4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/smp_lock.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/acct.h>
18 #include <linux/capability.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/sysfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/mnt_namespace.h>
24 #include <linux/namei.h>
25 #include <linux/security.h>
26 #include <linux/mount.h>
27 #include <linux/ramfs.h>
28 #include <linux/log2.h>
29 #include <linux/idr.h>
30 #include <asm/uaccess.h>
31 #include <asm/unistd.h>
35 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36 #define HASH_SIZE (1UL << HASH_SHIFT)
38 /* spinlock for vfsmount related operations, inplace of dcache_lock */
39 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(vfsmount_lock
);
42 static DEFINE_IDA(mnt_id_ida
);
43 static DEFINE_IDA(mnt_group_ida
);
45 static struct list_head
*mount_hashtable __read_mostly
;
46 static struct kmem_cache
*mnt_cache __read_mostly
;
47 static struct rw_semaphore namespace_sem
;
50 struct kobject
*fs_kobj
;
51 EXPORT_SYMBOL_GPL(fs_kobj
);
53 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
55 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
56 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
57 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
58 return tmp
& (HASH_SIZE
- 1);
61 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
63 /* allocation is serialized by namespace_sem */
64 static int mnt_alloc_id(struct vfsmount
*mnt
)
69 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
70 spin_lock(&vfsmount_lock
);
71 res
= ida_get_new(&mnt_id_ida
, &mnt
->mnt_id
);
72 spin_unlock(&vfsmount_lock
);
79 static void mnt_free_id(struct vfsmount
*mnt
)
81 spin_lock(&vfsmount_lock
);
82 ida_remove(&mnt_id_ida
, mnt
->mnt_id
);
83 spin_unlock(&vfsmount_lock
);
87 * Allocate a new peer group ID
89 * mnt_group_ida is protected by namespace_sem
91 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
93 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
96 return ida_get_new_above(&mnt_group_ida
, 1, &mnt
->mnt_group_id
);
100 * Release a peer group ID
102 void mnt_release_group_id(struct vfsmount
*mnt
)
104 ida_remove(&mnt_group_ida
, mnt
->mnt_group_id
);
105 mnt
->mnt_group_id
= 0;
108 struct vfsmount
*alloc_vfsmnt(const char *name
)
110 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
114 err
= mnt_alloc_id(mnt
);
116 kmem_cache_free(mnt_cache
, mnt
);
120 atomic_set(&mnt
->mnt_count
, 1);
121 INIT_LIST_HEAD(&mnt
->mnt_hash
);
122 INIT_LIST_HEAD(&mnt
->mnt_child
);
123 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
124 INIT_LIST_HEAD(&mnt
->mnt_list
);
125 INIT_LIST_HEAD(&mnt
->mnt_expire
);
126 INIT_LIST_HEAD(&mnt
->mnt_share
);
127 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
128 INIT_LIST_HEAD(&mnt
->mnt_slave
);
129 atomic_set(&mnt
->__mnt_writers
, 0);
131 int size
= strlen(name
) + 1;
132 char *newname
= kmalloc(size
, GFP_KERNEL
);
134 memcpy(newname
, name
, size
);
135 mnt
->mnt_devname
= newname
;
143 * Most r/o checks on a fs are for operations that take
144 * discrete amounts of time, like a write() or unlink().
145 * We must keep track of when those operations start
146 * (for permission checks) and when they end, so that
147 * we can determine when writes are able to occur to
151 * __mnt_is_readonly: check whether a mount is read-only
152 * @mnt: the mount to check for its write status
154 * This shouldn't be used directly ouside of the VFS.
155 * It does not guarantee that the filesystem will stay
156 * r/w, just that it is right *now*. This can not and
157 * should not be used in place of IS_RDONLY(inode).
158 * mnt_want/drop_write() will _keep_ the filesystem
161 int __mnt_is_readonly(struct vfsmount
*mnt
)
163 if (mnt
->mnt_flags
& MNT_READONLY
)
165 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
169 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
173 * If holding multiple instances of this lock, they
174 * must be ordered by cpu number.
177 struct lock_class_key lock_class
; /* compiles out with !lockdep */
179 struct vfsmount
*mnt
;
180 } ____cacheline_aligned_in_smp
;
181 static DEFINE_PER_CPU(struct mnt_writer
, mnt_writers
);
183 static int __init
init_mnt_writers(void)
186 for_each_possible_cpu(cpu
) {
187 struct mnt_writer
*writer
= &per_cpu(mnt_writers
, cpu
);
188 spin_lock_init(&writer
->lock
);
189 lockdep_set_class(&writer
->lock
, &writer
->lock_class
);
194 fs_initcall(init_mnt_writers
);
196 static void unlock_mnt_writers(void)
199 struct mnt_writer
*cpu_writer
;
201 for_each_possible_cpu(cpu
) {
202 cpu_writer
= &per_cpu(mnt_writers
, cpu
);
203 spin_unlock(&cpu_writer
->lock
);
207 static inline void __clear_mnt_count(struct mnt_writer
*cpu_writer
)
209 if (!cpu_writer
->mnt
)
212 * This is in case anyone ever leaves an invalid,
213 * old ->mnt and a count of 0.
