2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency
= 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG
;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity
= 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity
= 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency
= 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly
;
72 * SCHED_OTHER wake-up granularity.
73 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 * This option delays the preemption effects of decoupled workloads
76 * and reduces their over-scheduling. Synchronous workloads will still
77 * have immediate wakeup/sleep latencies.
79 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
80 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
82 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
85 * The exponential sliding window over which load is averaged for shares
89 unsigned int __read_mostly sysctl_sched_shares_window
= 10000000UL;
91 static const struct sched_class fair_sched_class
;
93 /**************************************************************
94 * CFS operations on generic schedulable entities:
97 #ifdef CONFIG_FAIR_GROUP_SCHED
99 /* cpu runqueue to which this cfs_rq is attached */
100 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
105 /* An entity is a task if it doesn't "own" a runqueue */
106 #define entity_is_task(se) (!se->my_q)
108 static inline struct task_struct
*task_of(struct sched_entity
*se
)
110 #ifdef CONFIG_SCHED_DEBUG
111 WARN_ON_ONCE(!entity_is_task(se
));
113 return container_of(se
, struct task_struct
, se
);
116 /* Walk up scheduling entities hierarchy */
117 #define for_each_sched_entity(se) \
118 for (; se; se = se->parent)
120 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
125 /* runqueue on which this entity is (to be) queued */
126 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
131 /* runqueue "owned" by this group */
132 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
137 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
138 * another cpu ('this_cpu')
140 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
142 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
145 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
147 if (!cfs_rq
->on_list
) {
149 * Ensure we either appear before our parent (if already
150 * enqueued) or force our parent to appear after us when it is
151 * enqueued. The fact that we always enqueue bottom-up
152 * reduces this to two cases.
154 if (cfs_rq
->tg
->parent
&&
155 cfs_rq
->tg
->parent
->cfs_rq
[cpu_of(rq_of(cfs_rq
))]->on_list
) {
156 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
,
157 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
159 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
160 &rq_of(cfs_rq
)->leaf_cfs_rq_list
);
167 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
169 if (cfs_rq
->on_list
) {
170 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
175 /* Iterate thr' all leaf cfs_rq's on a runqueue */
176 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
177 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
179 /* Do the two (enqueued) entities belong to the same group ? */
181 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
183 if (se
->cfs_rq
== pse
->cfs_rq
)
189 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
194 /* return depth at which a sched entity is present in the hierarchy */
195 static inline int depth_se(struct sched_entity
*se
)
199 for_each_sched_entity(se
)
206 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
208 int se_depth
, pse_depth
;
211 * preemption test can be made between sibling entities who are in the
212 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
213 * both tasks until we find their ancestors who are siblings of common
217 /* First walk up until both entities are at same depth */
218 se_depth
= depth_se(*se
);
219 pse_depth
= depth_se(*pse
);
221 while (se_depth
> pse_depth
) {
223 *se
= parent_entity(*se
);
226 while (pse_depth
> se_depth
) {
228 *pse
= parent_entity(*pse
);
231 while (!is_same_group(*se
, *pse
)) {
232 *se
= parent_entity(*se
);
233 *pse
= parent_entity(*pse
);
237 #else /* !CONFIG_FAIR_GROUP_SCHED */
239 static inline struct task_struct
*task_of(struct sched_entity
*se
)
241 return container_of(se
, struct task_struct
, se
);
244 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
246 return container_of(cfs_rq
, struct rq
, cfs
);
249 #define entity_is_task(se) 1
251 #define for_each_sched_entity(se) \
252 for (; se; se = NULL)
254 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
256 return &task_rq(p
)->cfs
;
259 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
261 struct task_struct
*p
= task_of(se
);
262 struct rq
*rq
= task_rq(p
);
267 /* runqueue "owned" by this group */
268 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
273 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
275 return &cpu_rq(this_cpu
)->cfs
;
278 static inline void list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
282 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
286 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
287 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
290 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
295 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
301 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
305 #endif /* CONFIG_FAIR_GROUP_SCHED */
308 /**************************************************************
309 * Scheduling class tree data structure manipulation methods:
312 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
314 s64 delta
= (s64
)(vruntime
- min_vruntime
);
316 min_vruntime
= vruntime
;
321 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
323 s64 delta
= (s64
)(vruntime
- min_vruntime
);
325 min_vruntime
= vruntime
;
330 static inline int entity_before(struct sched_entity
*a
,
331 struct sched_entity
*b
)
333 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
336 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
338 return se
->vruntime
- cfs_rq
->min_vruntime
;
341 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
343 u64 vruntime
= cfs_rq
->min_vruntime
;
346 vruntime
= cfs_rq
->curr
->vruntime
;
348 if (cfs_rq
->rb_leftmost
) {
349 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
354 vruntime
= se
->vruntime
;
356 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
359 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
363 * Enqueue an entity into the rb-tree:
365 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
367 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
368 struct rb_node
*parent
= NULL
;
369 struct sched_entity
*entry
;
370 s64 key
= entity_key(cfs_rq
, se
);
374 * Find the right place in the rbtree:
378 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
380 * We dont care about collisions. Nodes with
381 * the same key stay together.
383 if (key
< entity_key(cfs_rq
, entry
)) {
384 link
= &parent
->rb_left
;
386 link
= &parent
->rb_right
;
392 * Maintain a cache of leftmost tree entries (it is frequently
396 cfs_rq
->rb_leftmost
= &se
->run_node
;
398 rb_link_node(&se
->run_node
, parent
, link
);
399 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
402 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
404 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
405 struct rb_node
*next_node
;
407 next_node
= rb_next(&se
->run_node
);
408 cfs_rq
->rb_leftmost
= next_node
;
411 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
414 static struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
416 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
421 return rb_entry(left
, struct sched_entity
, run_node
);
424 static struct sched_entity
*__pick_next_entity(struct sched_entity
*se
)
426 struct rb_node
*next
= rb_next(&se
->run_node
);
431 return rb_entry(next
, struct sched_entity
, run_node
);
434 #ifdef CONFIG_SCHED_DEBUG
435 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
437 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
442 return rb_entry(last
, struct sched_entity
, run_node
);
445 /**************************************************************
446 * Scheduling class statistics methods:
449 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
450 void __user
*buffer
, size_t *lenp
,
453 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
454 int factor
= get_update_sysctl_factor();
459 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
460 sysctl_sched_min_granularity
);
462 #define WRT_SYSCTL(name) \
463 (normalized_sysctl_##name = sysctl_##name / (factor))
464 WRT_SYSCTL(sched_min_granularity
);
465 WRT_SYSCTL(sched_latency
);
466 WRT_SYSCTL(sched_wakeup_granularity
);
476 static inline unsigned long
477 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
479 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
480 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
486 * The idea is to set a period in which each task runs once.
488 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
489 * this period because otherwise the slices get too small.
491 * p = (nr <= nl) ? l : l*nr/nl
493 static u64
__sched_period(unsigned long nr_running
)
495 u64 period
= sysctl_sched_latency
;
496 unsigned long nr_latency
= sched_nr_latency
;
498 if (unlikely(nr_running
> nr_latency
)) {
499 period
= sysctl_sched_min_granularity
;
500 period
*= nr_running
;
507 * We calculate the wall-time slice from the period by taking a part
508 * proportional to the weight.
512 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
514 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
516 for_each_sched_entity(se
) {
517 struct load_weight
*load
;
518 struct load_weight lw
;
520 cfs_rq
= cfs_rq_of(se
);
521 load
= &cfs_rq
->load
;
523 if (unlikely(!se
->on_rq
)) {
526 update_load_add(&lw
, se
->load
.weight
);
529 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
535 * We calculate the vruntime slice of a to be inserted task
539 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
541 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
544 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
);
545 static void update_cfs_shares(struct cfs_rq
*cfs_rq
);
548 * Update the current task's runtime statistics. Skip current tasks that
549 * are not in our scheduling class.
552 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
553 unsigned long delta_exec
)
555 unsigned long delta_exec_weighted
;
557 schedstat_set(curr
->statistics
.exec_max
,
558 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
560 curr
->sum_exec_runtime
+= delta_exec
;
561 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
562 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
564 curr
->vruntime
+= delta_exec_weighted
;
565 update_min_vruntime(cfs_rq
);
567 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
568 cfs_rq
->load_unacc_exec_time
+= delta_exec
;
572 static void update_curr(struct cfs_rq
*cfs_rq
)
574 struct sched_entity
*curr
= cfs_rq
->curr
;
575 u64 now
= rq_of(cfs_rq
)->clock_task
;
576 unsigned long delta_exec
;
582 * Get the amount of time the current task was running
583 * since the last time we changed load (this cannot
584 * overflow on 32 bits):
586 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
590 __update_curr(cfs_rq
, curr
, delta_exec
);
591 curr
->exec_start
= now
;
593 if (entity_is_task(curr
)) {
594 struct task_struct
*curtask
= task_of(curr
);
596 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
597 cpuacct_charge(curtask
, delta_exec
);
598 account_group_exec_runtime(curtask
, delta_exec
);
603 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
605 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
609 * Task is being enqueued - update stats:
611 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
614 * Are we enqueueing a waiting task? (for current tasks
615 * a dequeue/enqueue event is a NOP)
617 if (se
!= cfs_rq
->curr
)
618 update_stats_wait_start(cfs_rq
, se
);
622 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
624 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
625 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
626 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
627 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
628 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
629 #ifdef CONFIG_SCHEDSTATS
630 if (entity_is_task(se
)) {
631 trace_sched_stat_wait(task_of(se
),
632 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
635 schedstat_set(se
->statistics
.wait_start
, 0);
639 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
642 * Mark the end of the wait period if dequeueing a
645 if (se
!= cfs_rq
->curr
)
646 update_stats_wait_end(cfs_rq
, se
);
650 * We are picking a new current task - update its stats:
653 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
656 * We are starting a new run period:
658 se
->exec_start
= rq_of(cfs_rq
)->clock_task
;
661 /**************************************************
662 * Scheduling class queueing methods:
665 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
667 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
669 cfs_rq
->task_weight
+= weight
;
673 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
679 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
681 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
682 if (!parent_entity(se
))
683 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
684 if (entity_is_task(se
)) {
685 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
686 list_add(&se
->group_node
, &cfs_rq
->tasks
);
688 cfs_rq
->nr_running
++;
692 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
694 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
695 if (!parent_entity(se
))
696 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
697 if (entity_is_task(se
)) {
698 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
699 list_del_init(&se
->group_node
);
701 cfs_rq
->nr_running
--;
704 #ifdef CONFIG_FAIR_GROUP_SCHED
706 static void update_cfs_rq_load_contribution(struct cfs_rq
*cfs_rq
,
709 struct task_group
*tg
= cfs_rq
->tg
;
712 load_avg
= div64_u64(cfs_rq
->load_avg
, cfs_rq
->load_period
+1);
713 load_avg
-= cfs_rq
->load_contribution
;
715 if (global_update
|| abs(load_avg
) > cfs_rq
->load_contribution
/ 8) {
716 atomic_add(load_avg
, &tg
->load_weight
);
717 cfs_rq
->load_contribution
+= load_avg
;
721 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
723 u64 period
= sysctl_sched_shares_window
;
725 unsigned long load
= cfs_rq
->load
.weight
;
727 if (cfs_rq
->tg
== &root_task_group
)
730 now
= rq_of(cfs_rq
)->clock_task
;
731 delta
= now
- cfs_rq
->load_stamp
;
733 /* truncate load history at 4 idle periods */
734 if (cfs_rq
->load_stamp
> cfs_rq
->load_last
&&
735 now
- cfs_rq
->load_last
> 4 * period
) {
736 cfs_rq
->load_period
= 0;
737 cfs_rq
->load_avg
= 0;
741 cfs_rq
->load_stamp
= now
;
742 cfs_rq
->load_unacc_exec_time
= 0;
743 cfs_rq
->load_period
+= delta
;
745 cfs_rq
->load_last
= now
;
746 cfs_rq
->load_avg
+= delta
* load
;
749 /* consider updating load contribution on each fold or truncate */
750 if (global_update
|| cfs_rq
->load_period
> period
751 || !cfs_rq
->load_period
)
752 update_cfs_rq_load_contribution(cfs_rq
, global_update
);
754 while (cfs_rq
->load_period
> period
) {
756 * Inline assembly required to prevent the compiler
757 * optimising this loop into a divmod call.
