USB: allow retry on descriptor fetch errors
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / usb / core / message.c
blob5498506e9c5ef8d7146f72a8a9180cb0b8835628
1 /*
2 * message.c - synchronous message handling
3 */
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/usb/quirks.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
18 #include "hcd.h" /* for usbcore internals */
19 #include "usb.h"
21 struct api_context {
22 struct completion done;
23 int status;
26 static void usb_api_blocking_completion(struct urb *urb)
28 struct api_context *ctx = urb->context;
30 ctx->status = urb->status;
31 complete(&ctx->done);
36 * Starts urb and waits for completion or timeout. Note that this call
37 * is NOT interruptible. Many device driver i/o requests should be
38 * interruptible and therefore these drivers should implement their
39 * own interruptible routines.
41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
43 struct api_context ctx;
44 unsigned long expire;
45 int retval;
47 init_completion(&ctx.done);
48 urb->context = &ctx;
49 urb->actual_length = 0;
50 retval = usb_submit_urb(urb, GFP_NOIO);
51 if (unlikely(retval))
52 goto out;
54 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
55 if (!wait_for_completion_timeout(&ctx.done, expire)) {
56 usb_kill_urb(urb);
57 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
59 dev_dbg(&urb->dev->dev,
60 "%s timed out on ep%d%s len=%d/%d\n",
61 current->comm,
62 usb_pipeendpoint(urb->pipe),
63 usb_pipein(urb->pipe) ? "in" : "out",
64 urb->actual_length,
65 urb->transfer_buffer_length);
66 } else
67 retval = ctx.status;
68 out:
69 if (actual_length)
70 *actual_length = urb->actual_length;
72 usb_free_urb(urb);
73 return retval;
76 /*-------------------------------------------------------------------*/
77 // returns status (negative) or length (positive)
78 static int usb_internal_control_msg(struct usb_device *usb_dev,
79 unsigned int pipe,
80 struct usb_ctrlrequest *cmd,
81 void *data, int len, int timeout)
83 struct urb *urb;
84 int retv;
85 int length;
87 urb = usb_alloc_urb(0, GFP_NOIO);
88 if (!urb)
89 return -ENOMEM;
91 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
92 len, usb_api_blocking_completion, NULL);
94 retv = usb_start_wait_urb(urb, timeout, &length);
95 if (retv < 0)
96 return retv;
97 else
98 return length;
102 * usb_control_msg - Builds a control urb, sends it off and waits for completion
103 * @dev: pointer to the usb device to send the message to
104 * @pipe: endpoint "pipe" to send the message to
105 * @request: USB message request value
106 * @requesttype: USB message request type value
107 * @value: USB message value
108 * @index: USB message index value
109 * @data: pointer to the data to send
110 * @size: length in bytes of the data to send
111 * @timeout: time in msecs to wait for the message to complete before
112 * timing out (if 0 the wait is forever)
113 * Context: !in_interrupt ()
115 * This function sends a simple control message to a specified endpoint
116 * and waits for the message to complete, or timeout.
118 * If successful, it returns the number of bytes transferred, otherwise a negative error number.
120 * Don't use this function from within an interrupt context, like a
121 * bottom half handler. If you need an asynchronous message, or need to send
122 * a message from within interrupt context, use usb_submit_urb()
123 * If a thread in your driver uses this call, make sure your disconnect()
124 * method can wait for it to complete. Since you don't have a handle on
125 * the URB used, you can't cancel the request.
127 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
128 __u16 value, __u16 index, void *data, __u16 size, int timeout)
130 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
131 int ret;
133 if (!dr)
134 return -ENOMEM;
136 dr->bRequestType= requesttype;
137 dr->bRequest = request;
138 dr->wValue = cpu_to_le16p(&value);
139 dr->wIndex = cpu_to_le16p(&index);
140 dr->wLength = cpu_to_le16p(&size);
142 //dbg("usb_control_msg");
144 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
146 kfree(dr);
148 return ret;
153 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
154 * @usb_dev: pointer to the usb device to send the message to
155 * @pipe: endpoint "pipe" to send the message to
156 * @data: pointer to the data to send
157 * @len: length in bytes of the data to send
158 * @actual_length: pointer to a location to put the actual length transferred in bytes
159 * @timeout: time in msecs to wait for the message to complete before
160 * timing out (if 0 the wait is forever)
161 * Context: !in_interrupt ()
163 * This function sends a simple interrupt message to a specified endpoint and
164 * waits for the message to complete, or timeout.
166 * If successful, it returns 0, otherwise a negative error number. The number
167 * of actual bytes transferred will be stored in the actual_length paramater.
169 * Don't use this function from within an interrupt context, like a bottom half
170 * handler. If you need an asynchronous message, or need to send a message
171 * from within interrupt context, use usb_submit_urb() If a thread in your
172 * driver uses this call, make sure your disconnect() method can wait for it to
173 * complete. Since you don't have a handle on the URB used, you can't cancel
174 * the request.
176 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
177 void *data, int len, int *actual_length, int timeout)
179 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
181 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
184 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
185 * @usb_dev: pointer to the usb device to send the message to
186 * @pipe: endpoint "pipe" to send the message to
187 * @data: pointer to the data to send
188 * @len: length in bytes of the data to send
189 * @actual_length: pointer to a location to put the actual length transferred in bytes
190 * @timeout: time in msecs to wait for the message to complete before
191 * timing out (if 0 the wait is forever)
192 * Context: !in_interrupt ()
194 * This function sends a simple bulk message to a specified endpoint
195 * and waits for the message to complete, or timeout.
197 * If successful, it returns 0, otherwise a negative error number.
198 * The number of actual bytes transferred will be stored in the
199 * actual_length paramater.
201 * Don't use this function from within an interrupt context, like a
202 * bottom half handler. If you need an asynchronous message, or need to
203 * send a message from within interrupt context, use usb_submit_urb()
204 * If a thread in your driver uses this call, make sure your disconnect()
205 * method can wait for it to complete. Since you don't have a handle on
206 * the URB used, you can't cancel the request.
208 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
209 * ioctl, users are forced to abuse this routine by using it to submit
210 * URBs for interrupt endpoints. We will take the liberty of creating
211 * an interrupt URB (with the default interval) if the target is an
212 * interrupt endpoint.
