_CAP_EXT_CPUID:
1943 case KVM_CAP_CLOCKSOURCE:
1944 case KVM_CAP_PIT:
1945 case KVM_CAP_NOP_IO_DELAY:
1946 case KVM_CAP_MP_STATE:
1947 case KVM_CAP_SYNC_MMU:
1948 case KVM_CAP_REINJECT_CONTROL:
1949 case KVM_CAP_IRQ_INJECT_STATUS:
1950 case KVM_CAP_ASSIGN_DEV_IRQ:
1951 case KVM_CAP_IRQFD:
1952 case KVM_CAP_IOEVENTFD:
1953 case KVM_CAP_PIT2:
1954 case KVM_CAP_PIT_STATE2:
1955 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1956 case KVM_CAP_XEN_HVM:
1957 case KVM_CAP_ADJUST_CLOCK:
1958 case KVM_CAP_VCPU_EVENTS:
1959 case KVM_CAP_HYPERV:
1960 case KVM_CAP_HYPERV_VAPIC:
1961 case KVM_CAP_HYPERV_SPIN:
1962 case KVM_CAP_PCI_SEGMENT:
1963 case KVM_CAP_DEBUGREGS:
1964 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1965 case KVM_CAP_XSAVE:
1966 case KVM_CAP_ASYNC_PF:
1967 r = 1;
1968 break;
1969 case KVM_CAP_COALESCED_MMIO:
1970 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1971 break;
1972 case KVM_CAP_VAPIC:
1973 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1974 break;
1975 case KVM_CAP_NR_VCPUS:
1976 r = KVM_MAX_VCPUS;
1977 break;
1978 case KVM_CAP_NR_MEMSLOTS:
1979 r = KVM_MEMORY_SLOTS;
1980 break;
1981 case KVM_CAP_PV_MMU: /* obsolete */
1982 r = 0;
1983 break;
1984 case KVM_CAP_IOMMU:
1985 r = iommu_found();
1986 break;
1987 case KVM_CAP_MCE:
1988 r = KVM_MAX_MCE_BANKS;
1989 break;
1990 case KVM_CAP_XCRS:
1991 r = cpu_has_xsave;
1992 break;
1993 default:
1994 r = 0;
1995 break;
1997 return r;
2001 long kvm_arch_dev_ioctl(struct file *filp,
2002 unsigned int ioctl, unsigned long arg)
2004 void __user *argp = (void __user *)arg;
2005 long r;
2007 switch (ioctl) {
2008 case KVM_GET_MSR_INDEX_LIST: {
2009 struct kvm_msr_list __user *user_msr_list = argp;
2010 struct kvm_msr_list msr_list;
2011 unsigned n;
2013 r = -EFAULT;
2014 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2015 goto out;
2016 n = msr_list.nmsrs;
2017 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2018 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2019 goto out;
2020 r = -E2BIG;
2021 if (n < msr_list.nmsrs)
2022 goto out;
2023 r = -EFAULT;
2024 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2025 num_msrs_to_save * sizeof(u32)))
2026 goto out;
2027 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2028 &emulated_msrs,
2029 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2030 goto out;
2031 r = 0;
2032 break;
2034 case KVM_GET_SUPPORTED_CPUID: {
2035 struct kvm_cpuid2 __user *cpuid_arg = argp;
2036 struct kvm_cpuid2 cpuid;
2038 r = -EFAULT;
2039 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2040 goto out;
2041 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2042 cpuid_arg->entries);
2043 if (r)
2044 goto out;
2046 r = -EFAULT;
2047 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2048 goto out;
2049 r = 0;
2050 break;
2052 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2053 u64 mce_cap;
2055 mce_cap = KVM_MCE_CAP_SUPPORTED;
2056 r = -EFAULT;
2057 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2058 goto out;
2059 r = 0;
2060 break;
2062 default:
2063 r = -EINVAL;
2065 out:
2066 return r;
2069 static void wbinvd_ipi(void *garbage)
2071 wbinvd();
2074 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2076 return vcpu->kvm->arch.iommu_domain &&
2077 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2080 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2082 /* Address WBINVD may be executed by guest */
2083 if (need_emulate_wbinvd(vcpu)) {
2084 if (kvm_x86_ops->has_wbinvd_exit())
2085 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2086 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2087 smp_call_function_single(vcpu->cpu,
2088 wbinvd_ipi, NULL, 1);
2091 kvm_x86_ops->vcpu_load(vcpu, cpu);
2092 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2093 /* Make sure TSC doesn't go backwards */
2094 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2095 native_read_tsc() - vcpu->arch.last_host_tsc;
2096 if (tsc_delta < 0)
2097 mark_tsc_unstable("KVM discovered backwards TSC");
2098 if (check_tsc_unstable()) {
2099 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2100 vcpu->arch.tsc_catchup = 1;
2101 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2103 if (vcpu->cpu != cpu)
2104 kvm_migrate_timers(vcpu);
2105 vcpu->cpu = cpu;
2109 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2111 kvm_x86_ops->vcpu_put(vcpu);
2112 kvm_put_guest_fpu(vcpu);
2113 vcpu->arch.last_host_tsc = native_read_tsc();
2116 static int is_efer_nx(void)
2118 unsigned long long efer = 0;
2120 rdmsrl_safe(MSR_EFER, &efer);
2121 return efer & EFER_NX;
2124 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2126 int i;
2127 struct kvm_cpuid_entry2 *e, *entry;
2129 entry = NULL;
2130 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2131 e = &vcpu->arch.cpuid_entries[i];
2132 if (e->function == 0x80000001) {
2133 entry = e;
2134 break;
2137 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2138 entry->edx &= ~(1 << 20);
2139 printk(KERN_INFO "kvm: guest NX capability removed\n");
2143 /* when an old userspace process fills a new kernel module */
2144 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2145 struct kvm_cpuid *cpuid,
2146 struct kvm_cpuid_entry __user *entries)
2148 int r, i;
2149 struct kvm_cpuid_entry *cpuid_entries;
2151 r = -E2BIG;
2152 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2153 goto out;
2154 r = -ENOMEM;
2155 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2156 if (!cpuid_entries)
2157 goto out;
2158 r = -EFAULT;
2159 if (copy_from_user(cpuid_entries, entries,
2160 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2161 goto out_free;
2162 for (i = 0; i < cpuid->nent; i++) {
2163 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2164 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2165 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2166 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2167 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2168 vcpu->arch.cpuid_entries[i].index = 0;
2169 vcpu->arch.cpuid_entries[i].flags = 0;
2170 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2171 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2172 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2174 vcpu->arch.cpuid_nent = cpuid->nent;
2175 cpuid_fix_nx_cap(vcpu);
2176 r = 0;
2177 kvm_apic_set_version(vcpu);
2178 kvm_x86_ops->cpuid_update(vcpu);
2179 update_cpuid(vcpu);
2181 out_free:
2182 vfree(cpuid_entries);
2183 out:
2184 return r;
2187 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2188 struct kvm_cpuid2 *cpuid,
2189 struct kvm_cpuid_entry2 __user *entries)
2191 int r;
2193 r = -E2BIG;
2194 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2195 goto out;
2196 r = -EFAULT;
2197 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2198 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2199 goto out;
2200 vcpu->arch.cpuid_nent = cpuid->nent;
2201 kvm_apic_set_version(vcpu);
2202 kvm_x86_ops->cpuid_update(vcpu);
2203 update_cpuid(vcpu);
2204 return 0;
2206 out:
2207 return r;
2210 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2211 struct kvm_cpuid2 *cpuid,
2212 struct kvm_cpuid_entry2 __user *entries)
2214 int r;
2216 r = -E2BIG;
2217 if (cpuid->nent < vcpu->arch.cpuid_nent)
2218 goto out;
2219 r = -EFAULT;
2220 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2221 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2222 goto out;
2223 return 0;
2225 out:
2226 cpuid->nent = vcpu->arch.cpuid_nent;
2227 return r;
2230 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2231 u32 index)
2233 entry->function = function;
2234 entry->index = index;
2235 cpuid_count(entry->function, entry->index,
2236 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2237 entry->flags = 0;
2240 #define F(x) bit(X86_FEATURE_##x)
2242 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2243 u32 index, int *nent, int maxnent)
2245 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2246 #ifdef CONFIG_X86_64
2247 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2248 ? F(GBPAGES) : 0;
2249 unsigned f_lm = F(LM);
2250 #else
2251 unsigned f_gbpages = 0;
2252 unsigned f_lm = 0;
2253 #endif
2254 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2256 /* cpuid 1.edx */
2257 const u32 kvm_supported_word0_x86_features =
2258 F(FPU) | F(VME) | F(DE) | F(PSE) |
2259 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2260 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2261 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2262 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2263 0 /* Reserved, DS, ACPI */ | F(MMX) |
2264 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2265 0 /* HTT, TM, Reserved, PBE */;
2266 /* cpuid 0x80000001.edx */
2267 const u32 kvm_supported_word1_x86_features =
2268 F(FPU) | F(VME) | F(DE) | F(PSE) |
2269 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2270 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2271 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2272 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2273 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2274 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2275 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2276 /* cpuid 1.ecx */
2277 const u32 kvm_supported_word4_x86_features =
2278 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2279 0 /* DS-CPL, VMX, SMX, EST */ |
2280 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2281 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2282 0 /* Reserved, DCA */ | F(XMM4_1) |
2283 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2284 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2285 F(F16C);
2286 /* cpuid 0x80000001.ecx */
2287 const u32 kvm_supported_word6_x86_features =
2288 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2289 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2290 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2291 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2293 /* all calls to cpuid_count() should be made on the same cpu */
2294 get_cpu();
2295 do_cpuid_1_ent(entry, function, index);
2296 ++*nent;
2298 switch (function) {
2299 case 0:
2300 entry->eax = min(entry->eax, (u32)0xd);
2301 break;
2302 case 1:
2303 entry->edx &= kvm_supported_word0_x86_features;
2304 entry->ecx &= kvm_supported_word4_x86_features;
2305 /* we support x2apic emulation even if host does not support
2306 * it since we emulate x2apic in software */
2307 entry->ecx |= F(X2APIC);
2308 break;
2309 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2310 * may return different values. This forces us to get_cpu() before
2311 * issuing the first command, and also to emulate this annoying behavior
2312 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2313 case 2: {
2314 int t, times = entry->eax & 0xff;
2316 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2317 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2318 for (t = 1; t < times && *nent < maxnent; ++t) {
2319 do_cpuid_1_ent(&entry[t], function, 0);
2320 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2321 ++*nent;
2323 break;
2325 /* function 4 and 0xb have additional index. */
2326 case 4: {
2327 int i, cache_type;
2329 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2330 /* read more entries until cache_type is zero */
2331 for (i = 1; *nent < maxnent; ++i) {
2332 cache_type = entry[i - 1].eax & 0x1f;
2333 if (!cache_type)
2334 break;
2335 do_cpuid_1_ent(&entry[i], function, i);
2336 entry[i].flags |=
2337 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2338 ++*nent;
2340 break;
2342 case 0xb: {
2343 int i, level_type;
2345 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2346 /* read more entries until level_type is zero */
2347 for (i = 1; *nent < maxnent; ++i) {
2348 level_type = entry[i - 1].ecx & 0xff00;
2349 if (!level_type)
2350 break;
2351 do_cpuid_1_ent(&entry[i], function, i);
2352 entry[i].flags |=
2353 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2354 ++*nent;
2356 break;
2358 case 0xd: {
2359 int i;
2361 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2362 for (i = 1; *nent < maxnent; ++i) {
2363 if (entry[i - 1].eax == 0 && i != 2)
2364 break;
2365 do_cpuid_1_ent(&entry[i], function, i);
2366 entry[i].flags |=
2367 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2368 ++*nent;
2370 break;
2372 case KVM_CPUID_SIGNATURE: {
2373 char signature[12] = "KVMKVMKVM\0\0";
2374 u32 *sigptr = (u32 *)signature;
2375 entry->eax = 0;
2376 entry->ebx = sigptr[0];
2377 entry->ecx = sigptr[1];
2378 entry->edx = sigptr[2];
2379 break;
2381 case KVM_CPUID_FEATURES:
2382 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2383 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2384 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2385 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2386 entry->ebx = 0;
2387 entry->ecx = 0;
2388 entry->edx = 0;
2389 break;
2390 case 0x80000000:
2391 entry->eax = min(entry->eax, 0x8000001a);
2392 break;
2393 case 0x80000001:
2394 entry->edx &= kvm_supported_word1_x86_features;
2395 entry->ecx &= kvm_supported_word6_x86_features;
2396 break;
2399 kvm_x86_ops->set_supported_cpuid(function, entry);
2401 put_cpu();
2404 #undef F
2406 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2407 struct kvm_cpuid_entry2 __user *entries)
2409 struct kvm_cpuid_entry2 *cpuid_entries;
2410 int limit, nent = 0, r = -E2BIG;
2411 u32 func;
2413 if (cpuid->nent < 1)
2414 goto out;
2415 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2416 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2417 r = -ENOMEM;
2418 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2419 if (!cpuid_entries)
2420 goto out;
2422 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2423 limit = cpuid_entries[0].eax;