758 * See __iter_div_u64_rem() for another example of this.
760 asm("" : "+rm" (cfs_rq
->load_period
));
761 cfs_rq
->load_period
/= 2;
762 cfs_rq
->load_avg
/= 2;
765 if (!cfs_rq
->curr
&& !cfs_rq
->nr_running
&& !cfs_rq
->load_avg
)
766 list_del_leaf_cfs_rq(cfs_rq
);
769 static long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
771 long load_weight
, load
, shares
;
773 load
= cfs_rq
->load
.weight
;
775 load_weight
= atomic_read(&tg
->load_weight
);
777 load_weight
-= cfs_rq
->load_contribution
;
779 shares
= (tg
->shares
* load
);
781 shares
/= load_weight
;
783 if (shares
< MIN_SHARES
)
785 if (shares
> tg
->shares
)
791 static void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
793 if (cfs_rq
->load_unacc_exec_time
> sysctl_sched_shares_window
) {
794 update_cfs_load(cfs_rq
, 0);
795 update_cfs_shares(cfs_rq
);
798 # else /* CONFIG_SMP */
799 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
803 static inline long calc_cfs_shares(struct cfs_rq
*cfs_rq
, struct task_group
*tg
)
808 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
811 # endif /* CONFIG_SMP */
812 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
813 unsigned long weight
)
816 /* commit outstanding execution time */
817 if (cfs_rq
->curr
== se
)
819 account_entity_dequeue(cfs_rq
, se
);
822 update_load_set(&se
->load
, weight
);
825 account_entity_enqueue(cfs_rq
, se
);
828 static void update_cfs_shares(struct cfs_rq
*cfs_rq
)
830 struct task_group
*tg
;
831 struct sched_entity
*se
;
835 se
= tg
->se
[cpu_of(rq_of(cfs_rq
))];
839 if (likely(se
->load
.weight
== tg
->shares
))
842 shares
= calc_cfs_shares(cfs_rq
, tg
);
844 reweight_entity(cfs_rq_of(se
), se
, shares
);
846 #else /* CONFIG_FAIR_GROUP_SCHED */
847 static void update_cfs_load(struct cfs_rq
*cfs_rq
, int global_update
)
851 static inline void update_cfs_shares(struct cfs_rq
*cfs_rq
)
855 static inline void update_entity_shares_tick(struct cfs_rq
*cfs_rq
)
858 #endif /* CONFIG_FAIR_GROUP_SCHED */
860 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
862 #ifdef CONFIG_SCHEDSTATS
863 struct task_struct
*tsk
= NULL
;
865 if (entity_is_task(se
))
868 if (se
->statistics
.sleep_start
) {
869 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
874 if (unlikely(delta
> se
->statistics
.sleep_max
))
875 se
->statistics
.sleep_max
= delta
;
877 se
->statistics
.sleep_start
= 0;
878 se
->statistics
.sum_sleep_runtime
+= delta
;
881 account_scheduler_latency(tsk
, delta
>> 10, 1);
882 trace_sched_stat_sleep(tsk
, delta
);
885 if (se
->statistics
.block_start
) {
886 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
891 if (unlikely(delta
> se
->statistics
.block_max
))
892 se
->statistics
.block_max
= delta
;
894 se
->statistics
.block_start
= 0;
895 se
->statistics
.sum_sleep_runtime
+= delta
;
898 if (tsk
->in_iowait
) {
899 se
->statistics
.iowait_sum
+= delta
;
900 se
->statistics
.iowait_count
++;
901 trace_sched_stat_iowait(tsk
, delta
);
905 * Blocking time is in units of nanosecs, so shift by
906 * 20 to get a milliseconds-range estimation of the
907 * amount of time that the task spent sleeping:
909 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
910 profile_hits(SLEEP_PROFILING
,
911 (void *)get_wchan(tsk
),
914 account_scheduler_latency(tsk
, delta
>> 10, 0);
920 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
922 #ifdef CONFIG_SCHED_DEBUG
923 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
928 if (d
> 3*sysctl_sched_latency
)
929 schedstat_inc(cfs_rq
, nr_spread_over
);
934 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
936 u64 vruntime
= cfs_rq
->min_vruntime
;
939 * The 'current' period is already promised to the current tasks,
940 * however the extra weight of the new task will slow them down a
941 * little, place the new task so that it fits in the slot that
942 * stays open at the end.
944 if (initial
&& sched_feat(START_DEBIT
))
945 vruntime
+= sched_vslice(cfs_rq
, se
);
947 /* sleeps up to a single latency don't count. */
949 unsigned long thresh
= sysctl_sched_latency
;
952 * Halve their sleep time's effect, to allow
953 * for a gentler effect of sleepers:
955 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
961 /* ensure we never gain time by being placed backwards. */
962 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
964 se
->vruntime
= vruntime
;
968 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
971 * Update the normalized vruntime before updating min_vruntime
972 * through callig update_curr().
974 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
975 se
->vruntime
+= cfs_rq
->min_vruntime
;
978 * Update run-time statistics of the 'current'.
981 update_cfs_load(cfs_rq
, 0);
982 account_entity_enqueue(cfs_rq
, se
);
983 update_cfs_shares(cfs_rq
);
985 if (flags
& ENQUEUE_WAKEUP
) {
986 place_entity(cfs_rq
, se
, 0);
987 enqueue_sleeper(cfs_rq
, se
);
990 update_stats_enqueue(cfs_rq
, se
);
991 check_spread(cfs_rq
, se
);
992 if (se
!= cfs_rq
->curr
)
993 __enqueue_entity(cfs_rq
, se
);
996 if (cfs_rq
->nr_running
== 1)
997 list_add_leaf_cfs_rq(cfs_rq
);
1000 static void __clear_buddies_last(struct sched_entity
*se
)
1002 for_each_sched_entity(se
) {
1003 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1004 if (cfs_rq
->last
== se
)
1005 cfs_rq
->last
= NULL
;
1011 static void __clear_buddies_next(struct sched_entity
*se
)
1013 for_each_sched_entity(se
) {
1014 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1015 if (cfs_rq
->next
== se
)
1016 cfs_rq
->next
= NULL
;
1022 static void __clear_buddies_skip(struct sched_entity
*se
)
1024 for_each_sched_entity(se
) {
1025 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1026 if (cfs_rq
->skip
== se
)
1027 cfs_rq
->skip
= NULL
;
1033 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1035 if (cfs_rq
->last
== se
)
1036 __clear_buddies_last(se
);
1038 if (cfs_rq
->next
== se
)
1039 __clear_buddies_next(se
);
1041 if (cfs_rq
->skip
== se
)
1042 __clear_buddies_skip(se
);
1046 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1049 * Update run-time statistics of the 'current'.
1051 update_curr(cfs_rq
);
1053 update_stats_dequeue(cfs_rq
, se
);
1054 if (flags
& DEQUEUE_SLEEP
) {
1055 #ifdef CONFIG_SCHEDSTATS
1056 if (entity_is_task(se
)) {
1057 struct task_struct
*tsk
= task_of(se
);
1059 if (tsk
->state
& TASK_INTERRUPTIBLE
)
1060 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
1061 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
1062 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
1067 clear_buddies(cfs_rq
, se
);
1069 if (se
!= cfs_rq
->curr
)
1070 __dequeue_entity(cfs_rq
, se
);
1072 update_cfs_load(cfs_rq
, 0);
1073 account_entity_dequeue(cfs_rq
, se
);
1074 update_min_vruntime(cfs_rq
);
1075 update_cfs_shares(cfs_rq
);
1078 * Normalize the entity after updating the min_vruntime because the
1079 * update can refer to the ->curr item and we need to reflect this
1080 * movement in our normalized position.
1082 if (!(flags
& DEQUEUE_SLEEP
))
1083 se
->vruntime
-= cfs_rq
->min_vruntime
;
1087 * Preempt the current task with a newly woken task if needed:
1090 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1092 unsigned long ideal_runtime
, delta_exec
;
1094 ideal_runtime
= sched_slice(cfs_rq
, curr
);
1095 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
1096 if (delta_exec
> ideal_runtime
) {
1097 resched_task(rq_of(cfs_rq
)->curr
);
1099 * The current task ran long enough, ensure it doesn't get
1100 * re-elected due to buddy favours.
1102 clear_buddies(cfs_rq
, curr
);
1107 * Ensure that a task that missed wakeup preemption by a
1108 * narrow margin doesn't have to wait for a full slice.
1109 * This also mitigates buddy induced latencies under load.
1111 if (!sched_feat(WAKEUP_PREEMPT
))
1114 if (delta_exec
< sysctl_sched_min_granularity
)
1117 if (cfs_rq
->nr_running
> 1) {
1118 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1119 s64 delta
= curr
->vruntime
- se
->vruntime
;
1124 if (delta
> ideal_runtime
)
1125 resched_task(rq_of(cfs_rq
)->curr
);
1130 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1132 /* 'current' is not kept within the tree. */
1135 * Any task has to be enqueued before it get to execute on
1136 * a CPU. So account for the time it spent waiting on the
1139 update_stats_wait_end(cfs_rq
, se
);
1140 __dequeue_entity(cfs_rq
, se
);
1143 update_stats_curr_start(cfs_rq
, se
);
1145 #ifdef CONFIG_SCHEDSTATS
1147 * Track our maximum slice length, if the CPU's load is at
1148 * least twice that of our own weight (i.e. dont track it
1149 * when there are only lesser-weight tasks around):
1151 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
1152 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
1153 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
1156 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
1160 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
1163 * Pick the next process, keeping these things in mind, in this order:
1164 * 1) keep things fair between processes/task groups
1165 * 2) pick the "next" process, since someone really wants that to run
1166 * 3) pick the "last" process, for cache locality
1167 * 4) do not run the "skip" process, if something else is available
1169 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
1171 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
1172 struct sched_entity
*left
= se
;
1175 * Avoid running the skip buddy, if running something else can
1176 * be done without getting too unfair.
1178 if (cfs_rq
->skip
== se
) {
1179 struct sched_entity
*second
= __pick_next_entity(se
);
1180 if (second
&& wakeup_preempt_entity(second
, left
) < 1)
1185 * Prefer last buddy, try to return the CPU to a preempted task.
1187 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
1191 * Someone really wants this to run. If it's not unfair, run it.
1193 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
1196 clear_buddies(cfs_rq
, se
);
1201 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
1204 * If still on the runqueue then deactivate_task()
1205 * was not called and update_curr() has to be done:
1208 update_curr(cfs_rq
);
1210 check_spread(cfs_rq
, prev
);
1212 update_stats_wait_start(cfs_rq
, prev
);
1213 /* Put 'current' back into the tree. */
1214 __enqueue_entity(cfs_rq
, prev
);
1216 cfs_rq
->curr
= NULL
;
1220 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
1223 * Update run-time statistics of the 'current'.
1225 update_curr(cfs_rq
);
1228 * Update share accounting for long-running entities.
1230 update_entity_shares_tick(cfs_rq
);
1232 #ifdef CONFIG_SCHED_HRTICK
1234 * queued ticks are scheduled to match the slice, so don't bother
1235 * validating it and just reschedule.
1238 resched_task(rq_of(cfs_rq
)->curr
);
1242 * don't let the period tick interfere with the hrtick preemption
1244 if (!sched_feat(DOUBLE_TICK
) &&
1245 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
1249 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
1250 check_preempt_tick(cfs_rq
, curr
);
1253 /**************************************************
1254 * CFS operations on tasks:
1257 #ifdef CONFIG_SCHED_HRTICK
1258 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1260 struct sched_entity
*se
= &p
->se
;
1261 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1263 WARN_ON(task_rq(p
) != rq
);
1265 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
1266 u64 slice
= sched_slice(cfs_rq
, se
);
1267 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
1268 s64 delta
= slice
- ran
;
1277 * Don't schedule slices shorter than 10000ns, that just
1278 * doesn't make sense. Rely on vruntime for fairness.