215 if (!cpu_writer
->count
)
217 atomic_add(cpu_writer
->count
, &cpu_writer
->mnt
->__mnt_writers
);
218 cpu_writer
->count
= 0;
221 * must hold cpu_writer->lock
223 static inline void use_cpu_writer_for_mount(struct mnt_writer
*cpu_writer
,
224 struct vfsmount
*mnt
)
226 if (cpu_writer
->mnt
== mnt
)
228 __clear_mnt_count(cpu_writer
);
229 cpu_writer
->mnt
= mnt
;
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
241 * mnt_want_write - get write access to a mount
242 * @mnt: the mount on which to take a write
244 * This tells the low-level filesystem that a write is
245 * about to be performed to it, and makes sure that
246 * writes are allowed before returning success. When
247 * the write operation is finished, mnt_drop_write()
248 * must be called. This is effectively a refcount.
250 int mnt_want_write(struct vfsmount
*mnt
)
253 struct mnt_writer
*cpu_writer
;
255 cpu_writer
= &get_cpu_var(mnt_writers
);
256 spin_lock(&cpu_writer
->lock
);
257 if (__mnt_is_readonly(mnt
)) {
261 use_cpu_writer_for_mount(cpu_writer
, mnt
);
264 spin_unlock(&cpu_writer
->lock
);
265 put_cpu_var(mnt_writers
);
268 EXPORT_SYMBOL_GPL(mnt_want_write
);
270 static void lock_mnt_writers(void)
273 struct mnt_writer
*cpu_writer
;
275 for_each_possible_cpu(cpu
) {
276 cpu_writer
= &per_cpu(mnt_writers
, cpu
);
277 spin_lock(&cpu_writer
->lock
);
278 __clear_mnt_count(cpu_writer
);
279 cpu_writer
->mnt
= NULL
;
284 * These per-cpu write counts are not guaranteed to have
285 * matched increments and decrements on any given cpu.
286 * A file open()ed for write on one cpu and close()d on
287 * another cpu will imbalance this count. Make sure it
288 * does not get too far out of whack.
290 static void handle_write_count_underflow(struct vfsmount
*mnt
)
292 if (atomic_read(&mnt
->__mnt_writers
) >=
293 MNT_WRITER_UNDERFLOW_LIMIT
)
296 * It isn't necessary to hold all of the locks
297 * at the same time, but doing it this way makes
298 * us share a lot more code.
302 * vfsmount_lock is for mnt_flags.
304 spin_lock(&vfsmount_lock
);
306 * If coalescing the per-cpu writer counts did not
307 * get us back to a positive writer count, we have
310 if ((atomic_read(&mnt
->__mnt_writers
) < 0) &&
311 !(mnt
->mnt_flags
& MNT_IMBALANCED_WRITE_COUNT
)) {
312 printk(KERN_DEBUG
"leak detected on mount(%p) writers "
314 mnt
, atomic_read(&mnt
->__mnt_writers
));
316 /* use the flag to keep the dmesg spam down */
317 mnt
->mnt_flags
|= MNT_IMBALANCED_WRITE_COUNT
;
319 spin_unlock(&vfsmount_lock
);
320 unlock_mnt_writers();
324 * mnt_drop_write - give up write access to a mount
325 * @mnt: the mount on which to give up write access
327 * Tells the low-level filesystem that we are done
328 * performing writes to it. Must be matched with
329 * mnt_want_write() call above.
331 void mnt_drop_write(struct vfsmount
*mnt
)
333 int must_check_underflow
= 0;
334 struct mnt_writer
*cpu_writer
;
336 cpu_writer
= &get_cpu_var(mnt_writers
);
337 spin_lock(&cpu_writer
->lock
);
339 use_cpu_writer_for_mount(cpu_writer
, mnt
);
340 if (cpu_writer
->count
> 0) {
343 must_check_underflow
= 1;
344 atomic_dec(&mnt
->__mnt_writers
);
347 spin_unlock(&cpu_writer
->lock
);
349 * Logically, we could call this each time,
350 * but the __mnt_writers cacheline tends to
351 * be cold, and makes this expensive.
353 if (must_check_underflow
)
354 handle_write_count_underflow(mnt
);
356 * This could be done right after the spinlock
357 * is taken because the spinlock keeps us on
358 * the cpu, and disables preemption. However,
359 * putting it here bounds the amount that
360 * __mnt_writers can underflow. Without it,
361 * we could theoretically wrap __mnt_writers.
363 put_cpu_var(mnt_writers
);
365 EXPORT_SYMBOL_GPL(mnt_drop_write
);
367 static int mnt_make_readonly(struct vfsmount
*mnt
)
373 * With all the locks held, this value is stable
375 if (atomic_read(&mnt
->__mnt_writers
) > 0) {
380 * nobody can do a successful mnt_want_write() with all
381 * of the counts in MNT_DENIED_WRITE and the locks held.
383 spin_lock(&vfsmount_lock
);
385 mnt
->mnt_flags
|= MNT_READONLY
;
386 spin_unlock(&vfsmount_lock
);
388 unlock_mnt_writers();
392 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
394 spin_lock(&vfsmount_lock
);
395 mnt
->mnt_flags
&= ~MNT_READONLY
;
396 spin_unlock(&vfsmount_lock
);
399 int simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
402 mnt
->mnt_root
= dget(sb
->s_root
);
406 EXPORT_SYMBOL(simple_set_mnt
);
408 void free_vfsmnt(struct vfsmount
*mnt
)
410 kfree(mnt
->mnt_devname
);
412 kmem_cache_free(mnt_cache
, mnt
);
416 * find the first or last mount at @dentry on vfsmount @mnt depending on
417 * @dir. If @dir is set return the first mount else return the last mount.
