4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static struct kmem_cache
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat
= {
70 static void __d_free(struct dentry
*dentry
)
72 WARN_ON(!list_empty(&dentry
->d_alias
));
73 if (dname_external(dentry
))
74 kfree(dentry
->d_name
.name
);
75 kmem_cache_free(dentry_cache
, dentry
);
78 static void d_callback(struct rcu_head
*head
)
80 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
88 static void d_free(struct dentry
*dentry
)
90 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
91 dentry
->d_op
->d_release(dentry
);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry
->d_hash
))
96 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
103 static void dentry_iput(struct dentry
* dentry
)
104 __releases(dentry
->d_lock
)
105 __releases(dcache_lock
)
107 struct inode
*inode
= dentry
->d_inode
;
109 dentry
->d_inode
= NULL
;
110 list_del_init(&dentry
->d_alias
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
114 fsnotify_inoderemove(inode
);
115 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
116 dentry
->d_op
->d_iput(dentry
, inode
);
120 spin_unlock(&dentry
->d_lock
);
121 spin_unlock(&dcache_lock
);
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
128 static void dentry_lru_add(struct dentry
*dentry
)
130 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
131 dentry
->d_sb
->s_nr_dentry_unused
++;
132 dentry_stat
.nr_unused
++;
135 static void dentry_lru_add_tail(struct dentry
*dentry
)
137 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
138 dentry
->d_sb
->s_nr_dentry_unused
++;
139 dentry_stat
.nr_unused
++;
142 static void dentry_lru_del(struct dentry
*dentry
)
144 if (!list_empty(&dentry
->d_lru
)) {
145 list_del(&dentry
->d_lru
);
146 dentry
->d_sb
->s_nr_dentry_unused
--;
147 dentry_stat
.nr_unused
--;
151 static void dentry_lru_del_init(struct dentry
*dentry
)
153 if (likely(!list_empty(&dentry
->d_lru
))) {
154 list_del_init(&dentry
->d_lru
);
155 dentry
->d_sb
->s_nr_dentry_unused
--;
156 dentry_stat
.nr_unused
--;
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
164 * The dentry must already be unhashed and removed from the LRU.
166 * If this is the root of the dentry tree, return NULL.
168 static struct dentry
*d_kill(struct dentry
*dentry
)
169 __releases(dentry
->d_lock
)
170 __releases(dcache_lock
)
172 struct dentry
*parent
;
174 list_del(&dentry
->d_u
.d_child
);
175 dentry_stat
.nr_dentry
--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
181 parent
= dentry
->d_parent
;
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
204 * dput - release a dentry
205 * @dentry: dentry to release
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
212 * no dcache lock, please.
215 void dput(struct dentry
*dentry
)
221 if (atomic_read(&dentry
->d_count
) == 1)
223 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
226 spin_lock(&dentry
->d_lock
);
227 if (atomic_read(&dentry
->d_count
)) {
228 spin_unlock(&dentry
->d_lock
);
229 spin_unlock(&dcache_lock
);
234 * AV: ->d_delete() is _NOT_ allowed to block now.
236 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
237 if (dentry
->d_op
->d_delete(dentry
))
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry
))
243 if (list_empty(&dentry
->d_lru
)) {
244 dentry
->d_flags
|= DCACHE_REFERENCED
;
245 dentry_lru_add(dentry
);
247 spin_unlock(&dentry
->d_lock
);
248 spin_unlock(&dcache_lock
);
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry
);
256 dentry
= d_kill(dentry
);
263 * d_invalidate - invalidate a dentry
264 * @dentry: dentry to invalidate
266 * Try to invalidate the dentry if it turns out to be
267 * possible. If there are other dentries that can be
268 * reached through this one we can't delete it and we
269 * return -EBUSY. On success we return 0.
274 int d_invalidate(struct dentry
* dentry
)
277 * If it's already been dropped, return OK.
279 spin_lock(&dcache_lock
);
280 if (d_unhashed(dentry
)) {
281 spin_unlock(&dcache_lock
);
285 * Check whether to do a partial shrink_dcache
286 * to get rid of unused child entries.
288 if (!list_empty(&dentry
->d_subdirs
)) {
289 spin_unlock(&dcache_lock
);
290 shrink_dcache_parent(dentry
);
291 spin_lock(&dcache_lock
);
295 * Somebody else still using it?
297 * If it's a directory, we can't drop it
298 * for fear of somebody re-populating it
299 * with children (even though dropping it
300 * would make it unreachable from the root,
301 * we might still populate it if it was a
302 * working directory or similar).
304 spin_lock(&dentry
->d_lock
);
305 if (atomic_read(&dentry
->d_count
) > 1) {
306 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
307 spin_unlock(&dentry
->d_lock
);
308 spin_unlock(&dcache_lock
);
314 spin_unlock(&dentry
->d_lock
);
315 spin_unlock(&dcache_lock
);
318 EXPORT_SYMBOL(d_invalidate
);
320 /* This should be called _only_ with dcache_lock held */
322 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
324 atomic_inc(&dentry
->d_count
);
325 dentry_lru_del_init(dentry
);
329 struct dentry
* dget_locked(struct dentry
*dentry
)
331 return __dget_locked(dentry
);
333 EXPORT_SYMBOL(dget_locked
);
336 * d_find_alias - grab a hashed alias of inode
337 * @inode: inode in question
338 * @want_discon: flag, used by d_splice_alias, to request
339 * that only a DISCONNECTED alias be returned.
341 * If inode has a hashed alias, or is a directory and has any alias,
342 * acquire the reference to alias and return it. Otherwise return NULL.
343 * Notice that if inode is a directory there can be only one alias and
344 * it can be unhashed only if it has no children, or if it is the root
347 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348 * any other hashed alias over that one unless @want_discon is set,
349 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
352 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
354 struct list_head
*head
, *next
, *tmp
;
355 struct dentry
*alias
, *discon_alias
=NULL
;
357 head
= &inode
->i_dentry
;
358 next
= inode
->i_dentry
.next
;
359 while (next
!= head
) {
363 alias
= list_entry(tmp
, struct dentry
, d_alias
);
364 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
365 if (IS_ROOT(alias
) &&
366 (alias
->d_flags
& DCACHE_DISCONNECTED
))
367 discon_alias
= alias
;
368 else if (!want_discon
) {
369 __dget_locked(alias
);
375 __dget_locked(discon_alias
);
379 struct dentry
* d_find_alias(struct inode
*inode
)
381 struct dentry
*de
= NULL
;
383 if (!list_empty(&inode
->i_dentry
)) {
384 spin_lock(&dcache_lock
);
385 de
= __d_find_alias(inode
, 0);
386 spin_unlock(&dcache_lock
);
390 EXPORT_SYMBOL(d_find_alias
);
393 * Try to kill dentries associated with this inode.
394 * WARNING: you must own a reference to inode.
