HID: add support for MacBookAir4,2 keyboard.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / s390 / mm / fault.c
blobfe103e891e7a0eb32dc7c67fc0cea3217bd4b6e3
1 /*
2 * arch/s390/mm/fault.c
4 * S390 version
5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (uweigand@de.ibm.com)
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1995 Linus Torvalds
13 #include <linux/kernel_stat.h>
14 #include <linux/perf_event.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/module.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/system.h>
36 #include <asm/pgtable.h>
37 #include <asm/irq.h>
38 #include <asm/mmu_context.h>
39 #include <asm/compat.h>
40 #include "../kernel/entry.h"
42 #ifndef CONFIG_64BIT
43 #define __FAIL_ADDR_MASK 0x7ffff000
44 #define __SUBCODE_MASK 0x0200
45 #define __PF_RES_FIELD 0ULL
46 #else /* CONFIG_64BIT */
47 #define __FAIL_ADDR_MASK -4096L
48 #define __SUBCODE_MASK 0x0600
49 #define __PF_RES_FIELD 0x8000000000000000ULL
50 #endif /* CONFIG_64BIT */
52 #define VM_FAULT_BADCONTEXT 0x010000
53 #define VM_FAULT_BADMAP 0x020000
54 #define VM_FAULT_BADACCESS 0x040000
56 static unsigned long store_indication;
58 void fault_init(void)
60 if (test_facility(2) && test_facility(75))
61 store_indication = 0xc00;
64 static inline int notify_page_fault(struct pt_regs *regs)
66 int ret = 0;
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
75 return ret;
80 * Unlock any spinlocks which will prevent us from getting the
81 * message out.
83 void bust_spinlocks(int yes)
85 if (yes) {
86 oops_in_progress = 1;
87 } else {
88 int loglevel_save = console_loglevel;
89 console_unblank();
90 oops_in_progress = 0;
92 * OK, the message is on the console. Now we call printk()
93 * without oops_in_progress set so that printk will give klogd
94 * a poke. Hold onto your hats...
96 console_loglevel = 15;
97 printk(" ");
98 console_loglevel = loglevel_save;
103 * Returns the address space associated with the fault.
104 * Returns 0 for kernel space and 1 for user space.
106 static inline int user_space_fault(unsigned long trans_exc_code)
109 * The lowest two bits of the translation exception
110 * identification indicate which paging table was used.
112 trans_exc_code &= 3;
113 if (trans_exc_code == 2)
114 /* Access via secondary space, set_fs setting decides */
115 return current->thread.mm_segment.ar4;
116 if (user_mode == HOME_SPACE_MODE)
117 /* User space if the access has been done via home space. */
118 return trans_exc_code == 3;
120 * If the user space is not the home space the kernel runs in home
121 * space. Access via secondary space has already been covered,
122 * access via primary space or access register is from user space
123 * and access via home space is from the kernel.
125 return trans_exc_code != 3;
128 static inline void report_user_fault(struct pt_regs *regs, long int_code,
129 int signr, unsigned long address)
131 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
132 return;
133 if (!unhandled_signal(current, signr))
134 return;
135 if (!printk_ratelimit())
136 return;
137 printk("User process fault: interruption code 0x%lX ", int_code);
138 print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
139 printk("\n");
140 printk("failing address: %lX\n", address);
141 show_regs(regs);
145 * Send SIGSEGV to task. This is an external routine
146 * to keep the stack usage of do_page_fault small.
148 static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
149 int si_code, unsigned long trans_exc_code)
151 struct siginfo si;
152 unsigned long address;
154 address = trans_exc_code & __FAIL_ADDR_MASK;
155 current->thread.prot_addr = address;
156 current->thread.trap_no = int_code;
157 report_user_fault(regs, int_code, SIGSEGV, address);
158 si.si_signo = SIGSEGV;
159 si.si_code = si_code;
160 si.si_addr = (void __user *) address;
161 force_sig_info(SIGSEGV, &si, current);
164 static noinline void do_no_context(struct pt_regs *regs, long int_code,
165 unsigned long trans_exc_code)
167 const struct exception_table_entry *fixup;
168 unsigned long address;
170 /* Are we prepared to handle this kernel fault? */
171 fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
172 if (fixup) {
173 regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
174 return;
178 * Oops. The kernel tried to access some bad page. We'll have to
179 * terminate things with extreme prejudice.