1281 delta
= max_t(s64
, 10000LL, delta
);
1283 hrtick_start(rq
, delta
);
1288 * called from enqueue/dequeue and updates the hrtick when the
1289 * current task is from our class and nr_running is low enough
1292 static void hrtick_update(struct rq
*rq
)
1294 struct task_struct
*curr
= rq
->curr
;
1296 if (curr
->sched_class
!= &fair_sched_class
)
1299 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1300 hrtick_start_fair(rq
, curr
);
1302 #else /* !CONFIG_SCHED_HRTICK */
1304 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1308 static inline void hrtick_update(struct rq
*rq
)
1314 * The enqueue_task method is called before nr_running is
1315 * increased. Here we update the fair scheduling stats and
1316 * then put the task into the rbtree:
1319 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1321 struct cfs_rq
*cfs_rq
;
1322 struct sched_entity
*se
= &p
->se
;
1324 for_each_sched_entity(se
) {
1327 cfs_rq
= cfs_rq_of(se
);
1328 enqueue_entity(cfs_rq
, se
, flags
);
1329 flags
= ENQUEUE_WAKEUP
;
1332 for_each_sched_entity(se
) {
1333 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1335 update_cfs_load(cfs_rq
, 0);
1336 update_cfs_shares(cfs_rq
);
1343 * The dequeue_task method is called before nr_running is
1344 * decreased. We remove the task from the rbtree and
1345 * update the fair scheduling stats:
1347 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1349 struct cfs_rq
*cfs_rq
;
1350 struct sched_entity
*se
= &p
->se
;
1352 for_each_sched_entity(se
) {
1353 cfs_rq
= cfs_rq_of(se
);
1354 dequeue_entity(cfs_rq
, se
, flags
);
1356 /* Don't dequeue parent if it has other entities besides us */
1357 if (cfs_rq
->load
.weight
)
1359 flags
|= DEQUEUE_SLEEP
;
1362 for_each_sched_entity(se
) {
1363 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1365 update_cfs_load(cfs_rq
, 0);
1366 update_cfs_shares(cfs_rq
);
1374 static void task_waking_fair(struct rq
*rq
, struct task_struct
*p
)
1376 struct sched_entity
*se
= &p
->se
;
1377 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1379 se
->vruntime
-= cfs_rq
->min_vruntime
;
1382 #ifdef CONFIG_FAIR_GROUP_SCHED
1384 * effective_load() calculates the load change as seen from the root_task_group
1386 * Adding load to a group doesn't make a group heavier, but can cause movement
1387 * of group shares between cpus. Assuming the shares were perfectly aligned one
1388 * can calculate the shift in shares.
1390 static long effective_load(struct task_group
*tg
, int cpu
, long wl
, long wg
)
1392 struct sched_entity
*se
= tg
->se
[cpu
];
1397 for_each_sched_entity(se
) {
1401 w
= se
->my_q
->load
.weight
;
1403 /* use this cpu's instantaneous contribution */
1404 lw
= atomic_read(&tg
->load_weight
);
1405 lw
-= se
->my_q
->load_contribution
;
1410 if (lw
> 0 && wl
< lw
)
1411 wl
= (wl
* tg
->shares
) / lw
;
1415 /* zero point is MIN_SHARES */
1416 if (wl
< MIN_SHARES
)
1418 wl
-= se
->load
.weight
;
1427 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1428 unsigned long wl
, unsigned long wg
)
1435 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1437 s64 this_load
, load
;
1438 int idx
, this_cpu
, prev_cpu
;
1439 unsigned long tl_per_task
;
1440 struct task_group
*tg
;
1441 unsigned long weight
;
1445 this_cpu
= smp_processor_id();
1446 prev_cpu
= task_cpu(p
);
1447 load
= source_load(prev_cpu
, idx
);
1448 this_load
= target_load(this_cpu
, idx
);
1451 * If sync wakeup then subtract the (maximum possible)
1452 * effect of the currently running task from the load
1453 * of the current CPU:
1457 tg
= task_group(current
);
1458 weight
= current
->se
.load
.weight
;
1460 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1461 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1465 weight
= p
->se
.load
.weight
;
1468 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1469 * due to the sync cause above having dropped this_load to 0, we'll
1470 * always have an imbalance, but there's really nothing you can do
1471 * about that, so that's good too.
1473 * Otherwise check if either cpus are near enough in load to allow this
1474 * task to be woken on this_cpu.
1476 if (this_load
> 0) {
1477 s64 this_eff_load
, prev_eff_load
;
1479 this_eff_load
= 100;
1480 this_eff_load
*= power_of(prev_cpu
);
1481 this_eff_load
*= this_load
+
1482 effective_load(tg
, this_cpu
, weight
, weight
);
1484 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
1485 prev_eff_load
*= power_of(this_cpu
);
1486 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
1488 balanced
= this_eff_load
<= prev_eff_load
;
1494 * If the currently running task will sleep within
1495 * a reasonable amount of time then attract this newly
1498 if (sync
&& balanced
)
1501 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
1502 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1505 (this_load
<= load
&&
1506 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1508 * This domain has SD_WAKE_AFFINE and
1509 * p is cache cold in this domain, and
1510 * there is no bad imbalance.
1512 schedstat_inc(sd
, ttwu_move_affine
);
1513 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
1521 * find_idlest_group finds and returns the least busy CPU group within the
1524 static struct sched_group
*
1525 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1526 int this_cpu
, int load_idx
)
1528 struct sched_group
*idlest
= NULL
, *group
= sd
->groups
;
1529 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1530 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1533 unsigned long load
, avg_load
;
1537 /* Skip over this group if it has no CPUs allowed */
1538 if (!cpumask_intersects(sched_group_cpus(group
),
1542 local_group
= cpumask_test_cpu(this_cpu
,
1543 sched_group_cpus(group
));
1545 /* Tally up the load of all CPUs in the group */
1548 for_each_cpu(i
, sched_group_cpus(group
)) {
1549 /* Bias balancing toward cpus of our domain */
1551 load
= source_load(i
, load_idx
);
1553 load
= target_load(i
, load_idx
);
1558 /* Adjust by relative CPU power of the group */
1559 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1562 this_load
= avg_load
;
1563 } else if (avg_load
< min_load
) {
1564 min_load
= avg_load
;
1567 } while (group
= group
->next
, group
!= sd
->groups
);
1569 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1575 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1578 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1580 unsigned long load
, min_load
= ULONG_MAX
;
1584 /* Traverse only the allowed CPUs */
1585 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1586 load
= weighted_cpuload(i
);
1588 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1598 * Try and locate an idle CPU in the sched_domain.
1600 static int select_idle_sibling(struct task_struct
*p
, int target
)
1602 int cpu
= smp_processor_id();
1603 int prev_cpu
= task_cpu(p
);
1604 struct sched_domain
*sd
;
1608 * If the task is going to be woken-up on this cpu and if it is
1609 * already idle, then it is the right target.
1611 if (target
== cpu
&& idle_cpu(cpu
))
1615 * If the task is going to be woken-up on the cpu where it previously
1616 * ran and if it is currently idle, then it the right target.
1618 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
1622 * Otherwise, iterate the domains and find an elegible idle cpu.
1624 for_each_domain(target
, sd
) {
1625 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
1628 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1636 * Lets stop looking for an idle sibling when we reached
1637 * the domain that spans the current cpu and prev_cpu.
1639 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
1640 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
1648 * sched_balance_self: balance the current task (running on cpu) in domains
1649 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1652 * Balance, ie. select the least loaded group.
1654 * Returns the target CPU number, or the same CPU if no balancing is needed.
1656 * preempt must be disabled.
1659 select_task_rq_fair(struct rq
*rq
, struct task_struct
*p
, int sd_flag
, int wake_flags
)
1661 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1662 int cpu
= smp_processor_id();
1663 int prev_cpu
= task_cpu(p
);
1665 int want_affine
= 0;
1667 int sync
= wake_flags
& WF_SYNC
;
1669 if (sd_flag
& SD_BALANCE_WAKE
) {
1670 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1675 for_each_domain(cpu
, tmp
) {
1676 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1680 * If power savings logic is enabled for a domain, see if we
1681 * are not overloaded, if so, don't balance wider.
1683 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1684 unsigned long power
= 0;
1685 unsigned long nr_running
= 0;
1686 unsigned long capacity
;
1689 for_each_cpu(i
, sched_domain_span(tmp
)) {
1690 power
+= power_of(i
);
1691 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1694 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1696 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1699 if (nr_running
< capacity
)
1704 * If both cpu and prev_cpu are part of this domain,
1705 * cpu is a valid SD_WAKE_AFFINE target.
1707 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
1708 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
1713 if (!want_sd
&& !want_affine
)
1716 if (!(tmp
->flags
& sd_flag
))
1724 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
1725 return select_idle_sibling(p
, cpu
);
1727 return select_idle_sibling(p
, prev_cpu
);
1731 int load_idx
= sd
->forkexec_idx
;
1732 struct sched_group
*group
;
1735 if (!(sd
->flags
& sd_flag
)) {
1740 if (sd_flag
& SD_BALANCE_WAKE
)
1741 load_idx
= sd
->wake_idx
;
1743 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1749 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1750 if (new_cpu
== -1 || new_cpu
== cpu
) {
1751 /* Now try balancing at a lower domain level of cpu */
1756 /* Now try balancing at a lower domain level of new_cpu */
1758 weight
= sd
->span_weight
;
1760 for_each_domain(cpu
, tmp
) {
1761 if (weight
<= tmp
->span_weight
)
1763 if (tmp
->flags
& sd_flag
)
1766 /* while loop will break here if sd == NULL */
1771 #endif /* CONFIG_SMP */
1773 static unsigned long
1774 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1776 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1779 * Since its curr running now, convert the gran from real-time
1780 * to virtual-time in his units.
1782 * By using 'se' instead of 'curr' we penalize light tasks, so
1783 * they get preempted easier. That is, if 'se' < 'curr' then
1784 * the resulting gran will be larger, therefore penalizing the
1785 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1786 * be smaller, again penalizing the lighter task.
1788 * This is especially important for buddies when the leftmost
1789 * task is higher priority than the buddy.
1791 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1792 gran
= calc_delta_fair(gran
, se
);
1798 * Should 'se' preempt 'curr'.
1812 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1814 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1819 gran
= wakeup_gran(curr
, se
);
1826 static void set_last_buddy(struct sched_entity
*se
)
1828 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1829 for_each_sched_entity(se
)
1830 cfs_rq_of(se
)->last
= se
;
1834 static void set_next_buddy(struct sched_entity
*se
)
1836 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1837 for_each_sched_entity(se
)
1838 cfs_rq_of(se
)->next
= se
;
1842 static void set_skip_buddy(struct sched_entity
*se
)
1844 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1845 for_each_sched_entity(se
)
1846 cfs_rq_of(se
)->skip
= se
;
1851 * Preempt the current task with a newly woken task if needed:
1853 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1855 struct task_struct
*curr
= rq
->curr
;
1856 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1857 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1858 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1860 if (unlikely(se
== pse
))
1863 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1864 set_next_buddy(pse
);
1867 * We can come here with TIF_NEED_RESCHED already set from new task
1870 if (test_tsk_need_resched(curr
))
1873 /* Idle tasks are by definition preempted by non-idle tasks. */
1874 if (unlikely(curr
->policy
== SCHED_IDLE
) &&
1875 likely(p
->policy
!= SCHED_IDLE
))
1879 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1880 * is driven by the tick):
1882 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1886 if (!sched_feat(WAKEUP_PREEMPT
))
1889 update_curr(cfs_rq
);
1890 find_matching_se(&se
, &pse
);
1892 if (wakeup_preempt_entity(se
, pse
) == 1)
1900 * Only set the backward buddy when the current task is still
1901 * on the rq. This can happen when a wakeup gets interleaved
1902 * with schedule on the ->pre_schedule() or idle_balance()
1903 * point, either of which can * drop the rq lock.