419 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
422 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
423 struct list_head
*tmp
= head
;
424 struct vfsmount
*p
, *found
= NULL
;
427 tmp
= dir
? tmp
->next
: tmp
->prev
;
431 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
432 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
441 * lookup_mnt increments the ref count before returning
442 * the vfsmount struct.
444 struct vfsmount
*lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
446 struct vfsmount
*child_mnt
;
447 spin_lock(&vfsmount_lock
);
448 if ((child_mnt
= __lookup_mnt(mnt
, dentry
, 1)))
450 spin_unlock(&vfsmount_lock
);
454 static inline int check_mnt(struct vfsmount
*mnt
)
456 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
459 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
463 wake_up_interruptible(&ns
->poll
);
467 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
469 if (ns
&& ns
->event
!= event
) {
471 wake_up_interruptible(&ns
->poll
);
475 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
477 old_path
->dentry
= mnt
->mnt_mountpoint
;
478 old_path
->mnt
= mnt
->mnt_parent
;
479 mnt
->mnt_parent
= mnt
;
480 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
481 list_del_init(&mnt
->mnt_child
);
482 list_del_init(&mnt
->mnt_hash
);
483 old_path
->dentry
->d_mounted
--;
486 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
487 struct vfsmount
*child_mnt
)
489 child_mnt
->mnt_parent
= mntget(mnt
);
490 child_mnt
->mnt_mountpoint
= dget(dentry
);
494 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
496 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
497 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
498 hash(path
->mnt
, path
->dentry
));
499 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
503 * the caller must hold vfsmount_lock
505 static void commit_tree(struct vfsmount
*mnt
)
507 struct vfsmount
*parent
= mnt
->mnt_parent
;
510 struct mnt_namespace
*n
= parent
->mnt_ns
;
512 BUG_ON(parent
== mnt
);
514 list_add_tail(&head
, &mnt
->mnt_list
);
515 list_for_each_entry(m
, &head
, mnt_list
)
517 list_splice(&head
, n
->list
.prev
);
519 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
520 hash(parent
, mnt
->mnt_mountpoint
));
521 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
522 touch_mnt_namespace(n
);
525 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
527 struct list_head
*next
= p
->mnt_mounts
.next
;
528 if (next
== &p
->mnt_mounts
) {
532 next
= p
->mnt_child
.next
;
533 if (next
!= &p
->mnt_parent
->mnt_mounts
)
538 return list_entry(next
, struct vfsmount
, mnt_child
);
541 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
543 struct list_head
*prev
= p
->mnt_mounts
.prev
;
544 while (prev
!= &p
->mnt_mounts
) {
545 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
546 prev
= p
->mnt_mounts
.prev
;
551 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
554 struct super_block
*sb
= old
->mnt_sb
;
555 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
558 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
559 mnt
->mnt_group_id
= 0; /* not a peer of original */
561 mnt
->mnt_group_id
= old
->mnt_group_id
;
563 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
564 int err
= mnt_alloc_group_id(mnt
);
569 mnt
->mnt_flags
= old
->mnt_flags
;
570 atomic_inc(&sb
->s_active
);
572 mnt
->mnt_root
= dget(root
);
573 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
574 mnt
->mnt_parent
= mnt
;
576 if (flag
& CL_SLAVE
) {
577 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
578 mnt
->mnt_master
= old
;
579 CLEAR_MNT_SHARED(mnt
);
580 } else if (!(flag
& CL_PRIVATE
)) {
581 if ((flag
& CL_PROPAGATION
) || IS_MNT_SHARED(old
))
582 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
583 if (IS_MNT_SLAVE(old
))
584 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
585 mnt
->mnt_master
= old
->mnt_master
;
587 if (flag
& CL_MAKE_SHARED
)
590 /* stick the duplicate mount on the same expiry list
591 * as the original if that was on one */
592 if (flag
& CL_EXPIRE
) {
593 if (!list_empty(&old
->mnt_expire
))
594 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
604 static inline void __mntput(struct vfsmount
*mnt
)
607 struct super_block
*sb
= mnt
->mnt_sb
;
609 * We don't have to hold all of the locks at the
610 * same time here because we know that we're the
611 * last reference to mnt and that no new writers
614 for_each_possible_cpu(cpu
) {
615 struct mnt_writer
*cpu_writer
= &per_cpu(mnt_writers
, cpu
);
616 if (cpu_writer
->mnt
!= mnt
)
618 spin_lock(&cpu_writer
->lock
);
619 atomic_add(cpu_writer
->count
, &mnt
->__mnt_writers
);
620 cpu_writer
->count
= 0;
622 * Might as well do this so that no one
623 * ever sees the pointer and expects
626 cpu_writer
->mnt
= NULL
;
627 spin_unlock(&cpu_writer
->lock
);
630 * This probably indicates that somebody messed
631 * up a mnt_want/drop_write() pair. If this
632 * happens, the filesystem was probably unable
633 * to make r/w->r/o transitions.