214 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
215 void *data, int len, int *actual_length, int timeout)
217 struct urb *urb;
218 struct usb_host_endpoint *ep;
220 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
221 [usb_pipeendpoint(pipe)];
222 if (!ep || len < 0)
223 return -EINVAL;
225 urb = usb_alloc_urb(0, GFP_KERNEL);
226 if (!urb)
227 return -ENOMEM;
229 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
230 USB_ENDPOINT_XFER_INT) {
231 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
232 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
233 usb_api_blocking_completion, NULL,
234 ep->desc.bInterval);
235 } else
236 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
237 usb_api_blocking_completion, NULL);
239 return usb_start_wait_urb(urb, timeout, actual_length);
242 /*-------------------------------------------------------------------*/
244 static void sg_clean (struct usb_sg_request *io)
246 if (io->urbs) {
247 while (io->entries--)
248 usb_free_urb (io->urbs [io->entries]);
249 kfree (io->urbs);
250 io->urbs = NULL;
252 if (io->dev->dev.dma_mask != NULL)
253 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
254 io->dev = NULL;
257 static void sg_complete (struct urb *urb)
259 struct usb_sg_request *io = urb->context;
260 int status = urb->status;
262 spin_lock (&io->lock);
264 /* In 2.5 we require hcds' endpoint queues not to progress after fault
265 * reports, until the completion callback (this!) returns. That lets
266 * device driver code (like this routine) unlink queued urbs first,
267 * if it needs to, since the HC won't work on them at all. So it's
268 * not possible for page N+1 to overwrite page N, and so on.
270 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
271 * complete before the HCD can get requests away from hardware,
272 * though never during cleanup after a hard fault.
274 if (io->status
275 && (io->status != -ECONNRESET
276 || status != -ECONNRESET)
277 && urb->actual_length) {
278 dev_err (io->dev->bus->controller,
279 "dev %s ep%d%s scatterlist error %d/%d\n",
280 io->dev->devpath,
281 usb_pipeendpoint (urb->pipe),
282 usb_pipein (urb->pipe) ? "in" : "out",
283 status, io->status);
284 // BUG ();
287 if (io->status == 0 && status && status != -ECONNRESET) {
288 int i, found, retval;
290 io->status = status;
292 /* the previous urbs, and this one, completed already.
293 * unlink pending urbs so they won't rx/tx bad data.
294 * careful: unlink can sometimes be synchronous...
296 spin_unlock (&io->lock);
297 for (i = 0, found = 0; i < io->entries; i++) {
298 if (!io->urbs [i] || !io->urbs [i]->dev)
299 continue;
300 if (found) {
301 retval = usb_unlink_urb (io->urbs [i]);
302 if (retval != -EINPROGRESS &&
303 retval != -ENODEV &&
304 retval != -EBUSY)
305 dev_err (&io->dev->dev,
306 "%s, unlink --> %d\n",
307 __FUNCTION__, retval);
308 } else if (urb == io->urbs [i])
309 found = 1;
311 spin_lock (&io->lock);
313 urb->dev = NULL;
315 /* on the last completion, signal usb_sg_wait() */
316 io->bytes += urb->actual_length;
317 io->count--;
318 if (!io->count)
319 complete (&io->complete);
321 spin_unlock (&io->lock);
326 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
327 * @io: request block being initialized. until usb_sg_wait() returns,
328 * treat this as a pointer to an opaque block of memory,
329 * @dev: the usb device that will send or receive the data
330 * @pipe: endpoint "pipe" used to transfer the data
331 * @period: polling rate for interrupt endpoints, in frames or
332 * (for high speed endpoints) microframes; ignored for bulk
333 * @sg: scatterlist entries
334 * @nents: how many entries in the scatterlist
335 * @length: how many bytes to send from the scatterlist, or zero to
336 * send every byte identified in the list.
337 * @mem_flags: SLAB_* flags affecting memory allocations in this call
339 * Returns zero for success, else a negative errno value. This initializes a
340 * scatter/gather request, allocating resources such as I/O mappings and urb
341 * memory (except maybe memory used by USB controller drivers).
343 * The request must be issued using usb_sg_wait(), which waits for the I/O to
344 * complete (or to be canceled) and then cleans up all resources allocated by
345 * usb_sg_init().
347 * The request may be canceled with usb_sg_cancel(), either before or after
348 * usb_sg_wait() is called.
350 int usb_sg_init (
351 struct usb_sg_request *io,
352 struct usb_device *dev,
353 unsigned pipe,
354 unsigned period,
355 struct scatterlist *sg,
356 int nents,
357 size_t length,
358 gfp_t mem_flags
361 int i;
362 int urb_flags;
363 int dma;
365 if (!io || !dev || !sg
366 || usb_pipecontrol (pipe)
367 || usb_pipeisoc (pipe)
368 || nents <= 0)
369 return -EINVAL;
371 spin_lock_init (&io->lock);
372 io->dev = dev;
373 io->pipe = pipe;
374 io->sg = sg;
375 io->nents = nents;
377 /* not all host controllers use DMA (like the mainstream pci ones);
378 * they can use PIO (sl811) or be software over another transport.
380 dma = (dev->dev.dma_mask != NULL);
381 if (dma)
382 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
383 else
384 io->entries = nents;
386 /* initialize all the urbs we'll use */
387 if (io->entries <= 0)
388 return io->entries;
390 io->count = io->entries;
391 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
392 if (!io->urbs)
393 goto nomem;
395 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
396 if (usb_pipein (pipe))
397 urb_flags |= URB_SHORT_NOT_OK;
399 for (i = 0; i < io->entries; i++) {
400 unsigned len;
402 io->urbs [i] = usb_alloc_urb (0, mem_flags);
403 if (!io->urbs [i]) {
404 io->entries = i;
405 goto nomem;
408 io->urbs [i]->dev = NULL;
409 io->urbs [i]->pipe = pipe;
410 io->urbs [i]->interval = period;
411 io->urbs [i]->transfer_flags = urb_flags;
413 io->urbs [i]->complete = sg_complete;
414 io->urbs [i]->context = io;
417 * Some systems need to revert to PIO when DMA is temporarily
418 * unavailable. For their sakes, both transfer_buffer and
419 * transfer_dma are set when possible. However this can only
420 * work on systems without:
422 * - HIGHMEM, since DMA buffers located in high memory are
423 * not directly addressable by the CPU for PIO;
425 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
426 * make virtually discontiguous buffers be "dma-contiguous"
427 * so that PIO and DMA need diferent numbers of URBs.
429 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
430 * to prevent stale pointers and to help spot bugs.