396 void d_prune_aliases(struct inode
*inode
)
398 struct dentry
*dentry
;
400 spin_lock(&dcache_lock
);
401 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
402 spin_lock(&dentry
->d_lock
);
403 if (!atomic_read(&dentry
->d_count
)) {
404 __dget_locked(dentry
);
406 spin_unlock(&dentry
->d_lock
);
407 spin_unlock(&dcache_lock
);
411 spin_unlock(&dentry
->d_lock
);
413 spin_unlock(&dcache_lock
);
415 EXPORT_SYMBOL(d_prune_aliases
);
418 * Throw away a dentry - free the inode, dput the parent. This requires that
419 * the LRU list has already been removed.
421 * Try to prune ancestors as well. This is necessary to prevent
422 * quadratic behavior of shrink_dcache_parent(), but is also expected
423 * to be beneficial in reducing dentry cache fragmentation.
425 static void prune_one_dentry(struct dentry
* dentry
)
426 __releases(dentry
->d_lock
)
427 __releases(dcache_lock
)
428 __acquires(dcache_lock
)
431 dentry
= d_kill(dentry
);
434 * Prune ancestors. Locking is simpler than in dput(),
435 * because dcache_lock needs to be taken anyway.
437 spin_lock(&dcache_lock
);
439 if (!atomic_dec_and_lock(&dentry
->d_count
, &dentry
->d_lock
))
442 if (dentry
->d_op
&& dentry
->d_op
->d_delete
)
443 dentry
->d_op
->d_delete(dentry
);
444 dentry_lru_del_init(dentry
);
446 dentry
= d_kill(dentry
);
447 spin_lock(&dcache_lock
);
452 * Shrink the dentry LRU on a given superblock.
453 * @sb : superblock to shrink dentry LRU.
454 * @count: If count is NULL, we prune all dentries on superblock.
455 * @flags: If flags is non-zero, we need to do special processing based on
456 * which flags are set. This means we don't need to maintain multiple
457 * similar copies of this loop.
459 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
461 LIST_HEAD(referenced
);
463 struct dentry
*dentry
;
467 BUG_ON((flags
& DCACHE_REFERENCED
) && count
== NULL
);
468 spin_lock(&dcache_lock
);
470 /* called from prune_dcache() and shrink_dcache_parent() */
474 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
476 while (!list_empty(&sb
->s_dentry_lru
)) {
477 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
478 struct dentry
, d_lru
);
479 BUG_ON(dentry
->d_sb
!= sb
);
481 spin_lock(&dentry
->d_lock
);
483 * If we are honouring the DCACHE_REFERENCED flag and
484 * the dentry has this flag set, don't free it. Clear
485 * the flag and put it back on the LRU.
487 if ((flags
& DCACHE_REFERENCED
)
488 && (dentry
->d_flags
& DCACHE_REFERENCED
)) {
489 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
490 list_move(&dentry
->d_lru
, &referenced
);
491 spin_unlock(&dentry
->d_lock
);
493 list_move_tail(&dentry
->d_lru
, &tmp
);
494 spin_unlock(&dentry
->d_lock
);
499 cond_resched_lock(&dcache_lock
);
502 while (!list_empty(&tmp
)) {
503 dentry
= list_entry(tmp
.prev
, struct dentry
, d_lru
);
504 dentry_lru_del_init(dentry
);
505 spin_lock(&dentry
->d_lock
);
507 * We found an inuse dentry which was not removed from
508 * the LRU because of laziness during lookup. Do not free
509 * it - just keep it off the LRU list.
511 if (atomic_read(&dentry
->d_count
)) {
512 spin_unlock(&dentry
->d_lock
);
515 prune_one_dentry(dentry
);
516 /* dentry->d_lock was dropped in prune_one_dentry() */
517 cond_resched_lock(&dcache_lock
);
519 if (count
== NULL
&& !list_empty(&sb
->s_dentry_lru
))
523 if (!list_empty(&referenced
))
524 list_splice(&referenced
, &sb
->s_dentry_lru
);
525 spin_unlock(&dcache_lock
);
529 * prune_dcache - shrink the dcache
530 * @count: number of entries to try to free
532 * Shrink the dcache. This is done when we need more memory, or simply when we
533 * need to unmount something (at which point we need to unuse all dentries).
535 * This function may fail to free any resources if all the dentries are in use.
537 static void prune_dcache(int count
)
539 struct super_block
*sb
, *p
= NULL
;
541 int unused
= dentry_stat
.nr_unused
;
545 if (unused
== 0 || count
== 0)
547 spin_lock(&dcache_lock
);
551 prune_ratio
= unused
/ count
;
553 list_for_each_entry(sb
, &super_blocks
, s_list
) {
554 if (list_empty(&sb
->s_instances
))
556 if (sb
->s_nr_dentry_unused
== 0)
559 /* Now, we reclaim unused dentrins with fairness.
560 * We reclaim them same percentage from each superblock.
561 * We calculate number of dentries to scan on this sb
562 * as follows, but the implementation is arranged to avoid
564 * number of dentries to scan on this sb =
565 * count * (number of dentries on this sb /
566 * number of dentries in the machine)
568 spin_unlock(&sb_lock
);
569 if (prune_ratio
!= 1)
570 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
572 w_count
= sb
->s_nr_dentry_unused
;
575 * We need to be sure this filesystem isn't being unmounted,
576 * otherwise we could race with generic_shutdown_super(), and
577 * end up holding a reference to an inode while the filesystem
578 * is unmounted. So we try to get s_umount, and make sure
581 if (down_read_trylock(&sb
->s_umount
)) {
582 if ((sb
->s_root
!= NULL
) &&
583 (!list_empty(&sb
->s_dentry_lru
))) {
584 spin_unlock(&dcache_lock
);
585 __shrink_dcache_sb(sb
, &w_count
,
588 spin_lock(&dcache_lock
);
590 up_read(&sb
->s_umount
);
597 /* more work left to do? */
603 spin_unlock(&sb_lock
);
604 spin_unlock(&dcache_lock
);
608 * shrink_dcache_sb - shrink dcache for a superblock
611 * Shrink the dcache for the specified super block. This
612 * is used to free the dcache before unmounting a file
615 void shrink_dcache_sb(struct super_block
* sb
)
617 __shrink_dcache_sb(sb
, NULL
, 0);
619 EXPORT_SYMBOL(shrink_dcache_sb
);
622 * destroy a single subtree of dentries for unmount
623 * - see the comments on shrink_dcache_for_umount() for a description of the
626 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
628 struct dentry
*parent
;
629 unsigned detached
= 0;
631 BUG_ON(!IS_ROOT(dentry
));
633 /* detach this root from the system */
634 spin_lock(&dcache_lock
);
635 dentry_lru_del_init(dentry
);
637 spin_unlock(&dcache_lock
);
640 /* descend to the first leaf in the current subtree */
641 while (!list_empty(&dentry
->d_subdirs
)) {
644 /* this is a branch with children - detach all of them
645 * from the system in one go */
646 spin_lock(&dcache_lock
);
647 list_for_each_entry(loop
, &dentry
->d_subdirs
,
649 dentry_lru_del_init(loop
);
651 cond_resched_lock(&dcache_lock
);
653 spin_unlock(&dcache_lock