635 WARN_ON(atomic_read(&mnt
->__mnt_writers
));
638 deactivate_super(sb
);
641 void mntput_no_expire(struct vfsmount
*mnt
)
644 if (atomic_dec_and_lock(&mnt
->mnt_count
, &vfsmount_lock
)) {
645 if (likely(!mnt
->mnt_pinned
)) {
646 spin_unlock(&vfsmount_lock
);
650 atomic_add(mnt
->mnt_pinned
+ 1, &mnt
->mnt_count
);
652 spin_unlock(&vfsmount_lock
);
653 acct_auto_close_mnt(mnt
);
654 security_sb_umount_close(mnt
);
659 EXPORT_SYMBOL(mntput_no_expire
);
661 void mnt_pin(struct vfsmount
*mnt
)
663 spin_lock(&vfsmount_lock
);
665 spin_unlock(&vfsmount_lock
);
668 EXPORT_SYMBOL(mnt_pin
);
670 void mnt_unpin(struct vfsmount
*mnt
)
672 spin_lock(&vfsmount_lock
);
673 if (mnt
->mnt_pinned
) {
674 atomic_inc(&mnt
->mnt_count
);
677 spin_unlock(&vfsmount_lock
);
680 EXPORT_SYMBOL(mnt_unpin
);
682 static inline void mangle(struct seq_file
*m
, const char *s
)
684 seq_escape(m
, s
, " \t\n\\");
688 * Simple .show_options callback for filesystems which don't want to
689 * implement more complex mount option showing.
691 * See also save_mount_options().
693 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
695 const char *options
= mnt
->mnt_sb
->s_options
;
697 if (options
!= NULL
&& options
[0]) {
704 EXPORT_SYMBOL(generic_show_options
);
707 * If filesystem uses generic_show_options(), this function should be
708 * called from the fill_super() callback.
710 * The .remount_fs callback usually needs to be handled in a special
711 * way, to make sure, that previous options are not overwritten if the
714 * Also note, that if the filesystem's .remount_fs function doesn't
715 * reset all options to their default value, but changes only newly
716 * given options, then the displayed options will not reflect reality
719 void save_mount_options(struct super_block
*sb
, char *options
)
721 kfree(sb
->s_options
);
722 sb
->s_options
= kstrdup(options
, GFP_KERNEL
);
724 EXPORT_SYMBOL(save_mount_options
);
726 #ifdef CONFIG_PROC_FS
728 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
730 struct proc_mounts
*p
= m
->private;
732 down_read(&namespace_sem
);
733 return seq_list_start(&p
->ns
->list
, *pos
);
736 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
738 struct proc_mounts
*p
= m
->private;
740 return seq_list_next(v
, &p
->ns
->list
, pos
);
743 static void m_stop(struct seq_file
*m
, void *v
)
745 up_read(&namespace_sem
);
748 struct proc_fs_info
{
753 static void show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
755 static const struct proc_fs_info fs_info
[] = {
756 { MS_SYNCHRONOUS
, ",sync" },
757 { MS_DIRSYNC
, ",dirsync" },
758 { MS_MANDLOCK
, ",mand" },
761 const struct proc_fs_info
*fs_infop
;
763 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
764 if (sb
->s_flags
& fs_infop
->flag
)
765 seq_puts(m
, fs_infop
->str
);
769 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
771 static const struct proc_fs_info mnt_info
[] = {
772 { MNT_NOSUID
, ",nosuid" },
773 { MNT_NODEV
, ",nodev" },
774 { MNT_NOEXEC
, ",noexec" },
775 { MNT_NOATIME
, ",noatime" },
776 { MNT_NODIRATIME
, ",nodiratime" },
777 { MNT_RELATIME
, ",relatime" },
780 const struct proc_fs_info
*fs_infop
;
782 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
783 if (mnt
->mnt_flags
& fs_infop
->flag
)
784 seq_puts(m
, fs_infop
->str
);
788 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
790 mangle(m
, sb
->s_type
->name
);
791 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
793 mangle(m
, sb
->s_subtype
);
797 static int show_vfsmnt(struct seq_file
*m
, void *v
)
799 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
801 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
803 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
805 seq_path(m
, &mnt_path
, " \t\n\\");
807 show_type(m
, mnt
->mnt_sb
);
808 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
809 show_sb_opts(m
, mnt
->mnt_sb
);
810 show_mnt_opts(m
, mnt
);
811 if (mnt
->mnt_sb
->s_op
->show_options
)
812 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
813 seq_puts(m
, " 0 0\n");
817 const struct seq_operations mounts_op
= {
824 static int show_mountinfo(struct seq_file
*m
, void *v
)
826 struct proc_mounts
*p
= m
->private;
827 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
828 struct super_block
*sb
= mnt
->mnt_sb
;
829 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
830 struct path root
= p
->root
;
833 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
834 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
835 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
837 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
838 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
840 * Mountpoint is outside root, discard that one. Ugly,
841 * but less so than trying to do that in iterator in a
842 * race-free way (due to renames).