432 if (dma) {
433 io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
434 len = sg_dma_len (sg + i);
435 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_IOMMU)
436 io->urbs[i]->transfer_buffer = NULL;
437 #else
438 io->urbs[i]->transfer_buffer =
439 page_address(sg[i].page) + sg[i].offset;
440 #endif
441 } else {
442 /* hc may use _only_ transfer_buffer */
443 io->urbs [i]->transfer_buffer =
444 page_address (sg [i].page) + sg [i].offset;
445 len = sg [i].length;
448 if (length) {
449 len = min_t (unsigned, len, length);
450 length -= len;
451 if (length == 0)
452 io->entries = i + 1;
454 io->urbs [i]->transfer_buffer_length = len;
456 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
458 /* transaction state */
459 io->status = 0;
460 io->bytes = 0;
461 init_completion (&io->complete);
462 return 0;
464 nomem:
465 sg_clean (io);
466 return -ENOMEM;
471 * usb_sg_wait - synchronously execute scatter/gather request
472 * @io: request block handle, as initialized with usb_sg_init().
473 * some fields become accessible when this call returns.
474 * Context: !in_interrupt ()
476 * This function blocks until the specified I/O operation completes. It
477 * leverages the grouping of the related I/O requests to get good transfer
478 * rates, by queueing the requests. At higher speeds, such queuing can
479 * significantly improve USB throughput.
481 * There are three kinds of completion for this function.
482 * (1) success, where io->status is zero. The number of io->bytes
483 * transferred is as requested.
484 * (2) error, where io->status is a negative errno value. The number
485 * of io->bytes transferred before the error is usually less
486 * than requested, and can be nonzero.
487 * (3) cancellation, a type of error with status -ECONNRESET that
488 * is initiated by usb_sg_cancel().
490 * When this function returns, all memory allocated through usb_sg_init() or
491 * this call will have been freed. The request block parameter may still be
492 * passed to usb_sg_cancel(), or it may be freed. It could also be
493 * reinitialized and then reused.
495 * Data Transfer Rates:
497 * Bulk transfers are valid for full or high speed endpoints.
498 * The best full speed data rate is 19 packets of 64 bytes each
499 * per frame, or 1216 bytes per millisecond.
500 * The best high speed data rate is 13 packets of 512 bytes each
501 * per microframe, or 52 KBytes per millisecond.
503 * The reason to use interrupt transfers through this API would most likely
504 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
505 * could be transferred. That capability is less useful for low or full
506 * speed interrupt endpoints, which allow at most one packet per millisecond,
507 * of at most 8 or 64 bytes (respectively).
509 void usb_sg_wait (struct usb_sg_request *io)
511 int i, entries = io->entries;
513 /* queue the urbs. */
514 spin_lock_irq (&io->lock);
515 i = 0;
516 while (i < entries && !io->status) {
517 int retval;
519 io->urbs [i]->dev = io->dev;
520 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
522 /* after we submit, let completions or cancelations fire;
523 * we handshake using io->status.
525 spin_unlock_irq (&io->lock);
526 switch (retval) {
527 /* maybe we retrying will recover */
528 case -ENXIO: // hc didn't queue this one
529 case -EAGAIN:
530 case -ENOMEM:
531 io->urbs[i]->dev = NULL;
532 retval = 0;
533 yield ();
534 break;
536 /* no error? continue immediately.
538 * NOTE: to work better with UHCI (4K I/O buffer may
539 * need 3K of TDs) it may be good to limit how many
540 * URBs are queued at once; N milliseconds?
542 case 0:
543 ++i;
544 cpu_relax ();
545 break;
547 /* fail any uncompleted urbs */
548 default:
549 io->urbs [i]->dev = NULL;
550 io->urbs [i]->status = retval;
551 dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
552 __FUNCTION__, retval);
553 usb_sg_cancel (io);
555 spin_lock_irq (&io->lock);
556 if (retval && (io->status == 0 || io->status == -ECONNRESET))
557 io->status = retval;
559 io->count -= entries - i;
560 if (io->count == 0)
561 complete (&io->complete);
562 spin_unlock_irq (&io->lock);
564 /* OK, yes, this could be packaged as non-blocking.
565 * So could the submit loop above ... but it's easier to
566 * solve neither problem than to solve both!
568 wait_for_completion (&io->complete);
570 sg_clean (io);
574 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
575 * @io: request block, initialized with usb_sg_init()
577 * This stops a request after it has been started by usb_sg_wait().
578 * It can also prevents one initialized by usb_sg_init() from starting,
579 * so that call just frees resources allocated to the request.
581 void usb_sg_cancel (struct usb_sg_request *io)
583 unsigned long flags;
585 spin_lock_irqsave (&io->lock, flags);
587 /* shut everything down, if it didn't already */
588 if (!io->status) {
589 int i;
591 io->status = -ECONNRESET;
592 spin_unlock (&io->lock);
593 for (i = 0; i < io->entries; i++) {
594 int retval;
596 if (!io->urbs [i]->dev)
597 continue;
598 retval = usb_unlink_urb (io->urbs [i]);
599 if (retval != -EINPROGRESS && retval != -EBUSY)
600 dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
601 __FUNCTION__, retval);
603 spin_lock (&io->lock);
605 spin_unlock_irqrestore (&io->lock, flags);
608 /*-------------------------------------------------------------------*/
611 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
612 * @dev: the device whose descriptor is being retrieved
613 * @type: the descriptor type (USB_DT_*)
614 * @index: the number of the descriptor
615 * @buf: where to put the descriptor
616 * @size: how big is "buf"?
617 * Context: !in_interrupt ()
619 * Gets a USB descriptor. Convenience functions exist to simplify
620 * getting some types of descriptors. Use
621 * usb_get_string() or usb_string() for USB_DT_STRING.
622 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
623 * are part of the device structure.
624 * In addition to a number of USB-standard descriptors, some
625 * devices also use class-specific or vendor-specific descriptors.
627 * This call is synchronous, and may not be used in an interrupt context.
629 * Returns the number of bytes received on success, or else the status code
630 * returned by the underlying usb_control_msg() call.
632 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
634 int i;
635 int result;
637 memset(buf,0,size); // Make sure we parse really received data
639 for (i = 0; i < 3; ++i) {
640 /* retry on length 0 or error; some devices are flakey */
641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643 (type << 8) + index, 0, buf, size,
644 USB_CTRL_GET_TIMEOUT);
645 if (result <= 0 && result != -ETIMEDOUT)
646 continue;
647 if (result > 1 && ((u8 *)buf)[1] != type) {
648 result = -EPROTO;
649 continue;
651 break;
653 return result;
657 * usb_get_string - gets a string descriptor
658 * @dev: the device whose string descriptor is being retrieved
659 * @langid: code for language chosen (from string descriptor zero)
660 * @index: the number of the descriptor
661 * @buf: where to put the string
662 * @size: how big is "buf"?
663 * Context: !in_interrupt ()
665 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
666 * in little-endian byte order).