2424 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2425 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2426 &nent, cpuid->nent);
2427 r = -E2BIG;
2428 if (nent >= cpuid->nent)
2429 goto out_free;
2431 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2432 limit = cpuid_entries[nent - 1].eax;
2433 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2434 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2435 &nent, cpuid->nent);
2439 r = -E2BIG;
2440 if (nent >= cpuid->nent)
2441 goto out_free;
2443 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2444 cpuid->nent);
2446 r = -E2BIG;
2447 if (nent >= cpuid->nent)
2448 goto out_free;
2450 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2451 cpuid->nent);
2453 r = -E2BIG;
2454 if (nent >= cpuid->nent)
2455 goto out_free;
2457 r = -EFAULT;
2458 if (copy_to_user(entries, cpuid_entries,
2459 nent * sizeof(struct kvm_cpuid_entry2)))
2460 goto out_free;
2461 cpuid->nent = nent;
2462 r = 0;
2464 out_free:
2465 vfree(cpuid_entries);
2466 out:
2467 return r;
2470 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2471 struct kvm_lapic_state *s)
2473 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2475 return 0;
2478 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2479 struct kvm_lapic_state *s)
2481 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2482 kvm_apic_post_state_restore(vcpu);
2483 update_cr8_intercept(vcpu);
2485 return 0;
2488 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2489 struct kvm_interrupt *irq)
2491 if (irq->irq < 0 || irq->irq >= 256)
2492 return -EINVAL;
2493 if (irqchip_in_kernel(vcpu->kvm))
2494 return -ENXIO;
2496 kvm_queue_interrupt(vcpu, irq->irq, false);
2497 kvm_make_request(KVM_REQ_EVENT, vcpu);
2499 return 0;
2502 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2504 kvm_inject_nmi(vcpu);
2506 return 0;
2509 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2510 struct kvm_tpr_access_ctl *tac)
2512 if (tac->flags)
2513 return -EINVAL;
2514 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2515 return 0;
2518 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2519 u64 mcg_cap)
2521 int r;
2522 unsigned bank_num = mcg_cap & 0xff, bank;
2524 r = -EINVAL;
2525 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2526 goto out;
2527 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2528 goto out;
2529 r = 0;
2530 vcpu->arch.mcg_cap = mcg_cap;
2531 /* Init IA32_MCG_CTL to all 1s */
2532 if (mcg_cap & MCG_CTL_P)
2533 vcpu->arch.mcg_ctl = ~(u64)0;
2534 /* Init IA32_MCi_CTL to all 1s */
2535 for (bank = 0; bank < bank_num; bank++)
2536 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2537 out:
2538 return r;
2541 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2542 struct kvm_x86_mce *mce)
2544 u64 mcg_cap = vcpu->arch.mcg_cap;
2545 unsigned bank_num = mcg_cap & 0xff;
2546 u64 *banks = vcpu->arch.mce_banks;
2548 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2549 return -EINVAL;
2551 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2552 * reporting is disabled
2554 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2555 vcpu->arch.mcg_ctl != ~(u64)0)
2556 return 0;
2557 banks += 4 * mce->bank;
2559 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2560 * reporting is disabled for the bank
2562 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2563 return 0;
2564 if (mce->status & MCI_STATUS_UC) {
2565 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2566 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2567 printk(KERN_DEBUG "kvm: set_mce: "
2568 "injects mce exception while "
2569 "previous one is in progress!\n");
2570 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2571 return 0;
2573 if (banks[1] & MCI_STATUS_VAL)
2574 mce->status |= MCI_STATUS_OVER;
2575 banks[2] = mce->addr;
2576 banks[3] = mce->misc;
2577 vcpu->arch.mcg_status = mce->mcg_status;
2578 banks[1] = mce->status;
2579 kvm_queue_exception(vcpu, MC_VECTOR);
2580 } else if (!(banks[1] & MCI_STATUS_VAL)
2581 || !(banks[1] & MCI_STATUS_UC)) {
2582 if (banks[1] & MCI_STATUS_VAL)
2583 mce->status |= MCI_STATUS_OVER;
2584 banks[2] = mce->addr;
2585 banks[3] = mce->misc;
2586 banks[1] = mce->status;
2587 } else
2588 banks[1] |= MCI_STATUS_OVER;
2589 return 0;
2592 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2593 struct kvm_vcpu_events *events)
2595 events->exception.injected =
2596 vcpu->arch.exception.pending &&
2597 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2598 events->exception.nr = vcpu->arch.exception.nr;
2599 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2600 events->exception.pad = 0;
2601 events->exception.error_code = vcpu->arch.exception.error_code;
2603 events->interrupt.injected =
2604 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2605 events->interrupt.nr = vcpu->arch.interrupt.nr;
2606 events->interrupt.soft = 0;
2607 events->interrupt.shadow =
2608 kvm_x86_ops->get_interrupt_shadow(vcpu,
2609 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2611 events->nmi.injected = vcpu->arch.nmi_injected;
2612 events->nmi.pending = vcpu->arch.nmi_pending;
2613 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2614 events->nmi.pad = 0;
2616 events->sipi_vector = vcpu->arch.sipi_vector;
2618 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2619 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2620 | KVM_VCPUEVENT_VALID_SHADOW);
2621 memset(&events->reserved, 0, sizeof(events->reserved));
2624 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2625 struct kvm_vcpu_events *events)
2627 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2628 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2629 | KVM_VCPUEVENT_VALID_SHADOW))
2630 return -EINVAL;
2632 vcpu->arch.exception.pending = events->exception.injected;
2633 vcpu->arch.exception.nr = events->exception.nr;
2634 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2635 vcpu->arch.exception.error_code = events->exception.error_code;
2637 vcpu->arch.interrupt.pending = events->interrupt.injected;
2638 vcpu->arch.interrupt.nr = events->interrupt.nr;
2639 vcpu->arch.interrupt.soft = events->interrupt.soft;
2640 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2641 kvm_pic_clear_isr_ack(vcpu->kvm);
2642 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2643 kvm_x86_ops->set_interrupt_shadow(vcpu,
2644 events->interrupt.shadow);
2646 vcpu->arch.nmi_injected = events->nmi.injected;
2647 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2648 vcpu->arch.nmi_pending = events->nmi.pending;
2649 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2651 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2652 vcpu->arch.sipi_vector = events->sipi_vector;
2654 kvm_make_request(KVM_REQ_EVENT, vcpu);
2656 return 0;
2659 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2660 struct kvm_debugregs *dbgregs)
2662 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2663 dbgregs->dr6 = vcpu->arch.dr6;
2664 dbgregs->dr7 = vcpu->arch.dr7;
2665 dbgregs->flags = 0;
2666 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2669 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2670 struct kvm_debugregs *dbgregs)
2672 if (dbgregs->flags)
2673 return -EINVAL;
2675 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2676 vcpu->arch.dr6 = dbgregs->dr6;
2677 vcpu->arch.dr7 = dbgregs->dr7;
2679 return 0;
2682 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2683 struct kvm_xsave *guest_xsave)
2685 if (cpu_has_xsave)
2686 memcpy(guest_xsave->region,
2687 &vcpu->arch.guest_fpu.state->xsave,
2688 xstate_size);
2689 else {
2690 memcpy(guest_xsave->region,
2691 &vcpu->arch.guest_fpu.state->fxsave,
2692 sizeof(struct i387_fxsave_struct));
2693 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2694 XSTATE_FPSSE;
2698 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2699 struct kvm_xsave *guest_xsave)
2701 u64 xstate_bv =
2702 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2704 if (cpu_has_xsave)
2705 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2706 guest_xsave->region, xstate_size);
2707 else {
2708 if (xstate_bv & ~XSTATE_FPSSE)
2709 return -EINVAL;
2710 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2711 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2713 return 0;
2716 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2717 struct kvm_xcrs *guest_xcrs)
2719 if (!cpu_has_xsave) {
2720 guest_xcrs->nr_xcrs = 0;
2721 return;
2724 guest_xcrs->nr_xcrs = 1;
2725 guest_xcrs->flags = 0;
2726 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2727 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2730 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2731 struct kvm_xcrs *guest_xcrs)
2733 int i, r = 0;
2735 if (!cpu_has_xsave)
2736 return -EINVAL;
2738 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2739 return -EINVAL;
2741 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2742 /* Only support XCR0 currently */
2743 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2744 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2745 guest_xcrs->xcrs[0].value);
2746 break;
2748 if (r)
2749 r = -EINVAL;
2750 return r;
2753 long kvm_arch_vcpu_ioctl(struct file *filp,
2754 unsigned int ioctl, unsigned long arg)
2756 struct kvm_vcpu *vcpu = filp->private_data;
2757 void __user *argp = (void __user *)arg;
2758 int r;
2759 union {
2760 struct kvm_lapic_state *lapic;
2761 struct kvm_xsave *xsave;
2762 struct kvm_xcrs *xcrs;
2763 void *buffer;
2764 } u;
2766 u.buffer = NULL;
2767 switch (ioctl) {
2768 case KVM_GET_LAPIC: {
2769 r = -EINVAL;
2770 if (!vcpu->arch.apic)
2771 goto out;
2772 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2774 r = -ENOMEM;
2775 if (!u.lapic)
2776 goto out;
2777 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2778 if (r)
2779 goto out;
2780 r = -EFAULT;
2781 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2782 goto out;
2783 r = 0;
2784 break;
2786 case KVM_SET_LAPIC: {
2787 r = -EINVAL;
2788 if (!vcpu->arch.apic)
2789 goto out;
2790 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2791 r = -ENOMEM;
2792 if (!u.lapic)
2793 goto out;
2794 r = -EFAULT;
2795 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2796 goto out;
2797 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2798 if (r)
2799 goto out;
2800 r = 0;
2801 break;
2803 case KVM_INTERRUPT: {
2804 struct kvm_interrupt irq;
2806 r = -EFAULT;
2807 if (copy_from_user(&irq, argp, sizeof irq))
2808 goto out;
2809 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2810 if (r)
2811 goto out;
2812 r = 0;
2813 break;
2815 case KVM_NMI: {
2816 r = kvm_vcpu_ioctl_nmi(vcpu);
2817 if (r)
2818 goto out;
2819 r = 0;
2820 break;
2822 case KVM_SET_CPUID: {
2823 struct kvm_cpuid __user *cpuid_arg = argp;
2824 struct kvm_cpuid cpuid;
2826 r = -EFAULT;
2827 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2828 goto out;
2829 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2830 if (r)
2831 goto out;
2832 break;
2834 case KVM_SET_CPUID2: {
2835 struct kvm_cpuid2 __user *cpuid_arg = argp;
2836 struct kvm_cpuid2 cpuid;
2838 r = -EFAULT;
2839 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2840 goto out;
2841 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2842 cpuid_arg->entries);
2843 if (r)
2844 goto out;
2845 break;
2847 case KVM_GET_CPUID2: {
2848 struct kvm_cpuid2 __user *cpuid_arg = argp;
2849 struct kvm_cpuid2 cpuid;
2851 r = -EFAULT;
2852 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2853 goto out;
2854 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2855 cpuid_arg->entries);
2856 if (r)
2857 goto out;
2858 r = -EFAULT;
2859 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2860 goto out;
2861 r = 0;
2862 break;
2864 case KVM_GET_MSRS:
2865 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2866 break;
2867 case KVM_SET_MSRS:
2868 r = msr_io(vcpu, argp, do_set_msr, 0);
2869 break;
2870 case KVM_TPR_ACCESS_REPORTING: {
2871 struct kvm_tpr_access_ctl tac;
2873 r = -EFAULT;
2874 if (copy_from_user(&tac, argp, sizeof tac))
2875 goto out;
2876 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2877 if (r)
2878 goto out;
2879 r = -EFAULT;
2880 if (copy_to_user(argp, &tac, sizeof tac))
2881 goto out;
2882 r = 0;
2883 break;
2885 case KVM_SET_VAPIC_ADDR: {
2886 struct kvm_vapic_addr va;
2888 r = -EINVAL;
2889 if (!irqchip_in_kernel(vcpu->kvm))
2890 goto out;
2891 r = -EFAULT;
2892 if (copy_from_user(&va, argp, sizeof va))
2893 goto out;
2894 r = 0;
2895 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2896 break;
2898 case KVM_X86_SETUP_MCE: {
2899 u64 mcg_cap;
2901 r = -EFAULT;
2902 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2903 goto out;
2904 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2905 break;
2907 case KVM_X86_SET_MCE: {
2908 struct kvm_x86_mce mce;
2910 r = -EFAULT;
2911 if (copy_from_user(&mce, argp, sizeof mce))
2912 goto out;
2913 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2914 break;
2916 case KVM_GET_VCPU_EVENTS: {
2917 struct kvm_vcpu_events events;
2919 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2921 r = -EFAULT;
2922 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2923 break;
2924 r = 0;
2925 break;
2927 case KVM_SET_VCPU_EVENTS: {
2928 struct kvm_vcpu_events events;
2930 r = -EFAULT;
2931 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2932 break;
2934 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2935 break;
2937 case KVM_GET_DEBUGREGS: {
2938 struct kvm_debugregs dbgregs;
2940 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2942 r = -EFAULT;
2943 if (copy_to_user(argp, &dbgregs,
2944 sizeof(struct kvm_debugregs)))
2945 break;
2946 r = 0;
2947 break;
2949 case KVM_SET_DEBUGREGS: {
2950 struct kvm_debugregs dbgregs;
2952 r = -EFAULT;
2953 if (copy_from_user(&dbgregs, argp,
2954 sizeof(struct kvm_debugregs)))
2955 break;
2957 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2958 break;