846 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
847 show_mnt_opts(m
, mnt
);
849 /* Tagged fields ("foo:X" or "bar") */
850 if (IS_MNT_SHARED(mnt
))
851 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
852 if (IS_MNT_SLAVE(mnt
)) {
853 int master
= mnt
->mnt_master
->mnt_group_id
;
854 int dom
= get_dominating_id(mnt
, &p
->root
);
855 seq_printf(m
, " master:%i", master
);
856 if (dom
&& dom
!= master
)
857 seq_printf(m
, " propagate_from:%i", dom
);
859 if (IS_MNT_UNBINDABLE(mnt
))
860 seq_puts(m
, " unbindable");
862 /* Filesystem specific data */
866 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
867 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
869 if (sb
->s_op
->show_options
)
870 err
= sb
->s_op
->show_options(m
, mnt
);
875 const struct seq_operations mountinfo_op
= {
879 .show
= show_mountinfo
,
882 static int show_vfsstat(struct seq_file
*m
, void *v
)
884 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
885 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
889 if (mnt
->mnt_devname
) {
890 seq_puts(m
, "device ");
891 mangle(m
, mnt
->mnt_devname
);
893 seq_puts(m
, "no device");
896 seq_puts(m
, " mounted on ");
897 seq_path(m
, &mnt_path
, " \t\n\\");
900 /* file system type */
901 seq_puts(m
, "with fstype ");
902 show_type(m
, mnt
->mnt_sb
);
904 /* optional statistics */
905 if (mnt
->mnt_sb
->s_op
->show_stats
) {
907 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
914 const struct seq_operations mountstats_op
= {
918 .show
= show_vfsstat
,
920 #endif /* CONFIG_PROC_FS */
923 * may_umount_tree - check if a mount tree is busy
924 * @mnt: root of mount tree
926 * This is called to check if a tree of mounts has any
927 * open files, pwds, chroots or sub mounts that are
930 int may_umount_tree(struct vfsmount
*mnt
)
933 int minimum_refs
= 0;
936 spin_lock(&vfsmount_lock
);
937 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
938 actual_refs
+= atomic_read(&p
->mnt_count
);
941 spin_unlock(&vfsmount_lock
);
943 if (actual_refs
> minimum_refs
)
949 EXPORT_SYMBOL(may_umount_tree
);
952 * may_umount - check if a mount point is busy
953 * @mnt: root of mount
955 * This is called to check if a mount point has any
956 * open files, pwds, chroots or sub mounts. If the
957 * mount has sub mounts this will return busy
958 * regardless of whether the sub mounts are busy.
960 * Doesn't take quota and stuff into account. IOW, in some cases it will
961 * give false negatives. The main reason why it's here is that we need
962 * a non-destructive way to look for easily umountable filesystems.
964 int may_umount(struct vfsmount
*mnt
)
967 spin_lock(&vfsmount_lock
);
968 if (propagate_mount_busy(mnt
, 2))
970 spin_unlock(&vfsmount_lock
);
974 EXPORT_SYMBOL(may_umount
);
976 void release_mounts(struct list_head
*head
)
978 struct vfsmount
*mnt
;
979 while (!list_empty(head
)) {
980 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
981 list_del_init(&mnt
->mnt_hash
);
982 if (mnt
->mnt_parent
!= mnt
) {
983 struct dentry
*dentry
;
985 spin_lock(&vfsmount_lock
);
986 dentry
= mnt
->mnt_mountpoint
;
988 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
989 mnt
->mnt_parent
= mnt
;
991 spin_unlock(&vfsmount_lock
);
999 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1003 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1004 list_move(&p
->mnt_hash
, kill
);
1007 propagate_umount(kill
);
1009 list_for_each_entry(p
, kill
, mnt_hash
) {
1010 list_del_init(&p
->mnt_expire
);
1011 list_del_init(&p
->mnt_list
);
1012 __touch_mnt_namespace(p
->mnt_ns
);
1014 list_del_init(&p
->mnt_child
);
1015 if (p
->mnt_parent
!= p
) {
1016 p
->mnt_parent
->mnt_ghosts
++;
1017 p
->mnt_mountpoint
->d_mounted
--;
1019 change_mnt_propagation(p
, MS_PRIVATE
);
1023 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1025 static int do_umount(struct vfsmount
*mnt
, int flags
)
1027 struct super_block
*sb
= mnt
->mnt_sb
;
1029 LIST_HEAD(umount_list
);
1031 retval
= security_sb_umount(mnt
, flags
);
1036 * Allow userspace to request a mountpoint be expired rather than
1037 * unmounting unconditionally. Unmount only happens if:
1038 * (1) the mark is already set (the mark is cleared by mntput())
1039 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1041 if (flags
& MNT_EXPIRE
) {
1042 if (mnt
== current
->fs
->root
.mnt
||
1043 flags
& (MNT_FORCE
| MNT_DETACH
))
1046 if (atomic_read(&mnt
->mnt_count
) != 2)
1049 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1054 * If we may have to abort operations to get out of this
1055 * mount, and they will themselves hold resources we must
1056 * allow the fs to do things. In the Unix tradition of
1057 * 'Gee thats tricky lets do it in userspace' the umount_begin
1058 * might fail to complete on the first run through as other tasks
1059 * must return, and the like. Thats for the mount program to worry
1060 * about for the moment.
1063 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1065 sb
->s_op
->umount_begin(sb
);
1070 * No sense to grab the lock for this test, but test itself looks
1071 * somewhat bogus. Suggestions for better replacement?
1072 * Ho-hum... In principle, we might treat that as umount + switch
1073 * to rootfs. GC would eventually take care of the old vfsmount.
1074 * Actually it makes sense, especially if rootfs would contain a
1075 * /reboot - static binary that would close all descriptors and
1076 * call reboot(9). Then init(8) could umount root and exec /reboot.
1078 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1080 * Special case for "unmounting" root ...
1081 * we just try to remount it readonly.