667 * The usb_string() function will often be a convenient way to turn
668 * these strings into kernel-printable form.
670 * Strings may be referenced in device, configuration, interface, or other
671 * descriptors, and could also be used in vendor-specific ways.
673 * This call is synchronous, and may not be used in an interrupt context.
675 * Returns the number of bytes received on success, or else the status code
676 * returned by the underlying usb_control_msg() call.
678 static int usb_get_string(struct usb_device *dev, unsigned short langid,
679 unsigned char index, void *buf, int size)
681 int i;
682 int result;
684 for (i = 0; i < 3; ++i) {
685 /* retry on length 0 or stall; some devices are flakey */
686 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
687 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
688 (USB_DT_STRING << 8) + index, langid, buf, size,
689 USB_CTRL_GET_TIMEOUT);
690 if (!(result == 0 || result == -EPIPE))
691 break;
693 return result;
696 static void usb_try_string_workarounds(unsigned char *buf, int *length)
698 int newlength, oldlength = *length;
700 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
701 if (!isprint(buf[newlength]) || buf[newlength + 1])
702 break;
704 if (newlength > 2) {
705 buf[0] = newlength;
706 *length = newlength;
710 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
711 unsigned int index, unsigned char *buf)
713 int rc;
715 /* Try to read the string descriptor by asking for the maximum
716 * possible number of bytes */
717 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
718 rc = -EIO;
719 else
720 rc = usb_get_string(dev, langid, index, buf, 255);
722 /* If that failed try to read the descriptor length, then
723 * ask for just that many bytes */
724 if (rc < 2) {
725 rc = usb_get_string(dev, langid, index, buf, 2);
726 if (rc == 2)
727 rc = usb_get_string(dev, langid, index, buf, buf[0]);
730 if (rc >= 2) {
731 if (!buf[0] && !buf[1])
732 usb_try_string_workarounds(buf, &rc);
734 /* There might be extra junk at the end of the descriptor */
735 if (buf[0] < rc)
736 rc = buf[0];
738 rc = rc - (rc & 1); /* force a multiple of two */
741 if (rc < 2)
742 rc = (rc < 0 ? rc : -EINVAL);
744 return rc;
748 * usb_string - returns ISO 8859-1 version of a string descriptor
749 * @dev: the device whose string descriptor is being retrieved
750 * @index: the number of the descriptor
751 * @buf: where to put the string
752 * @size: how big is "buf"?
753 * Context: !in_interrupt ()
755 * This converts the UTF-16LE encoded strings returned by devices, from
756 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
757 * that are more usable in most kernel contexts. Note that all characters
758 * in the chosen descriptor that can't be encoded using ISO-8859-1
759 * are converted to the question mark ("?") character, and this function
760 * chooses strings in the first language supported by the device.
762 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
763 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
764 * and is appropriate for use many uses of English and several other
765 * Western European languages. (But it doesn't include the "Euro" symbol.)
767 * This call is synchronous, and may not be used in an interrupt context.
769 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
771 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
773 unsigned char *tbuf;
774 int err;
775 unsigned int u, idx;
777 if (dev->state == USB_STATE_SUSPENDED)
778 return -EHOSTUNREACH;
779 if (size <= 0 || !buf || !index)
780 return -EINVAL;
781 buf[0] = 0;
782 tbuf = kmalloc(256, GFP_KERNEL);
783 if (!tbuf)
784 return -ENOMEM;
786 /* get langid for strings if it's not yet known */
787 if (!dev->have_langid) {
788 err = usb_string_sub(dev, 0, 0, tbuf);
789 if (err < 0) {
790 dev_err (&dev->dev,
791 "string descriptor 0 read error: %d\n",
792 err);
793 goto errout;
794 } else if (err < 4) {
795 dev_err (&dev->dev, "string descriptor 0 too short\n");
796 err = -EINVAL;
797 goto errout;
798 } else {
799 dev->have_langid = 1;
800 dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
801 /* always use the first langid listed */
802 dev_dbg (&dev->dev, "default language 0x%04x\n",
803 dev->string_langid);
807 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
808 if (err < 0)
809 goto errout;
811 size--; /* leave room for trailing NULL char in output buffer */
812 for (idx = 0, u = 2; u < err; u += 2) {
813 if (idx >= size)
814 break;
815 if (tbuf[u+1]) /* high byte */
816 buf[idx++] = '?'; /* non ISO-8859-1 character */
817 else
818 buf[idx++] = tbuf[u];
820 buf[idx] = 0;
821 err = idx;
823 if (tbuf[1] != USB_DT_STRING)
824 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
826 errout:
827 kfree(tbuf);
828 return err;
832 * usb_cache_string - read a string descriptor and cache it for later use
833 * @udev: the device whose string descriptor is being read
834 * @index: the descriptor index
836 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
837 * or NULL if the index is 0 or the string could not be read.
839 char *usb_cache_string(struct usb_device *udev, int index)
841 char *buf;
842 char *smallbuf = NULL;
843 int len;
845 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
846 if ((len = usb_string(udev, index, buf, 256)) > 0) {
847 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
848 return buf;
849 memcpy(smallbuf, buf, len);
851 kfree(buf);
853 return smallbuf;
857 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
858 * @dev: the device whose device descriptor is being updated
859 * @size: how much of the descriptor to read
860 * Context: !in_interrupt ()
862 * Updates the copy of the device descriptor stored in the device structure,
863 * which dedicates space for this purpose.
865 * Not exported, only for use by the core. If drivers really want to read
866 * the device descriptor directly, they can call usb_get_descriptor() with
867 * type = USB_DT_DEVICE and index = 0.
869 * This call is synchronous, and may not be used in an interrupt context.
871 * Returns the number of bytes received on success, or else the status code
872 * returned by the underlying usb_control_msg() call.
874 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
876 struct usb_device_descriptor *desc;
877 int ret;
879 if (size > sizeof(*desc))
880 return -EINVAL;
881 desc = kmalloc(sizeof(*desc), GFP_NOIO);
882 if (!desc)
883 return -ENOMEM;
885 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
886 if (ret >= 0)
887 memcpy(&dev->descriptor, desc, size);
888 kfree(desc);
889 return ret;
893 * usb_get_status - issues a GET_STATUS call
894 * @dev: the device whose status is being checked
895 * @type: USB_RECIP_*; for device, interface, or endpoint
896 * @target: zero (for device), else interface or endpoint number
897 * @data: pointer to two bytes of bitmap data
898 * Context: !in_interrupt ()
900 * Returns device, interface, or endpoint status. Normally only of
901 * interest to see if the device is self powered, or has enabled the
902 * remote wakeup facility; or whether a bulk or interrupt endpoint
903 * is halted ("stalled").