);
655 /* move to the first child */
656 dentry
= list_entry(dentry
->d_subdirs
.next
,
657 struct dentry
, d_u
.d_child
);
660 /* consume the dentries from this leaf up through its parents
661 * until we find one with children or run out altogether */
665 if (atomic_read(&dentry
->d_count
) != 0) {
667 "BUG: Dentry %p{i=%lx,n=%s}"
669 " [unmount of %s %s]\n",
672 dentry
->d_inode
->i_ino
: 0UL,
674 atomic_read(&dentry
->d_count
),
675 dentry
->d_sb
->s_type
->name
,
683 parent
= dentry
->d_parent
;
684 atomic_dec(&parent
->d_count
);
687 list_del(&dentry
->d_u
.d_child
);
690 inode
= dentry
->d_inode
;
692 dentry
->d_inode
= NULL
;
693 list_del_init(&dentry
->d_alias
);
694 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
695 dentry
->d_op
->d_iput(dentry
, inode
);
702 /* finished when we fall off the top of the tree,
703 * otherwise we ascend to the parent and move to the
704 * next sibling if there is one */
710 } while (list_empty(&dentry
->d_subdirs
));
712 dentry
= list_entry(dentry
->d_subdirs
.next
,
713 struct dentry
, d_u
.d_child
);
716 /* several dentries were freed, need to correct nr_dentry */
717 spin_lock(&dcache_lock
);
718 dentry_stat
.nr_dentry
-= detached
;
719 spin_unlock(&dcache_lock
);
723 * destroy the dentries attached to a superblock on unmounting
724 * - we don't need to use dentry->d_lock, and only need dcache_lock when
725 * removing the dentry from the system lists and hashes because:
726 * - the superblock is detached from all mountings and open files, so the
727 * dentry trees will not be rearranged by the VFS
728 * - s_umount is write-locked, so the memory pressure shrinker will ignore
729 * any dentries belonging to this superblock that it comes across
730 * - the filesystem itself is no longer permitted to rearrange the dentries
733 void shrink_dcache_for_umount(struct super_block
*sb
)
735 struct dentry
*dentry
;
737 if (down_read_trylock(&sb
->s_umount
))
742 atomic_dec(&dentry
->d_count
);
743 shrink_dcache_for_umount_subtree(dentry
);
745 while (!hlist_empty(&sb
->s_anon
)) {
746 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
747 shrink_dcache_for_umount_subtree(dentry
);
752 * Search for at least 1 mount point in the dentry's subdirs.
753 * We descend to the next level whenever the d_subdirs
754 * list is non-empty and continue searching.
758 * have_submounts - check for mounts over a dentry
759 * @parent: dentry to check.
761 * Return true if the parent or its subdirectories contain
765 int have_submounts(struct dentry
*parent
)
767 struct dentry
*this_parent
= parent
;
768 struct list_head
*next
;
770 spin_lock(&dcache_lock
);
771 if (d_mountpoint(parent
))
774 next
= this_parent
->d_subdirs
.next
;
776 while (next
!= &this_parent
->d_subdirs
) {
777 struct list_head
*tmp
= next
;
778 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
780 /* Have we found a mount point ? */
781 if (d_mountpoint(dentry
))
783 if (!list_empty(&dentry
->d_subdirs
)) {
784 this_parent
= dentry
;
789 * All done at this level ... ascend and resume the search.
791 if (this_parent
!= parent
) {
792 next
= this_parent
->d_u
.d_child
.next
;
793 this_parent
= this_parent
->d_parent
;
796 spin_unlock(&dcache_lock
);
797 return 0; /* No mount points found in tree */
799 spin_unlock(&dcache_lock
);
802 EXPORT_SYMBOL(have_submounts
);
805 * Search the dentry child list for the specified parent,
806 * and move any unused dentries to the end of the unused
807 * list for prune_dcache(). We descend to the next level
808 * whenever the d_subdirs list is non-empty and continue
811 * It returns zero iff there are no unused children,
812 * otherwise it returns the number of children moved to
813 * the end of the unused list. This may not be the total
814 * number of unused children, because select_parent can
815 * drop the lock and return early due to latency
818 static int select_parent(struct dentry
* parent
)
820 struct dentry
*this_parent
= parent
;
821 struct list_head
*next
;
824 spin_lock(&dcache_lock
);
826 next
= this_parent
->d_subdirs
.next
;
828 while (next
!= &this_parent
->d_subdirs
) {
829 struct list_head
*tmp
= next
;
830 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
833 dentry_lru_del_init(dentry
);
835 * move only zero ref count dentries to the end
836 * of the unused list for prune_dcache
838 if (!atomic_read(&dentry
->d_count
)) {
839 dentry_lru_add_tail(dentry
);
844 * We can return to the caller if we have found some (this
845 * ensures forward progress). We'll be coming back to find
848 if (found
&& need_resched())
852 * Descend a level if the d_subdirs list is non-empty.
854 if (!list_empty(&dentry
->d_subdirs
)) {
855 this_parent
= dentry
;
860 * All done at this level ... ascend and resume the search.
862 if (this_parent
!= parent
) {
863 next
= this_parent
->d_u
.d_child
.next
;
864 this_parent
= this_parent
->d_parent
;
868 spin_unlock(&dcache_lock
);
873 * shrink_dcache_parent - prune dcache
874 * @parent: parent of entries to prune
876 * Prune the dcache to remove unused children of the parent dentry.
879 void shrink_dcache_parent(struct dentry
* parent
)
881 struct super_block
*sb
= parent
->d_sb
;
884 while ((found
= select_parent(parent
)) != 0)
885 __shrink_dcache_sb(sb
, &found
, 0);
887 EXPORT_SYMBOL(shrink_dcache_parent
);
890 * Scan `nr' dentries and return the number which remain.
892 * We need to avoid reentering the filesystem if the caller is performing a
893 * GFP_NOFS allocation attempt. One example deadlock is:
895 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
896 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
897 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
899 * In this case we return -1 to tell the caller that we baled.
901 static int shrink_dcache_memory(struct shrinker
*shrink
, int nr
, gfp_t gfp_mask
)
904 if (!(gfp_mask
& __GFP_FS
))
908 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
911 static struct shrinker dcache_shrinker
= {
912 .shrink
= shrink_dcache_memory
,
913 .seeks
= DEFAULT_SEEKS
,
917 * d_alloc - allocate a dcache entry
918 * @parent: parent of entry to allocate
919 * @name: qstr of the name
921 * Allocates a dentry. It returns %NULL if there is insufficient memory
922 * available. On a success the dentry is returned. The name passed in is
923 * copied and the copy passed in may be reused after this call.