1083 down_write(&sb
->s_umount
);
1084 if (!(sb
->s_flags
& MS_RDONLY
)) {
1086 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1089 up_write(&sb
->s_umount
);
1093 down_write(&namespace_sem
);
1094 spin_lock(&vfsmount_lock
);
1097 if (!(flags
& MNT_DETACH
))
1098 shrink_submounts(mnt
, &umount_list
);
1101 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1102 if (!list_empty(&mnt
->mnt_list
))
1103 umount_tree(mnt
, 1, &umount_list
);
1106 spin_unlock(&vfsmount_lock
);
1108 security_sb_umount_busy(mnt
);
1109 up_write(&namespace_sem
);
1110 release_mounts(&umount_list
);
1115 * Now umount can handle mount points as well as block devices.
1116 * This is important for filesystems which use unnamed block devices.
1118 * We now support a flag for forced unmount like the other 'big iron'
1119 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1122 asmlinkage
long sys_umount(char __user
* name
, int flags
)
1124 struct nameidata nd
;
1127 retval
= __user_walk(name
, LOOKUP_FOLLOW
, &nd
);
1131 if (nd
.path
.dentry
!= nd
.path
.mnt
->mnt_root
)
1133 if (!check_mnt(nd
.path
.mnt
))
1137 if (!capable(CAP_SYS_ADMIN
))
1140 retval
= do_umount(nd
.path
.mnt
, flags
);
1142 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1143 dput(nd
.path
.dentry
);
1144 mntput_no_expire(nd
.path
.mnt
);
1149 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1152 * The 2.0 compatible umount. No flags.
1154 asmlinkage
long sys_oldumount(char __user
* name
)
1156 return sys_umount(name
, 0);
1161 static int mount_is_safe(struct nameidata
*nd
)
1163 if (capable(CAP_SYS_ADMIN
))
1167 if (S_ISLNK(nd
->path
.dentry
->d_inode
->i_mode
))
1169 if (nd
->path
.dentry
->d_inode
->i_mode
& S_ISVTX
) {
1170 if (current
->uid
!= nd
->path
.dentry
->d_inode
->i_uid
)
1173 if (vfs_permission(nd
, MAY_WRITE
))
1179 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1182 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1185 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1188 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1191 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1194 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1195 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1198 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1199 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1200 s
= skip_mnt_tree(s
);
1203 while (p
!= s
->mnt_parent
) {
1209 path
.dentry
= p
->mnt_mountpoint
;
1210 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1213 spin_lock(&vfsmount_lock
);
1214 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1215 attach_mnt(q
, &path
);
1216 spin_unlock(&vfsmount_lock
);
1222 LIST_HEAD(umount_list
);
1223 spin_lock(&vfsmount_lock
);
1224 umount_tree(res
, 0, &umount_list
);
1225 spin_unlock(&vfsmount_lock
);
1226 release_mounts(&umount_list
);
1231 struct vfsmount
*collect_mounts(struct vfsmount
*mnt
, struct dentry
*dentry
)
1233 struct vfsmount
*tree
;
1234 down_write(&namespace_sem
);
1235 tree
= copy_tree(mnt
, dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1236 up_write(&namespace_sem
);
1240 void drop_collected_mounts(struct vfsmount
*mnt
)
1242 LIST_HEAD(umount_list
);
1243 down_write(&namespace_sem
);
1244 spin_lock(&vfsmount_lock
);
1245 umount_tree(mnt
, 0, &umount_list
);
1246 spin_unlock(&vfsmount_lock
);
1247 up_write(&namespace_sem
);
1248 release_mounts(&umount_list
);
1251 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1255 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1256 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1257 mnt_release_group_id(p
);
1261 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1265 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1266 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1267 int err
= mnt_alloc_group_id(p
);
1269 cleanup_group_ids(mnt
, p
);
1279 * @source_mnt : mount tree to be attached
1280 * @nd : place the mount tree @source_mnt is attached
1281 * @parent_nd : if non-null, detach the source_mnt from its parent and
1282 * store the parent mount and mountpoint dentry.
1283 * (done when source_mnt is moved)
1285 * NOTE: in the table below explains the semantics when a source mount
1286 * of a given type is attached to a destination mount of a given type.
1287 * ---------------------------------------------------------------------------
1288 * | BIND MOUNT OPERATION |
1289 * |**************************************************************************
1290 * | source-->| shared | private | slave | unbindable |
1294 * |**************************************************************************
1295 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1297 * |non-shared| shared (+) | private | slave (*) | invalid |
1298 * ***************************************************************************
1299 * A bind operation clones the source mount and mounts the clone on the
1300 * destination mount.
1302 * (++) the cloned mount is propagated to all the mounts in the propagation
1303 * tree of the destination mount and the cloned mount is added to
1304 * the peer group of the source mount.
1305 * (+) the cloned mount is created under the destination mount and is marked
1306 * as shared. The cloned mount is added to the peer group of the source
1308 * (+++) the mount is propagated to all the mounts in the propagation tree
1309 * of the destination mount and the cloned mount is made slave
1310 * of the same master as that of the source mount. The cloned mount
1311 * is marked as 'shared and slave'.
1312 * (*) the cloned mount is made a slave of the same master as that of the
1315 * ---------------------------------------------------------------------------
1316 * | MOVE MOUNT OPERATION |
1317 * |**************************************************************************
1318 * | source-->| shared | private | slave | unbindable |
1322 * |**************************************************************************
1323 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1325 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1326 * ***************************************************************************
1328 * (+) the mount is moved to the destination. And is then propagated to
1329 * all the mounts in the propagation tree of the destination mount.
1330 * (+*) the mount is moved to the destination.
1331 * (+++) the mount is moved to the destination and is then propagated to
1332 * all the mounts belonging to the destination mount's propagation tree.