2960 case KVM_GET_XSAVE: {
2961 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2962 r = -ENOMEM;
2963 if (!u.xsave)
2964 break;
2966 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2968 r = -EFAULT;
2969 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2970 break;
2971 r = 0;
2972 break;
2974 case KVM_SET_XSAVE: {
2975 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2976 r = -ENOMEM;
2977 if (!u.xsave)
2978 break;
2980 r = -EFAULT;
2981 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2982 break;
2984 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2985 break;
2987 case KVM_GET_XCRS: {
2988 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2989 r = -ENOMEM;
2990 if (!u.xcrs)
2991 break;
2993 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2995 r = -EFAULT;
2996 if (copy_to_user(argp, u.xcrs,
2997 sizeof(struct kvm_xcrs)))
2998 break;
2999 r = 0;
3000 break;
3002 case KVM_SET_XCRS: {
3003 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3004 r = -ENOMEM;
3005 if (!u.xcrs)
3006 break;
3008 r = -EFAULT;
3009 if (copy_from_user(u.xcrs, argp,
3010 sizeof(struct kvm_xcrs)))
3011 break;
3013 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3014 break;
3016 default:
3017 r = -EINVAL;
3019 out:
3020 kfree(u.buffer);
3021 return r;
3024 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3026 int ret;
3028 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3029 return -1;
3030 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3031 return ret;
3034 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3035 u64 ident_addr)
3037 kvm->arch.ept_identity_map_addr = ident_addr;
3038 return 0;
3041 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3042 u32 kvm_nr_mmu_pages)
3044 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3045 return -EINVAL;
3047 mutex_lock(&kvm->slots_lock);
3048 spin_lock(&kvm->mmu_lock);
3050 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3051 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3053 spin_unlock(&kvm->mmu_lock);
3054 mutex_unlock(&kvm->slots_lock);
3055 return 0;
3058 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3060 return kvm->arch.n_max_mmu_pages;
3063 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3065 int r;
3067 r = 0;
3068 switch (chip->chip_id) {
3069 case KVM_IRQCHIP_PIC_MASTER:
3070 memcpy(&chip->chip.pic,
3071 &pic_irqchip(kvm)->pics[0],
3072 sizeof(struct kvm_pic_state));
3073 break;
3074 case KVM_IRQCHIP_PIC_SLAVE:
3075 memcpy(&chip->chip.pic,
3076 &pic_irqchip(kvm)->pics[1],
3077 sizeof(struct kvm_pic_state));
3078 break;
3079 case KVM_IRQCHIP_IOAPIC:
3080 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3081 break;
3082 default:
3083 r = -EINVAL;
3084 break;
3086 return r;
3089 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3091 int r;
3093 r = 0;
3094 switch (chip->chip_id) {
3095 case KVM_IRQCHIP_PIC_MASTER:
3096 spin_lock(&pic_irqchip(kvm)->lock);
3097 memcpy(&pic_irqchip(kvm)->pics[0],
3098 &chip->chip.pic,
3099 sizeof(struct kvm_pic_state));
3100 spin_unlock(&pic_irqchip(kvm)->lock);
3101 break;
3102 case KVM_IRQCHIP_PIC_SLAVE:
3103 spin_lock(&pic_irqchip(kvm)->lock);
3104 memcpy(&pic_irqchip(kvm)->pics[1],
3105 &chip->chip.pic,
3106 sizeof(struct kvm_pic_state));
3107 spin_unlock(&pic_irqchip(kvm)->lock);
3108 break;
3109 case KVM_IRQCHIP_IOAPIC:
3110 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3111 break;
3112 default:
3113 r = -EINVAL;
3114 break;
3116 kvm_pic_update_irq(pic_irqchip(kvm));
3117 return r;
3120 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3122 int r = 0;
3124 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3125 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3126 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3127 return r;
3130 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3132 int r = 0;
3134 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3135 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3136 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3137 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3138 return r;
3141 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3143 int r = 0;
3145 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3146 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3147 sizeof(ps->channels));
3148 ps->flags = kvm->arch.vpit->pit_state.flags;
3149 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3150 memset(&ps->reserved, 0, sizeof(ps->reserved));
3151 return r;
3154 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3156 int r = 0, start = 0;
3157 u32 prev_legacy, cur_legacy;
3158 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3159 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3160 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3161 if (!prev_legacy && cur_legacy)
3162 start = 1;
3163 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3164 sizeof(kvm->arch.vpit->pit_state.channels));
3165 kvm->arch.vpit->pit_state.flags = ps->flags;
3166 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3167 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3168 return r;
3171 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3172 struct kvm_reinject_control *control)
3174 if (!kvm->arch.vpit)
3175 return -ENXIO;
3176 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3177 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3178 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3179 return 0;
3183 * Get (and clear) the dirty memory log for a memory slot.
3185 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3186 struct kvm_dirty_log *log)
3188 int r, i;
3189 struct kvm_memory_slot *memslot;
3190 unsigned long n;
3191 unsigned long is_dirty = 0;
3193 mutex_lock(&kvm->slots_lock);
3195 r = -EINVAL;
3196 if (log->slot >= KVM_MEMORY_SLOTS)
3197 goto out;
3199 memslot = &kvm->memslots->memslots[log->slot];
3200 r = -ENOENT;
3201 if (!memslot->dirty_bitmap)
3202 goto out;
3204 n = kvm_dirty_bitmap_bytes(memslot);
3206 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3207 is_dirty = memslot->dirty_bitmap[i];
3209 /* If nothing is dirty, don't bother messing with page tables. */
3210 if (is_dirty) {
3211 struct kvm_memslots *slots, *old_slots;
3212 unsigned long *dirty_bitmap;
3214 dirty_bitmap = memslot->dirty_bitmap_head;
3215 if (memslot->dirty_bitmap == dirty_bitmap)
3216 dirty_bitmap += n / sizeof(long);
3217 memset(dirty_bitmap, 0, n);
3219 r = -ENOMEM;
3220 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3221 if (!slots)
3222 goto out;
3223 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3224 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3225 slots->generation++;
3227 old_slots = kvm->memslots;
3228 rcu_assign_pointer(kvm->memslots, slots);
3229 synchronize_srcu_expedited(&kvm->srcu);
3230 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3231 kfree(old_slots);
3233 spin_lock(&kvm->mmu_lock);
3234 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3235 spin_unlock(&kvm->mmu_lock);
3237 r = -EFAULT;
3238 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3239 goto out;
3240 } else {
3241 r = -EFAULT;
3242 if (clear_user(log->dirty_bitmap, n))
3243 goto out;
3246 r = 0;
3247 out:
3248 mutex_unlock(&kvm->slots_lock);
3249 return r;
3252 long kvm_arch_vm_ioctl(struct file *filp,
3253 unsigned int ioctl, unsigned long arg)
3255 struct kvm *kvm = filp->private_data;
3256 void __user *argp = (void __user *)arg;
3257 int r = -ENOTTY;
3259 * This union makes it completely explicit to gcc-3.x
3260 * that these two variables' stack usage should be
3261 * combined, not added together.
3263 union {
3264 struct kvm_pit_state ps;
3265 struct kvm_pit_state2 ps2;
3266 struct kvm_pit_config pit_config;
3267 } u;
3269 switch (ioctl) {
3270 case KVM_SET_TSS_ADDR:
3271 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3272 if (r < 0)
3273 goto out;
3274 break;
3275 case KVM_SET_IDENTITY_MAP_ADDR: {
3276 u64 ident_addr;
3278 r = -EFAULT;
3279 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3280 goto out;
3281 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3282 if (r < 0)
3283 goto out;
3284 break;
3286 case KVM_SET_NR_MMU_PAGES:
3287 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3288 if (r)
3289 goto out;
3290 break;
3291 case KVM_GET_NR_MMU_PAGES:
3292 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3293 break;
3294 case KVM_CREATE_IRQCHIP: {
3295 struct kvm_pic *vpic;
3297 mutex_lock(&kvm->lock);
3298 r = -EEXIST;
3299 if (kvm->arch.vpic)
3300 goto create_irqchip_unlock;
3301 r = -ENOMEM;
3302 vpic = kvm_create_pic(kvm);
3303 if (vpic) {
3304 r = kvm_ioapic_init(kvm);
3305 if (r) {
3306 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3307 &vpic->dev);
3308 kfree(vpic);
3309 goto create_irqchip_unlock;
3311 } else
3312 goto create_irqchip_unlock;
3313 smp_wmb();
3314 kvm->arch.vpic = vpic;
3315 smp_wmb();
3316 r = kvm_setup_default_irq_routing(kvm);
3317 if (r) {
3318 mutex_lock(&kvm->irq_lock);
3319 kvm_ioapic_destroy(kvm);
3320 kvm_destroy_pic(kvm);
3321 mutex_unlock(&kvm->irq_lock);
3323 create_irqchip_unlock:
3324 mutex_unlock(&kvm->lock);
3325 break;
3327 case KVM_CREATE_PIT:
3328 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3329 goto create_pit;
3330 case KVM_CREATE_PIT2:
3331 r = -EFAULT;
3332 if (copy_from_user(&u.pit_config, argp,
3333 sizeof(struct kvm_pit_config)))
3334 goto out;
3335 create_pit:
3336 mutex_lock(&kvm->slots_lock);
3337 r = -EEXIST;
3338 if (kvm->arch.vpit)
3339 goto create_pit_unlock;
3340 r = -ENOMEM;
3341 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3342 if (kvm->arch.vpit)
3343 r = 0;
3344 create_pit_unlock:
3345 mutex_unlock(&kvm->slots_lock);
3346 break;
3347 case KVM_IRQ_LINE_STATUS:
3348 case KVM_IRQ_LINE: {
3349 struct kvm_irq_level irq_event;
3351 r = -EFAULT;
3352 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3353 goto out;
3354 r = -ENXIO;
3355 if (irqchip_in_kernel(kvm)) {
3356 __s32 status;
3357 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3358 irq_event.irq, irq_event.level);
3359 if (ioctl == KVM_IRQ_LINE_STATUS) {
3360 r = -EFAULT;
3361 irq_event.status = status;
3362 if (copy_to_user(argp, &irq_event,
3363 sizeof irq_event))
3364 goto out;
3366 r = 0;
3368 break;
3370 case KVM_GET_IRQCHIP: {
3371 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3372 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3374 r = -ENOMEM;
3375 if (!chip)
3376 goto out;
3377 r = -EFAULT;
3378 if (copy_from_user(chip, argp, sizeof *chip))
3379 goto get_irqchip_out;
3380 r = -ENXIO;
3381 if (!irqchip_in_kernel(kvm))
3382 goto get_irqchip_out;
3383 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3384 if (r)
3385 goto get_irqchip_out;
3386 r = -EFAULT;
3387 if (copy_to_user(argp, chip, sizeof *chip))
3388 goto get_irqchip_out;
3389 r = 0;
3390 get_irqchip_out:
3391 kfree(chip);
3392 if (r)
3393 goto out;
3394 break;
3396 case KVM_SET_IRQCHIP: {
3397 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3398 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3400 r = -ENOMEM;
3401 if (!chip)
3402 goto out;
3403 r = -EFAULT;
3404 if (copy_from_user(chip, argp, sizeof *chip))
3405 goto set_irqchip_out;
3406 r = -ENXIO;
3407 if (!irqchip_in_kernel(kvm))
3408 goto set_irqchip_out;
3409 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3410 if (r)
3411 goto set_irqchip_out;
3412 r = 0;
3413 set_irqchip_out:
3414 kfree(chip);
3415 if (r)
3416 goto out;
3417 break;
3419 case KVM_GET_PIT: {
3420 r = -EFAULT;
3421 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3422 goto out;
3423 r = -ENXIO;
3424 if (!kvm->arch.vpit)
3425 goto out;
3426 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3427 if (r)
3428 goto out;
3429 r = -EFAULT;
3430 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3431 goto out;
3432 r = 0;
3433 break;
3435 case KVM_SET_PIT: {
3436 r = -EFAULT;
3437 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3438 goto out;
3439 r = -ENXIO;
3440 if (!kvm->arch.vpit)
3441 goto out;
3442 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3443 if (r)
3444 goto out;
3445 r = 0;
3446 break;
3448 case KVM_GET_PIT2: {
3449 r = -ENXIO;
3450 if (!kvm->arch.vpit)
3451 goto out;
3452 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3453 if (r)
3454 goto out;
3455 r = -EFAULT;
3456 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3457 goto out;
3458 r = 0;
3459 break;
3461 case KVM_SET_PIT2: {
3462 r = -EFAULT;
3463 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3464 goto out;
3465 r = -ENXIO;
3466 if (!kvm->arch.vpit)
3467 goto out;
3468 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3469 if (r)
3470 goto out;
3471 r = 0;
3472 break;
3474 case KVM_REINJECT_CONTROL: {
3475 struct kvm_reinject_control control;
3476 r = -EFAULT;
3477 if (copy_from_user(&control, argp, sizeof(control)))
3478 goto out;
3479 r = kvm_vm_ioctl_reinject(kvm, &control);
3480 if (r)
3481 goto out;
3482 r = 0;
3483 break;
3485 case KVM_XEN_HVM_CONFIG: {
3486 r = -EFAULT;
3487 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3488 sizeof(struct kvm_xen_hvm_config)))
3489 goto out;
3490 r = -EINVAL;
3491 if (kvm->arch.xen_hvm_config.flags)
3492 goto out;
3493 r = 0;
3494 break;
3496 case KVM_SET_CLOCK: {
3497 struct kvm_clock_data user_ns;
3498 u64 now_ns;
3499 s64 delta;
3501 r = -EFAULT;
3502 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3503 goto out;
3505 r = -EINVAL;
3506 if (user_ns.flags)
3507 goto out;
3509 r = 0;
3510 local_irq_disable();
3511 now_ns = get_kernel_ns();
3512 delta = user_ns.clock - now_ns;
3513 local_irq_enable();
3514 kvm->arch.kvmclock_offset = delta;
3515 break;
3517 case KVM_GET_CLOCK: {
3518 struct kvm_clock_data user_ns;
3519 u64 now_ns;
3521 local_irq_disable();
3522 now_ns = get_kernel_ns();
3523 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3524 local_irq_enable();
3525 user_ns.flags = 0;