905 * Bits in these status bitmaps are set using the SET_FEATURE request,
906 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
907 * function should be used to clear halt ("stall") status.
909 * This call is synchronous, and may not be used in an interrupt context.
911 * Returns the number of bytes received on success, or else the status code
912 * returned by the underlying usb_control_msg() call.
914 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
916 int ret;
917 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
919 if (!status)
920 return -ENOMEM;
922 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
923 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
924 sizeof(*status), USB_CTRL_GET_TIMEOUT);
926 *(u16 *)data = *status;
927 kfree(status);
928 return ret;
932 * usb_clear_halt - tells device to clear endpoint halt/stall condition
933 * @dev: device whose endpoint is halted
934 * @pipe: endpoint "pipe" being cleared
935 * Context: !in_interrupt ()
937 * This is used to clear halt conditions for bulk and interrupt endpoints,
938 * as reported by URB completion status. Endpoints that are halted are
939 * sometimes referred to as being "stalled". Such endpoints are unable
940 * to transmit or receive data until the halt status is cleared. Any URBs
941 * queued for such an endpoint should normally be unlinked by the driver
942 * before clearing the halt condition, as described in sections 5.7.5
943 * and 5.8.5 of the USB 2.0 spec.
945 * Note that control and isochronous endpoints don't halt, although control
946 * endpoints report "protocol stall" (for unsupported requests) using the
947 * same status code used to report a true stall.
949 * This call is synchronous, and may not be used in an interrupt context.
951 * Returns zero on success, or else the status code returned by the
952 * underlying usb_control_msg() call.
954 int usb_clear_halt(struct usb_device *dev, int pipe)
956 int result;
957 int endp = usb_pipeendpoint(pipe);
959 if (usb_pipein (pipe))
960 endp |= USB_DIR_IN;
962 /* we don't care if it wasn't halted first. in fact some devices
963 * (like some ibmcam model 1 units) seem to expect hosts to make
964 * this request for iso endpoints, which can't halt!
966 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
967 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
968 USB_ENDPOINT_HALT, endp, NULL, 0,
969 USB_CTRL_SET_TIMEOUT);
971 /* don't un-halt or force to DATA0 except on success */
972 if (result < 0)
973 return result;
975 /* NOTE: seems like Microsoft and Apple don't bother verifying
976 * the clear "took", so some devices could lock up if you check...
977 * such as the Hagiwara FlashGate DUAL. So we won't bother.
979 * NOTE: make sure the logic here doesn't diverge much from
980 * the copy in usb-storage, for as long as we need two copies.
983 /* toggle was reset by the clear */
984 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
986 return 0;
990 * usb_disable_endpoint -- Disable an endpoint by address
991 * @dev: the device whose endpoint is being disabled
992 * @epaddr: the endpoint's address. Endpoint number for output,
993 * endpoint number + USB_DIR_IN for input
995 * Deallocates hcd/hardware state for this endpoint ... and nukes all
996 * pending urbs.
998 * If the HCD hasn't registered a disable() function, this sets the
999 * endpoint's maxpacket size to 0 to prevent further submissions.
1001 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
1003 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1004 struct usb_host_endpoint *ep;
1006 if (!dev)
1007 return;
1009 if (usb_endpoint_out(epaddr)) {
1010 ep = dev->ep_out[epnum];
1011 dev->ep_out[epnum] = NULL;
1012 } else {
1013 ep = dev->ep_in[epnum];
1014 dev->ep_in[epnum] = NULL;
1016 if (ep && dev->bus)
1017 usb_hcd_endpoint_disable(dev, ep);
1021 * usb_disable_interface -- Disable all endpoints for an interface
1022 * @dev: the device whose interface is being disabled
1023 * @intf: pointer to the interface descriptor
1025 * Disables all the endpoints for the interface's current altsetting.
1027 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1029 struct usb_host_interface *alt = intf->cur_altsetting;
1030 int i;
1032 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1033 usb_disable_endpoint(dev,
1034 alt->endpoint[i].desc.bEndpointAddress);
1039 * usb_disable_device - Disable all the endpoints for a USB device
1040 * @dev: the device whose endpoints are being disabled
1041 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1043 * Disables all the device's endpoints, potentially including endpoint 0.
1044 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1045 * pending urbs) and usbcore state for the interfaces, so that usbcore
1046 * must usb_set_configuration() before any interfaces could be used.
1048 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1050 int i;
1052 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1053 skip_ep0 ? "non-ep0" : "all");
1054 for (i = skip_ep0; i < 16; ++i) {
1055 usb_disable_endpoint(dev, i);
1056 usb_disable_endpoint(dev, i + USB_DIR_IN);
1058 dev->toggle[0] = dev->toggle[1] = 0;
1060 /* getting rid of interfaces will disconnect
1061 * any drivers bound to them (a key side effect)
1063 if (dev->actconfig) {
1064 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1065 struct usb_interface *interface;
1067 /* remove this interface if it has been registered */
1068 interface = dev->actconfig->interface[i];
1069 if (!device_is_registered(&interface->dev))
1070 continue;
1071 dev_dbg (&dev->dev, "unregistering interface %s\n",
1072 interface->dev.bus_id);
1073 usb_remove_sysfs_intf_files(interface);
1074 device_del (&interface->dev);
1077 /* Now that the interfaces are unbound, nobody should
1078 * try to access them.
1080 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1081 put_device (&dev->actconfig->interface[i]->dev);
1082 dev->actconfig->interface[i] = NULL;
1084 dev->actconfig = NULL;
1085 if (dev->state == USB_STATE_CONFIGURED)
1086 usb_set_device_state(dev, USB_STATE_ADDRESS);
1092 * usb_enable_endpoint - Enable an endpoint for USB communications
1093 * @dev: the device whose interface is being enabled
1094 * @ep: the endpoint
1096 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1097 * For control endpoints, both the input and output sides are handled.
1099 static void
1100 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1102 unsigned int epaddr = ep->desc.bEndpointAddress;
1103 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1104 int is_control;
1106 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1107 == USB_ENDPOINT_XFER_CONTROL);
1108 if (usb_endpoint_out(epaddr) || is_control) {
1109 usb_settoggle(dev, epnum, 1, 0);
1110 dev->ep_out[epnum] = ep;
1112 if (!usb_endpoint_out(epaddr) || is_control) {
1113 usb_settoggle(dev, epnum, 0, 0);
1114 dev->ep_in[epnum] = ep;
1119 * usb_enable_interface - Enable all the endpoints for an interface
1120 * @dev: the device whose interface is being enabled
1121 * @intf: pointer to the interface descriptor
1123 * Enables all the endpoints for the interface's current altsetting.