926 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
928 struct dentry
*dentry
;
931 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
935 if (name
->len
> DNAME_INLINE_LEN
-1) {
936 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
938 kmem_cache_free(dentry_cache
, dentry
);
942 dname
= dentry
->d_iname
;
944 dentry
->d_name
.name
= dname
;
946 dentry
->d_name
.len
= name
->len
;
947 dentry
->d_name
.hash
= name
->hash
;
948 memcpy(dname
, name
->name
, name
->len
);
949 dname
[name
->len
] = 0;
951 atomic_set(&dentry
->d_count
, 1);
952 dentry
->d_flags
= DCACHE_UNHASHED
;
953 spin_lock_init(&dentry
->d_lock
);
954 dentry
->d_inode
= NULL
;
955 dentry
->d_parent
= NULL
;
958 dentry
->d_fsdata
= NULL
;
959 dentry
->d_mounted
= 0;
960 INIT_HLIST_NODE(&dentry
->d_hash
);
961 INIT_LIST_HEAD(&dentry
->d_lru
);
962 INIT_LIST_HEAD(&dentry
->d_subdirs
);
963 INIT_LIST_HEAD(&dentry
->d_alias
);
966 dentry
->d_parent
= dget(parent
);
967 dentry
->d_sb
= parent
->d_sb
;
969 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
972 spin_lock(&dcache_lock
);
974 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
975 dentry_stat
.nr_dentry
++;
976 spin_unlock(&dcache_lock
);
980 EXPORT_SYMBOL(d_alloc
);
982 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
987 q
.len
= strlen(name
);
988 q
.hash
= full_name_hash(q
.name
, q
.len
);
989 return d_alloc(parent
, &q
);
991 EXPORT_SYMBOL(d_alloc_name
);
993 /* the caller must hold dcache_lock */
994 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
997 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
998 dentry
->d_inode
= inode
;
999 fsnotify_d_instantiate(dentry
, inode
);
1003 * d_instantiate - fill in inode information for a dentry
1004 * @entry: dentry to complete
1005 * @inode: inode to attach to this dentry
1007 * Fill in inode information in the entry.
1009 * This turns negative dentries into productive full members
1012 * NOTE! This assumes that the inode count has been incremented
1013 * (or otherwise set) by the caller to indicate that it is now
1014 * in use by the dcache.
1017 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1019 BUG_ON(!list_empty(&entry
->d_alias
));
1020 spin_lock(&dcache_lock
);
1021 __d_instantiate(entry
, inode
);
1022 spin_unlock(&dcache_lock
);
1023 security_d_instantiate(entry
, inode
);
1025 EXPORT_SYMBOL(d_instantiate
);
1028 * d_instantiate_unique - instantiate a non-aliased dentry
1029 * @entry: dentry to instantiate
1030 * @inode: inode to attach to this dentry
1032 * Fill in inode information in the entry. On success, it returns NULL.
1033 * If an unhashed alias of "entry" already exists, then we return the
1034 * aliased dentry instead and drop one reference to inode.
1036 * Note that in order to avoid conflicts with rename() etc, the caller
1037 * had better be holding the parent directory semaphore.
1039 * This also assumes that the inode count has been incremented
1040 * (or otherwise set) by the caller to indicate that it is now
1041 * in use by the dcache.
1043 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1044 struct inode
*inode
)
1046 struct dentry
*alias
;
1047 int len
= entry
->d_name
.len
;
1048 const char *name
= entry
->d_name
.name
;
1049 unsigned int hash
= entry
->d_name
.hash
;
1052 __d_instantiate(entry
, NULL
);
1056 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1057 struct qstr
*qstr
= &alias
->d_name
;
1059 if (qstr
->hash
!= hash
)
1061 if (alias
->d_parent
!= entry
->d_parent
)
1063 if (qstr
->len
!= len
)
1065 if (memcmp(qstr
->name
, name
, len
))
1071 __d_instantiate(entry
, inode
);
1075 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1077 struct dentry
*result
;
1079 BUG_ON(!list_empty(&entry
->d_alias
));
1081 spin_lock(&dcache_lock
);
1082 result
= __d_instantiate_unique(entry
, inode
);
1083 spin_unlock(&dcache_lock
);
1086 security_d_instantiate(entry
, inode
);
1090 BUG_ON(!d_unhashed(result
));
1095 EXPORT_SYMBOL(d_instantiate_unique
);
1098 * d_alloc_root - allocate root dentry
1099 * @root_inode: inode to allocate the root for
1101 * Allocate a root ("/") dentry for the inode given. The inode is
1102 * instantiated and returned. %NULL is returned if there is insufficient
1103 * memory or the inode passed is %NULL.
1106 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1108 struct dentry
*res
= NULL
;
1111 static const struct qstr name
= { .name
= "/", .len
= 1 };
1113 res
= d_alloc(NULL
, &name
);
1115 res
->d_sb
= root_inode
->i_sb
;
1116 res
->d_parent
= res
;
1117 d_instantiate(res
, root_inode
);
1122 EXPORT_SYMBOL(d_alloc_root
);
1124 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1127 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1128 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1129 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1133 * d_obtain_alias - find or allocate a dentry for a given inode
1134 * @inode: inode to allocate the dentry for
1136 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1137 * similar open by handle operations. The returned dentry may be anonymous,
1138 * or may have a full name (if the inode was already in the cache).
1140 * When called on a directory inode, we must ensure that the inode only ever
1141 * has one dentry. If a dentry is found, that is returned instead of
1142 * allocating a new one.
1144 * On successful return, the reference to the inode has been transferred
1145 * to the dentry. In case of an error the reference on the inode is released.
1146 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1147 * be passed in and will be the error will be propagate to the return value,
1148 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1150 struct dentry
*d_obtain_alias(struct inode
*inode
)
1152 static const struct qstr anonstring
= { .name
= "" };
1157 return ERR_PTR(-ESTALE
);
1159 return ERR_CAST(inode
);
1161 res
= d_find_alias(inode
);
1165 tmp
= d_alloc(NULL
, &anonstring
);
1167 res
= ERR_PTR(-ENOMEM
);
1170 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1172 spin_lock(&dcache_lock
);
1173 res
= __d_find_alias(inode
, 0);
1175 spin_unlock(&dcache_lock
);
1180 /* attach a disconnected dentry */
1181 spin_lock(&tmp
->d_lock
);
1182 tmp
->d_sb
= inode
->i_sb
;
1183 tmp
->d_inode
= inode
;
1184 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1185 tmp
->d_flags
&= ~DCACHE_UNHASHED
;
1186 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1187 hlist_add_head(&tmp
->d_hash
, &inode
->i_sb
->s_anon
);
1188 spin_unlock(&tmp
->d_lock
);
1190 spin_unlock(&dcache_lock
);
1197 EXPORT_SYMBOL(d_obtain_alias
);
1200 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1201 * @inode: the inode which may have a disconnected dentry
1202 * @dentry: a negative dentry which we want to point to the inode.
1204 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1205 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1206 * and return it, else simply d_add the inode to the dentry and return NULL.
1208 * This is needed in the lookup routine of any filesystem that is exportable
1209 * (via knfsd) so that we can build dcache paths to directories effectively.
1211 * If a dentry was found and moved, then it is returned. Otherwise NULL
1212 * is returned. This matches the expected return value of ->lookup.