1905 * Also, during early boot the idle thread is in the fair class,
1906 * for obvious reasons its a bad idea to schedule back to it.
1908 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1911 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1915 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1917 struct task_struct
*p
;
1918 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1919 struct sched_entity
*se
;
1921 if (!cfs_rq
->nr_running
)
1925 se
= pick_next_entity(cfs_rq
);
1926 set_next_entity(cfs_rq
, se
);
1927 cfs_rq
= group_cfs_rq(se
);
1931 hrtick_start_fair(rq
, p
);
1937 * Account for a descheduled task:
1939 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1941 struct sched_entity
*se
= &prev
->se
;
1942 struct cfs_rq
*cfs_rq
;
1944 for_each_sched_entity(se
) {
1945 cfs_rq
= cfs_rq_of(se
);
1946 put_prev_entity(cfs_rq
, se
);
1951 * sched_yield() is very simple
1953 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1955 static void yield_task_fair(struct rq
*rq
)
1957 struct task_struct
*curr
= rq
->curr
;
1958 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1959 struct sched_entity
*se
= &curr
->se
;
1962 * Are we the only task in the tree?
1964 if (unlikely(rq
->nr_running
== 1))
1967 clear_buddies(cfs_rq
, se
);
1969 if (curr
->policy
!= SCHED_BATCH
) {
1970 update_rq_clock(rq
);
1972 * Update run-time statistics of the 'current'.
1974 update_curr(cfs_rq
);
1980 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
, bool preempt
)
1982 struct sched_entity
*se
= &p
->se
;
1987 /* Tell the scheduler that we'd really like pse to run next. */
1990 yield_task_fair(rq
);
1996 /**************************************************
1997 * Fair scheduling class load-balancing methods:
2001 * pull_task - move a task from a remote runqueue to the local runqueue.
2002 * Both runqueues must be locked.
2004 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2005 struct rq
*this_rq
, int this_cpu
)
2007 deactivate_task(src_rq
, p
, 0);
2008 set_task_cpu(p
, this_cpu
);
2009 activate_task(this_rq
, p
, 0);
2010 check_preempt_curr(this_rq
, p
, 0);
2014 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2017 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2018 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2021 int tsk_cache_hot
= 0;
2023 * We do not migrate tasks that are:
2024 * 1) running (obviously), or
2025 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2026 * 3) are cache-hot on their current CPU.
2028 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
2029 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
2034 if (task_running(rq
, p
)) {
2035 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
2040 * Aggressive migration if:
2041 * 1) task is cache cold, or
2042 * 2) too many balance attempts have failed.
2045 tsk_cache_hot
= task_hot(p
, rq
->clock_task
, sd
);
2046 if (!tsk_cache_hot
||
2047 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
2048 #ifdef CONFIG_SCHEDSTATS
2049 if (tsk_cache_hot
) {
2050 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2051 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
2057 if (tsk_cache_hot
) {
2058 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
2065 * move_one_task tries to move exactly one task from busiest to this_rq, as
2066 * part of active balancing operations within "domain".
2067 * Returns 1 if successful and 0 otherwise.
2069 * Called with both runqueues locked.
2072 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2073 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2075 struct task_struct
*p
, *n
;
2076 struct cfs_rq
*cfs_rq
;
2079 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
2080 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
2082 if (!can_migrate_task(p
, busiest
, this_cpu
,
2086 pull_task(busiest
, p
, this_rq
, this_cpu
);
2088 * Right now, this is only the second place pull_task()
2089 * is called, so we can safely collect pull_task()
2090 * stats here rather than inside pull_task().
2092 schedstat_inc(sd
, lb_gained
[idle
]);
2100 static unsigned long
2101 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2102 unsigned long max_load_move
, struct sched_domain
*sd
,
2103 enum cpu_idle_type idle
, int *all_pinned
,
2104 int *this_best_prio
, struct cfs_rq
*busiest_cfs_rq
)
2106 int loops
= 0, pulled
= 0, pinned
= 0;
2107 long rem_load_move
= max_load_move
;
2108 struct task_struct
*p
, *n
;
2110 if (max_load_move
== 0)
2115 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
2116 if (loops
++ > sysctl_sched_nr_migrate
)
2119 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
2120 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
))
2123 pull_task(busiest
, p
, this_rq
, this_cpu
);
2125 rem_load_move
-= p
->se
.load
.weight
;
2127 #ifdef CONFIG_PREEMPT
2129 * NEWIDLE balancing is a source of latency, so preemptible
2130 * kernels will stop after the first task is pulled to minimize
2131 * the critical section.
2133 if (idle
== CPU_NEWLY_IDLE
)
2138 * We only want to steal up to the prescribed amount of
2141 if (rem_load_move
<= 0)
2144 if (p
->prio
< *this_best_prio
)
2145 *this_best_prio
= p
->prio
;
2149 * Right now, this is one of only two places pull_task() is called,
2150 * so we can safely collect pull_task() stats here rather than
2151 * inside pull_task().
2153 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2156 *all_pinned
= pinned
;
2158 return max_load_move
- rem_load_move
;
2161 #ifdef CONFIG_FAIR_GROUP_SCHED
2163 * update tg->load_weight by folding this cpu's load_avg
2165 static int update_shares_cpu(struct task_group
*tg
, int cpu
)
2167 struct cfs_rq
*cfs_rq
;
2168 unsigned long flags
;
2175 cfs_rq
= tg
->cfs_rq
[cpu
];
2177 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2179 update_rq_clock(rq
);
2180 update_cfs_load(cfs_rq
, 1);
2183 * We need to update shares after updating tg->load_weight in
2184 * order to adjust the weight of groups with long running tasks.
2186 update_cfs_shares(cfs_rq
);
2188 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2193 static void update_shares(int cpu
)
2195 struct cfs_rq
*cfs_rq
;
2196 struct rq
*rq
= cpu_rq(cpu
);
2199 for_each_leaf_cfs_rq(rq
, cfs_rq
)
2200 update_shares_cpu(cfs_rq
->tg
, cpu
);
2204 static unsigned long
2205 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2206 unsigned long max_load_move
,
2207 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2208 int *all_pinned
, int *this_best_prio
)
2210 long rem_load_move
= max_load_move
;
2211 int busiest_cpu
= cpu_of(busiest
);
2212 struct task_group
*tg
;
2215 update_h_load(busiest_cpu
);
2217 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
2218 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
2219 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
2220 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
2221 u64 rem_load
, moved_load
;
2226 if (!busiest_cfs_rq
->task_weight
)
2229 rem_load
= (u64
)rem_load_move
* busiest_weight
;
2230 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
2232 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
2233 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
2239 moved_load
*= busiest_h_load
;
2240 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
2242 rem_load_move
-= moved_load
;
2243 if (rem_load_move
< 0)
2248 return max_load_move
- rem_load_move
;
2251 static inline void update_shares(int cpu
)
2255 static unsigned long
2256 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2257 unsigned long max_load_move
,
2258 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2259 int *all_pinned
, int *this_best_prio
)
2261 return balance_tasks(this_rq
, this_cpu
, busiest
,
2262 max_load_move
, sd
, idle
, all_pinned
,
2263 this_best_prio
, &busiest
->cfs
);
2268 * move_tasks tries to move up to max_load_move weighted load from busiest to
2269 * this_rq, as part of a balancing operation within domain "sd".
2270 * Returns 1 if successful and 0 otherwise.
2272 * Called with both runqueues locked.
2274 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2275 unsigned long max_load_move
,
2276 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2279 unsigned long total_load_moved
= 0, load_moved
;
2280 int this_best_prio
= this_rq
->curr
->prio
;
2283 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
2284 max_load_move
- total_load_moved
,
2285 sd
, idle
, all_pinned
, &this_best_prio
);
2287 total_load_moved
+= load_moved
;
2289 #ifdef CONFIG_PREEMPT
2291 * NEWIDLE balancing is a source of latency, so preemptible
2292 * kernels will stop after the first task is pulled to minimize
2293 * the critical section.
2295 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
2298 if (raw_spin_is_contended(&this_rq
->lock
) ||
2299 raw_spin_is_contended(&busiest
->lock
))
2302 } while (load_moved
&& max_load_move
> total_load_moved
);
2304 return total_load_moved
> 0;
2307 /********** Helpers for find_busiest_group ************************/
2309 * sd_lb_stats - Structure to store the statistics of a sched_domain
2310 * during load balancing.
2312 struct sd_lb_stats
{
2313 struct sched_group
*busiest
; /* Busiest group in this sd */
2314 struct sched_group
*this; /* Local group in this sd */
2315 unsigned long total_load
; /* Total load of all groups in sd */
2316 unsigned long total_pwr
; /* Total power of all groups in sd */
2317 unsigned long avg_load
; /* Average load across all groups in sd */
2319 /** Statistics of this group */
2320 unsigned long this_load
;
2321 unsigned long this_load_per_task
;
2322 unsigned long this_nr_running
;
2323 unsigned long this_has_capacity
;
2324 unsigned int this_idle_cpus
;
2326 /* Statistics of the busiest group */
2327 unsigned int busiest_idle_cpus
;
2328 unsigned long max_load
;
2329 unsigned long busiest_load_per_task
;
2330 unsigned long busiest_nr_running
;
2331 unsigned long busiest_group_capacity
;
2332 unsigned long busiest_has_capacity
;
2333 unsigned int busiest_group_weight
;
2335 int group_imb
; /* Is there imbalance in this sd */
2336 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2337 int power_savings_balance
; /* Is powersave balance needed for this sd */
2338 struct sched_group
*group_min
; /* Least loaded group in sd */
2339 struct sched_group
*group_leader
; /* Group which relieves group_min */
2340 unsigned long min_load_per_task
; /* load_per_task in group_min */
2341 unsigned long leader_nr_running
; /* Nr running of group_leader */
2342 unsigned long min_nr_running
; /* Nr running of group_min */
2347 * sg_lb_stats - stats of a sched_group required for load_balancing
2349 struct sg_lb_stats
{
2350 unsigned long avg_load
; /*Avg load across the CPUs of the group */
2351 unsigned long group_load
; /* Total load over the CPUs of the group */
2352 unsigned long sum_nr_running
; /* Nr tasks running in the group */
2353 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
2354 unsigned long group_capacity
;
2355 unsigned long idle_cpus
;
2356 unsigned long group_weight
;
2357 int group_imb
; /* Is there an imbalance in the group ? */
2358 int group_has_capacity
; /* Is there extra capacity in the group? */
2362 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2363 * @group: The group whose first cpu is to be returned.
2365 static inline unsigned int group_first_cpu(struct sched_group
*group
)
2367 return cpumask_first(sched_group_cpus(group
));
2371 * get_sd_load_idx - Obtain the load index for a given sched domain.
2372 * @sd: The sched_domain whose load_idx is to be obtained.
2373 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2375 static inline int get_sd_load_idx(struct sched_domain
*sd
,
2376 enum cpu_idle_type idle
)
2382 load_idx
= sd
->busy_idx
;
2385 case CPU_NEWLY_IDLE
:
2386 load_idx
= sd
->newidle_idx
;
2389 load_idx
= sd
->idle_idx
;
2397 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2399 * init_sd_power_savings_stats - Initialize power savings statistics for
2400 * the given sched_domain, during load balancing.
2402 * @sd: Sched domain whose power-savings statistics are to be initialized.
2403 * @sds: Variable containing the statistics for sd.
2404 * @idle: Idle status of the CPU at which we're performing load-balancing.
2406 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2407 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2410 * Busy processors will not participate in power savings
2413 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2414 sds
->power_savings_balance
= 0;
2416 sds
->power_savings_balance
= 1;
2417 sds
->min_nr_running
= ULONG_MAX
;
2418 sds
->leader_nr_running
= 0;
2423 * update_sd_power_savings_stats - Update the power saving stats for a
2424 * sched_domain while performing load balancing.
2426 * @group: sched_group belonging to the sched_domain under consideration.
2427 * @sds: Variable containing the statistics of the sched_domain
2428 * @local_group: Does group contain the CPU for which we're performing
2430 * @sgs: Variable containing the statistics of the group.