1333 * the mount is marked as 'shared and slave'.
1334 * (*) the mount continues to be a slave at the new location.
1336 * if the source mount is a tree, the operations explained above is
1337 * applied to each mount in the tree.
1338 * Must be called without spinlocks held, since this function can sleep
1341 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1342 struct path
*path
, struct path
*parent_path
)
1344 LIST_HEAD(tree_list
);
1345 struct vfsmount
*dest_mnt
= path
->mnt
;
1346 struct dentry
*dest_dentry
= path
->dentry
;
1347 struct vfsmount
*child
, *p
;
1350 if (IS_MNT_SHARED(dest_mnt
)) {
1351 err
= invent_group_ids(source_mnt
, true);
1355 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1357 goto out_cleanup_ids
;
1359 if (IS_MNT_SHARED(dest_mnt
)) {
1360 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1364 spin_lock(&vfsmount_lock
);
1366 detach_mnt(source_mnt
, parent_path
);
1367 attach_mnt(source_mnt
, path
);
1368 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
1370 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1371 commit_tree(source_mnt
);
1374 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1375 list_del_init(&child
->mnt_hash
);
1378 spin_unlock(&vfsmount_lock
);
1382 if (IS_MNT_SHARED(dest_mnt
))
1383 cleanup_group_ids(source_mnt
, NULL
);
1388 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1391 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1394 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1395 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1399 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1400 if (IS_DEADDIR(path
->dentry
->d_inode
))
1403 err
= security_sb_check_sb(mnt
, path
);
1408 if (IS_ROOT(path
->dentry
) || !d_unhashed(path
->dentry
))
1409 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1411 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1413 security_sb_post_addmount(mnt
, path
);
1418 * recursively change the type of the mountpoint.
1419 * noinline this do_mount helper to save do_mount stack space.
1421 static noinline
int do_change_type(struct nameidata
*nd
, int flag
)
1423 struct vfsmount
*m
, *mnt
= nd
->path
.mnt
;
1424 int recurse
= flag
& MS_REC
;
1425 int type
= flag
& ~MS_REC
;
1428 if (!capable(CAP_SYS_ADMIN
))
1431 if (nd
->path
.dentry
!= nd
->path
.mnt
->mnt_root
)
1434 down_write(&namespace_sem
);
1435 if (type
== MS_SHARED
) {
1436 err
= invent_group_ids(mnt
, recurse
);
1441 spin_lock(&vfsmount_lock
);
1442 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1443 change_mnt_propagation(m
, type
);
1444 spin_unlock(&vfsmount_lock
);
1447 up_write(&namespace_sem
);
1452 * do loopback mount.
1453 * noinline this do_mount helper to save do_mount stack space.
1455 static noinline
int do_loopback(struct nameidata
*nd
, char *old_name
,
1458 struct nameidata old_nd
;
1459 struct vfsmount
*mnt
= NULL
;
1460 int err
= mount_is_safe(nd
);
1463 if (!old_name
|| !*old_name
)
1465 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
1469 down_write(&namespace_sem
);
1471 if (IS_MNT_UNBINDABLE(old_nd
.path
.mnt
))
1474 if (!check_mnt(nd
->path
.mnt
) || !check_mnt(old_nd
.path
.mnt
))
1479 mnt
= copy_tree(old_nd
.path
.mnt
, old_nd
.path
.dentry
, 0);
1481 mnt
= clone_mnt(old_nd
.path
.mnt
, old_nd
.path
.dentry
, 0);
1486 err
= graft_tree(mnt
, &nd
->path
);
1488 LIST_HEAD(umount_list
);
1489 spin_lock(&vfsmount_lock
);
1490 umount_tree(mnt
, 0, &umount_list
);
1491 spin_unlock(&vfsmount_lock
);
1492 release_mounts(&umount_list
);
1496 up_write(&namespace_sem
);
1497 path_put(&old_nd
.path
);
1501 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1504 int readonly_request
= 0;
1506 if (ms_flags
& MS_RDONLY
)
1507 readonly_request
= 1;
1508 if (readonly_request
== __mnt_is_readonly(mnt
))
1511 if (readonly_request
)
1512 error
= mnt_make_readonly(mnt
);
1514 __mnt_unmake_readonly(mnt
);
1519 * change filesystem flags. dir should be a physical root of filesystem.
1520 * If you've mounted a non-root directory somewhere and want to do remount
1521 * on it - tough luck.
1522 * noinline this do_mount helper to save do_mount stack space.
1524 static noinline
int do_remount(struct nameidata
*nd
, int flags
, int mnt_flags
,
1528 struct super_block
*sb
= nd
->path
.mnt
->mnt_sb
;
1530 if (!capable(CAP_SYS_ADMIN
))
1533 if (!check_mnt(nd
->path
.mnt
))
1536 if (nd
->path
.dentry
!= nd
->path
.mnt
->mnt_root
)
1539 down_write(&sb
->s_umount
);
1540 if (flags
& MS_BIND
)
1541 err
= change_mount_flags(nd
->path
.mnt
, flags
);
1543 err
= do_remount_sb(sb
, flags
, data
, 0);
1545 nd
->path
.mnt
->mnt_flags
= mnt_flags
;
1546 up_write(&sb
->s_umount
);
1548 security_sb_post_remount(nd
->path
.mnt
, flags
, data
);
1552 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1555 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1556 if (IS_MNT_UNBINDABLE(p
))
1563 * noinline this do_mount helper to save do_mount stack space.