1215 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1217 struct dentry
*new = NULL
;
1219 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1220 spin_lock(&dcache_lock
);
1221 new = __d_find_alias(inode
, 1);
1223 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1224 spin_unlock(&dcache_lock
);
1225 security_d_instantiate(new, inode
);
1226 d_move(new, dentry
);
1229 /* already taking dcache_lock, so d_add() by hand */
1230 __d_instantiate(dentry
, inode
);
1231 spin_unlock(&dcache_lock
);
1232 security_d_instantiate(dentry
, inode
);
1236 d_add(dentry
, inode
);
1239 EXPORT_SYMBOL(d_splice_alias
);
1242 * d_add_ci - lookup or allocate new dentry with case-exact name
1243 * @inode: the inode case-insensitive lookup has found
1244 * @dentry: the negative dentry that was passed to the parent's lookup func
1245 * @name: the case-exact name to be associated with the returned dentry
1247 * This is to avoid filling the dcache with case-insensitive names to the
1248 * same inode, only the actual correct case is stored in the dcache for
1249 * case-insensitive filesystems.
1251 * For a case-insensitive lookup match and if the the case-exact dentry
1252 * already exists in in the dcache, use it and return it.
1254 * If no entry exists with the exact case name, allocate new dentry with
1255 * the exact case, and return the spliced entry.
1257 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1261 struct dentry
*found
;
1265 * First check if a dentry matching the name already exists,
1266 * if not go ahead and create it now.
1268 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1270 new = d_alloc(dentry
->d_parent
, name
);
1276 found
= d_splice_alias(inode
, new);
1285 * If a matching dentry exists, and it's not negative use it.
1287 * Decrement the reference count to balance the iget() done
1290 if (found
->d_inode
) {
1291 if (unlikely(found
->d_inode
!= inode
)) {
1292 /* This can't happen because bad inodes are unhashed. */
1293 BUG_ON(!is_bad_inode(inode
));
1294 BUG_ON(!is_bad_inode(found
->d_inode
));
1301 * Negative dentry: instantiate it unless the inode is a directory and
1302 * already has a dentry.
1304 spin_lock(&dcache_lock
);
1305 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1306 __d_instantiate(found
, inode
);
1307 spin_unlock(&dcache_lock
);
1308 security_d_instantiate(found
, inode
);
1313 * In case a directory already has a (disconnected) entry grab a
1314 * reference to it, move it in place and use it.
1316 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1318 spin_unlock(&dcache_lock
);
1319 security_d_instantiate(found
, inode
);
1327 return ERR_PTR(error
);
1329 EXPORT_SYMBOL(d_add_ci
);
1332 * d_lookup - search for a dentry
1333 * @parent: parent dentry
1334 * @name: qstr of name we wish to find
1336 * Searches the children of the parent dentry for the name in question. If
1337 * the dentry is found its reference count is incremented and the dentry
1338 * is returned. The caller must use dput to free the entry when it has
1339 * finished using it. %NULL is returned on failure.
1341 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1342 * Memory barriers are used while updating and doing lockless traversal.
1343 * To avoid races with d_move while rename is happening, d_lock is used.
1345 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1346 * and name pointer in one structure pointed by d_qstr.
1348 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1349 * lookup is going on.
1351 * The dentry unused LRU is not updated even if lookup finds the required dentry
1352 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1353 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1356 * d_lookup() is protected against the concurrent renames in some unrelated
1357 * directory using the seqlockt_t rename_lock.
1360 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1362 struct dentry
* dentry
= NULL
;
1366 seq
= read_seqbegin(&rename_lock
);
1367 dentry
= __d_lookup(parent
, name
);
1370 } while (read_seqretry(&rename_lock
, seq
));
1373 EXPORT_SYMBOL(d_lookup
);
1375 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1377 unsigned int len
= name
->len
;
1378 unsigned int hash
= name
->hash
;
1379 const unsigned char *str
= name
->name
;
1380 struct hlist_head
*head
= d_hash(parent
,hash
);
1381 struct dentry
*found
= NULL
;
1382 struct hlist_node
*node
;
1383 struct dentry
*dentry
;
1387 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1390 if (dentry
->d_name
.hash
!= hash
)
1392 if (dentry
->d_parent
!= parent
)
1395 spin_lock(&dentry
->d_lock
);
1398 * Recheck the dentry after taking the lock - d_move may have
1399 * changed things. Don't bother checking the hash because we're
1400 * about to compare the whole name anyway.
1402 if (dentry
->d_parent
!= parent
)
1405 /* non-existing due to RCU? */
1406 if (d_unhashed(dentry
))
1410 * It is safe to compare names since d_move() cannot
1411 * change the qstr (protected by d_lock).
1413 qstr
= &dentry
->d_name
;
1414 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1415 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1418 if (qstr
->len
!= len
)
1420 if (memcmp(qstr
->name
, str
, len
))
1424 atomic_inc(&dentry
->d_count
);
1426 spin_unlock(&dentry
->d_lock
);
1429 spin_unlock(&dentry
->d_lock
);
1437 * d_hash_and_lookup - hash the qstr then search for a dentry
1438 * @dir: Directory to search in
1439 * @name: qstr of name we wish to find
1441 * On hash failure or on lookup failure NULL is returned.
1443 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1445 struct dentry
*dentry
= NULL
;
1448 * Check for a fs-specific hash function. Note that we must
1449 * calculate the standard hash first, as the d_op->d_hash()
1450 * routine may choose to leave the hash value unchanged.
1452 name
->hash
= full_name_hash(name
->name
, name
->len
);
1453 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1454 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1457 dentry
= d_lookup(dir
, name
);
1463 * d_validate - verify dentry provided from insecure source
1464 * @dentry: The dentry alleged to be valid child of @dparent
1465 * @dparent: The parent dentry (known to be valid)
1467 * An insecure source has sent us a dentry, here we verify it and dget() it.
1468 * This is used by ncpfs in its readdir implementation.
1469 * Zero is returned in the dentry is invalid.
1472 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1474 struct hlist_head
*base
;
1475 struct hlist_node
*lhp
;
1477 /* Check whether the ptr might be valid at all.. */
1478 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1481 if (dentry
->d_parent
!= dparent
)
1484 spin_lock(&dcache_lock
);
1485 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1486 hlist_for_each(lhp
,base
) {
1487 /* hlist_for_each_entry_rcu() not required for d_hash list
1488 * as it is parsed under dcache_lock
1490 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1491 __dget_locked(dentry
);
1492 spin_unlock(&dcache_lock
);
1496 spin_unlock(&dcache_lock
);
1500 EXPORT_SYMBOL(d_validate
);
1503 * When a file is deleted, we have two options:
1504 * - turn this dentry into a negative dentry
1505 * - unhash this dentry and free it.
1507 * Usually, we want to just turn this into
1508 * a negative dentry, but if anybody else is
1509 * currently using the dentry or the inode
1510 * we can't do that and we fall back on removing
1511 * it from the hash queues and waiting for
1512 * it to be deleted later when it has no users
1516 * d_delete - delete a dentry
1517 * @dentry: The dentry to delete
1519 * Turn the dentry into a negative dentry if possible, otherwise
1520 * remove it from the hash queues so it can be deleted later
1523 void d_delete(struct dentry
* dentry
)
1527 * Are we the only user?