181 address = trans_exc_code & __FAIL_ADDR_MASK;
182 if (!user_space_fault(trans_exc_code))
183 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
184 " at virtual kernel address %p\n", (void *)address);
185 else
186 printk(KERN_ALERT "Unable to handle kernel paging request"
187 " at virtual user address %p\n", (void *)address);
189 die("Oops", regs, int_code);
190 do_exit(SIGKILL);
193 static noinline void do_low_address(struct pt_regs *regs, long int_code,
194 unsigned long trans_exc_code)
196 /* Low-address protection hit in kernel mode means
197 NULL pointer write access in kernel mode. */
198 if (regs->psw.mask & PSW_MASK_PSTATE) {
199 /* Low-address protection hit in user mode 'cannot happen'. */
200 die ("Low-address protection", regs, int_code);
201 do_exit(SIGKILL);
204 do_no_context(regs, int_code, trans_exc_code);
207 static noinline void do_sigbus(struct pt_regs *regs, long int_code,
208 unsigned long trans_exc_code)
210 struct task_struct *tsk = current;
211 unsigned long address;
212 struct siginfo si;
215 * Send a sigbus, regardless of whether we were in kernel
216 * or user mode.
218 address = trans_exc_code & __FAIL_ADDR_MASK;
219 tsk->thread.prot_addr = address;
220 tsk->thread.trap_no = int_code;
221 si.si_signo = SIGBUS;
222 si.si_errno = 0;
223 si.si_code = BUS_ADRERR;
224 si.si_addr = (void __user *) address;
225 force_sig_info(SIGBUS, &si, tsk);
228 static noinline void do_fault_error(struct pt_regs *regs, long int_code,
229 unsigned long trans_exc_code, int fault)
231 int si_code;
233 switch (fault) {
234 case VM_FAULT_BADACCESS:
235 case VM_FAULT_BADMAP:
236 /* Bad memory access. Check if it is kernel or user space. */
237 if (regs->psw.mask & PSW_MASK_PSTATE) {
238 /* User mode accesses just cause a SIGSEGV */
239 si_code = (fault == VM_FAULT_BADMAP) ?
240 SEGV_MAPERR : SEGV_ACCERR;
241 do_sigsegv(regs, int_code, si_code, trans_exc_code);
242 return;
244 case VM_FAULT_BADCONTEXT:
245 do_no_context(regs, int_code, trans_exc_code);
246 break;
247 default: /* fault & VM_FAULT_ERROR */
248 if (fault & VM_FAULT_OOM) {
249 if (!(regs->psw.mask & PSW_MASK_PSTATE))
250 do_no_context(regs, int_code, trans_exc_code);
251 else
252 pagefault_out_of_memory();
253 } else if (fault & VM_FAULT_SIGBUS) {
254 /* Kernel mode? Handle exceptions or die */
255 if (!(regs->psw.mask & PSW_MASK_PSTATE))
256 do_no_context(regs, int_code, trans_exc_code);
257 else
258 do_sigbus(regs, int_code, trans_exc_code);
259 } else
260 BUG();
261 break;
266 * This routine handles page faults. It determines the address,
267 * and the problem, and then passes it off to one of the appropriate
268 * routines.
270 * interruption code (int_code):
271 * 04 Protection -> Write-Protection (suprression)
272 * 10 Segment translation -> Not present (nullification)
273 * 11 Page translation -> Not present (nullification)
274 * 3b Region third trans. -> Not present (nullification)
276 static inline int do_exception(struct pt_regs *regs, int access,
277 unsigned long trans_exc_code)
279 struct task_struct *tsk;
280 struct mm_struct *mm;
281 struct vm_area_struct *vma;
282 unsigned long address;
283 unsigned int flags;
284 int fault;
286 if (notify_page_fault(regs))
287 return 0;
289 tsk = current;
290 mm = tsk->mm;
293 * Verify that the fault happened in user space, that
294 * we are not in an interrupt and that there is a
295 * user context.
297 fault = VM_FAULT_BADCONTEXT;
298 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
299 goto out;
301 address = trans_exc_code & __FAIL_ADDR_MASK;
302 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
303 flags = FAULT_FLAG_ALLOW_RETRY;
304 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
305 flags |= FAULT_FLAG_WRITE;
306 retry:
307 down_read(&mm->mmap_sem);
309 fault = VM_FAULT_BADMAP;
310 vma = find_vma(mm, address);
311 if (!vma)
312 goto out_up;
314 if (unlikely(vma->vm_start > address)) {
315 if (!(vma->vm_flags & VM_GROWSDOWN))
316 goto out_up;
317 if (expand_stack(vma, address))
318 goto out_up;
322 * Ok, we have a good vm_area for this memory access, so
323 * we can handle it..