1125 static void usb_enable_interface(struct usb_device *dev,
1126 struct usb_interface *intf)
1128 struct usb_host_interface *alt = intf->cur_altsetting;
1129 int i;
1131 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1132 usb_enable_endpoint(dev, &alt->endpoint[i]);
1136 * usb_set_interface - Makes a particular alternate setting be current
1137 * @dev: the device whose interface is being updated
1138 * @interface: the interface being updated
1139 * @alternate: the setting being chosen.
1140 * Context: !in_interrupt ()
1142 * This is used to enable data transfers on interfaces that may not
1143 * be enabled by default. Not all devices support such configurability.
1144 * Only the driver bound to an interface may change its setting.
1146 * Within any given configuration, each interface may have several
1147 * alternative settings. These are often used to control levels of
1148 * bandwidth consumption. For example, the default setting for a high
1149 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1150 * while interrupt transfers of up to 3KBytes per microframe are legal.
1151 * Also, isochronous endpoints may never be part of an
1152 * interface's default setting. To access such bandwidth, alternate
1153 * interface settings must be made current.
1155 * Note that in the Linux USB subsystem, bandwidth associated with
1156 * an endpoint in a given alternate setting is not reserved until an URB
1157 * is submitted that needs that bandwidth. Some other operating systems
1158 * allocate bandwidth early, when a configuration is chosen.
1160 * This call is synchronous, and may not be used in an interrupt context.
1161 * Also, drivers must not change altsettings while urbs are scheduled for
1162 * endpoints in that interface; all such urbs must first be completed
1163 * (perhaps forced by unlinking).
1165 * Returns zero on success, or else the status code returned by the
1166 * underlying usb_control_msg() call.
1168 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1170 struct usb_interface *iface;
1171 struct usb_host_interface *alt;
1172 int ret;
1173 int manual = 0;
1175 if (dev->state == USB_STATE_SUSPENDED)
1176 return -EHOSTUNREACH;
1178 iface = usb_ifnum_to_if(dev, interface);
1179 if (!iface) {
1180 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1181 interface);
1182 return -EINVAL;
1185 alt = usb_altnum_to_altsetting(iface, alternate);
1186 if (!alt) {
1187 warn("selecting invalid altsetting %d", alternate);
1188 return -EINVAL;
1191 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1192 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1193 alternate, interface, NULL, 0, 5000);
1195 /* 9.4.10 says devices don't need this and are free to STALL the
1196 * request if the interface only has one alternate setting.
1198 if (ret == -EPIPE && iface->num_altsetting == 1) {
1199 dev_dbg(&dev->dev,
1200 "manual set_interface for iface %d, alt %d\n",
1201 interface, alternate);
1202 manual = 1;
1203 } else if (ret < 0)
1204 return ret;
1206 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1207 * when they implement async or easily-killable versions of this or
1208 * other "should-be-internal" functions (like clear_halt).
1209 * should hcd+usbcore postprocess control requests?
1212 /* prevent submissions using previous endpoint settings */
1213 if (device_is_registered(&iface->dev))
1214 usb_remove_sysfs_intf_files(iface);
1215 usb_disable_interface(dev, iface);
1217 iface->cur_altsetting = alt;
1219 /* If the interface only has one altsetting and the device didn't
1220 * accept the request, we attempt to carry out the equivalent action
1221 * by manually clearing the HALT feature for each endpoint in the
1222 * new altsetting.
1224 if (manual) {
1225 int i;
1227 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1228 unsigned int epaddr =
1229 alt->endpoint[i].desc.bEndpointAddress;
1230 unsigned int pipe =
1231 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1232 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1234 usb_clear_halt(dev, pipe);
1238 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1240 * Note:
1241 * Despite EP0 is always present in all interfaces/AS, the list of
1242 * endpoints from the descriptor does not contain EP0. Due to its
1243 * omnipresence one might expect EP0 being considered "affected" by
1244 * any SetInterface request and hence assume toggles need to be reset.
1245 * However, EP0 toggles are re-synced for every individual transfer
1246 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1247 * (Likewise, EP0 never "halts" on well designed devices.)
1249 usb_enable_interface(dev, iface);
1250 if (device_is_registered(&iface->dev))
1251 usb_create_sysfs_intf_files(iface);
1253 return 0;
1257 * usb_reset_configuration - lightweight device reset
1258 * @dev: the device whose configuration is being reset
1260 * This issues a standard SET_CONFIGURATION request to the device using
1261 * the current configuration. The effect is to reset most USB-related
1262 * state in the device, including interface altsettings (reset to zero),
1263 * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1264 * endpoints). Other usbcore state is unchanged, including bindings of
1265 * usb device drivers to interfaces.
1267 * Because this affects multiple interfaces, avoid using this with composite
1268 * (multi-interface) devices. Instead, the driver for each interface may
1269 * use usb_set_interface() on the interfaces it claims. Be careful though;
1270 * some devices don't support the SET_INTERFACE request, and others won't
1271 * reset all the interface state (notably data toggles). Resetting the whole
1272 * configuration would affect other drivers' interfaces.
1274 * The caller must own the device lock.
1276 * Returns zero on success, else a negative error code.
1278 int usb_reset_configuration(struct usb_device *dev)
1280 int i, retval;
1281 struct usb_host_config *config;
1283 if (dev->state == USB_STATE_SUSPENDED)
1284 return -EHOSTUNREACH;
1286 /* caller must have locked the device and must own
1287 * the usb bus readlock (so driver bindings are stable);
1288 * calls during probe() are fine
1291 for (i = 1; i < 16; ++i) {
1292 usb_disable_endpoint(dev, i);
1293 usb_disable_endpoint(dev, i + USB_DIR_IN);
1296 config = dev->actconfig;
1297 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1298 USB_REQ_SET_CONFIGURATION, 0,
1299 config->desc.bConfigurationValue, 0,
1300 NULL, 0, USB_CTRL_SET_TIMEOUT);
1301 if (retval < 0)
1302 return retval;
1304 dev->toggle[0] = dev->toggle[1] = 0;
1306 /* re-init hc/hcd interface/endpoint state */
1307 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1308 struct usb_interface *intf = config->interface[i];
1309 struct usb_host_interface *alt;
1311 if (device_is_registered(&intf->dev))
1312 usb_remove_sysfs_intf_files(intf);
1313 alt = usb_altnum_to_altsetting(intf, 0);
1315 /* No altsetting 0? We'll assume the first altsetting.
