1 #ifndef _LINUX_SLUB_DEF_H
2 #define _LINUX_SLUB_DEF_H
5 * SLUB : A Slab allocator without object queues.
7 * (C) 2007 SGI, Christoph Lameter
9 #include <linux/types.h>
10 #include <linux/gfp.h>
11 #include <linux/workqueue.h>
12 #include <linux/kobject.h>
14 #include <linux/kmemleak.h>
17 ALLOC_FASTPATH
, /* Allocation from cpu slab */
18 ALLOC_SLOWPATH
, /* Allocation by getting a new cpu slab */
19 FREE_FASTPATH
, /* Free to cpu slub */
20 FREE_SLOWPATH
, /* Freeing not to cpu slab */
21 FREE_FROZEN
, /* Freeing to frozen slab */
22 FREE_ADD_PARTIAL
, /* Freeing moves slab to partial list */
23 FREE_REMOVE_PARTIAL
, /* Freeing removes last object */
24 ALLOC_FROM_PARTIAL
, /* Cpu slab acquired from partial list */
25 ALLOC_SLAB
, /* Cpu slab acquired from page allocator */
26 ALLOC_REFILL
, /* Refill cpu slab from slab freelist */
27 FREE_SLAB
, /* Slab freed to the page allocator */
28 CPUSLAB_FLUSH
, /* Abandoning of the cpu slab */
29 DEACTIVATE_FULL
, /* Cpu slab was full when deactivated */
30 DEACTIVATE_EMPTY
, /* Cpu slab was empty when deactivated */
31 DEACTIVATE_TO_HEAD
, /* Cpu slab was moved to the head of partials */
32 DEACTIVATE_TO_TAIL
, /* Cpu slab was moved to the tail of partials */
33 DEACTIVATE_REMOTE_FREES
,/* Slab contained remotely freed objects */
34 ORDER_FALLBACK
, /* Number of times fallback was necessary */
37 struct kmem_cache_cpu
{
38 void **freelist
; /* Pointer to first free per cpu object */
39 struct page
*page
; /* The slab from which we are allocating */
40 int node
; /* The node of the page (or -1 for debug) */
41 #ifdef CONFIG_SLUB_STATS
42 unsigned stat
[NR_SLUB_STAT_ITEMS
];
46 struct kmem_cache_node
{
47 spinlock_t list_lock
; /* Protect partial list and nr_partial */
48 unsigned long nr_partial
;
49 struct list_head partial
;
50 #ifdef CONFIG_SLUB_DEBUG
51 atomic_long_t nr_slabs
;
52 atomic_long_t total_objects
;
53 struct list_head full
;
58 * Word size structure that can be atomically updated or read and that
59 * contains both the order and the number of objects that a slab of the
60 * given order would contain.
62 struct kmem_cache_order_objects
{
67 * Slab cache management.
70 struct kmem_cache_cpu __percpu
*cpu_slab
;
71 /* Used for retriving partial slabs etc */
73 int size
; /* The size of an object including meta data */
74 int objsize
; /* The size of an object without meta data */
75 int offset
; /* Free pointer offset. */
76 struct kmem_cache_order_objects oo
;
78 /* Allocation and freeing of slabs */
79 struct kmem_cache_order_objects max
;
80 struct kmem_cache_order_objects min
;
81 gfp_t allocflags
; /* gfp flags to use on each alloc */
82 int refcount
; /* Refcount for slab cache destroy */
84 int inuse
; /* Offset to metadata */
85 int align
; /* Alignment */
86 unsigned long min_partial
;
87 const char *name
; /* Name (only for display!) */
88 struct list_head list
; /* List of slab caches */
90 struct kobject kobj
; /* For sysfs */
95 * Defragmentation by allocating from a remote node.
97 int remote_node_defrag_ratio
;
99 struct kmem_cache_node
*node
[MAX_NUMNODES
];
105 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
106 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
108 #define KMALLOC_MIN_SIZE 8
111 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
113 #ifdef ARCH_DMA_MINALIGN
114 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
116 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
119 #ifndef ARCH_SLAB_MINALIGN
120 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
124 * Maximum kmalloc object size handled by SLUB. Larger object allocations
125 * are passed through to the page allocator. The page allocator "fastpath"
126 * is relatively slow so we need this value sufficiently high so that
127 * performance critical objects are allocated through the SLUB fastpath.
129 * This should be dropped to PAGE_SIZE / 2 once the page allocator
130 * "fastpath" becomes competitive with the slab allocator fastpaths.