3526 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3528 r = -EFAULT;
3529 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3530 goto out;
3531 r = 0;
3532 break;
3535 default:
3538 out:
3539 return r;
3542 static void kvm_init_msr_list(void)
3544 u32 dummy[2];
3545 unsigned i, j;
3547 /* skip the first msrs in the list. KVM-specific */
3548 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3549 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3550 continue;
3551 if (j < i)
3552 msrs_to_save[j] = msrs_to_save[i];
3553 j++;
3555 num_msrs_to_save = j;
3558 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3559 const void *v)
3561 if (vcpu->arch.apic &&
3562 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3563 return 0;
3565 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3568 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3570 if (vcpu->arch.apic &&
3571 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3572 return 0;
3574 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3577 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3578 struct kvm_segment *var, int seg)
3580 kvm_x86_ops->set_segment(vcpu, var, seg);
3583 void kvm_get_segment(struct kvm_vcpu *vcpu,
3584 struct kvm_segment *var, int seg)
3586 kvm_x86_ops->get_segment(vcpu, var, seg);
3589 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3591 return gpa;
3594 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3596 gpa_t t_gpa;
3597 u32 error;
3599 BUG_ON(!mmu_is_nested(vcpu));
3601 /* NPT walks are always user-walks */
3602 access |= PFERR_USER_MASK;
3603 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3604 if (t_gpa == UNMAPPED_GVA)
3605 vcpu->arch.fault.nested = true;
3607 return t_gpa;
3610 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3612 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3613 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3616 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3618 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3619 access |= PFERR_FETCH_MASK;
3620 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3623 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3625 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3626 access |= PFERR_WRITE_MASK;
3627 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3630 /* uses this to access any guest's mapped memory without checking CPL */
3631 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3633 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3636 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3637 struct kvm_vcpu *vcpu, u32 access,
3638 u32 *error)
3640 void *data = val;
3641 int r = X86EMUL_CONTINUE;
3643 while (bytes) {
3644 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3645 error);
3646 unsigned offset = addr & (PAGE_SIZE-1);
3647 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3648 int ret;
3650 if (gpa == UNMAPPED_GVA) {
3651 r = X86EMUL_PROPAGATE_FAULT;
3652 goto out;
3654 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3655 if (ret < 0) {
3656 r = X86EMUL_IO_NEEDED;
3657 goto out;
3660 bytes -= toread;
3661 data += toread;
3662 addr += toread;
3664 out:
3665 return r;
3668 /* used for instruction fetching */
3669 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3670 struct kvm_vcpu *vcpu, u32 *error)
3672 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3673 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3674 access | PFERR_FETCH_MASK, error);
3677 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3678 struct kvm_vcpu *vcpu, u32 *error)
3680 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3681 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3682 error);
3685 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3686 struct kvm_vcpu *vcpu, u32 *error)
3688 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3691 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3692 unsigned int bytes,
3693 struct kvm_vcpu *vcpu,
3694 u32 *error)
3696 void *data = val;
3697 int r = X86EMUL_CONTINUE;
3699 while (bytes) {
3700 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3701 PFERR_WRITE_MASK,
3702 error);
3703 unsigned offset = addr & (PAGE_SIZE-1);
3704 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3705 int ret;
3707 if (gpa == UNMAPPED_GVA) {
3708 r = X86EMUL_PROPAGATE_FAULT;
3709 goto out;
3711 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3712 if (ret < 0) {
3713 r = X86EMUL_IO_NEEDED;
3714 goto out;
3717 bytes -= towrite;
3718 data += towrite;
3719 addr += towrite;
3721 out:
3722 return r;
3725 static int emulator_read_emulated(unsigned long addr,
3726 void *val,
3727 unsigned int bytes,
3728 unsigned int *error_code,
3729 struct kvm_vcpu *vcpu)
3731 gpa_t gpa;
3733 if (vcpu->mmio_read_completed) {
3734 memcpy(val, vcpu->mmio_data, bytes);
3735 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3736 vcpu->mmio_phys_addr, *(u64 *)val);
3737 vcpu->mmio_read_completed = 0;
3738 return X86EMUL_CONTINUE;
3741 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3743 if (gpa == UNMAPPED_GVA)
3744 return X86EMUL_PROPAGATE_FAULT;
3746 /* For APIC access vmexit */
3747 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3748 goto mmio;
3750 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3751 == X86EMUL_CONTINUE)
3752 return X86EMUL_CONTINUE;
3754 mmio:
3756 * Is this MMIO handled locally?
3758 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3759 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3760 return X86EMUL_CONTINUE;
3763 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3765 vcpu->mmio_needed = 1;
3766 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3767 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3768 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3769 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3771 return X86EMUL_IO_NEEDED;
3774 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3775 const void *val, int bytes)
3777 int ret;
3779 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3780 if (ret < 0)
3781 return 0;
3782 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3783 return 1;
3786 static int emulator_write_emulated_onepage(unsigned long addr,
3787 const void *val,
3788 unsigned int bytes,
3789 unsigned int *error_code,
3790 struct kvm_vcpu *vcpu)
3792 gpa_t gpa;
3794 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3796 if (gpa == UNMAPPED_GVA)
3797 return X86EMUL_PROPAGATE_FAULT;
3799 /* For APIC access vmexit */
3800 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3801 goto mmio;
3803 if (emulator_write_phys(vcpu, gpa, val, bytes))
3804 return X86EMUL_CONTINUE;
3806 mmio:
3807 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3809 * Is this MMIO handled locally?
3811 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3812 return X86EMUL_CONTINUE;
3814 vcpu->mmio_needed = 1;
3815 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3816 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3817 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3818 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3819 memcpy(vcpu->run->mmio.data, val, bytes);
3821 return X86EMUL_CONTINUE;
3824 int emulator_write_emulated(unsigned long addr,
3825 const void *val,
3826 unsigned int bytes,
3827 unsigned int *error_code,
3828 struct kvm_vcpu *vcpu)
3830 /* Crossing a page boundary? */
3831 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3832 int rc, now;
3834 now = -addr & ~PAGE_MASK;
3835 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3836 vcpu);
3837 if (rc != X86EMUL_CONTINUE)
3838 return rc;
3839 addr += now;
3840 val += now;
3841 bytes -= now;
3843 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3844 vcpu);
3847 #define CMPXCHG_TYPE(t, ptr, old, new) \
3848 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3850 #ifdef CONFIG_X86_64
3851 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3852 #else
3853 # define CMPXCHG64(ptr, old, new) \
3854 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3855 #endif
3857 static int emulator_cmpxchg_emulated(unsigned long addr,
3858 const void *old,
3859 const void *new,
3860 unsigned int bytes,
3861 unsigned int *error_code,
3862 struct kvm_vcpu *vcpu)
3864 gpa_t gpa;
3865 struct page *page;
3866 char *kaddr;
3867 bool exchanged;
3869 /* guests cmpxchg8b have to be emulated atomically */
3870 if (bytes > 8 || (bytes & (bytes - 1)))
3871 goto emul_write;
3873 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3875 if (gpa == UNMAPPED_GVA ||
3876 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3877 goto emul_write;
3879 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3880 goto emul_write;
3882 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3883 if (is_error_page(page)) {
3884 kvm_release_page_clean(page);
3885 goto emul_write;
3888 kaddr = kmap_atomic(page, KM_USER0);
3889 kaddr += offset_in_page(gpa);
3890 switch (bytes) {
3891 case 1:
3892 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3893 break;
3894 case 2:
3895 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3896 break;
3897 case 4:
3898 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3899 break;
3900 case 8:
3901 exchanged = CMPXCHG64(kaddr, old, new);
3902 break;
3903 default:
3904 BUG();
3906 kunmap_atomic(kaddr, KM_USER0);
3907 kvm_release_page_dirty(page);
3909 if (!exchanged)
3910 return X86EMUL_CMPXCHG_FAILED;
3912 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3914 return X86EMUL_CONTINUE;
3916 emul_write:
3917 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3919 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3922 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3924 /* TODO: String I/O for in kernel device */
3925 int r;
3927 if (vcpu->arch.pio.in)
3928 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3929 vcpu->arch.pio.size, pd);
3930 else
3931 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3932 vcpu->arch.pio.port, vcpu->arch.pio.size,
3933 pd);
3934 return r;
3938 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3939 unsigned int count, struct kvm_vcpu *vcpu)
3941 if (vcpu->arch.pio.count)
3942 goto data_avail;
3944 trace_kvm_pio(0, port, size, 1);
3946 vcpu->arch.pio.port = port;
3947 vcpu->arch.pio.in = 1;
3948 vcpu->arch.pio.count = count;
3949 vcpu->arch.pio.size = size;
3951 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3952 data_avail:
3953 memcpy(val, vcpu->arch.pio_data, size * count);
3954 vcpu->arch.pio.count = 0;
3955 return 1;
3958 vcpu->run->exit_reason = KVM_EXIT_IO;
3959 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3960 vcpu->run->io.size = size;
3961 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3962 vcpu->run->io.count = count;
3963 vcpu->run->io.port = port;
3965 return 0;
3968 static int emulator_pio_out_emulated(int size, unsigned short port,
3969 const void *val, unsigned int count,
3970 struct kvm_vcpu *vcpu)
3972 trace_kvm_pio(1, port, size, 1);
3974 vcpu->arch.pio.port = port;
3975 vcpu->arch.pio.in = 0;
3976 vcpu->arch.pio.count = count;
3977 vcpu->arch.pio.size = size;
3979 memcpy(vcpu->arch.pio_data, val, size * count);
3981 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3982 vcpu->arch.pio.count = 0;
3983 return 1;
3986 vcpu->run->exit_reason = KVM_EXIT_IO;
3987 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3988 vcpu->run->io.size = size;
3989 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3990 vcpu->run->io.count = count;
3991 vcpu->run->io.port = port;
3993 return 0;
3996 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3998 return kvm_x86_ops->get_segment_base(vcpu, seg);
4001 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
4003 kvm_mmu_invlpg(vcpu, address);
4004 return X86EMUL_CONTINUE;
4007 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4009 if (!need_emulate_wbinvd(vcpu))
4010 return X86EMUL_CONTINUE;
4012 if (kvm_x86_ops->has_wbinvd_exit()) {
4013 int cpu = get_cpu();
4015 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4016 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4017 wbinvd_ipi, NULL, 1);
4018 put_cpu();
4019 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4020 } else
4021 wbinvd();
4022 return X86EMUL_CONTINUE;
4024 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4026 int emulate_clts(struct kvm_vcpu *vcpu)
4028 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4029 kvm_x86_ops->fpu_activate(vcpu);
4030 return X86EMUL_CONTINUE;
4033 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
4035 return _kvm_get_dr(vcpu, dr, dest);
4038 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
4041 return __kvm_set_dr(vcpu, dr, value);
4044 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4046 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4049 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
4051 unsigned long value;
4053 switch (cr) {
4054 case 0:
4055 value = kvm_read_cr0(vcpu);
4056 break;
4057 case 2:
4058 value = vcpu->arch.cr2;
4059 break;
4060 case 3:
4061 value = vcpu->arch.cr3;
4062 break;
4063 case 4:
4064 value = kvm_read_cr4(vcpu);
4065 break;
4066 case 8:
4067 value = kvm_get_cr8(vcpu);
4068 break;
4069 default:
4070 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4071 return 0;
4074 return value;
4077 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
4079 int res = 0;
4081 switch (cr) {
4082 case 0:
4083 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4084 break;
4085 case 2:
4086 vcpu->arch.cr2 = val;
4087 break;
4088 case 3:
4089 res = kvm_set_cr3(vcpu, val);
4090 break;
4091 case 4:
4092 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4093 break;
4094 case 8:
4095 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4096 break;
4097 default:
4098 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4099 res = -1;
4102 return res;