1316 * We could use a GetInterface call, but if a device is
1317 * so non-compliant that it doesn't have altsetting 0
1318 * then I wouldn't trust its reply anyway.
1320 if (!alt)
1321 alt = &intf->altsetting[0];
1323 intf->cur_altsetting = alt;
1324 usb_enable_interface(dev, intf);
1325 if (device_is_registered(&intf->dev))
1326 usb_create_sysfs_intf_files(intf);
1328 return 0;
1331 void usb_release_interface(struct device *dev)
1333 struct usb_interface *intf = to_usb_interface(dev);
1334 struct usb_interface_cache *intfc =
1335 altsetting_to_usb_interface_cache(intf->altsetting);
1337 kref_put(&intfc->ref, usb_release_interface_cache);
1338 kfree(intf);
1341 #ifdef CONFIG_HOTPLUG
1342 static int usb_if_uevent(struct device *dev, char **envp, int num_envp,
1343 char *buffer, int buffer_size)
1345 struct usb_device *usb_dev;
1346 struct usb_interface *intf;
1347 struct usb_host_interface *alt;
1348 int i = 0;
1349 int length = 0;
1351 if (!dev)
1352 return -ENODEV;
1354 /* driver is often null here; dev_dbg() would oops */
1355 pr_debug ("usb %s: uevent\n", dev->bus_id);
1357 intf = to_usb_interface(dev);
1358 usb_dev = interface_to_usbdev(intf);
1359 alt = intf->cur_altsetting;
1361 if (add_uevent_var(envp, num_envp, &i,
1362 buffer, buffer_size, &length,
1363 "INTERFACE=%d/%d/%d",
1364 alt->desc.bInterfaceClass,
1365 alt->desc.bInterfaceSubClass,
1366 alt->desc.bInterfaceProtocol))
1367 return -ENOMEM;
1369 if (add_uevent_var(envp, num_envp, &i,
1370 buffer, buffer_size, &length,
1371 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1372 le16_to_cpu(usb_dev->descriptor.idVendor),
1373 le16_to_cpu(usb_dev->descriptor.idProduct),
1374 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1375 usb_dev->descriptor.bDeviceClass,
1376 usb_dev->descriptor.bDeviceSubClass,
1377 usb_dev->descriptor.bDeviceProtocol,
1378 alt->desc.bInterfaceClass,
1379 alt->desc.bInterfaceSubClass,
1380 alt->desc.bInterfaceProtocol))
1381 return -ENOMEM;
1383 envp[i] = NULL;
1384 return 0;
1387 #else
1389 static int usb_if_uevent(struct device *dev, char **envp,
1390 int num_envp, char *buffer, int buffer_size)
1392 return -ENODEV;
1394 #endif /* CONFIG_HOTPLUG */
1396 struct device_type usb_if_device_type = {
1397 .name = "usb_interface",
1398 .release = usb_release_interface,
1399 .uevent = usb_if_uevent,
1402 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1403 struct usb_host_config *config,
1404 u8 inum)
1406 struct usb_interface_assoc_descriptor *retval = NULL;
1407 struct usb_interface_assoc_descriptor *intf_assoc;
1408 int first_intf;
1409 int last_intf;
1410 int i;
1412 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1413 intf_assoc = config->intf_assoc[i];
1414 if (intf_assoc->bInterfaceCount == 0)
1415 continue;
1417 first_intf = intf_assoc->bFirstInterface;
1418 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1419 if (inum >= first_intf && inum <= last_intf) {
1420 if (!retval)
1421 retval = intf_assoc;
1422 else
1423 dev_err(&dev->dev, "Interface #%d referenced"
1424 " by multiple IADs\n", inum);
1428 return retval;
1433 * usb_set_configuration - Makes a particular device setting be current
1434 * @dev: the device whose configuration is being updated
1435 * @configuration: the configuration being chosen.
1436 * Context: !in_interrupt(), caller owns the device lock
1438 * This is used to enable non-default device modes. Not all devices
1439 * use this kind of configurability; many devices only have one
1440 * configuration.
1442 * @configuration is the value of the configuration to be installed.
1443 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1444 * must be non-zero; a value of zero indicates that the device in
1445 * unconfigured. However some devices erroneously use 0 as one of their
1446 * configuration values. To help manage such devices, this routine will
1447 * accept @configuration = -1 as indicating the device should be put in
1448 * an unconfigured state.
1450 * USB device configurations may affect Linux interoperability,
1451 * power consumption and the functionality available. For example,
1452 * the default configuration is limited to using 100mA of bus power,
1453 * so that when certain device functionality requires more power,
1454 * and the device is bus powered, that functionality should be in some
1455 * non-default device configuration. Other device modes may also be
1456 * reflected as configuration options, such as whether two ISDN
1457 * channels are available independently; and choosing between open
1458 * standard device protocols (like CDC) or proprietary ones.
1460 * Note that USB has an additional level of device configurability,
1461 * associated with interfaces. That configurability is accessed using
1462 * usb_set_interface().
1464 * This call is synchronous. The calling context must be able to sleep,
1465 * must own the device lock, and must not hold the driver model's USB
1466 * bus mutex; usb device driver probe() methods cannot use this routine.
1468 * Returns zero on success, or else the status code returned by the
1469 * underlying call that failed. On successful completion, each interface
1470 * in the original device configuration has been destroyed, and each one
1471 * in the new configuration has been probed by all relevant usb device
1472 * drivers currently known to the kernel.
1474 int usb_set_configuration(struct usb_device *dev, int configuration)
1476 int i, ret;
1477 struct usb_host_config *cp = NULL;
1478 struct usb_interface **new_interfaces = NULL;
1479 int n, nintf;
1481 if (configuration == -1)
1482 configuration = 0;
1483 else {
1484 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1485 if (dev->config[i].desc.bConfigurationValue ==
1486 configuration) {
1487 cp = &dev->config[i];
1488 break;
1492 if ((!cp && configuration != 0))
1493 return -EINVAL;
1495 /* The USB spec says configuration 0 means unconfigured.
1496 * But if a device includes a configuration numbered 0,
1497 * we will accept it as a correctly configured state.
1498 * Use -1 if you really want to unconfigure the device.