325 fault = VM_FAULT_BADACCESS;
326 if (unlikely(!(vma->vm_flags & access)))
327 goto out_up;
329 if (is_vm_hugetlb_page(vma))
330 address &= HPAGE_MASK;
332 * If for any reason at all we couldn't handle the fault,
333 * make sure we exit gracefully rather than endlessly redo
334 * the fault.
336 fault = handle_mm_fault(mm, vma, address, flags);
337 if (unlikely(fault & VM_FAULT_ERROR))
338 goto out_up;
341 * Major/minor page fault accounting is only done on the
342 * initial attempt. If we go through a retry, it is extremely
343 * likely that the page will be found in page cache at that point.
345 if (flags & FAULT_FLAG_ALLOW_RETRY) {
346 if (fault & VM_FAULT_MAJOR) {
347 tsk->maj_flt++;
348 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
349 regs, address);
350 } else {
351 tsk->min_flt++;
352 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
353 regs, address);
355 if (fault & VM_FAULT_RETRY) {
356 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
357 * of starvation. */
358 flags &= ~FAULT_FLAG_ALLOW_RETRY;
359 goto retry;
363 * The instruction that caused the program check will
364 * be repeated. Don't signal single step via SIGTRAP.
366 clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
367 fault = 0;
368 out_up:
369 up_read(&mm->mmap_sem);
370 out:
371 return fault;
374 void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code,
375 unsigned long trans_exc_code)
377 int fault;
379 /* Protection exception is suppressing, decrement psw address. */
380 regs->psw.addr -= (pgm_int_code >> 16);
382 * Check for low-address protection. This needs to be treated
383 * as a special case because the translation exception code
384 * field is not guaranteed to contain valid data in this case.
386 if (unlikely(!(trans_exc_code & 4))) {
387 do_low_address(regs, pgm_int_code, trans_exc_code);
388 return;
390 fault = do_exception(regs, VM_WRITE, trans_exc_code);
391 if (unlikely(fault))
392 do_fault_error(regs, 4, trans_exc_code, fault);
395 void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code,
396 unsigned long trans_exc_code)
398 int access, fault;
400 access = VM_READ | VM_EXEC | VM_WRITE;
401 fault = do_exception(regs, access, trans_exc_code);
402 if (unlikely(fault))
403 do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault);
406 #ifdef CONFIG_64BIT
407 void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
408 unsigned long trans_exc_code)
410 struct mm_struct *mm = current->mm;
411 struct vm_area_struct *vma;
413 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
414 goto no_context;
416 down_read(&mm->mmap_sem);
417 vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
418 up_read(&mm->mmap_sem);
420 if (vma) {
421 update_mm(mm, current);
422 return;
425 /* User mode accesses just cause a SIGSEGV */
426 if (regs->psw.mask & PSW_MASK_PSTATE) {
427 do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code);
428 return;
431 no_context:
432 do_no_context(regs, pgm_int_code, trans_exc_code);
434 #endif
436 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
438 struct pt_regs regs;
439 int access, fault;
441 regs.psw.mask = psw_kernel_bits;
442 if (!irqs_disabled())
443 regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
444 regs.psw.addr = (unsigned long) __builtin_return_address(0);
445 regs.psw.addr |= PSW_ADDR_AMODE;
446 uaddr &= PAGE_MASK;
447 access = write ? VM_WRITE : VM_READ;
448 fault = do_exception(&regs, access, uaddr | 2);
449 if (unlikely(fault)) {
450 if (fault & VM_FAULT_OOM)
451 return -EFAULT;
452 else if (fault & VM_FAULT_SIGBUS)
453 do_sigbus(&regs, pgm_int_code, uaddr);
455 return fault ? -EFAULT : 0;
458 #ifdef CONFIG_PFAULT
460 * 'pfault' pseudo page faults routines.