2432 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2433 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2436 if (!sds
->power_savings_balance
)
2440 * If the local group is idle or completely loaded
2441 * no need to do power savings balance at this domain
2443 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
2444 !sds
->this_nr_running
))
2445 sds
->power_savings_balance
= 0;
2448 * If a group is already running at full capacity or idle,
2449 * don't include that group in power savings calculations
2451 if (!sds
->power_savings_balance
||
2452 sgs
->sum_nr_running
>= sgs
->group_capacity
||
2453 !sgs
->sum_nr_running
)
2457 * Calculate the group which has the least non-idle load.
2458 * This is the group from where we need to pick up the load
2461 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
2462 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
2463 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
2464 sds
->group_min
= group
;
2465 sds
->min_nr_running
= sgs
->sum_nr_running
;
2466 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
2467 sgs
->sum_nr_running
;
2471 * Calculate the group which is almost near its
2472 * capacity but still has some space to pick up some load
2473 * from other group and save more power
2475 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
2478 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
2479 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
2480 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
2481 sds
->group_leader
= group
;
2482 sds
->leader_nr_running
= sgs
->sum_nr_running
;
2487 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2488 * @sds: Variable containing the statistics of the sched_domain
2489 * under consideration.
2490 * @this_cpu: Cpu at which we're currently performing load-balancing.
2491 * @imbalance: Variable to store the imbalance.
2494 * Check if we have potential to perform some power-savings balance.
2495 * If yes, set the busiest group to be the least loaded group in the
2496 * sched_domain, so that it's CPUs can be put to idle.
2498 * Returns 1 if there is potential to perform power-savings balance.
2501 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2502 int this_cpu
, unsigned long *imbalance
)
2504 if (!sds
->power_savings_balance
)
2507 if (sds
->this != sds
->group_leader
||
2508 sds
->group_leader
== sds
->group_min
)
2511 *imbalance
= sds
->min_load_per_task
;
2512 sds
->busiest
= sds
->group_min
;
2517 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2518 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2519 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2524 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2525 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2530 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2531 int this_cpu
, unsigned long *imbalance
)
2535 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2538 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2540 return SCHED_LOAD_SCALE
;
2543 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2545 return default_scale_freq_power(sd
, cpu
);
2548 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2550 unsigned long weight
= sd
->span_weight
;
2551 unsigned long smt_gain
= sd
->smt_gain
;
2558 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2560 return default_scale_smt_power(sd
, cpu
);
2563 unsigned long scale_rt_power(int cpu
)
2565 struct rq
*rq
= cpu_rq(cpu
);
2566 u64 total
, available
;
2568 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
2570 if (unlikely(total
< rq
->rt_avg
)) {
2571 /* Ensures that power won't end up being negative */
2574 available
= total
- rq
->rt_avg
;
2577 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
2578 total
= SCHED_LOAD_SCALE
;
2580 total
>>= SCHED_LOAD_SHIFT
;
2582 return div_u64(available
, total
);
2585 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
2587 unsigned long weight
= sd
->span_weight
;
2588 unsigned long power
= SCHED_LOAD_SCALE
;
2589 struct sched_group
*sdg
= sd
->groups
;
2591 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
2592 if (sched_feat(ARCH_POWER
))
2593 power
*= arch_scale_smt_power(sd
, cpu
);
2595 power
*= default_scale_smt_power(sd
, cpu
);
2597 power
>>= SCHED_LOAD_SHIFT
;
2600 sdg
->cpu_power_orig
= power
;
2602 if (sched_feat(ARCH_POWER
))
2603 power
*= arch_scale_freq_power(sd
, cpu
);
2605 power
*= default_scale_freq_power(sd
, cpu
);
2607 power
>>= SCHED_LOAD_SHIFT
;
2609 power
*= scale_rt_power(cpu
);
2610 power
>>= SCHED_LOAD_SHIFT
;
2615 cpu_rq(cpu
)->cpu_power
= power
;
2616 sdg
->cpu_power
= power
;
2619 static void update_group_power(struct sched_domain
*sd
, int cpu
)
2621 struct sched_domain
*child
= sd
->child
;
2622 struct sched_group
*group
, *sdg
= sd
->groups
;
2623 unsigned long power
;
2626 update_cpu_power(sd
, cpu
);
2632 group
= child
->groups
;
2634 power
+= group
->cpu_power
;
2635 group
= group
->next
;
2636 } while (group
!= child
->groups
);
2638 sdg
->cpu_power
= power
;
2642 * Try and fix up capacity for tiny siblings, this is needed when
2643 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2644 * which on its own isn't powerful enough.
2646 * See update_sd_pick_busiest() and check_asym_packing().
2649 fix_small_capacity(struct sched_domain
*sd
, struct sched_group
*group
)
2652 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2654 if (sd
->level
!= SD_LV_SIBLING
)
2658 * If ~90% of the cpu_power is still there, we're good.
2660 if (group
->cpu_power
* 32 > group
->cpu_power_orig
* 29)
2667 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2668 * @sd: The sched_domain whose statistics are to be updated.
2669 * @group: sched_group whose statistics are to be updated.
2670 * @this_cpu: Cpu for which load balance is currently performed.
2671 * @idle: Idle status of this_cpu
2672 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2673 * @local_group: Does group contain this_cpu.
2674 * @cpus: Set of cpus considered for load balancing.
2675 * @balance: Should we balance.
2676 * @sgs: variable to hold the statistics for this group.
2678 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
2679 struct sched_group
*group
, int this_cpu
,
2680 enum cpu_idle_type idle
, int load_idx
,
2681 int local_group
, const struct cpumask
*cpus
,
2682 int *balance
, struct sg_lb_stats
*sgs
)
2684 unsigned long load
, max_cpu_load
, min_cpu_load
, max_nr_running
;
2686 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2687 unsigned long avg_load_per_task
= 0;
2690 balance_cpu
= group_first_cpu(group
);
2692 /* Tally up the load of all CPUs in the group */
2694 min_cpu_load
= ~0UL;
2697 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
2698 struct rq
*rq
= cpu_rq(i
);
2700 /* Bias balancing toward cpus of our domain */
2702 if (idle_cpu(i
) && !first_idle_cpu
) {
2707 load
= target_load(i
, load_idx
);
2709 load
= source_load(i
, load_idx
);
2710 if (load
> max_cpu_load
) {
2711 max_cpu_load
= load
;
2712 max_nr_running
= rq
->nr_running
;
2714 if (min_cpu_load
> load
)
2715 min_cpu_load
= load
;
2718 sgs
->group_load
+= load
;
2719 sgs
->sum_nr_running
+= rq
->nr_running
;
2720 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
2726 * First idle cpu or the first cpu(busiest) in this sched group
2727 * is eligible for doing load balancing at this and above
2728 * domains. In the newly idle case, we will allow all the cpu's
2729 * to do the newly idle load balance.
2731 if (idle
!= CPU_NEWLY_IDLE
&& local_group
) {
2732 if (balance_cpu
!= this_cpu
) {
2736 update_group_power(sd
, this_cpu
);
2739 /* Adjust by relative CPU power of the group */
2740 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2743 * Consider the group unbalanced when the imbalance is larger
2744 * than the average weight of a task.
2746 * APZ: with cgroup the avg task weight can vary wildly and
2747 * might not be a suitable number - should we keep a
2748 * normalized nr_running number somewhere that negates
2751 if (sgs
->sum_nr_running
)
2752 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
2754 if ((max_cpu_load
- min_cpu_load
) >= avg_load_per_task
&& max_nr_running
> 1)
2757 sgs
->group_capacity
= DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
2758 if (!sgs
->group_capacity
)
2759 sgs
->group_capacity
= fix_small_capacity(sd
, group
);
2760 sgs
->group_weight
= group
->group_weight
;
2762 if (sgs
->group_capacity
> sgs
->sum_nr_running
)
2763 sgs
->group_has_capacity
= 1;
2767 * update_sd_pick_busiest - return 1 on busiest group
2768 * @sd: sched_domain whose statistics are to be checked
2769 * @sds: sched_domain statistics
2770 * @sg: sched_group candidate to be checked for being the busiest
2771 * @sgs: sched_group statistics
2772 * @this_cpu: the current cpu
2774 * Determine if @sg is a busier group than the previously selected
2777 static bool update_sd_pick_busiest(struct sched_domain
*sd
,
2778 struct sd_lb_stats
*sds
,
2779 struct sched_group
*sg
,
2780 struct sg_lb_stats
*sgs
,
2783 if (sgs
->avg_load
<= sds
->max_load
)
2786 if (sgs
->sum_nr_running
> sgs
->group_capacity
)
2793 * ASYM_PACKING needs to move all the work to the lowest
2794 * numbered CPUs in the group, therefore mark all groups
2795 * higher than ourself as busy.
2797 if ((sd
->flags
& SD_ASYM_PACKING
) && sgs
->sum_nr_running
&&
2798 this_cpu
< group_first_cpu(sg
)) {
2802 if (group_first_cpu(sds
->busiest
) > group_first_cpu(sg
))
2810 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2811 * @sd: sched_domain whose statistics are to be updated.
2812 * @this_cpu: Cpu for which load balance is currently performed.
2813 * @idle: Idle status of this_cpu
2814 * @cpus: Set of cpus considered for load balancing.
2815 * @balance: Should we balance.
2816 * @sds: variable to hold the statistics for this sched_domain.
2818 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
2819 enum cpu_idle_type idle
, const struct cpumask
*cpus
,
2820 int *balance
, struct sd_lb_stats
*sds
)
2822 struct sched_domain
*child
= sd
->child
;
2823 struct sched_group
*sg
= sd
->groups
;
2824 struct sg_lb_stats sgs
;
2825 int load_idx
, prefer_sibling
= 0;
2827 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
2830 init_sd_power_savings_stats(sd
, sds
, idle
);
2831 load_idx
= get_sd_load_idx(sd
, idle
);
2836 local_group
= cpumask_test_cpu(this_cpu
, sched_group_cpus(sg
));
2837 memset(&sgs
, 0, sizeof(sgs
));
2838 update_sg_lb_stats(sd
, sg
, this_cpu
, idle
, load_idx
,
2839 local_group
, cpus
, balance
, &sgs
);
2841 if (local_group
&& !(*balance
))
2844 sds
->total_load
+= sgs
.group_load
;
2845 sds
->total_pwr
+= sg
->cpu_power
;
2848 * In case the child domain prefers tasks go to siblings
2849 * first, lower the sg capacity to one so that we'll try
2850 * and move all the excess tasks away. We lower the capacity
2851 * of a group only if the local group has the capacity to fit
2852 * these excess tasks, i.e. nr_running < group_capacity. The
2853 * extra check prevents the case where you always pull from the
2854 * heaviest group when it is already under-utilized (possible
2855 * with a large weight task outweighs the tasks on the system).
2857 if (prefer_sibling
&& !local_group
&& sds
->this_has_capacity
)
2858 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
2861 sds
->this_load
= sgs
.avg_load
;
2863 sds
->this_nr_running
= sgs
.sum_nr_running
;
2864 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
2865 sds
->this_has_capacity
= sgs
.group_has_capacity
;
2866 sds
->this_idle_cpus
= sgs
.idle_cpus
;
2867 } else if (update_sd_pick_busiest(sd
, sds
, sg
, &sgs
, this_cpu
)) {
2868 sds
->max_load
= sgs
.avg_load
;
2870 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
2871 sds
->busiest_idle_cpus
= sgs
.idle_cpus
;
2872 sds
->busiest_group_capacity
= sgs
.group_capacity
;
2873 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
2874 sds
->busiest_has_capacity
= sgs
.group_has_capacity
;
2875 sds
->busiest_group_weight
= sgs
.group_weight
;
2876 sds
->group_imb
= sgs
.group_imb
;
2879 update_sd_power_savings_stats(sg
, sds
, local_group
, &sgs
);
2881 } while (sg
!= sd
->groups
);
2884 int __weak
arch_sd_sibling_asym_packing(void)
2886 return 0*SD_ASYM_PACKING
;
2890 * check_asym_packing - Check to see if the group is packed into the
2893 * This is primarily intended to used at the sibling level. Some
2894 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2895 * case of POWER7, it can move to lower SMT modes only when higher
2896 * threads are idle. When in lower SMT modes, the threads will
2897 * perform better since they share less core resources. Hence when we
2898 * have idle threads, we want them to be the higher ones.