1500 if (cp && configuration == 0)
1501 dev_warn(&dev->dev, "config 0 descriptor??\n");
1503 /* Allocate memory for new interfaces before doing anything else,
1504 * so that if we run out then nothing will have changed. */
1505 n = nintf = 0;
1506 if (cp) {
1507 nintf = cp->desc.bNumInterfaces;
1508 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1509 GFP_KERNEL);
1510 if (!new_interfaces) {
1511 dev_err(&dev->dev, "Out of memory");
1512 return -ENOMEM;
1515 for (; n < nintf; ++n) {
1516 new_interfaces[n] = kzalloc(
1517 sizeof(struct usb_interface),
1518 GFP_KERNEL);
1519 if (!new_interfaces[n]) {
1520 dev_err(&dev->dev, "Out of memory");
1521 ret = -ENOMEM;
1522 free_interfaces:
1523 while (--n >= 0)
1524 kfree(new_interfaces[n]);
1525 kfree(new_interfaces);
1526 return ret;
1530 i = dev->bus_mA - cp->desc.bMaxPower * 2;
1531 if (i < 0)
1532 dev_warn(&dev->dev, "new config #%d exceeds power "
1533 "limit by %dmA\n",
1534 configuration, -i);
1537 /* Wake up the device so we can send it the Set-Config request */
1538 ret = usb_autoresume_device(dev);
1539 if (ret)
1540 goto free_interfaces;
1542 /* if it's already configured, clear out old state first.
1543 * getting rid of old interfaces means unbinding their drivers.
1545 if (dev->state != USB_STATE_ADDRESS)
1546 usb_disable_device (dev, 1); // Skip ep0
1548 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1549 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1550 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1552 /* All the old state is gone, so what else can we do?
1553 * The device is probably useless now anyway.
1555 cp = NULL;
1558 dev->actconfig = cp;
1559 if (!cp) {
1560 usb_set_device_state(dev, USB_STATE_ADDRESS);
1561 usb_autosuspend_device(dev);
1562 goto free_interfaces;
1564 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1566 /* Initialize the new interface structures and the
1567 * hc/hcd/usbcore interface/endpoint state.
1569 for (i = 0; i < nintf; ++i) {
1570 struct usb_interface_cache *intfc;
1571 struct usb_interface *intf;
1572 struct usb_host_interface *alt;
1574 cp->interface[i] = intf = new_interfaces[i];
1575 intfc = cp->intf_cache[i];
1576 intf->altsetting = intfc->altsetting;
1577 intf->num_altsetting = intfc->num_altsetting;
1578 intf->intf_assoc = find_iad(dev, cp, i);
1579 kref_get(&intfc->ref);
1581 alt = usb_altnum_to_altsetting(intf, 0);
1583 /* No altsetting 0? We'll assume the first altsetting.
1584 * We could use a GetInterface call, but if a device is
1585 * so non-compliant that it doesn't have altsetting 0
1586 * then I wouldn't trust its reply anyway.
1588 if (!alt)
1589 alt = &intf->altsetting[0];
1591 intf->cur_altsetting = alt;
1592 usb_enable_interface(dev, intf);
1593 intf->dev.parent = &dev->dev;
1594 intf->dev.driver = NULL;
1595 intf->dev.bus = &usb_bus_type;
1596 intf->dev.type = &usb_if_device_type;
1597 intf->dev.dma_mask = dev->dev.dma_mask;
1598 device_initialize (&intf->dev);
1599 mark_quiesced(intf);
1600 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1601 dev->bus->busnum, dev->devpath,
1602 configuration, alt->desc.bInterfaceNumber);
1604 kfree(new_interfaces);
1606 if (cp->string == NULL)
1607 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1609 /* Now that all the interfaces are set up, register them
1610 * to trigger binding of drivers to interfaces. probe()
1611 * routines may install different altsettings and may
1612 * claim() any interfaces not yet bound. Many class drivers
1613 * need that: CDC, audio, video, etc.
1615 for (i = 0; i < nintf; ++i) {
1616 struct usb_interface *intf = cp->interface[i];
1618 dev_dbg (&dev->dev,
1619 "adding %s (config #%d, interface %d)\n",
1620 intf->dev.bus_id, configuration,
1621 intf->cur_altsetting->desc.bInterfaceNumber);
1622 ret = device_add (&intf->dev);
1623 if (ret != 0) {
1624 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1625 intf->dev.bus_id, ret);
1626 continue;
1628 usb_create_sysfs_intf_files (intf);
1631 usb_autosuspend_device(dev);
1632 return 0;
1635 struct set_config_request {
1636 struct usb_device *udev;
1637 int config;
1638 struct work_struct work;
1641 /* Worker routine for usb_driver_set_configuration() */
1642 static void driver_set_config_work(struct work_struct *work)
1644 struct set_config_request *req =
1645 container_of(work, struct set_config_request, work);
1647 usb_lock_device(req->udev);
1648 usb_set_configuration(req->udev, req->config);
1649 usb_unlock_device(req->udev);
1650 usb_put_dev(req->udev);
1651 kfree(req);
1655 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1656 * @udev: the device whose configuration is being updated
1657 * @config: the configuration being chosen.
1658 * Context: In process context, must be able to sleep
1660 * Device interface drivers are not allowed to change device configurations.
1661 * This is because changing configurations will destroy the interface the
1662 * driver is bound to and create new ones; it would be like a floppy-disk
1663 * driver telling the computer to replace the floppy-disk drive with a
1664 * tape drive!
1666 * Still, in certain specialized circumstances the need may arise. This
1667 * routine gets around the normal restrictions by using a work thread to
1668 * submit the change-config request.
1670 * Returns 0 if the request was succesfully queued, error code otherwise.
1671 * The caller has no way to know whether the queued request will eventually
1672 * succeed.
1674 int usb_driver_set_configuration(struct usb_device *udev, int config)
1676 struct set_config_request *req;
1678 req = kmalloc(sizeof(*req), GFP_KERNEL);
1679 if (!req)
1680 return -ENOMEM;
1681 req->udev = udev;
1682 req->config = config;
1683 INIT_WORK(&req->work, driver_set_config_work);
1685 usb_get_dev(udev);
1686 schedule_work(&req->work);
1687 return 0;
1689 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1691 // synchronous request completion model
1692 EXPORT_SYMBOL(usb_control_msg);
1693 EXPORT_SYMBOL(usb_bulk_msg);
1695 EXPORT_SYMBOL(usb_sg_init);
1696 EXPORT_SYMBOL(usb_sg_cancel);
1697 EXPORT_SYMBOL(usb_sg_wait);
1699 // synchronous control message convenience routines
1700 EXPORT_SYMBOL(usb_get_descriptor);
1701 EXPORT_SYMBOL(usb_get_status);
1702 EXPORT_SYMBOL(usb_string);
1704 // synchronous calls that also maintain usbcore state
1705 EXPORT_SYMBOL(usb_clear_halt);
1706 EXPORT_SYMBOL(usb_reset_configuration);
1707 EXPORT_SYMBOL(usb_set_interface);