1529 spin_lock(&dcache_lock
);
1530 spin_lock(&dentry
->d_lock
);
1531 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1532 if (atomic_read(&dentry
->d_count
) == 1) {
1533 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
1534 dentry_iput(dentry
);
1535 fsnotify_nameremove(dentry
, isdir
);
1539 if (!d_unhashed(dentry
))
1542 spin_unlock(&dentry
->d_lock
);
1543 spin_unlock(&dcache_lock
);
1545 fsnotify_nameremove(dentry
, isdir
);
1547 EXPORT_SYMBOL(d_delete
);
1549 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1552 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1553 hlist_add_head_rcu(&entry
->d_hash
, list
);
1556 static void _d_rehash(struct dentry
* entry
)
1558 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1562 * d_rehash - add an entry back to the hash
1563 * @entry: dentry to add to the hash
1565 * Adds a dentry to the hash according to its name.
1568 void d_rehash(struct dentry
* entry
)
1570 spin_lock(&dcache_lock
);
1571 spin_lock(&entry
->d_lock
);
1573 spin_unlock(&entry
->d_lock
);
1574 spin_unlock(&dcache_lock
);
1576 EXPORT_SYMBOL(d_rehash
);
1579 * When switching names, the actual string doesn't strictly have to
1580 * be preserved in the target - because we're dropping the target
1581 * anyway. As such, we can just do a simple memcpy() to copy over
1582 * the new name before we switch.
1584 * Note that we have to be a lot more careful about getting the hash
1585 * switched - we have to switch the hash value properly even if it
1586 * then no longer matches the actual (corrupted) string of the target.
1587 * The hash value has to match the hash queue that the dentry is on..
1589 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1591 if (dname_external(target
)) {
1592 if (dname_external(dentry
)) {
1594 * Both external: swap the pointers
1596 swap(target
->d_name
.name
, dentry
->d_name
.name
);
1599 * dentry:internal, target:external. Steal target's
1600 * storage and make target internal.
1602 memcpy(target
->d_iname
, dentry
->d_name
.name
,
1603 dentry
->d_name
.len
+ 1);
1604 dentry
->d_name
.name
= target
->d_name
.name
;
1605 target
->d_name
.name
= target
->d_iname
;
1608 if (dname_external(dentry
)) {
1610 * dentry:external, target:internal. Give dentry's
1611 * storage to target and make dentry internal
1613 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1614 target
->d_name
.len
+ 1);
1615 target
->d_name
.name
= dentry
->d_name
.name
;
1616 dentry
->d_name
.name
= dentry
->d_iname
;
1619 * Both are internal. Just copy target to dentry
1621 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1622 target
->d_name
.len
+ 1);
1623 dentry
->d_name
.len
= target
->d_name
.len
;
1627 swap(dentry
->d_name
.len
, target
->d_name
.len
);
1631 * We cannibalize "target" when moving dentry on top of it,
1632 * because it's going to be thrown away anyway. We could be more
1633 * polite about it, though.
1635 * This forceful removal will result in ugly /proc output if
1636 * somebody holds a file open that got deleted due to a rename.
1637 * We could be nicer about the deleted file, and let it show
1638 * up under the name it had before it was deleted rather than
1639 * under the original name of the file that was moved on top of it.
1643 * d_move_locked - move a dentry
1644 * @dentry: entry to move
1645 * @target: new dentry
1647 * Update the dcache to reflect the move of a file name. Negative
1648 * dcache entries should not be moved in this way.
1650 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1652 struct hlist_head
*list
;
1654 if (!dentry
->d_inode
)
1655 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1657 write_seqlock(&rename_lock
);
1659 * XXXX: do we really need to take target->d_lock?
1661 if (target
< dentry
) {
1662 spin_lock(&target
->d_lock
);
1663 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1665 spin_lock(&dentry
->d_lock
);
1666 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1669 /* Move the dentry to the target hash queue, if on different bucket */
1670 if (d_unhashed(dentry
))
1671 goto already_unhashed
;
1673 hlist_del_rcu(&dentry
->d_hash
);
1676 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1677 __d_rehash(dentry
, list
);
1679 /* Unhash the target: dput() will then get rid of it */
1682 list_del(&dentry
->d_u
.d_child
);
1683 list_del(&target
->d_u
.d_child
);
1685 /* Switch the names.. */
1686 switch_names(dentry
, target
);
1687 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
1689 /* ... and switch the parents */
1690 if (IS_ROOT(dentry
)) {
1691 dentry
->d_parent
= target
->d_parent
;
1692 target
->d_parent
= target
;
1693 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1695 swap(dentry
->d_parent
, target
->d_parent
);
1697 /* And add them back to the (new) parent lists */
1698 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1701 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1702 spin_unlock(&target
->d_lock
);
1703 fsnotify_d_move(dentry
);
1704 spin_unlock(&dentry
->d_lock
);
1705 write_sequnlock(&rename_lock
);
1709 * d_move - move a dentry
1710 * @dentry: entry to move
1711 * @target: new dentry
1713 * Update the dcache to reflect the move of a file name. Negative
1714 * dcache entries should not be moved in this way.
1717 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1719 spin_lock(&dcache_lock
);
1720 d_move_locked(dentry
, target
);
1721 spin_unlock(&dcache_lock
);
1723 EXPORT_SYMBOL(d_move
);
1726 * d_ancestor - search for an ancestor
1727 * @p1: ancestor dentry
1730 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1731 * an ancestor of p2, else NULL.
1733 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
1737 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
1738 if (p
->d_parent
== p1
)
1745 * This helper attempts to cope with remotely renamed directories
1747 * It assumes that the caller is already holding
1748 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1750 * Note: If ever the locking in lock_rename() changes, then please
1751 * remember to update this too...
1753 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1754 __releases(dcache_lock
)
1756 struct mutex
*m1
= NULL
, *m2
= NULL
;
1759 /* If alias and dentry share a parent, then no extra locks required */
1760 if (alias
->d_parent
== dentry
->d_parent
)
1763 /* Check for loops */
1764 ret
= ERR_PTR(-ELOOP
);
1765 if (d_ancestor(alias
, dentry
))
1768 /* See lock_rename() */
1769 ret
= ERR_PTR(-EBUSY
);
1770 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1772 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1773 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1775 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1777 d_move_locked(alias
, dentry
);
1780 spin_unlock(&dcache_lock
);
1789 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1790 * named dentry in place of the dentry to be replaced.