132 #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
134 #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
136 #ifdef CONFIG_ZONE_DMA
137 #define SLUB_DMA __GFP_DMA
139 /* Disable DMA functionality */
140 #define SLUB_DMA (__force gfp_t)0
144 * We keep the general caches in an array of slab caches that are used for
145 * 2^x bytes of allocations.
147 extern struct kmem_cache
*kmalloc_caches
[SLUB_PAGE_SHIFT
];
150 * Sorry that the following has to be that ugly but some versions of GCC
151 * have trouble with constant propagation and loops.
153 static __always_inline
int kmalloc_index(size_t size
)
158 if (size
<= KMALLOC_MIN_SIZE
)
159 return KMALLOC_SHIFT_LOW
;
161 if (KMALLOC_MIN_SIZE
<= 32 && size
> 64 && size
<= 96)
163 if (KMALLOC_MIN_SIZE
<= 64 && size
> 128 && size
<= 192)
165 if (size
<= 8) return 3;
166 if (size
<= 16) return 4;
167 if (size
<= 32) return 5;
168 if (size
<= 64) return 6;
169 if (size
<= 128) return 7;
170 if (size
<= 256) return 8;
171 if (size
<= 512) return 9;
172 if (size
<= 1024) return 10;
173 if (size
<= 2 * 1024) return 11;
174 if (size
<= 4 * 1024) return 12;
176 * The following is only needed to support architectures with a larger page
179 if (size
<= 8 * 1024) return 13;
180 if (size
<= 16 * 1024) return 14;
181 if (size
<= 32 * 1024) return 15;
182 if (size
<= 64 * 1024) return 16;
183 if (size
<= 128 * 1024) return 17;
184 if (size
<= 256 * 1024) return 18;
185 if (size
<= 512 * 1024) return 19;
186 if (size
<= 1024 * 1024) return 20;
187 if (size
<= 2 * 1024 * 1024) return 21;
191 * What we really wanted to do and cannot do because of compiler issues is:
193 * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
194 * if (size <= (1 << i))
200 * Find the slab cache for a given combination of allocation flags and size.
202 * This ought to end up with a global pointer to the right cache
205 static __always_inline
struct kmem_cache
*kmalloc_slab(size_t size
)
207 int index
= kmalloc_index(size
);
212 return kmalloc_caches
[index
];
215 void *kmem_cache_alloc(struct kmem_cache
*, gfp_t
);
216 void *__kmalloc(size_t size
, gfp_t flags
);
218 static __always_inline
void *
219 kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
221 void *ret
= (void *) __get_free_pages(flags
| __GFP_COMP
, order
);
222 kmemleak_alloc(ret
, size
, 1, flags
);
226 #ifdef CONFIG_TRACING
228 kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
);
229 extern void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
);
231 static __always_inline
void *
232 kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
234 return kmem_cache_alloc(s
, gfpflags
);
237 static __always_inline
void *
238 kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
240 return kmalloc_order(size
, flags
, order
);
244 static __always_inline
void *kmalloc_large(size_t size
, gfp_t flags
)
246 unsigned int order
= get_order(size
);
247 return kmalloc_order_trace(size
, flags
, order
);
250 static __always_inline
void *kmalloc(size_t size
, gfp_t flags
)
252 if (__builtin_constant_p(size
)) {
253 if (size
> SLUB_MAX_SIZE
)
254 return kmalloc_large(size
, flags
);
256 if (!(flags
& SLUB_DMA
)) {
257 struct kmem_cache
*s
= kmalloc_slab(size
);
260 return ZERO_SIZE_PTR
;
262 return kmem_cache_alloc_trace(s
, flags
, size
);
265 return __kmalloc(size
, flags
);
269 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
);
270 void *kmem_cache_alloc_node(struct kmem_cache
*, gfp_t flags
, int node
);
272 #ifdef CONFIG_TRACING
273 extern void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
275 int node
, size_t size
);
277 static __always_inline
void *
278 kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
280 int node
, size_t size
)
282 return kmem_cache_alloc_node(s
, gfpflags
, node
);
286 static __always_inline
void *kmalloc_node(size_t size
, gfp_t flags
, int node
)
288 if (__builtin_constant_p(size
) &&
289 size
<= SLUB_MAX_SIZE
&& !(flags
& SLUB_DMA
)) {
290 struct kmem_cache
*s
= kmalloc_slab(size
);
293 return ZERO_SIZE_PTR
;
295 return kmem_cache_alloc_node_trace(s
, flags
, node
, size
);
297 return __kmalloc_node(size
, flags
, node
);
301 #endif /* _LINUX_SLUB_DEF_H */