4105 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4107 return kvm_x86_ops->get_cpl(vcpu);
4110 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4112 kvm_x86_ops->get_gdt(vcpu, dt);
4115 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4117 kvm_x86_ops->get_idt(vcpu, dt);
4120 static unsigned long emulator_get_cached_segment_base(int seg,
4121 struct kvm_vcpu *vcpu)
4123 return get_segment_base(vcpu, seg);
4126 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4127 struct kvm_vcpu *vcpu)
4129 struct kvm_segment var;
4131 kvm_get_segment(vcpu, &var, seg);
4133 if (var.unusable)
4134 return false;
4136 if (var.g)
4137 var.limit >>= 12;
4138 set_desc_limit(desc, var.limit);
4139 set_desc_base(desc, (unsigned long)var.base);
4140 desc->type = var.type;
4141 desc->s = var.s;
4142 desc->dpl = var.dpl;
4143 desc->p = var.present;
4144 desc->avl = var.avl;
4145 desc->l = var.l;
4146 desc->d = var.db;
4147 desc->g = var.g;
4149 return true;
4152 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4153 struct kvm_vcpu *vcpu)
4155 struct kvm_segment var;
4157 /* needed to preserve selector */
4158 kvm_get_segment(vcpu, &var, seg);
4160 var.base = get_desc_base(desc);
4161 var.limit = get_desc_limit(desc);
4162 if (desc->g)
4163 var.limit = (var.limit << 12) | 0xfff;
4164 var.type = desc->type;
4165 var.present = desc->p;
4166 var.dpl = desc->dpl;
4167 var.db = desc->d;
4168 var.s = desc->s;
4169 var.l = desc->l;
4170 var.g = desc->g;
4171 var.avl = desc->avl;
4172 var.present = desc->p;
4173 var.unusable = !var.present;
4174 var.padding = 0;
4176 kvm_set_segment(vcpu, &var, seg);
4177 return;
4180 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4182 struct kvm_segment kvm_seg;
4184 kvm_get_segment(vcpu, &kvm_seg, seg);
4185 return kvm_seg.selector;
4188 static void emulator_set_segment_selector(u16 sel, int seg,
4189 struct kvm_vcpu *vcpu)
4191 struct kvm_segment kvm_seg;
4193 kvm_get_segment(vcpu, &kvm_seg, seg);
4194 kvm_seg.selector = sel;
4195 kvm_set_segment(vcpu, &kvm_seg, seg);
4198 static struct x86_emulate_ops emulate_ops = {
4199 .read_std = kvm_read_guest_virt_system,
4200 .write_std = kvm_write_guest_virt_system,
4201 .fetch = kvm_fetch_guest_virt,
4202 .read_emulated = emulator_read_emulated,
4203 .write_emulated = emulator_write_emulated,
4204 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4205 .pio_in_emulated = emulator_pio_in_emulated,
4206 .pio_out_emulated = emulator_pio_out_emulated,
4207 .get_cached_descriptor = emulator_get_cached_descriptor,
4208 .set_cached_descriptor = emulator_set_cached_descriptor,
4209 .get_segment_selector = emulator_get_segment_selector,
4210 .set_segment_selector = emulator_set_segment_selector,
4211 .get_cached_segment_base = emulator_get_cached_segment_base,
4212 .get_gdt = emulator_get_gdt,
4213 .get_idt = emulator_get_idt,
4214 .get_cr = emulator_get_cr,
4215 .set_cr = emulator_set_cr,
4216 .cpl = emulator_get_cpl,
4217 .get_dr = emulator_get_dr,
4218 .set_dr = emulator_set_dr,
4219 .set_msr = kvm_set_msr,
4220 .get_msr = kvm_get_msr,
4223 static void cache_all_regs(struct kvm_vcpu *vcpu)
4225 kvm_register_read(vcpu, VCPU_REGS_RAX);
4226 kvm_register_read(vcpu, VCPU_REGS_RSP);
4227 kvm_register_read(vcpu, VCPU_REGS_RIP);
4228 vcpu->arch.regs_dirty = ~0;
4231 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4233 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4235 * an sti; sti; sequence only disable interrupts for the first
4236 * instruction. So, if the last instruction, be it emulated or
4237 * not, left the system with the INT_STI flag enabled, it
4238 * means that the last instruction is an sti. We should not
4239 * leave the flag on in this case. The same goes for mov ss
4241 if (!(int_shadow & mask))
4242 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4245 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4247 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4248 if (ctxt->exception == PF_VECTOR)
4249 kvm_propagate_fault(vcpu);
4250 else if (ctxt->error_code_valid)
4251 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4252 else
4253 kvm_queue_exception(vcpu, ctxt->exception);
4256 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4258 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4259 int cs_db, cs_l;
4261 cache_all_regs(vcpu);
4263 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4265 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4266 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4267 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4268 vcpu->arch.emulate_ctxt.mode =
4269 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4270 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4271 ? X86EMUL_MODE_VM86 : cs_l
4272 ? X86EMUL_MODE_PROT64 : cs_db
4273 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4274 memset(c, 0, sizeof(struct decode_cache));
4275 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4278 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4280 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4281 int ret;
4283 init_emulate_ctxt(vcpu);
4285 vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4286 vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4287 vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4288 ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4290 if (ret != X86EMUL_CONTINUE)
4291 return EMULATE_FAIL;
4293 vcpu->arch.emulate_ctxt.eip = c->eip;
4294 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4295 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4296 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4298 if (irq == NMI_VECTOR)
4299 vcpu->arch.nmi_pending = false;
4300 else
4301 vcpu->arch.interrupt.pending = false;
4303 return EMULATE_DONE;
4305 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4307 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4309 ++vcpu->stat.insn_emulation_fail;
4310 trace_kvm_emulate_insn_failed(vcpu);
4311 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4312 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4313 vcpu->run->internal.ndata = 0;
4314 kvm_queue_exception(vcpu, UD_VECTOR);
4315 return EMULATE_FAIL;
4318 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4320 gpa_t gpa;
4322 if (tdp_enabled)
4323 return false;
4326 * if emulation was due to access to shadowed page table
4327 * and it failed try to unshadow page and re-entetr the
4328 * guest to let CPU execute the instruction.
4330 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4331 return true;
4333 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4335 if (gpa == UNMAPPED_GVA)
4336 return true; /* let cpu generate fault */
4338 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4339 return true;
4341 return false;
4344 int emulate_instruction(struct kvm_vcpu *vcpu,
4345 unsigned long cr2,
4346 u16 error_code,
4347 int emulation_type)
4349 int r;
4350 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4352 kvm_clear_exception_queue(vcpu);
4353 vcpu->arch.mmio_fault_cr2 = cr2;
4355 * TODO: fix emulate.c to use guest_read/write_register
4356 * instead of direct ->regs accesses, can save hundred cycles
4357 * on Intel for instructions that don't read/change RSP, for
4358 * for example.
4360 cache_all_regs(vcpu);
4362 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4363 init_emulate_ctxt(vcpu);
4364 vcpu->arch.emulate_ctxt.interruptibility = 0;
4365 vcpu->arch.emulate_ctxt.exception = -1;
4366 vcpu->arch.emulate_ctxt.perm_ok = false;
4368 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4369 if (r == X86EMUL_PROPAGATE_FAULT)
4370 goto done;
4372 trace_kvm_emulate_insn_start(vcpu);
4374 /* Only allow emulation of specific instructions on #UD
4375 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4376 if (emulation_type & EMULTYPE_TRAP_UD) {
4377 if (!c->twobyte)
4378 return EMULATE_FAIL;
4379 switch (c->b) {
4380 case 0x01: /* VMMCALL */
4381 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4382 return EMULATE_FAIL;
4383 break;
4384 case 0x34: /* sysenter */
4385 case 0x35: /* sysexit */
4386 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4387 return EMULATE_FAIL;
4388 break;
4389 case 0x05: /* syscall */
4390 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4391 return EMULATE_FAIL;
4392 break;
4393 default:
4394 return EMULATE_FAIL;
4397 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4398 return EMULATE_FAIL;
4401 ++vcpu->stat.insn_emulation;
4402 if (r) {
4403 if (reexecute_instruction(vcpu, cr2))
4404 return EMULATE_DONE;
4405 if (emulation_type & EMULTYPE_SKIP)
4406 return EMULATE_FAIL;
4407 return handle_emulation_failure(vcpu);
4411 if (emulation_type & EMULTYPE_SKIP) {
4412 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4413 return EMULATE_DONE;
4416 /* this is needed for vmware backdor interface to work since it
4417 changes registers values during IO operation */
4418 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4420 restart:
4421 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4423 if (r == EMULATION_FAILED) {
4424 if (reexecute_instruction(vcpu, cr2))
4425 return EMULATE_DONE;
4427 return handle_emulation_failure(vcpu);
4430 done:
4431 if (vcpu->arch.emulate_ctxt.exception >= 0) {
4432 inject_emulated_exception(vcpu);
4433 r = EMULATE_DONE;
4434 } else if (vcpu->arch.pio.count) {
4435 if (!vcpu->arch.pio.in)
4436 vcpu->arch.pio.count = 0;
4437 r = EMULATE_DO_MMIO;
4438 } else if (vcpu->mmio_needed) {
4439 if (vcpu->mmio_is_write)
4440 vcpu->mmio_needed = 0;
4441 r = EMULATE_DO_MMIO;
4442 } else if (r == EMULATION_RESTART)
4443 goto restart;
4444 else
4445 r = EMULATE_DONE;
4447 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4448 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4449 kvm_make_request(KVM_REQ_EVENT, vcpu);
4450 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4451 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4453 return r;
4455 EXPORT_SYMBOL_GPL(emulate_instruction);
4457 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4459 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4460 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4461 /* do not return to emulator after return from userspace */
4462 vcpu->arch.pio.count = 0;
4463 return ret;
4465 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4467 static void tsc_bad(void *info)
4469 __get_cpu_var(cpu_tsc_khz) = 0;
4472 static void tsc_khz_changed(void *data)
4474 struct cpufreq_freqs *freq = data;
4475 unsigned long khz = 0;
4477 if (data)
4478 khz = freq->new;
4479 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4480 khz = cpufreq_quick_get(raw_smp_processor_id());
4481 if (!khz)
4482 khz = tsc_khz;
4483 __get_cpu_var(cpu_tsc_khz) = khz;
4486 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4487 void *data)
4489 struct cpufreq_freqs *freq = data;
4490 struct kvm *kvm;
4491 struct kvm_vcpu *vcpu;
4492 int i, send_ipi = 0;
4495 * We allow guests to temporarily run on slowing clocks,
4496 * provided we notify them after, or to run on accelerating
4497 * clocks, provided we notify them before. Thus time never
4498 * goes backwards.
4500 * However, we have a problem. We can't atomically update
4501 * the frequency of a given CPU from this function; it is
4502 * merely a notifier, which can be called from any CPU.
4503 * Changing the TSC frequency at arbitrary points in time
4504 * requires a recomputation of local variables related to
4505 * the TSC for each VCPU. We must flag these local variables
4506 * to be updated and be sure the update takes place with the
4507 * new frequency before any guests proceed.
4509 * Unfortunately, the combination of hotplug CPU and frequency
4510 * change creates an intractable locking scenario; the order
4511 * of when these callouts happen is undefined with respect to
4512 * CPU hotplug, and they can race with each other. As such,
4513 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4514 * undefined; you can actually have a CPU frequency change take
4515 * place in between the computation of X and the setting of the
4516 * variable. To protect against this problem, all updates of
4517 * the per_cpu tsc_khz variable are done in an interrupt
4518 * protected IPI, and all callers wishing to update the value
4519 * must wait for a synchronous IPI to complete (which is trivial
4520 * if the caller is on the CPU already). This establishes the
4521 * necessary total order on variable updates.
4523 * Note that because a guest time update may take place
4524 * anytime after the setting of the VCPU's request bit, the
4525 * correct TSC value must be set before the request. However,
4526 * to ensure the update actually makes it to any guest which
4527 * starts running in hardware virtualization between the set
4528 * and the acquisition of the spinlock, we must also ping the
4529 * CPU after setting the request bit.
4533 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4534 return 0;
4535 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4536 return 0;
4538 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4540 spin_lock(&kvm_lock);
4541 list_for_each_entry(kvm, &vm_list, vm_list) {
4542 kvm_for_each_vcpu(i, vcpu, kvm) {
4543 if (vcpu->cpu != freq->cpu)
4544 continue;
4545 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4546 if (vcpu->cpu != smp_processor_id())
4547 send_ipi = 1;
4550 spin_unlock(&kvm_lock);
4552 if (freq->old < freq->new && send_ipi) {
4554 * We upscale the frequency. Must make the guest
4555 * doesn't see old kvmclock values while running with
4556 * the new frequency, otherwise we risk the guest sees
4557 * time go backwards.
4559 * In case we update the frequency for another cpu
4560 * (which might be in guest context) send an interrupt
4561 * to kick the cpu out of guest context. Next time
4562 * guest context is entered kvmclock will be updated,
4563 * so the guest will not see stale values.