1792 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1794 struct dentry
*dparent
, *aparent
;
1796 switch_names(dentry
, anon
);
1797 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1799 dparent
= dentry
->d_parent
;
1800 aparent
= anon
->d_parent
;
1802 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1803 list_del(&dentry
->d_u
.d_child
);
1804 if (!IS_ROOT(dentry
))
1805 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1807 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1809 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1810 list_del(&anon
->d_u
.d_child
);
1812 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1814 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1816 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1820 * d_materialise_unique - introduce an inode into the tree
1821 * @dentry: candidate dentry
1822 * @inode: inode to bind to the dentry, to which aliases may be attached
1824 * Introduces an dentry into the tree, substituting an extant disconnected
1825 * root directory alias in its place if there is one
1827 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1829 struct dentry
*actual
;
1831 BUG_ON(!d_unhashed(dentry
));
1833 spin_lock(&dcache_lock
);
1837 __d_instantiate(dentry
, NULL
);
1841 if (S_ISDIR(inode
->i_mode
)) {
1842 struct dentry
*alias
;
1844 /* Does an aliased dentry already exist? */
1845 alias
= __d_find_alias(inode
, 0);
1848 /* Is this an anonymous mountpoint that we could splice
1850 if (IS_ROOT(alias
)) {
1851 spin_lock(&alias
->d_lock
);
1852 __d_materialise_dentry(dentry
, alias
);
1856 /* Nope, but we must(!) avoid directory aliasing */
1857 actual
= __d_unalias(dentry
, alias
);
1864 /* Add a unique reference */
1865 actual
= __d_instantiate_unique(dentry
, inode
);
1868 else if (unlikely(!d_unhashed(actual
)))
1869 goto shouldnt_be_hashed
;
1872 spin_lock(&actual
->d_lock
);
1875 spin_unlock(&actual
->d_lock
);
1876 spin_unlock(&dcache_lock
);
1878 if (actual
== dentry
) {
1879 security_d_instantiate(dentry
, inode
);
1887 spin_unlock(&dcache_lock
);
1890 EXPORT_SYMBOL_GPL(d_materialise_unique
);
1892 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
1896 return -ENAMETOOLONG
;
1898 memcpy(*buffer
, str
, namelen
);
1902 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
1904 return prepend(buffer
, buflen
, name
->name
, name
->len
);
1908 * Prepend path string to a buffer
1910 * @path: the dentry/vfsmount to report
1911 * @root: root vfsmnt/dentry (may be modified by this function)
1912 * @buffer: pointer to the end of the buffer
1913 * @buflen: pointer to buffer length
1915 * Caller holds the dcache_lock.
1917 * If path is not reachable from the supplied root, then the value of
1918 * root is changed (without modifying refcounts).
1920 static int prepend_path(const struct path
*path
, struct path
*root
,
1921 char **buffer
, int *buflen
)
1923 struct dentry
*dentry
= path
->dentry
;
1924 struct vfsmount
*vfsmnt
= path
->mnt
;
1928 spin_lock(&vfsmount_lock
);
1929 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
1930 struct dentry
* parent
;
1932 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1934 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1937 dentry
= vfsmnt
->mnt_mountpoint
;
1938 vfsmnt
= vfsmnt
->mnt_parent
;
1941 parent
= dentry
->d_parent
;
1943 error
= prepend_name(buffer
, buflen
, &dentry
->d_name
);
1945 error
= prepend(buffer
, buflen
, "/", 1);
1954 if (!error
&& !slash
)
1955 error
= prepend(buffer
, buflen
, "/", 1);
1957 spin_unlock(&vfsmount_lock
);
1962 * Filesystems needing to implement special "root names"
1963 * should do so with ->d_dname()
1965 if (IS_ROOT(dentry
) &&
1966 (dentry
->d_name
.len
!= 1 || dentry
->d_name
.name
[0] != '/')) {
1967 WARN(1, "Root dentry has weird name <%.*s>\n",
1968 (int) dentry
->d_name
.len
, dentry
->d_name
.name
);
1971 root
->dentry
= dentry
;
1976 * __d_path - return the path of a dentry
1977 * @path: the dentry/vfsmount to report
1978 * @root: root vfsmnt/dentry (may be modified by this function)
1979 * @buffer: buffer to return value in
1980 * @buflen: buffer length
1982 * Convert a dentry into an ASCII path name.
1984 * Returns a pointer into the buffer or an error code if the
1985 * path was too long.
1987 * "buflen" should be positive. Caller holds the dcache_lock.
1989 * If path is not reachable from the supplied root, then the value of
1990 * root is changed (without modifying refcounts).
1992 char *__d_path(const struct path
*path
, struct path
*root
,
1993 char *buf
, int buflen
)
1995 char *res
= buf
+ buflen
;
1998 prepend(&res
, &buflen
, "\0", 1);
1999 error
= prepend_path(path
, root
, &res
, &buflen
);
2001 return ERR_PTR(error
);
2007 * same as __d_path but appends "(deleted)" for unlinked files.
2009 static int path_with_deleted(const struct path
*path
, struct path
*root
,
2010 char **buf
, int *buflen
)
2012 prepend(buf
, buflen
, "\0", 1);
2013 if (d_unlinked(path
->dentry
)) {
2014 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2019 return prepend_path(path
, root
, buf
, buflen
);
2022 static int prepend_unreachable(char **buffer
, int *buflen
)
2024 return prepend(buffer
, buflen
, "(unreachable)", 13);
2028 * d_path - return the path of a dentry
2029 * @path: path to report
2030 * @buf: buffer to return value in
2031 * @buflen: buffer length
2033 * Convert a dentry into an ASCII path name. If the entry has been deleted
2034 * the string " (deleted)" is appended. Note that this is ambiguous.
2036 * Returns a pointer into the buffer or an error code if the path was
2037 * too long. Note: Callers should use the returned pointer, not the passed
2038 * in buffer, to use the name! The implementation often starts at an offset
2039 * into the buffer, and may leave 0 bytes at the start.
2041 * "buflen" should be positive.
2043 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2045 char *res
= buf
+ buflen
;
2051 * We have various synthetic filesystems that never get mounted. On
2052 * these filesystems dentries are never used for lookup purposes, and
2053 * thus don't need to be hashed. They also don't need a name until a
2054 * user wants to identify the object in /proc/pid/fd/. The little hack
2055 * below allows us to generate a name for these objects on demand:
2057 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2058 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2060 get_fs_root(current
->fs
, &root
);
2061 spin_lock(&dcache_lock
);
2063 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2065 res
= ERR_PTR(error
);
2066 spin_unlock(&dcache_lock
);
2070 EXPORT_SYMBOL(d_path
);
2073 * d_path_with_unreachable - return the path of a dentry
2074 * @path: path to report
2075 * @buf: buffer to return value in
2076 * @buflen: buffer length
2078 * The difference from d_path() is that this prepends "(unreachable)"
2079 * to paths which are unreachable from the current process' root.
2081 char *d_path_with_unreachable(const struct path
*path
, char *buf
, int buflen
)
2083 char *res
= buf
+ buflen
;
2088 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2089 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2091 get_fs_root(current
->fs
, &root
);
2092 spin_lock(&dcache_lock
);
2094 error
= path_with_deleted(path
, &tmp
, &res
, &buflen
);
2095 if (!error
&& !path_equal(&tmp
, &root
))
2096 error
= prepend_unreachable(&res
, &buflen
);
2097 spin_unlock(&dcache_lock
);
2100 res
= ERR_PTR(error
);
2106 * Helper function for dentry_operations.d_dname() members
2108 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2109 const char *fmt
, ...)
2115 va_start(args
, fmt
);
2116 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2119 if (sz
> sizeof(temp
) || sz
> buflen
)
2120 return ERR_PTR(-ENAMETOOLONG
);
2122 buffer
+= buflen
- sz
;
2123 return memcpy(buffer
, temp
, sz
);
2127 * Write full pathname from the root of the filesystem into the buffer.