462 static int pfault_disable;
464 static int __init nopfault(char *str)
466 pfault_disable = 1;
467 return 1;
470 __setup("nopfault", nopfault);
472 struct pfault_refbk {
473 u16 refdiagc;
474 u16 reffcode;
475 u16 refdwlen;
476 u16 refversn;
477 u64 refgaddr;
478 u64 refselmk;
479 u64 refcmpmk;
480 u64 reserved;
481 } __attribute__ ((packed, aligned(8)));
483 int pfault_init(void)
485 struct pfault_refbk refbk = {
486 .refdiagc = 0x258,
487 .reffcode = 0,
488 .refdwlen = 5,
489 .refversn = 2,
490 .refgaddr = __LC_CURRENT_PID,
491 .refselmk = 1ULL << 48,
492 .refcmpmk = 1ULL << 48,
493 .reserved = __PF_RES_FIELD };
494 int rc;
496 if (!MACHINE_IS_VM || pfault_disable)
497 return -1;
498 asm volatile(
499 " diag %1,%0,0x258\n"
500 "0: j 2f\n"
501 "1: la %0,8\n"
502 "2:\n"
503 EX_TABLE(0b,1b)
504 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
505 return rc;
508 void pfault_fini(void)
510 struct pfault_refbk refbk = {
511 .refdiagc = 0x258,
512 .reffcode = 1,
513 .refdwlen = 5,
514 .refversn = 2,
517 if (!MACHINE_IS_VM || pfault_disable)
518 return;
519 asm volatile(
520 " diag %0,0,0x258\n"
521 "0:\n"
522 EX_TABLE(0b,0b)
523 : : "a" (&refbk), "m" (refbk) : "cc");
526 static DEFINE_SPINLOCK(pfault_lock);
527 static LIST_HEAD(pfault_list);
529 static void pfault_interrupt(unsigned int ext_int_code,
530 unsigned int param32, unsigned long param64)
532 struct task_struct *tsk;
533 __u16 subcode;
534 pid_t pid;
537 * Get the external interruption subcode & pfault
538 * initial/completion signal bit. VM stores this
539 * in the 'cpu address' field associated with the
540 * external interrupt.
542 subcode = ext_int_code >> 16;
543 if ((subcode & 0xff00) != __SUBCODE_MASK)
544 return;
545 kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
546 if (subcode & 0x0080) {
547 /* Get the token (= pid of the affected task). */
548 pid = sizeof(void *) == 4 ? param32 : param64;
549 rcu_read_lock();
550 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
551 if (tsk)
552 get_task_struct(tsk);
553 rcu_read_unlock();
554 if (!tsk)
555 return;
556 } else {
557 tsk = current;
559 spin_lock(&pfault_lock);
560 if (subcode & 0x0080) {
561 /* signal bit is set -> a page has been swapped in by VM */
562 if (tsk->thread.pfault_wait == 1) {
563 /* Initial interrupt was faster than the completion
564 * interrupt. pfault_wait is valid. Set pfault_wait
565 * back to zero and wake up the process. This can
566 * safely be done because the task is still sleeping
567 * and can't produce new pfaults. */
568 tsk->thread.pfault_wait = 0;
569 list_del(&tsk->thread.list);
570 wake_up_process(tsk);
571 } else {
572 /* Completion interrupt was faster than initial
573 * interrupt. Set pfault_wait to -1 so the initial
574 * interrupt doesn't put the task to sleep. */
575 tsk->thread.pfault_wait = -1;
577 put_task_struct(tsk);
578 } else {
579 /* signal bit not set -> a real page is missing. */
580 if (tsk->thread.pfault_wait == -1) {
581 /* Completion interrupt was faster than the initial
582 * interrupt (pfault_wait == -1). Set pfault_wait
583 * back to zero and exit. */
584 tsk->thread.pfault_wait = 0;
585 } else {
586 /* Initial interrupt arrived before completion
587 * interrupt. Let the task sleep. */
588 tsk->thread.pfault_wait = 1;
589 list_add(&tsk->thread.list, &pfault_list);
590 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
591 set_tsk_need_resched(tsk);
594 spin_unlock(&pfault_lock);
597 static int __cpuinit pfault_cpu_notify(struct notifier_block *self,
598 unsigned long action, void *hcpu)
600 struct thread_struct *thread, *next;
601 struct task_struct *tsk;
603 switch (action) {
604 case CPU_DEAD:
605 case CPU_DEAD_FROZEN:
606 spin_lock_irq(&pfault_lock);
607 list_for_each_entry_safe(thread, next, &pfault_list, list) {
608 thread->pfault_wait = 0;
609 list_del(&thread->list);
610 tsk = container_of(thread, struct task_struct, thread);
611 wake_up_process(tsk);
613 spin_unlock_irq(&pfault_lock);
614 break;
615 default:
616 break;
618 return NOTIFY_OK;
621 static int __init pfault_irq_init(void)
623 int rc;
625 if (!MACHINE_IS_VM)
626 return 0;
627 rc = register_external_interrupt(0x2603, pfault_interrupt);
628 if (rc)
629 goto out_extint;
630 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
631 if (rc)
632 goto out_pfault;
633 service_subclass_irq_register();
634 hotcpu_notifier(pfault_cpu_notify, 0);
635 return 0;
637 out_pfault:
638 unregister_external_interrupt(0x2603, pfault_interrupt);
639 out_extint:
640 pfault_disable = 1;
641 return rc;
643 early_initcall(pfault_irq_init);
645 #endif /* CONFIG_PFAULT */