4565 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4567 return 0;
4570 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4571 .notifier_call = kvmclock_cpufreq_notifier
4574 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4575 unsigned long action, void *hcpu)
4577 unsigned int cpu = (unsigned long)hcpu;
4579 switch (action) {
4580 case CPU_ONLINE:
4581 case CPU_DOWN_FAILED:
4582 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4583 break;
4584 case CPU_DOWN_PREPARE:
4585 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4586 break;
4588 return NOTIFY_OK;
4591 static struct notifier_block kvmclock_cpu_notifier_block = {
4592 .notifier_call = kvmclock_cpu_notifier,
4593 .priority = -INT_MAX
4596 static void kvm_timer_init(void)
4598 int cpu;
4600 max_tsc_khz = tsc_khz;
4601 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4602 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4603 #ifdef CONFIG_CPU_FREQ
4604 struct cpufreq_policy policy;
4605 memset(&policy, 0, sizeof(policy));
4606 cpu = get_cpu();
4607 cpufreq_get_policy(&policy, cpu);
4608 if (policy.cpuinfo.max_freq)
4609 max_tsc_khz = policy.cpuinfo.max_freq;
4610 put_cpu();
4611 #endif
4612 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4613 CPUFREQ_TRANSITION_NOTIFIER);
4615 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4616 for_each_online_cpu(cpu)
4617 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4620 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4622 static int kvm_is_in_guest(void)
4624 return percpu_read(current_vcpu) != NULL;
4627 static int kvm_is_user_mode(void)
4629 int user_mode = 3;
4631 if (percpu_read(current_vcpu))
4632 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4634 return user_mode != 0;
4637 static unsigned long kvm_get_guest_ip(void)
4639 unsigned long ip = 0;
4641 if (percpu_read(current_vcpu))
4642 ip = kvm_rip_read(percpu_read(current_vcpu));
4644 return ip;
4647 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4648 .is_in_guest = kvm_is_in_guest,
4649 .is_user_mode = kvm_is_user_mode,
4650 .get_guest_ip = kvm_get_guest_ip,
4653 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4655 percpu_write(current_vcpu, vcpu);
4657 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4659 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4661 percpu_write(current_vcpu, NULL);
4663 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4665 int kvm_arch_init(void *opaque)
4667 int r;
4668 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4670 if (kvm_x86_ops) {
4671 printk(KERN_ERR "kvm: already loaded the other module\n");
4672 r = -EEXIST;
4673 goto out;
4676 if (!ops->cpu_has_kvm_support()) {
4677 printk(KERN_ERR "kvm: no hardware support\n");
4678 r = -EOPNOTSUPP;
4679 goto out;
4681 if (ops->disabled_by_bios()) {
4682 printk(KERN_ERR "kvm: disabled by bios\n");
4683 r = -EOPNOTSUPP;
4684 goto out;
4687 r = kvm_mmu_module_init();
4688 if (r)
4689 goto out;
4691 kvm_init_msr_list();
4693 kvm_x86_ops = ops;
4694 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4695 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4696 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4698 kvm_timer_init();
4700 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4702 if (cpu_has_xsave)
4703 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4705 return 0;
4707 out:
4708 return r;
4711 void kvm_arch_exit(void)
4713 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4715 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4716 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4717 CPUFREQ_TRANSITION_NOTIFIER);
4718 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4719 kvm_x86_ops = NULL;
4720 kvm_mmu_module_exit();
4723 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4725 ++vcpu->stat.halt_exits;
4726 if (irqchip_in_kernel(vcpu->kvm)) {
4727 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4728 return 1;
4729 } else {
4730 vcpu->run->exit_reason = KVM_EXIT_HLT;
4731 return 0;
4734 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4736 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4737 unsigned long a1)
4739 if (is_long_mode(vcpu))
4740 return a0;
4741 else
4742 return a0 | ((gpa_t)a1 << 32);
4745 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4747 u64 param, ingpa, outgpa, ret;
4748 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4749 bool fast, longmode;
4750 int cs_db, cs_l;
4753 * hypercall generates UD from non zero cpl and real mode
4754 * per HYPER-V spec
4756 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4757 kvm_queue_exception(vcpu, UD_VECTOR);
4758 return 0;
4761 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4762 longmode = is_long_mode(vcpu) && cs_l == 1;
4764 if (!longmode) {
4765 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4766 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4767 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4768 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4769 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4770 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4772 #ifdef CONFIG_X86_64
4773 else {
4774 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4775 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4776 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4778 #endif
4780 code = param & 0xffff;
4781 fast = (param >> 16) & 0x1;
4782 rep_cnt = (param >> 32) & 0xfff;
4783 rep_idx = (param >> 48) & 0xfff;
4785 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4787 switch (code) {
4788 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4789 kvm_vcpu_on_spin(vcpu);
4790 break;
4791 default:
4792 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4793 break;
4796 ret = res | (((u64)rep_done & 0xfff) << 32);
4797 if (longmode) {
4798 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4799 } else {
4800 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4801 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4804 return 1;
4807 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4809 unsigned long nr, a0, a1, a2, a3, ret;
4810 int r = 1;
4812 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4813 return kvm_hv_hypercall(vcpu);
4815 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4816 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4817 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4818 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4819 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4821 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4823 if (!is_long_mode(vcpu)) {
4824 nr &= 0xFFFFFFFF;
4825 a0 &= 0xFFFFFFFF;
4826 a1 &= 0xFFFFFFFF;
4827 a2 &= 0xFFFFFFFF;
4828 a3 &= 0xFFFFFFFF;
4831 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4832 ret = -KVM_EPERM;
4833 goto out;
4836 switch (nr) {
4837 case KVM_HC_VAPIC_POLL_IRQ:
4838 ret = 0;
4839 break;
4840 case KVM_HC_MMU_OP:
4841 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4842 break;
4843 default:
4844 ret = -KVM_ENOSYS;
4845 break;
4847 out:
4848 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4849 ++vcpu->stat.hypercalls;
4850 return r;
4852 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4854 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4856 char instruction[3];
4857 unsigned long rip = kvm_rip_read(vcpu);
4860 * Blow out the MMU to ensure that no other VCPU has an active mapping
4861 * to ensure that the updated hypercall appears atomically across all
4862 * VCPUs.
4864 kvm_mmu_zap_all(vcpu->kvm);
4866 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4868 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4871 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4873 struct desc_ptr dt = { limit, base };
4875 kvm_x86_ops->set_gdt(vcpu, &dt);
4878 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4880 struct desc_ptr dt = { limit, base };
4882 kvm_x86_ops->set_idt(vcpu, &dt);
4885 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4887 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4888 int j, nent = vcpu->arch.cpuid_nent;
4890 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4891 /* when no next entry is found, the current entry[i] is reselected */
4892 for (j = i + 1; ; j = (j + 1) % nent) {
4893 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4894 if (ej->function == e->function) {
4895 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4896 return j;
4899 return 0; /* silence gcc, even though control never reaches here */
4902 /* find an entry with matching function, matching index (if needed), and that
4903 * should be read next (if it's stateful) */
4904 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4905 u32 function, u32 index)
4907 if (e->function != function)
4908 return 0;
4909 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4910 return 0;
4911 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4912 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4913 return 0;
4914 return 1;
4917 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4918 u32 function, u32 index)
4920 int i;
4921 struct kvm_cpuid_entry2 *best = NULL;
4923 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4924 struct kvm_cpuid_entry2 *e;
4926 e = &vcpu->arch.cpuid_entries[i];
4927 if (is_matching_cpuid_entry(e, function, index)) {
4928 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4929 move_to_next_stateful_cpuid_entry(vcpu, i);
4930 best = e;
4931 break;
4934 * Both basic or both extended?
4936 if (((e->function ^ function) & 0x80000000) == 0)
4937 if (!best || e->function > best->function)
4938 best = e;
4940 return best;
4942 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4944 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4946 struct kvm_cpuid_entry2 *best;
4948 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4949 if (!best || best->eax < 0x80000008)
4950 goto not_found;
4951 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4952 if (best)
4953 return best->eax & 0xff;
4954 not_found:
4955 return 36;
4958 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4960 u32 function, index;
4961 struct kvm_cpuid_entry2 *best;
4963 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4964 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4965 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4966 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4967 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4968 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4969 best = kvm_find_cpuid_entry(vcpu, function, index);
4970 if (best) {
4971 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4972 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4973 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4974 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4976 kvm_x86_ops->skip_emulated_instruction(vcpu);
4977 trace_kvm_cpuid(function,
4978 kvm_register_read(vcpu, VCPU_REGS_RAX),
4979 kvm_register_read(vcpu, VCPU_REGS_RBX),
4980 kvm_register_read(vcpu, VCPU_REGS_RCX),
4981 kvm_register_read(vcpu, VCPU_REGS_RDX));
4983 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4986 * Check if userspace requested an interrupt window, and that the
4987 * interrupt window is open.
4989 * No need to exit to userspace if we already have an interrupt queued.
4991 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4993 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4994 vcpu->run->request_interrupt_window &&
4995 kvm_arch_interrupt_allowed(vcpu));
4998 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5000 struct kvm_run *kvm_run = vcpu->run;
5002 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5003 kvm_run->cr8 = kvm_get_cr8(vcpu);
5004 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5005 if (irqchip_in_kernel(vcpu->kvm))
5006 kvm_run->ready_for_interrupt_injection = 1;
5007 else
5008 kvm_run->ready_for_interrupt_injection =
5009 kvm_arch_interrupt_allowed(vcpu) &&
5010 !kvm_cpu_has_interrupt(vcpu) &&
5011 !kvm_event_needs_reinjection(vcpu);
5014 static void vapic_enter(struct kvm_vcpu *vcpu)
5016 struct kvm_lapic *apic = vcpu->arch.apic;
5017 struct page *page;
5019 if (!apic || !apic->vapic_addr)
5020 return;
5022 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5024 vcpu->arch.apic->vapic_page = page;
5027 static void vapic_exit(struct kvm_vcpu *vcpu)
5029 struct kvm_lapic *apic = vcpu->arch.apic;
5030 int idx;
5032 if (!apic || !apic->vapic_addr)
5033 return;
5035 idx = srcu_read_lock(&vcpu->kvm->srcu);
5036 kvm_release_page_dirty(apic->vapic_page);
5037 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5038 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5041 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5043 int max_irr, tpr;
5045 if (!kvm_x86_ops->update_cr8_intercept)
5046 return;
5048 if (!vcpu->arch.apic)
5049 return;
5051 if (!vcpu->arch.apic->vapic_addr)
5052 max_irr = kvm_lapic_find_highest_irr(vcpu);
5053 else
5054 max_irr = -1;
5056 if (max_irr != -1)
5057 max_irr >>= 4;
5059 tpr = kvm_lapic_get_cr8(vcpu);
5061 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5064 static void inject_pending_event(struct kvm_vcpu *vcpu)
5066 /* try to reinject previous events if any */
5067 if (vcpu->arch.exception.pending) {
5068 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5069 vcpu->arch.exception.has_error_code,
5070 vcpu->arch.exception.error_code);
5071 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5072 vcpu->arch.exception.has_error_code,
5073 vcpu->arch.exception.error_code,
5074 vcpu->arch.exception.reinject);
5075 return;
5078 if (vcpu->arch.nmi_injected) {
5079 kvm_x86_ops->set_nmi(vcpu);
5080 return;
5083 if (vcpu->arch.interrupt.pending) {
5084 kvm_x86_ops->set_irq(vcpu);
5085 return;
5088 /* try to inject new event if pending */
5089 if (vcpu->arch.nmi_pending) {
5090 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5091 vcpu->arch.nmi_pending = false;
5092 vcpu->arch.nmi_injected = true;
5093 kvm_x86_ops->set_nmi(vcpu);
5095 } else if (kvm_cpu_has_interrupt(vcpu)) {
5096 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5097 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5098 false);
5099 kvm_x86_ops->set_irq(vcpu);
5104 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5106 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5107 !vcpu->guest_xcr0_loaded) {
5108 /* kvm_set_xcr() also depends on this */
5109 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5110 vcpu->guest_xcr0_loaded = 1;
5114 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5116 if (vcpu->guest_xcr0_loaded) {
5117 if (vcpu->arch.xcr0 != host_xcr0)
5118 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5119 vcpu->guest_xcr0_loaded = 0;
5123 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5125 int r;
5126 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5127 vcpu->run->request_interrupt_window;
5129 if (vcpu->requests) {
5130 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5131 kvm_mmu_unload(vcpu);
5132 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5133 __kvm_migrate_timers(vcpu);
5134 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5135 r = kvm_guest_time_update(vcpu);
5136 if (unlikely(r))
5137 goto out;
5139 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5140 kvm_mmu_sync_roots(vcpu);
5141 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5142 kvm_x86_ops->tlb_flush(vcpu);
5143 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5144 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5145 r = 0;
5146 goto out;
5148 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5149 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5150 r = 0;
5151 goto out;
5153 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5154 vcpu->fpu_active = 0;
5155 kvm_x86_ops->fpu_deactivate(vcpu);
5157 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5158 /* Page is swapped out. Do synthetic halt */
5159 vcpu->arch.apf.halted = true;
5160 r = 1;
5161 goto out;
5165 r = kvm_mmu_reload(vcpu);
5166 if (unlikely(r))
5167 goto out;
5169 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5170 inject_pending_event(vcpu);
5172 /* enable NMI/IRQ window open exits if needed */
5173 if (vcpu->arch.nmi_pending)
5174 kvm_x86_ops->enable_nmi_window(vcpu);
5175 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5176 kvm_x86_ops->enable_irq_window(vcpu);
5178 if (kvm_lapic_enabled(vcpu)) {
5179 update_cr8_intercept(vcpu);
5180 kvm_lapic_sync_to_vapic(vcpu);
5184 preempt_disable();
5186 kvm_x86_ops->prepare_guest_switch(vcpu);
5187 if (vcpu->fpu_active)
5188 kvm_load_guest_fpu(vcpu);
5189 kvm_load_guest_xcr0(vcpu);
5191 atomic_set(&vcpu->guest_mode, 1);
5192 smp_wmb();
5194 local_irq_disable();
5196 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5197 || need_resched() || signal_pending(current)) {
5198 atomic_set(&vcpu->guest_mode, 0);
5199 smp_wmb();
5200 local_irq_enable();
5201 preempt_enable();
5202 kvm_x86_ops->cancel_injection(vcpu);
5203 r = 1;
5204 goto out;
5207 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5209 kvm_guest_enter();
5211 if (unlikely(vcpu->arch.switch_db_regs)) {
5212 set_debugreg(0, 7);
5213 set_debugreg(vcpu->arch.eff_db[0], 0);
5214 set_debugreg(vcpu->arch.eff_db[1], 1);
5215 set_debugreg(vcpu->arch.eff_db[2], 2);
5216 set_debugreg(vcpu->arch.eff_db[3], 3);
5219 trace_kvm_entry(vcpu->vcpu_id);
5220 kvm_x86_ops->run(vcpu);
5223 * If the guest has used debug registers, at least dr7
5224 * will be disabled while returning to the host.