2900 * This packing function is run on idle threads. It checks to see if
2901 * the busiest CPU in this domain (core in the P7 case) has a higher
2902 * CPU number than the packing function is being run on. Here we are
2903 * assuming lower CPU number will be equivalent to lower a SMT thread
2906 * Returns 1 when packing is required and a task should be moved to
2907 * this CPU. The amount of the imbalance is returned in *imbalance.
2909 * @sd: The sched_domain whose packing is to be checked.
2910 * @sds: Statistics of the sched_domain which is to be packed
2911 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2912 * @imbalance: returns amount of imbalanced due to packing.
2914 static int check_asym_packing(struct sched_domain
*sd
,
2915 struct sd_lb_stats
*sds
,
2916 int this_cpu
, unsigned long *imbalance
)
2920 if (!(sd
->flags
& SD_ASYM_PACKING
))
2926 busiest_cpu
= group_first_cpu(sds
->busiest
);
2927 if (this_cpu
> busiest_cpu
)
2930 *imbalance
= DIV_ROUND_CLOSEST(sds
->max_load
* sds
->busiest
->cpu_power
,
2936 * fix_small_imbalance - Calculate the minor imbalance that exists
2937 * amongst the groups of a sched_domain, during
2939 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2940 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2941 * @imbalance: Variable to store the imbalance.
2943 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
2944 int this_cpu
, unsigned long *imbalance
)
2946 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
2947 unsigned int imbn
= 2;
2948 unsigned long scaled_busy_load_per_task
;
2950 if (sds
->this_nr_running
) {
2951 sds
->this_load_per_task
/= sds
->this_nr_running
;
2952 if (sds
->busiest_load_per_task
>
2953 sds
->this_load_per_task
)
2956 sds
->this_load_per_task
=
2957 cpu_avg_load_per_task(this_cpu
);
2959 scaled_busy_load_per_task
= sds
->busiest_load_per_task
2961 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
2963 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
2964 (scaled_busy_load_per_task
* imbn
)) {
2965 *imbalance
= sds
->busiest_load_per_task
;
2970 * OK, we don't have enough imbalance to justify moving tasks,
2971 * however we may be able to increase total CPU power used by
2975 pwr_now
+= sds
->busiest
->cpu_power
*
2976 min(sds
->busiest_load_per_task
, sds
->max_load
);
2977 pwr_now
+= sds
->this->cpu_power
*
2978 min(sds
->this_load_per_task
, sds
->this_load
);
2979 pwr_now
/= SCHED_LOAD_SCALE
;
2981 /* Amount of load we'd subtract */
2982 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2983 sds
->busiest
->cpu_power
;
2984 if (sds
->max_load
> tmp
)
2985 pwr_move
+= sds
->busiest
->cpu_power
*
2986 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
2988 /* Amount of load we'd add */
2989 if (sds
->max_load
* sds
->busiest
->cpu_power
<
2990 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
2991 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
2992 sds
->this->cpu_power
;
2994 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2995 sds
->this->cpu_power
;
2996 pwr_move
+= sds
->this->cpu_power
*
2997 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
2998 pwr_move
/= SCHED_LOAD_SCALE
;
3000 /* Move if we gain throughput */
3001 if (pwr_move
> pwr_now
)
3002 *imbalance
= sds
->busiest_load_per_task
;
3006 * calculate_imbalance - Calculate the amount of imbalance present within the
3007 * groups of a given sched_domain during load balance.
3008 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3009 * @this_cpu: Cpu for which currently load balance is being performed.
3010 * @imbalance: The variable to store the imbalance.
3012 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
3013 unsigned long *imbalance
)
3015 unsigned long max_pull
, load_above_capacity
= ~0UL;
3017 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
3018 if (sds
->group_imb
) {
3019 sds
->busiest_load_per_task
=
3020 min(sds
->busiest_load_per_task
, sds
->avg_load
);
3024 * In the presence of smp nice balancing, certain scenarios can have
3025 * max load less than avg load(as we skip the groups at or below
3026 * its cpu_power, while calculating max_load..)
3028 if (sds
->max_load
< sds
->avg_load
) {
3030 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3033 if (!sds
->group_imb
) {
3035 * Don't want to pull so many tasks that a group would go idle.
3037 load_above_capacity
= (sds
->busiest_nr_running
-
3038 sds
->busiest_group_capacity
);
3040 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
3042 load_above_capacity
/= sds
->busiest
->cpu_power
;
3046 * We're trying to get all the cpus to the average_load, so we don't
3047 * want to push ourselves above the average load, nor do we wish to
3048 * reduce the max loaded cpu below the average load. At the same time,
3049 * we also don't want to reduce the group load below the group capacity
3050 * (so that we can implement power-savings policies etc). Thus we look
3051 * for the minimum possible imbalance.
3052 * Be careful of negative numbers as they'll appear as very large values
3053 * with unsigned longs.
3055 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
3057 /* How much load to actually move to equalise the imbalance */
3058 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
3059 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
3063 * if *imbalance is less than the average load per runnable task
3064 * there is no gaurantee that any tasks will be moved so we'll have
3065 * a think about bumping its value to force at least one task to be
3068 if (*imbalance
< sds
->busiest_load_per_task
)
3069 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
3073 /******* find_busiest_group() helpers end here *********************/
3076 * find_busiest_group - Returns the busiest group within the sched_domain
3077 * if there is an imbalance. If there isn't an imbalance, and
3078 * the user has opted for power-savings, it returns a group whose
3079 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3080 * such a group exists.
3082 * Also calculates the amount of weighted load which should be moved
3083 * to restore balance.
3085 * @sd: The sched_domain whose busiest group is to be returned.
3086 * @this_cpu: The cpu for which load balancing is currently being performed.
3087 * @imbalance: Variable which stores amount of weighted load which should
3088 * be moved to restore balance/put a group to idle.
3089 * @idle: The idle status of this_cpu.
3090 * @cpus: The set of CPUs under consideration for load-balancing.
3091 * @balance: Pointer to a variable indicating if this_cpu
3092 * is the appropriate cpu to perform load balancing at this_level.
3094 * Returns: - the busiest group if imbalance exists.
3095 * - If no imbalance and user has opted for power-savings balance,
3096 * return the least loaded group whose CPUs can be
3097 * put to idle by rebalancing its tasks onto our group.
3099 static struct sched_group
*
3100 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
3101 unsigned long *imbalance
, enum cpu_idle_type idle
,
3102 const struct cpumask
*cpus
, int *balance
)
3104 struct sd_lb_stats sds
;
3106 memset(&sds
, 0, sizeof(sds
));
3109 * Compute the various statistics relavent for load balancing at
3112 update_sd_lb_stats(sd
, this_cpu
, idle
, cpus
, balance
, &sds
);
3115 * this_cpu is not the appropriate cpu to perform load balancing at
3121 if ((idle
== CPU_IDLE
|| idle
== CPU_NEWLY_IDLE
) &&
3122 check_asym_packing(sd
, &sds
, this_cpu
, imbalance
))
3125 /* There is no busy sibling group to pull tasks from */
3126 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
3130 * If the busiest group is imbalanced the below checks don't
3131 * work because they assumes all things are equal, which typically
3132 * isn't true due to cpus_allowed constraints and the like.
3137 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3138 if (idle
== CPU_NEWLY_IDLE
&& sds
.this_has_capacity
&&
3139 !sds
.busiest_has_capacity
)
3143 * If the local group is more busy than the selected busiest group
3144 * don't try and pull any tasks.
3146 if (sds
.this_load
>= sds
.max_load
)
3150 * Don't pull any tasks if this group is already above the domain
3153 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
3154 if (sds
.this_load
>= sds
.avg_load
)
3157 if (idle
== CPU_IDLE
) {
3159 * This cpu is idle. If the busiest group load doesn't
3160 * have more tasks than the number of available cpu's and
3161 * there is no imbalance between this and busiest group
3162 * wrt to idle cpu's, it is balanced.
3164 if ((sds
.this_idle_cpus
<= sds
.busiest_idle_cpus
+ 1) &&
3165 sds
.busiest_nr_running
<= sds
.busiest_group_weight
)
3169 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3170 * imbalance_pct to be conservative.
3172 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
3177 /* Looks like there is an imbalance. Compute it */
3178 calculate_imbalance(&sds
, this_cpu
, imbalance
);
3183 * There is no obvious imbalance. But check if we can do some balancing
3186 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
3194 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3197 find_busiest_queue(struct sched_domain
*sd
, struct sched_group
*group
,
3198 enum cpu_idle_type idle
, unsigned long imbalance
,
3199 const struct cpumask
*cpus
)
3201 struct rq
*busiest
= NULL
, *rq
;
3202 unsigned long max_load
= 0;
3205 for_each_cpu(i
, sched_group_cpus(group
)) {
3206 unsigned long power
= power_of(i
);
3207 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
3211 capacity
= fix_small_capacity(sd
, group
);
3213 if (!cpumask_test_cpu(i
, cpus
))
3217 wl
= weighted_cpuload(i
);
3220 * When comparing with imbalance, use weighted_cpuload()
3221 * which is not scaled with the cpu power.
3223 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
3227 * For the load comparisons with the other cpu's, consider
3228 * the weighted_cpuload() scaled with the cpu power, so that
3229 * the load can be moved away from the cpu that is potentially
3230 * running at a lower capacity.
3232 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
3234 if (wl
> max_load
) {
3244 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3245 * so long as it is large enough.
3247 #define MAX_PINNED_INTERVAL 512
3249 /* Working cpumask for load_balance and load_balance_newidle. */
3250 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
3252 static int need_active_balance(struct sched_domain
*sd
, int idle
,
3253 int busiest_cpu
, int this_cpu
)
3255 if (idle
== CPU_NEWLY_IDLE
) {
3258 * ASYM_PACKING needs to force migrate tasks from busy but
3259 * higher numbered CPUs in order to pack all tasks in the
3260 * lowest numbered CPUs.
3262 if ((sd
->flags
& SD_ASYM_PACKING
) && busiest_cpu
> this_cpu
)
3266 * The only task running in a non-idle cpu can be moved to this
3267 * cpu in an attempt to completely freeup the other CPU
3270 * The package power saving logic comes from
3271 * find_busiest_group(). If there are no imbalance, then
3272 * f_b_g() will return NULL. However when sched_mc={1,2} then
3273 * f_b_g() will select a group from which a running task may be
3274 * pulled to this cpu in order to make the other package idle.
3275 * If there is no opportunity to make a package idle and if
3276 * there are no imbalance, then f_b_g() will return NULL and no
3277 * action will be taken in load_balance_newidle().
3279 * Under normal task pull operation due to imbalance, there
3280 * will be more than one task in the source run queue and
3281 * move_tasks() will succeed. ld_moved will be true and this
3282 * active balance code will not be triggered.
3284 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
3288 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
3291 static int active_load_balance_cpu_stop(void *data
);
3294 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3295 * tasks if there is an imbalance.
3297 static int load_balance(int this_cpu
, struct rq
*this_rq
,
3298 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3301 int ld_moved
, all_pinned
= 0, active_balance
= 0;
3302 struct sched_group
*group
;
3303 unsigned long imbalance
;
3305 unsigned long flags
;
3306 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
3308 cpumask_copy(cpus
, cpu_active_mask
);
3310 schedstat_inc(sd
, lb_count
[idle
]);
3313 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
,
3320 schedstat_inc(sd
, lb_nobusyg
[idle
]);
3324 busiest
= find_busiest_queue(sd
, group
, idle
, imbalance
, cpus
);
3326 schedstat_inc(sd
, lb_nobusyq
[idle
]);
3330 BUG_ON(busiest
== this_rq
);
3332 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
3335 if (busiest
->nr_running
> 1) {
3337 * Attempt to move tasks. If find_busiest_group has found
3338 * an imbalance but busiest->nr_running <= 1, the group is
3339 * still unbalanced. ld_moved simply stays zero, so it is
3340 * correctly treated as an imbalance.