2129 char *__dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2131 char *end
= buf
+ buflen
;
2134 prepend(&end
, &buflen
, "\0", 1);
2141 while (!IS_ROOT(dentry
)) {
2142 struct dentry
*parent
= dentry
->d_parent
;
2145 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
2146 (prepend(&end
, &buflen
, "/", 1) != 0))
2154 return ERR_PTR(-ENAMETOOLONG
);
2156 EXPORT_SYMBOL(__dentry_path
);
2158 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2163 spin_lock(&dcache_lock
);
2164 if (d_unlinked(dentry
)) {
2166 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
2170 retval
= __dentry_path(dentry
, buf
, buflen
);
2171 spin_unlock(&dcache_lock
);
2172 if (!IS_ERR(retval
) && p
)
2173 *p
= '/'; /* restore '/' overriden with '\0' */
2176 spin_unlock(&dcache_lock
);
2177 return ERR_PTR(-ENAMETOOLONG
);
2181 * NOTE! The user-level library version returns a
2182 * character pointer. The kernel system call just
2183 * returns the length of the buffer filled (which
2184 * includes the ending '\0' character), or a negative
2185 * error value. So libc would do something like
2187 * char *getcwd(char * buf, size_t size)
2191 * retval = sys_getcwd(buf, size);
2198 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2201 struct path pwd
, root
;
2202 char *page
= (char *) __get_free_page(GFP_USER
);
2207 get_fs_root_and_pwd(current
->fs
, &root
, &pwd
);
2210 spin_lock(&dcache_lock
);
2211 if (!d_unlinked(pwd
.dentry
)) {
2213 struct path tmp
= root
;
2214 char *cwd
= page
+ PAGE_SIZE
;
2215 int buflen
= PAGE_SIZE
;
2217 prepend(&cwd
, &buflen
, "\0", 1);
2218 error
= prepend_path(&pwd
, &tmp
, &cwd
, &buflen
);
2219 spin_unlock(&dcache_lock
);
2224 /* Unreachable from current root */
2225 if (!path_equal(&tmp
, &root
)) {
2226 error
= prepend_unreachable(&cwd
, &buflen
);
2232 len
= PAGE_SIZE
+ page
- cwd
;
2235 if (copy_to_user(buf
, cwd
, len
))
2239 spin_unlock(&dcache_lock
);
2244 free_page((unsigned long) page
);
2249 * Test whether new_dentry is a subdirectory of old_dentry.
2251 * Trivially implemented using the dcache structure
2255 * is_subdir - is new dentry a subdirectory of old_dentry
2256 * @new_dentry: new dentry
2257 * @old_dentry: old dentry
2259 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2260 * Returns 0 otherwise.
2261 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2264 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2269 if (new_dentry
== old_dentry
)
2273 * Need rcu_readlock to protect against the d_parent trashing
2278 /* for restarting inner loop in case of seq retry */
2279 seq
= read_seqbegin(&rename_lock
);
2280 if (d_ancestor(old_dentry
, new_dentry
))
2284 } while (read_seqretry(&rename_lock
, seq
));
2290 int path_is_under(struct path
*path1
, struct path
*path2
)
2292 struct vfsmount
*mnt
= path1
->mnt
;
2293 struct dentry
*dentry
= path1
->dentry
;
2295 spin_lock(&vfsmount_lock
);
2296 if (mnt
!= path2
->mnt
) {
2298 if (mnt
->mnt_parent
== mnt
) {
2299 spin_unlock(&vfsmount_lock
);
2302 if (mnt
->mnt_parent
== path2
->mnt
)
2304 mnt
= mnt
->mnt_parent
;
2306 dentry
= mnt
->mnt_mountpoint
;
2308 res
= is_subdir(dentry
, path2
->dentry
);
2309 spin_unlock(&vfsmount_lock
);
2312 EXPORT_SYMBOL(path_is_under
);
2314 void d_genocide(struct dentry
*root
)
2316 struct dentry
*this_parent
= root
;
2317 struct list_head
*next
;
2319 spin_lock(&dcache_lock
);
2321 next
= this_parent
->d_subdirs
.next
;
2323 while (next
!= &this_parent
->d_subdirs
) {
2324 struct list_head
*tmp
= next
;
2325 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2327 if (d_unhashed(dentry
)||!dentry
->d_inode
)
2329 if (!list_empty(&dentry
->d_subdirs
)) {
2330 this_parent
= dentry
;
2333 atomic_dec(&dentry
->d_count
);
2335 if (this_parent
!= root
) {
2336 next
= this_parent
->d_u
.d_child
.next
;
2337 atomic_dec(&this_parent
->d_count
);
2338 this_parent
= this_parent
->d_parent
;
2341 spin_unlock(&dcache_lock
);
2345 * find_inode_number - check for dentry with name
2346 * @dir: directory to check
2347 * @name: Name to find.
2349 * Check whether a dentry already exists for the given name,
2350 * and return the inode number if it has an inode. Otherwise
2353 * This routine is used to post-process directory listings for
2354 * filesystems using synthetic inode numbers, and is necessary
2355 * to keep getcwd() working.
2358 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2360 struct dentry
* dentry
;
2363 dentry
= d_hash_and_lookup(dir
, name
);
2365 if (dentry
->d_inode
)
2366 ino
= dentry
->d_inode
->i_ino
;
2371 EXPORT_SYMBOL(find_inode_number
);
2373 static __initdata
unsigned long dhash_entries
;
2374 static int __init
set_dhash_entries(char *str
)
2378 dhash_entries
= simple_strtoul(str
, &str
, 0);
2381 __setup("dhash_entries=", set_dhash_entries
);
2383 static void __init
dcache_init_early(void)
2387 /* If hashes are distributed across NUMA nodes, defer
2388 * hash allocation until vmalloc space is available.
2394 alloc_large_system_hash("Dentry cache",
2395 sizeof(struct hlist_head
),
2403 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2404 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2407 static void __init
dcache_init(void)
2412 * A constructor could be added for stable state like the lists,
2413 * but it is probably not worth it because of the cache nature
2416 dentry_cache
= KMEM_CACHE(dentry
,
2417 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2419 register_shrinker(&dcache_shrinker
);
2421 /* Hash may have been set up in dcache_init_early */
2426 alloc_large_system_hash("Dentry cache",
2427 sizeof(struct hlist_head
),
2435 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2436 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2439 /* SLAB cache for __getname() consumers */
2440 struct kmem_cache
*names_cachep __read_mostly
;
2441 EXPORT_SYMBOL(names_cachep
);
2443 EXPORT_SYMBOL(d_genocide
);
2445 void __init
vfs_caches_init_early(void)
2447 dcache_init_early();
2451 void __init
vfs_caches_init(unsigned long mempages
)
2453 unsigned long reserve
;
2455 /* Base hash sizes on available memory, with a reserve equal to
2456 150% of current kernel size */
2458 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2459 mempages
-= reserve
;
2461 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2462 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2466 files_init(mempages
);