5225 * If we don't have active breakpoints in the host, we don't
5226 * care about the messed up debug address registers. But if
5227 * we have some of them active, restore the old state.
5229 if (hw_breakpoint_active())
5230 hw_breakpoint_restore();
5232 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5234 atomic_set(&vcpu->guest_mode, 0);
5235 smp_wmb();
5236 local_irq_enable();
5238 ++vcpu->stat.exits;
5241 * We must have an instruction between local_irq_enable() and
5242 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5243 * the interrupt shadow. The stat.exits increment will do nicely.
5244 * But we need to prevent reordering, hence this barrier():
5246 barrier();
5248 kvm_guest_exit();
5250 preempt_enable();
5252 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5255 * Profile KVM exit RIPs:
5257 if (unlikely(prof_on == KVM_PROFILING)) {
5258 unsigned long rip = kvm_rip_read(vcpu);
5259 profile_hit(KVM_PROFILING, (void *)rip);
5263 kvm_lapic_sync_from_vapic(vcpu);
5265 r = kvm_x86_ops->handle_exit(vcpu);
5266 out:
5267 return r;
5271 static int __vcpu_run(struct kvm_vcpu *vcpu)
5273 int r;
5274 struct kvm *kvm = vcpu->kvm;
5276 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5277 pr_debug("vcpu %d received sipi with vector # %x\n",
5278 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5279 kvm_lapic_reset(vcpu);
5280 r = kvm_arch_vcpu_reset(vcpu);
5281 if (r)
5282 return r;
5283 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5286 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5287 vapic_enter(vcpu);
5289 r = 1;
5290 while (r > 0) {
5291 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5292 !vcpu->arch.apf.halted)
5293 r = vcpu_enter_guest(vcpu);
5294 else {
5295 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5296 kvm_vcpu_block(vcpu);
5297 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5298 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5300 switch(vcpu->arch.mp_state) {
5301 case KVM_MP_STATE_HALTED:
5302 vcpu->arch.mp_state =
5303 KVM_MP_STATE_RUNNABLE;
5304 case KVM_MP_STATE_RUNNABLE:
5305 vcpu->arch.apf.halted = false;
5306 break;
5307 case KVM_MP_STATE_SIPI_RECEIVED:
5308 default:
5309 r = -EINTR;
5310 break;
5315 if (r <= 0)
5316 break;
5318 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5319 if (kvm_cpu_has_pending_timer(vcpu))
5320 kvm_inject_pending_timer_irqs(vcpu);
5322 if (dm_request_for_irq_injection(vcpu)) {
5323 r = -EINTR;
5324 vcpu->run->exit_reason = KVM_EXIT_INTR;
5325 ++vcpu->stat.request_irq_exits;
5328 kvm_check_async_pf_completion(vcpu);
5330 if (signal_pending(current)) {
5331 r = -EINTR;
5332 vcpu->run->exit_reason = KVM_EXIT_INTR;
5333 ++vcpu->stat.signal_exits;
5335 if (need_resched()) {
5336 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5337 kvm_resched(vcpu);
5338 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5342 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5344 vapic_exit(vcpu);
5346 return r;
5349 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5351 int r;
5352 sigset_t sigsaved;
5354 if (vcpu->sigset_active)
5355 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5357 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5358 kvm_vcpu_block(vcpu);
5359 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5360 r = -EAGAIN;
5361 goto out;
5364 /* re-sync apic's tpr */
5365 if (!irqchip_in_kernel(vcpu->kvm))
5366 kvm_set_cr8(vcpu, kvm_run->cr8);
5368 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5369 if (vcpu->mmio_needed) {
5370 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5371 vcpu->mmio_read_completed = 1;
5372 vcpu->mmio_needed = 0;
5374 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5375 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5376 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5377 if (r != EMULATE_DONE) {
5378 r = 0;
5379 goto out;
5382 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5383 kvm_register_write(vcpu, VCPU_REGS_RAX,
5384 kvm_run->hypercall.ret);
5386 r = __vcpu_run(vcpu);
5388 out:
5389 post_kvm_run_save(vcpu);
5390 if (vcpu->sigset_active)
5391 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5393 return r;
5396 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5398 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5399 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5400 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5401 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5402 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5403 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5404 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5405 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5406 #ifdef CONFIG_X86_64
5407 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5408 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5409 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5410 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5411 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5412 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5413 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5414 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5415 #endif
5417 regs->rip = kvm_rip_read(vcpu);
5418 regs->rflags = kvm_get_rflags(vcpu);
5420 return 0;
5423 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5425 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5426 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5427 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5428 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5429 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5430 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5431 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5432 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5433 #ifdef CONFIG_X86_64
5434 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5435 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5436 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5437 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5438 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5439 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5440 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5441 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5442 #endif
5444 kvm_rip_write(vcpu, regs->rip);
5445 kvm_set_rflags(vcpu, regs->rflags);
5447 vcpu->arch.exception.pending = false;
5449 kvm_make_request(KVM_REQ_EVENT, vcpu);
5451 return 0;
5454 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5456 struct kvm_segment cs;
5458 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5459 *db = cs.db;
5460 *l = cs.l;
5462 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5464 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5465 struct kvm_sregs *sregs)
5467 struct desc_ptr dt;
5469 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5470 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5471 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5472 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5473 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5474 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5476 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5477 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5479 kvm_x86_ops->get_idt(vcpu, &dt);
5480 sregs->idt.limit = dt.size;
5481 sregs->idt.base = dt.address;
5482 kvm_x86_ops->get_gdt(vcpu, &dt);
5483 sregs->gdt.limit = dt.size;
5484 sregs->gdt.base = dt.address;
5486 sregs->cr0 = kvm_read_cr0(vcpu);
5487 sregs->cr2 = vcpu->arch.cr2;
5488 sregs->cr3 = vcpu->arch.cr3;
5489 sregs->cr4 = kvm_read_cr4(vcpu);
5490 sregs->cr8 = kvm_get_cr8(vcpu);
5491 sregs->efer = vcpu->arch.efer;
5492 sregs->apic_base = kvm_get_apic_base(vcpu);
5494 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5496 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5497 set_bit(vcpu->arch.interrupt.nr,
5498 (unsigned long *)sregs->interrupt_bitmap);
5500 return 0;
5503 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5504 struct kvm_mp_state *mp_state)
5506 mp_state->mp_state = vcpu->arch.mp_state;
5507 return 0;
5510 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5511 struct kvm_mp_state *mp_state)
5513 vcpu->arch.mp_state = mp_state->mp_state;
5514 kvm_make_request(KVM_REQ_EVENT, vcpu);
5515 return 0;
5518 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5519 bool has_error_code, u32 error_code)
5521 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5522 int ret;
5524 init_emulate_ctxt(vcpu);
5526 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5527 tss_selector, reason, has_error_code,
5528 error_code);
5530 if (ret)
5531 return EMULATE_FAIL;
5533 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5534 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5535 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5536 kvm_make_request(KVM_REQ_EVENT, vcpu);
5537 return EMULATE_DONE;
5539 EXPORT_SYMBOL_GPL(kvm_task_switch);
5541 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5542 struct kvm_sregs *sregs)
5544 int mmu_reset_needed = 0;
5545 int pending_vec, max_bits;
5546 struct desc_ptr dt;
5548 dt.size = sregs->idt.limit;
5549 dt.address = sregs->idt.base;
5550 kvm_x86_ops->set_idt(vcpu, &dt);
5551 dt.size = sregs->gdt.limit;
5552 dt.address = sregs->gdt.base;
5553 kvm_x86_ops->set_gdt(vcpu, &dt);
5555 vcpu->arch.cr2 = sregs->cr2;
5556 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5557 vcpu->arch.cr3 = sregs->cr3;
5559 kvm_set_cr8(vcpu, sregs->cr8);
5561 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5562 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5563 kvm_set_apic_base(vcpu, sregs->apic_base);
5565 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5566 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5567 vcpu->arch.cr0 = sregs->cr0;
5569 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5570 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5571 if (sregs->cr4 & X86_CR4_OSXSAVE)
5572 update_cpuid(vcpu);
5573 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5574 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5575 mmu_reset_needed = 1;
5578 if (mmu_reset_needed)
5579 kvm_mmu_reset_context(vcpu);
5581 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5582 pending_vec = find_first_bit(
5583 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5584 if (pending_vec < max_bits) {
5585 kvm_queue_interrupt(vcpu, pending_vec, false);
5586 pr_debug("Set back pending irq %d\n", pending_vec);
5587 if (irqchip_in_kernel(vcpu->kvm))
5588 kvm_pic_clear_isr_ack(vcpu->kvm);
5591 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5592 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5593 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5594 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5595 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5596 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5598 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5599 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5601 update_cr8_intercept(vcpu);
5603 /* Older userspace won't unhalt the vcpu on reset. */
5604 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5605 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5606 !is_protmode(vcpu))
5607 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5609 kvm_make_request(KVM_REQ_EVENT, vcpu);
5611 return 0;
5614 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5615 struct kvm_guest_debug *dbg)
5617 unsigned long rflags;
5618 int i, r;
5620 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5621 r = -EBUSY;
5622 if (vcpu->arch.exception.pending)
5623 goto out;
5624 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5625 kvm_queue_exception(vcpu, DB_VECTOR);
5626 else
5627 kvm_queue_exception(vcpu, BP_VECTOR);
5631 * Read rflags as long as potentially injected trace flags are still
5632 * filtered out.
5634 rflags = kvm_get_rflags(vcpu);
5636 vcpu->guest_debug = dbg->control;
5637 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5638 vcpu->guest_debug = 0;
5640 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5641 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5642 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5643 vcpu->arch.switch_db_regs =
5644 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5645 } else {
5646 for (i = 0; i < KVM_NR_DB_REGS; i++)
5647 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5648 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5651 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5652 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5653 get_segment_base(vcpu, VCPU_SREG_CS);
5656 * Trigger an rflags update that will inject or remove the trace
5657 * flags.
5659 kvm_set_rflags(vcpu, rflags);
5661 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5663 r = 0;
5665 out:
5667 return r;
5671 * Translate a guest virtual address to a guest physical address.
5673 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5674 struct kvm_translation *tr)
5676 unsigned long vaddr = tr->linear_address;
5677 gpa_t gpa;
5678 int idx;
5680 idx = srcu_read_lock(&vcpu->kvm->srcu);
5681 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5682 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5683 tr->physical_address = gpa;
5684 tr->valid = gpa != UNMAPPED_GVA;
5685 tr->writeable = 1;
5686 tr->usermode = 0;
5688 return 0;
5691 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5693 struct i387_fxsave_struct *fxsave =
5694 &vcpu->arch.guest_fpu.state->fxsave;
5696 memcpy(fpu->fpr, fxsave->st_space, 128);
5697 fpu->fcw = fxsave->cwd;
5698 fpu->fsw = fxsave->swd;
5699 fpu->ftwx = fxsave->twd;
5700 fpu->last_opcode = fxsave->fop;
5701 fpu->last_ip = fxsave->rip;
5702 fpu->last_dp = fxsave->rdp;
5703 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5705 return 0;
5708 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5710 struct i387_fxsave_struct *fxsave =
5711 &vcpu->arch.guest_fpu.state->fxsave;
5713 memcpy(fxsave->st_space, fpu->fpr, 128);
5714 fxsave->cwd = fpu->fcw;
5715 fxsave->swd = fpu->fsw;
5716 fxsave->twd = fpu->ftwx;
5717 fxsave->fop = fpu->last_opcode;
5718 fxsave->rip = fpu->last_ip;
5719 fxsave->rdp = fpu->last_dp;
5720 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5722 return 0;
5725 int fx_init(struct kvm_vcpu *vcpu)
5727 int err;
5729 err = fpu_alloc(&vcpu->arch.guest_fpu);
5730 if (err)
5731 return err;
5733 fpu_finit(&vcpu->arch.guest_fpu);
5736 * Ensure guest xcr0 is valid for loading
5738 vcpu->arch.xcr0 = XSTATE_FP;
5740 vcpu->arch.cr0 |= X86_CR0_ET;
5742 return 0;
5744 EXPORT_SYMBOL_GPL(fx_init);
5746 static void fx_free(struct kvm_vcpu *vcpu)
5748 fpu_free(&vcpu->arch.guest_fpu);
5751 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5753 if (vcpu->guest_fpu_loaded)
5754 return;
5757 * Restore all possible states in the guest,
5758 * and assume host would use all available bits.
5759 * Guest xcr0 would be loaded later.