3342 local_irq_save(flags
);
3343 double_rq_lock(this_rq
, busiest
);
3344 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
3345 imbalance
, sd
, idle
, &all_pinned
);
3346 double_rq_unlock(this_rq
, busiest
);
3347 local_irq_restore(flags
);
3350 * some other cpu did the load balance for us.
3352 if (ld_moved
&& this_cpu
!= smp_processor_id())
3353 resched_cpu(this_cpu
);
3355 /* All tasks on this runqueue were pinned by CPU affinity */
3356 if (unlikely(all_pinned
)) {
3357 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
3358 if (!cpumask_empty(cpus
))
3365 schedstat_inc(sd
, lb_failed
[idle
]);
3367 * Increment the failure counter only on periodic balance.
3368 * We do not want newidle balance, which can be very
3369 * frequent, pollute the failure counter causing
3370 * excessive cache_hot migrations and active balances.
3372 if (idle
!= CPU_NEWLY_IDLE
)
3373 sd
->nr_balance_failed
++;
3375 if (need_active_balance(sd
, idle
, cpu_of(busiest
), this_cpu
)) {
3376 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
3378 /* don't kick the active_load_balance_cpu_stop,
3379 * if the curr task on busiest cpu can't be
3382 if (!cpumask_test_cpu(this_cpu
,
3383 &busiest
->curr
->cpus_allowed
)) {
3384 raw_spin_unlock_irqrestore(&busiest
->lock
,
3387 goto out_one_pinned
;
3391 * ->active_balance synchronizes accesses to
3392 * ->active_balance_work. Once set, it's cleared
3393 * only after active load balance is finished.
3395 if (!busiest
->active_balance
) {
3396 busiest
->active_balance
= 1;
3397 busiest
->push_cpu
= this_cpu
;
3400 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
3403 stop_one_cpu_nowait(cpu_of(busiest
),
3404 active_load_balance_cpu_stop
, busiest
,
3405 &busiest
->active_balance_work
);
3408 * We've kicked active balancing, reset the failure
3411 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
3414 sd
->nr_balance_failed
= 0;
3416 if (likely(!active_balance
)) {
3417 /* We were unbalanced, so reset the balancing interval */
3418 sd
->balance_interval
= sd
->min_interval
;
3421 * If we've begun active balancing, start to back off. This
3422 * case may not be covered by the all_pinned logic if there
3423 * is only 1 task on the busy runqueue (because we don't call
3426 if (sd
->balance_interval
< sd
->max_interval
)
3427 sd
->balance_interval
*= 2;
3433 schedstat_inc(sd
, lb_balanced
[idle
]);
3435 sd
->nr_balance_failed
= 0;
3438 /* tune up the balancing interval */
3439 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
3440 (sd
->balance_interval
< sd
->max_interval
))
3441 sd
->balance_interval
*= 2;
3449 * idle_balance is called by schedule() if this_cpu is about to become
3450 * idle. Attempts to pull tasks from other CPUs.
3452 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
3454 struct sched_domain
*sd
;
3455 int pulled_task
= 0;
3456 unsigned long next_balance
= jiffies
+ HZ
;
3458 this_rq
->idle_stamp
= this_rq
->clock
;
3460 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
3464 * Drop the rq->lock, but keep IRQ/preempt disabled.
3466 raw_spin_unlock(&this_rq
->lock
);
3468 update_shares(this_cpu
);
3469 for_each_domain(this_cpu
, sd
) {
3470 unsigned long interval
;
3473 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3476 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
3477 /* If we've pulled tasks over stop searching: */
3478 pulled_task
= load_balance(this_cpu
, this_rq
,
3479 sd
, CPU_NEWLY_IDLE
, &balance
);
3482 interval
= msecs_to_jiffies(sd
->balance_interval
);
3483 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3484 next_balance
= sd
->last_balance
+ interval
;
3486 this_rq
->idle_stamp
= 0;
3491 raw_spin_lock(&this_rq
->lock
);
3493 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3495 * We are going idle. next_balance may be set based on
3496 * a busy processor. So reset next_balance.
3498 this_rq
->next_balance
= next_balance
;
3503 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3504 * running tasks off the busiest CPU onto idle CPUs. It requires at
3505 * least 1 task to be running on each physical CPU where possible, and
3506 * avoids physical / logical imbalances.
3508 static int active_load_balance_cpu_stop(void *data
)
3510 struct rq
*busiest_rq
= data
;
3511 int busiest_cpu
= cpu_of(busiest_rq
);
3512 int target_cpu
= busiest_rq
->push_cpu
;
3513 struct rq
*target_rq
= cpu_rq(target_cpu
);
3514 struct sched_domain
*sd
;
3516 raw_spin_lock_irq(&busiest_rq
->lock
);
3518 /* make sure the requested cpu hasn't gone down in the meantime */
3519 if (unlikely(busiest_cpu
!= smp_processor_id() ||
3520 !busiest_rq
->active_balance
))
3523 /* Is there any task to move? */
3524 if (busiest_rq
->nr_running
<= 1)
3528 * This condition is "impossible", if it occurs
3529 * we need to fix it. Originally reported by
3530 * Bjorn Helgaas on a 128-cpu setup.
3532 BUG_ON(busiest_rq
== target_rq
);
3534 /* move a task from busiest_rq to target_rq */
3535 double_lock_balance(busiest_rq
, target_rq
);
3537 /* Search for an sd spanning us and the target CPU. */
3538 for_each_domain(target_cpu
, sd
) {
3539 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3540 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3545 schedstat_inc(sd
, alb_count
);
3547 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3549 schedstat_inc(sd
, alb_pushed
);
3551 schedstat_inc(sd
, alb_failed
);
3553 double_unlock_balance(busiest_rq
, target_rq
);
3555 busiest_rq
->active_balance
= 0;
3556 raw_spin_unlock_irq(&busiest_rq
->lock
);
3562 static DEFINE_PER_CPU(struct call_single_data
, remote_sched_softirq_cb
);
3564 static void trigger_sched_softirq(void *data
)
3566 raise_softirq_irqoff(SCHED_SOFTIRQ
);
3569 static inline void init_sched_softirq_csd(struct call_single_data
*csd
)
3571 csd
->func
= trigger_sched_softirq
;
3578 * idle load balancing details
3579 * - One of the idle CPUs nominates itself as idle load_balancer, while
3581 * - This idle load balancer CPU will also go into tickless mode when
3582 * it is idle, just like all other idle CPUs
3583 * - When one of the busy CPUs notice that there may be an idle rebalancing
3584 * needed, they will kick the idle load balancer, which then does idle
3585 * load balancing for all the idle CPUs.
3588 atomic_t load_balancer
;
3589 atomic_t first_pick_cpu
;
3590 atomic_t second_pick_cpu
;
3591 cpumask_var_t idle_cpus_mask
;
3592 cpumask_var_t grp_idle_mask
;
3593 unsigned long next_balance
; /* in jiffy units */
3594 } nohz ____cacheline_aligned
;
3596 int get_nohz_load_balancer(void)
3598 return atomic_read(&nohz
.load_balancer
);
3601 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3603 * lowest_flag_domain - Return lowest sched_domain containing flag.
3604 * @cpu: The cpu whose lowest level of sched domain is to
3606 * @flag: The flag to check for the lowest sched_domain
3607 * for the given cpu.
3609 * Returns the lowest sched_domain of a cpu which contains the given flag.
3611 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
3613 struct sched_domain
*sd
;
3615 for_each_domain(cpu
, sd
)
3616 if (sd
&& (sd
->flags
& flag
))
3623 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3624 * @cpu: The cpu whose domains we're iterating over.
3625 * @sd: variable holding the value of the power_savings_sd
3627 * @flag: The flag to filter the sched_domains to be iterated.
3629 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3630 * set, starting from the lowest sched_domain to the highest.
3632 #define for_each_flag_domain(cpu, sd, flag) \
3633 for (sd = lowest_flag_domain(cpu, flag); \
3634 (sd && (sd->flags & flag)); sd = sd->parent)
3637 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3638 * @ilb_group: group to be checked for semi-idleness
3640 * Returns: 1 if the group is semi-idle. 0 otherwise.
3642 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3643 * and atleast one non-idle CPU. This helper function checks if the given
3644 * sched_group is semi-idle or not.
3646 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
3648 cpumask_and(nohz
.grp_idle_mask
, nohz
.idle_cpus_mask
,
3649 sched_group_cpus(ilb_group
));
3652 * A sched_group is semi-idle when it has atleast one busy cpu
3653 * and atleast one idle cpu.
3655 if (cpumask_empty(nohz
.grp_idle_mask
))
3658 if (cpumask_equal(nohz
.grp_idle_mask
, sched_group_cpus(ilb_group
)))
3664 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3665 * @cpu: The cpu which is nominating a new idle_load_balancer.
3667 * Returns: Returns the id of the idle load balancer if it exists,
3668 * Else, returns >= nr_cpu_ids.
3670 * This algorithm picks the idle load balancer such that it belongs to a
3671 * semi-idle powersavings sched_domain. The idea is to try and avoid
3672 * completely idle packages/cores just for the purpose of idle load balancing
3673 * when there are other idle cpu's which are better suited for that job.
3675 static int find_new_ilb(int cpu
)
3677 struct sched_domain
*sd
;
3678 struct sched_group
*ilb_group
;
3681 * Have idle load balancer selection from semi-idle packages only
3682 * when power-aware load balancing is enabled
3684 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
3688 * Optimize for the case when we have no idle CPUs or only one
3689 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3691 if (cpumask_weight(nohz
.idle_cpus_mask
) < 2)
3694 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
3695 ilb_group
= sd
->groups
;
3698 if (is_semi_idle_group(ilb_group
))
3699 return cpumask_first(nohz
.grp_idle_mask
);
3701 ilb_group
= ilb_group
->next
;
3703 } while (ilb_group
!= sd
->groups
);
3709 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3710 static inline int find_new_ilb(int call_cpu
)
3717 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3718 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3719 * CPU (if there is one).
3721 static void nohz_balancer_kick(int cpu
)
3725 nohz
.next_balance
++;
3727 ilb_cpu
= get_nohz_load_balancer();
3729 if (ilb_cpu
>= nr_cpu_ids
) {
3730 ilb_cpu
= cpumask_first(nohz
.idle_cpus_mask
);
3731 if (ilb_cpu
>= nr_cpu_ids
)
3735 if (!cpu_rq(ilb_cpu
)->nohz_balance_kick
) {
3736 struct call_single_data
*cp
;
3738 cpu_rq(ilb_cpu
)->nohz_balance_kick
= 1;
3739 cp
= &per_cpu(remote_sched_softirq_cb
, cpu
);
3740 __smp_call_function_single(ilb_cpu
, cp
, 0);
3746 * This routine will try to nominate the ilb (idle load balancing)
3747 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3748 * load balancing on behalf of all those cpus.
3750 * When the ilb owner becomes busy, we will not have new ilb owner until some
3751 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3752 * idle load balancing by kicking one of the idle CPUs.
3754 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3755 * ilb owner CPU in future (when there is a need for idle load balancing on
3756 * behalf of all idle CPUs).
3758 void select_nohz_load_balancer(int stop_tick
)
3760 int cpu
= smp_processor_id();
3763 if (!cpu_active(cpu
)) {
3764 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3768 * If we are going offline and still the leader,
3771 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3778 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
3780 if (atomic_read(&nohz
.first_pick_cpu
) == cpu
)
3781 atomic_cmpxchg(&nohz
.first_pick_cpu
, cpu
, nr_cpu_ids
);
3782 if (atomic_read(&nohz
.second_pick_cpu
) == cpu
)
3783 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3785 if (atomic_read(&nohz
.load_balancer
) >= nr_cpu_ids
) {
3788 /* make me the ilb owner */
3789 if (atomic_cmpxchg(&nohz
.load_balancer
, nr_cpu_ids
,
3794 * Check to see if there is a more power-efficient
3797 new_ilb
= find_new_ilb(cpu
);
3798 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
3799 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
3800 resched_cpu(new_ilb
);
3806 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
3809 cpumask_clear_cpu(cpu
, nohz
.idle_cpus_mask
);
3811 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3812 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
,
3820 static DEFINE_SPINLOCK(balancing
);
3823 * It checks each scheduling domain to see if it is due to be balanced,
3824 * and initiates a balancing operation if so.