5761 kvm_put_guest_xcr0(vcpu);
5762 vcpu->guest_fpu_loaded = 1;
5763 unlazy_fpu(current);
5764 fpu_restore_checking(&vcpu->arch.guest_fpu);
5765 trace_kvm_fpu(1);
5768 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5770 kvm_put_guest_xcr0(vcpu);
5772 if (!vcpu->guest_fpu_loaded)
5773 return;
5775 vcpu->guest_fpu_loaded = 0;
5776 fpu_save_init(&vcpu->arch.guest_fpu);
5777 ++vcpu->stat.fpu_reload;
5778 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5779 trace_kvm_fpu(0);
5782 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5784 if (vcpu->arch.time_page) {
5785 kvm_release_page_dirty(vcpu->arch.time_page);
5786 vcpu->arch.time_page = NULL;
5789 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5790 fx_free(vcpu);
5791 kvm_x86_ops->vcpu_free(vcpu);
5794 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5795 unsigned int id)
5797 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5798 printk_once(KERN_WARNING
5799 "kvm: SMP vm created on host with unstable TSC; "
5800 "guest TSC will not be reliable\n");
5801 return kvm_x86_ops->vcpu_create(kvm, id);
5804 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5806 int r;
5808 vcpu->arch.mtrr_state.have_fixed = 1;
5809 vcpu_load(vcpu);
5810 r = kvm_arch_vcpu_reset(vcpu);
5811 if (r == 0)
5812 r = kvm_mmu_setup(vcpu);
5813 vcpu_put(vcpu);
5814 if (r < 0)
5815 goto free_vcpu;
5817 return 0;
5818 free_vcpu:
5819 kvm_x86_ops->vcpu_free(vcpu);
5820 return r;
5823 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5825 vcpu->arch.apf.msr_val = 0;
5827 vcpu_load(vcpu);
5828 kvm_mmu_unload(vcpu);
5829 vcpu_put(vcpu);
5831 fx_free(vcpu);
5832 kvm_x86_ops->vcpu_free(vcpu);
5835 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5837 vcpu->arch.nmi_pending = false;
5838 vcpu->arch.nmi_injected = false;
5840 vcpu->arch.switch_db_regs = 0;
5841 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5842 vcpu->arch.dr6 = DR6_FIXED_1;
5843 vcpu->arch.dr7 = DR7_FIXED_1;
5845 kvm_make_request(KVM_REQ_EVENT, vcpu);
5846 vcpu->arch.apf.msr_val = 0;
5848 kvm_clear_async_pf_completion_queue(vcpu);
5849 kvm_async_pf_hash_reset(vcpu);
5850 vcpu->arch.apf.halted = false;
5852 return kvm_x86_ops->vcpu_reset(vcpu);
5855 int kvm_arch_hardware_enable(void *garbage)
5857 struct kvm *kvm;
5858 struct kvm_vcpu *vcpu;
5859 int i;
5861 kvm_shared_msr_cpu_online();
5862 list_for_each_entry(kvm, &vm_list, vm_list)
5863 kvm_for_each_vcpu(i, vcpu, kvm)
5864 if (vcpu->cpu == smp_processor_id())
5865 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5866 return kvm_x86_ops->hardware_enable(garbage);
5869 void kvm_arch_hardware_disable(void *garbage)
5871 kvm_x86_ops->hardware_disable(garbage);
5872 drop_user_return_notifiers(garbage);
5875 int kvm_arch_hardware_setup(void)
5877 return kvm_x86_ops->hardware_setup();
5880 void kvm_arch_hardware_unsetup(void)
5882 kvm_x86_ops->hardware_unsetup();
5885 void kvm_arch_check_processor_compat(void *rtn)
5887 kvm_x86_ops->check_processor_compatibility(rtn);
5890 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5892 struct page *page;
5893 struct kvm *kvm;
5894 int r;
5896 BUG_ON(vcpu->kvm == NULL);
5897 kvm = vcpu->kvm;
5899 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5900 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5901 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5902 vcpu->arch.mmu.translate_gpa = translate_gpa;
5903 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5904 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5905 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5906 else
5907 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5909 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5910 if (!page) {
5911 r = -ENOMEM;
5912 goto fail;
5914 vcpu->arch.pio_data = page_address(page);
5916 if (!kvm->arch.virtual_tsc_khz)
5917 kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
5919 r = kvm_mmu_create(vcpu);
5920 if (r < 0)
5921 goto fail_free_pio_data;
5923 if (irqchip_in_kernel(kvm)) {
5924 r = kvm_create_lapic(vcpu);
5925 if (r < 0)
5926 goto fail_mmu_destroy;
5929 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5930 GFP_KERNEL);
5931 if (!vcpu->arch.mce_banks) {
5932 r = -ENOMEM;
5933 goto fail_free_lapic;
5935 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5937 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5938 goto fail_free_mce_banks;
5940 kvm_async_pf_hash_reset(vcpu);
5942 return 0;
5943 fail_free_mce_banks:
5944 kfree(vcpu->arch.mce_banks);
5945 fail_free_lapic:
5946 kvm_free_lapic(vcpu);
5947 fail_mmu_destroy:
5948 kvm_mmu_destroy(vcpu);
5949 fail_free_pio_data:
5950 free_page((unsigned long)vcpu->arch.pio_data);
5951 fail:
5952 return r;
5955 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5957 int idx;
5959 kfree(vcpu->arch.mce_banks);
5960 kvm_free_lapic(vcpu);
5961 idx = srcu_read_lock(&vcpu->kvm->srcu);
5962 kvm_mmu_destroy(vcpu);
5963 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5964 free_page((unsigned long)vcpu->arch.pio_data);
5967 int kvm_arch_init_vm(struct kvm *kvm)
5969 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5970 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5972 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5973 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5975 spin_lock_init(&kvm->arch.tsc_write_lock);
5977 return 0;
5980 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5982 vcpu_load(vcpu);
5983 kvm_mmu_unload(vcpu);
5984 vcpu_put(vcpu);
5987 static void kvm_free_vcpus(struct kvm *kvm)
5989 unsigned int i;
5990 struct kvm_vcpu *vcpu;
5993 * Unpin any mmu pages first.
5995 kvm_for_each_vcpu(i, vcpu, kvm) {
5996 kvm_clear_async_pf_completion_queue(vcpu);
5997 kvm_unload_vcpu_mmu(vcpu);
5999 kvm_for_each_vcpu(i, vcpu, kvm)
6000 kvm_arch_vcpu_free(vcpu);
6002 mutex_lock(&kvm->lock);
6003 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6004 kvm->vcpus[i] = NULL;
6006 atomic_set(&kvm->online_vcpus, 0);
6007 mutex_unlock(&kvm->lock);
6010 void kvm_arch_sync_events(struct kvm *kvm)
6012 kvm_free_all_assigned_devices(kvm);
6013 kvm_free_pit(kvm);
6016 void kvm_arch_destroy_vm(struct kvm *kvm)
6018 kvm_iommu_unmap_guest(kvm);
6019 kfree(kvm->arch.vpic);
6020 kfree(kvm->arch.vioapic);
6021 kvm_free_vcpus(kvm);
6022 if (kvm->arch.apic_access_page)
6023 put_page(kvm->arch.apic_access_page);
6024 if (kvm->arch.ept_identity_pagetable)
6025 put_page(kvm->arch.ept_identity_pagetable);
6028 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6029 struct kvm_memory_slot *memslot,
6030 struct kvm_memory_slot old,
6031 struct kvm_userspace_memory_region *mem,
6032 int user_alloc)
6034 int npages = memslot->npages;
6035 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6037 /* Prevent internal slot pages from being moved by fork()/COW. */
6038 if (memslot->id >= KVM_MEMORY_SLOTS)
6039 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6041 /*To keep backward compatibility with older userspace,
6042 *x86 needs to hanlde !user_alloc case.
6044 if (!user_alloc) {
6045 if (npages && !old.rmap) {
6046 unsigned long userspace_addr;
6048 down_write(&current->mm->mmap_sem);
6049 userspace_addr = do_mmap(NULL, 0,
6050 npages * PAGE_SIZE,
6051 PROT_READ | PROT_WRITE,
6052 map_flags,
6054 up_write(&current->mm->mmap_sem);
6056 if (IS_ERR((void *)userspace_addr))
6057 return PTR_ERR((void *)userspace_addr);
6059 memslot->userspace_addr = userspace_addr;
6064 return 0;
6067 void kvm_arch_commit_memory_region(struct kvm *kvm,
6068 struct kvm_userspace_memory_region *mem,
6069 struct kvm_memory_slot old,
6070 int user_alloc)
6073 int npages = mem->memory_size >> PAGE_SHIFT;
6075 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6076 int ret;
6078 down_write(&current->mm->mmap_sem);
6079 ret = do_munmap(current->mm, old.userspace_addr,
6080 old.npages * PAGE_SIZE);
6081 up_write(&current->mm->mmap_sem);
6082 if (ret < 0)
6083 printk(KERN_WARNING
6084 "kvm_vm_ioctl_set_memory_region: "
6085 "failed to munmap memory\n");
6088 spin_lock(&kvm->mmu_lock);
6089 if (!kvm->arch.n_requested_mmu_pages) {
6090 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6091 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6094 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6095 spin_unlock(&kvm->mmu_lock);
6098 void kvm_arch_flush_shadow(struct kvm *kvm)
6100 kvm_mmu_zap_all(kvm);
6101 kvm_reload_remote_mmus(kvm);
6104 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6106 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6107 !vcpu->arch.apf.halted)
6108 || !list_empty_careful(&vcpu->async_pf.done)
6109 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6110 || vcpu->arch.nmi_pending ||
6111 (kvm_arch_interrupt_allowed(vcpu) &&
6112 kvm_cpu_has_interrupt(vcpu));
6115 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6117 int me;
6118 int cpu = vcpu->cpu;
6120 if (waitqueue_active(&vcpu->wq)) {
6121 wake_up_interruptible(&vcpu->wq);
6122 ++vcpu->stat.halt_wakeup;
6125 me = get_cpu();
6126 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6127 if (atomic_xchg(&vcpu->guest_mode, 0))
6128 smp_send_reschedule(cpu);
6129 put_cpu();
6132 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6134 return kvm_x86_ops->interrupt_allowed(vcpu);
6137 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6139 unsigned long current_rip = kvm_rip_read(vcpu) +
6140 get_segment_base(vcpu, VCPU_SREG_CS);
6142 return current_rip == linear_rip;
6144 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6146 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6148 unsigned long rflags;
6150 rflags = kvm_x86_ops->get_rflags(vcpu);
6151 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6152 rflags &= ~X86_EFLAGS_TF;
6153 return rflags;
6155 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6157 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6159 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6160 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6161 rflags |= X86_EFLAGS_TF;
6162 kvm_x86_ops->set_rflags(vcpu, rflags);
6163 kvm_make_request(KVM_REQ_EVENT, vcpu);
6165 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6167 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6169 int r;
6171 if (!vcpu->arch.mmu.direct_map || !work->arch.direct_map ||
6172 is_error_page(work->page))
6173 return;
6175 r = kvm_mmu_reload(vcpu);
6176 if (unlikely(r))
6177 return;
6179 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6182 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6184 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6187 static inline u32 kvm_async_pf_next_probe(u32 key)
6189 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6192 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6194 u32 key = kvm_async_pf_hash_fn(gfn);
6196 while (vcpu->arch.apf.gfns[key] != ~0)
6197 key = kvm_async_pf_next_probe(key);
6199 vcpu->arch.apf.gfns[key] = gfn;
6202 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6204 int i;
6205 u32 key = kvm_async_pf_hash_fn(gfn);
6207 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6208 (vcpu->arch.apf.gfns[key] != gfn &&
6209 vcpu->arch.apf.gfns[key] != ~0); i++)
6210 key = kvm_async_pf_next_probe(key);
6212 return key;
6215 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6217 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6220 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6222 u32 i, j, k;
6224 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6225 while (true) {
6226 vcpu->arch.apf.gfns[i] = ~0;
6227 do {
6228 j = kvm_async_pf_next_probe(j);
6229 if (vcpu->arch.apf.gfns[j] == ~0)
6230 return;
6231 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6233 * k lies cyclically in ]i,j]
6234 * | i.k.j |
6235 * |....j i.k.| or |.k..j i...|
6237 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6238 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6239 i = j;
6243 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6246 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6247 sizeof(val));
6250 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6251 struct kvm_async_pf *work)
6253 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6254 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6256 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6257 (vcpu->arch.apf.send_user_only &&
6258 kvm_x86_ops->get_cpl(vcpu) == 0))
6259 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6260 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6261 vcpu->arch.fault.error_code = 0;
6262 vcpu->arch.fault.address = work->arch.token;
6263 kvm_inject_page_fault(vcpu);
6267 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6268 struct kvm_async_pf *work)
6270 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6271 if (is_error_page(work->page))
6272 work->arch.token = ~0; /* broadcast wakeup */
6273 else
6274 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6276 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6277 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6278 vcpu->arch.fault.error_code = 0;
6279 vcpu->arch.fault.address = work->arch.token;
6280 kvm_inject_page_fault(vcpu);
6282 vcpu->arch.apf.halted = false;
6285 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6287 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6288 return true;
6289 else
6290 return !kvm_event_needs_reinjection(vcpu) &&
6291 kvm_x86_ops->interrupt_allowed(vcpu);
6294 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6295 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);