3826 * Balancing parameters are set up in arch_init_sched_domains.
3828 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3831 struct rq
*rq
= cpu_rq(cpu
);
3832 unsigned long interval
;
3833 struct sched_domain
*sd
;
3834 /* Earliest time when we have to do rebalance again */
3835 unsigned long next_balance
= jiffies
+ 60*HZ
;
3836 int update_next_balance
= 0;
3841 for_each_domain(cpu
, sd
) {
3842 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3845 interval
= sd
->balance_interval
;
3846 if (idle
!= CPU_IDLE
)
3847 interval
*= sd
->busy_factor
;
3849 /* scale ms to jiffies */
3850 interval
= msecs_to_jiffies(interval
);
3851 if (unlikely(!interval
))
3853 if (interval
> HZ
*NR_CPUS
/10)
3854 interval
= HZ
*NR_CPUS
/10;
3856 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3858 if (need_serialize
) {
3859 if (!spin_trylock(&balancing
))
3863 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3864 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3866 * We've pulled tasks over so either we're no
3869 idle
= CPU_NOT_IDLE
;
3871 sd
->last_balance
= jiffies
;
3874 spin_unlock(&balancing
);
3876 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3877 next_balance
= sd
->last_balance
+ interval
;
3878 update_next_balance
= 1;
3882 * Stop the load balance at this level. There is another
3883 * CPU in our sched group which is doing load balancing more
3891 * next_balance will be updated only when there is a need.
3892 * When the cpu is attached to null domain for ex, it will not be
3895 if (likely(update_next_balance
))
3896 rq
->next_balance
= next_balance
;
3901 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3902 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3904 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
)
3906 struct rq
*this_rq
= cpu_rq(this_cpu
);
3910 if (idle
!= CPU_IDLE
|| !this_rq
->nohz_balance_kick
)
3913 for_each_cpu(balance_cpu
, nohz
.idle_cpus_mask
) {
3914 if (balance_cpu
== this_cpu
)
3918 * If this cpu gets work to do, stop the load balancing
3919 * work being done for other cpus. Next load
3920 * balancing owner will pick it up.
3922 if (need_resched()) {
3923 this_rq
->nohz_balance_kick
= 0;
3927 raw_spin_lock_irq(&this_rq
->lock
);
3928 update_rq_clock(this_rq
);
3929 update_cpu_load(this_rq
);
3930 raw_spin_unlock_irq(&this_rq
->lock
);
3932 rebalance_domains(balance_cpu
, CPU_IDLE
);
3934 rq
= cpu_rq(balance_cpu
);
3935 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3936 this_rq
->next_balance
= rq
->next_balance
;
3938 nohz
.next_balance
= this_rq
->next_balance
;
3939 this_rq
->nohz_balance_kick
= 0;
3943 * Current heuristic for kicking the idle load balancer
3944 * - first_pick_cpu is the one of the busy CPUs. It will kick
3945 * idle load balancer when it has more than one process active. This
3946 * eliminates the need for idle load balancing altogether when we have
3947 * only one running process in the system (common case).
3948 * - If there are more than one busy CPU, idle load balancer may have
3949 * to run for active_load_balance to happen (i.e., two busy CPUs are
3950 * SMT or core siblings and can run better if they move to different
3951 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3952 * which will kick idle load balancer as soon as it has any load.
3954 static inline int nohz_kick_needed(struct rq
*rq
, int cpu
)
3956 unsigned long now
= jiffies
;
3958 int first_pick_cpu
, second_pick_cpu
;
3960 if (time_before(now
, nohz
.next_balance
))
3963 if (rq
->idle_at_tick
)
3966 first_pick_cpu
= atomic_read(&nohz
.first_pick_cpu
);
3967 second_pick_cpu
= atomic_read(&nohz
.second_pick_cpu
);
3969 if (first_pick_cpu
< nr_cpu_ids
&& first_pick_cpu
!= cpu
&&
3970 second_pick_cpu
< nr_cpu_ids
&& second_pick_cpu
!= cpu
)
3973 ret
= atomic_cmpxchg(&nohz
.first_pick_cpu
, nr_cpu_ids
, cpu
);
3974 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
3975 atomic_cmpxchg(&nohz
.second_pick_cpu
, cpu
, nr_cpu_ids
);
3976 if (rq
->nr_running
> 1)
3979 ret
= atomic_cmpxchg(&nohz
.second_pick_cpu
, nr_cpu_ids
, cpu
);
3980 if (ret
== nr_cpu_ids
|| ret
== cpu
) {
3988 static void nohz_idle_balance(int this_cpu
, enum cpu_idle_type idle
) { }
3992 * run_rebalance_domains is triggered when needed from the scheduler tick.
3993 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3995 static void run_rebalance_domains(struct softirq_action
*h
)
3997 int this_cpu
= smp_processor_id();
3998 struct rq
*this_rq
= cpu_rq(this_cpu
);
3999 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
4000 CPU_IDLE
: CPU_NOT_IDLE
;
4002 rebalance_domains(this_cpu
, idle
);
4005 * If this cpu has a pending nohz_balance_kick, then do the
4006 * balancing on behalf of the other idle cpus whose ticks are
4009 nohz_idle_balance(this_cpu
, idle
);
4012 static inline int on_null_domain(int cpu
)
4014 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
4018 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4020 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
4022 /* Don't need to rebalance while attached to NULL domain */
4023 if (time_after_eq(jiffies
, rq
->next_balance
) &&
4024 likely(!on_null_domain(cpu
)))
4025 raise_softirq(SCHED_SOFTIRQ
);
4027 else if (nohz_kick_needed(rq
, cpu
) && likely(!on_null_domain(cpu
)))
4028 nohz_balancer_kick(cpu
);
4032 static void rq_online_fair(struct rq
*rq
)
4037 static void rq_offline_fair(struct rq
*rq
)
4042 #else /* CONFIG_SMP */
4045 * on UP we do not need to balance between CPUs:
4047 static inline void idle_balance(int cpu
, struct rq
*rq
)
4051 #endif /* CONFIG_SMP */
4054 * scheduler tick hitting a task of our scheduling class:
4056 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
4058 struct cfs_rq
*cfs_rq
;
4059 struct sched_entity
*se
= &curr
->se
;
4061 for_each_sched_entity(se
) {
4062 cfs_rq
= cfs_rq_of(se
);
4063 entity_tick(cfs_rq
, se
, queued
);
4068 * called on fork with the child task as argument from the parent's context
4069 * - child not yet on the tasklist
4070 * - preemption disabled
4072 static void task_fork_fair(struct task_struct
*p
)
4074 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
4075 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
4076 int this_cpu
= smp_processor_id();
4077 struct rq
*rq
= this_rq();
4078 unsigned long flags
;
4080 raw_spin_lock_irqsave(&rq
->lock
, flags
);
4082 update_rq_clock(rq
);
4084 if (unlikely(task_cpu(p
) != this_cpu
)) {
4086 __set_task_cpu(p
, this_cpu
);
4090 update_curr(cfs_rq
);
4093 se
->vruntime
= curr
->vruntime
;
4094 place_entity(cfs_rq
, se
, 1);
4096 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
4098 * Upon rescheduling, sched_class::put_prev_task() will place
4099 * 'current' within the tree based on its new key value.
4101 swap(curr
->vruntime
, se
->vruntime
);
4102 resched_task(rq
->curr
);
4105 se
->vruntime
-= cfs_rq
->min_vruntime
;
4107 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
4111 * Priority of the task has changed. Check to see if we preempt
4115 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
4121 * Reschedule if we are currently running on this runqueue and
4122 * our priority decreased, or if we are not currently running on
4123 * this runqueue and our priority is higher than the current's
4125 if (rq
->curr
== p
) {
4126 if (p
->prio
> oldprio
)
4127 resched_task(rq
->curr
);
4129 check_preempt_curr(rq
, p
, 0);
4132 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
4134 struct sched_entity
*se
= &p
->se
;
4135 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4138 * Ensure the task's vruntime is normalized, so that when its
4139 * switched back to the fair class the enqueue_entity(.flags=0) will
4140 * do the right thing.
4142 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4143 * have normalized the vruntime, if it was !on_rq, then only when
4144 * the task is sleeping will it still have non-normalized vruntime.
4146 if (!se
->on_rq
&& p
->state
!= TASK_RUNNING
) {
4148 * Fix up our vruntime so that the current sleep doesn't
4149 * cause 'unlimited' sleep bonus.
4151 place_entity(cfs_rq
, se
, 0);
4152 se
->vruntime
-= cfs_rq
->min_vruntime
;
4157 * We switched to the sched_fair class.
4159 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
4165 * We were most likely switched from sched_rt, so
4166 * kick off the schedule if running, otherwise just see
4167 * if we can still preempt the current task.
4170 resched_task(rq
->curr
);
4172 check_preempt_curr(rq
, p
, 0);
4175 /* Account for a task changing its policy or group.
4177 * This routine is mostly called to set cfs_rq->curr field when a task
4178 * migrates between groups/classes.
4180 static void set_curr_task_fair(struct rq
*rq
)
4182 struct sched_entity
*se
= &rq
->curr
->se
;
4184 for_each_sched_entity(se
)
4185 set_next_entity(cfs_rq_of(se
), se
);
4188 #ifdef CONFIG_FAIR_GROUP_SCHED
4189 static void task_move_group_fair(struct task_struct
*p
, int on_rq
)
4192 * If the task was not on the rq at the time of this cgroup movement
4193 * it must have been asleep, sleeping tasks keep their ->vruntime
4194 * absolute on their old rq until wakeup (needed for the fair sleeper
4195 * bonus in place_entity()).
4197 * If it was on the rq, we've just 'preempted' it, which does convert
4198 * ->vruntime to a relative base.
4200 * Make sure both cases convert their relative position when migrating
4201 * to another cgroup's rq. This does somewhat interfere with the
4202 * fair sleeper stuff for the first placement, but who cares.
4205 p
->se
.vruntime
-= cfs_rq_of(&p
->se
)->min_vruntime
;
4206 set_task_rq(p
, task_cpu(p
));
4208 p
->se
.vruntime
+= cfs_rq_of(&p
->se
)->min_vruntime
;
4212 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
4214 struct sched_entity
*se
= &task
->se
;
4215 unsigned int rr_interval
= 0;
4218 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4221 if (rq
->cfs
.load
.weight
)
4222 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
4228 * All the scheduling class methods:
4230 static const struct sched_class fair_sched_class
= {
4231 .next
= &idle_sched_class
,
4232 .enqueue_task
= enqueue_task_fair
,
4233 .dequeue_task
= dequeue_task_fair
,
4234 .yield_task
= yield_task_fair
,
4235 .yield_to_task
= yield_to_task_fair
,
4237 .check_preempt_curr
= check_preempt_wakeup
,
4239 .pick_next_task
= pick_next_task_fair
,
4240 .put_prev_task
= put_prev_task_fair
,
4243 .select_task_rq
= select_task_rq_fair
,
4245 .rq_online
= rq_online_fair
,
4246 .rq_offline
= rq_offline_fair
,
4248 .task_waking
= task_waking_fair
,
4251 .set_curr_task
= set_curr_task_fair
,
4252 .task_tick
= task_tick_fair
,
4253 .task_fork
= task_fork_fair
,
4255 .prio_changed
= prio_changed_fair
,
4256 .switched_from
= switched_from_fair
,
4257 .switched_to
= switched_to_fair
,
4259 .get_rr_interval
= get_rr_interval_fair
,
4261 #ifdef CONFIG_FAIR_GROUP_SCHED
4262 .task_move_group
= task_move_group_fair
,
4266 #ifdef CONFIG_SCHED_DEBUG
4267 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
4269 struct cfs_rq
*cfs_rq
;
4272 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
4273 print_cfs_rq(m
, cpu
, cfs_rq
);