1565 static noinline
int do_move_mount(struct nameidata
*nd
, char *old_name
)
1567 struct nameidata old_nd
;
1568 struct path parent_path
;
1571 if (!capable(CAP_SYS_ADMIN
))
1573 if (!old_name
|| !*old_name
)
1575 err
= path_lookup(old_name
, LOOKUP_FOLLOW
, &old_nd
);
1579 down_write(&namespace_sem
);
1580 while (d_mountpoint(nd
->path
.dentry
) &&
1581 follow_down(&nd
->path
.mnt
, &nd
->path
.dentry
))
1584 if (!check_mnt(nd
->path
.mnt
) || !check_mnt(old_nd
.path
.mnt
))
1588 mutex_lock(&nd
->path
.dentry
->d_inode
->i_mutex
);
1589 if (IS_DEADDIR(nd
->path
.dentry
->d_inode
))
1592 if (!IS_ROOT(nd
->path
.dentry
) && d_unhashed(nd
->path
.dentry
))
1596 if (old_nd
.path
.dentry
!= old_nd
.path
.mnt
->mnt_root
)
1599 if (old_nd
.path
.mnt
== old_nd
.path
.mnt
->mnt_parent
)
1602 if (S_ISDIR(nd
->path
.dentry
->d_inode
->i_mode
) !=
1603 S_ISDIR(old_nd
.path
.dentry
->d_inode
->i_mode
))
1606 * Don't move a mount residing in a shared parent.
1608 if (old_nd
.path
.mnt
->mnt_parent
&&
1609 IS_MNT_SHARED(old_nd
.path
.mnt
->mnt_parent
))
1612 * Don't move a mount tree containing unbindable mounts to a destination
1613 * mount which is shared.
1615 if (IS_MNT_SHARED(nd
->path
.mnt
) &&
1616 tree_contains_unbindable(old_nd
.path
.mnt
))
1619 for (p
= nd
->path
.mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1620 if (p
== old_nd
.path
.mnt
)
1623 err
= attach_recursive_mnt(old_nd
.path
.mnt
, &nd
->path
, &parent_path
);
1627 /* if the mount is moved, it should no longer be expire
1629 list_del_init(&old_nd
.path
.mnt
->mnt_expire
);
1631 mutex_unlock(&nd
->path
.dentry
->d_inode
->i_mutex
);
1633 up_write(&namespace_sem
);
1635 path_put(&parent_path
);
1636 path_put(&old_nd
.path
);
1641 * create a new mount for userspace and request it to be added into the
1643 * noinline this do_mount helper to save do_mount stack space.
1645 static noinline
int do_new_mount(struct nameidata
*nd
, char *type
, int flags
,
1646 int mnt_flags
, char *name
, void *data
)
1648 struct vfsmount
*mnt
;
1650 if (!type
|| !memchr(type
, 0, PAGE_SIZE
))
1653 /* we need capabilities... */
1654 if (!capable(CAP_SYS_ADMIN
))
1657 mnt
= do_kern_mount(type
, flags
, name
, data
);
1659 return PTR_ERR(mnt
);
1661 return do_add_mount(mnt
, nd
, mnt_flags
, NULL
);
1665 * add a mount into a namespace's mount tree
1666 * - provide the option of adding the new mount to an expiration list
1668 int do_add_mount(struct vfsmount
*newmnt
, struct nameidata
*nd
,
1669 int mnt_flags
, struct list_head
*fslist
)
1673 down_write(&namespace_sem
);
1674 /* Something was mounted here while we slept */
1675 while (d_mountpoint(nd
->path
.dentry
) &&
1676 follow_down(&nd
->path
.mnt
, &nd
->path
.dentry
))
1679 if (!check_mnt(nd
->path
.mnt
))
1682 /* Refuse the same filesystem on the same mount point */
1684 if (nd
->path
.mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1685 nd
->path
.mnt
->mnt_root
== nd
->path
.dentry
)
1689 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1692 newmnt
->mnt_flags
= mnt_flags
;
1693 if ((err
= graft_tree(newmnt
, &nd
->path
)))
1696 if (fslist
) /* add to the specified expiration list */
1697 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1699 up_write(&namespace_sem
);
1703 up_write(&namespace_sem
);
1708 EXPORT_SYMBOL_GPL(do_add_mount
);
1711 * process a list of expirable mountpoints with the intent of discarding any
1712 * mountpoints that aren't in use and haven't been touched since last we came
1715 void mark_mounts_for_expiry(struct list_head
*mounts
)
1717 struct vfsmount
*mnt
, *next
;
1718 LIST_HEAD(graveyard
);
1721 if (list_empty(mounts
))
1724 down_write(&namespace_sem
);
1725 spin_lock(&vfsmount_lock
);
1727 /* extract from the expiration list every vfsmount that matches the
1728 * following criteria:
1729 * - only referenced by its parent vfsmount
1730 * - still marked for expiry (marked on the last call here; marks are
1731 * cleared by mntput())
1733 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
1734 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
1735 propagate_mount_busy(mnt
, 1))
1737 list_move(&mnt
->mnt_expire
, &graveyard
);
1739 while (!list_empty(&graveyard
)) {
1740 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
1741 touch_mnt_namespace(mnt
->mnt_ns
);
1742 umount_tree(mnt
, 1, &umounts
);
1744 spin_unlock(&vfsmount_lock
);
1745 up_write(&namespace_sem
);
1747 release_mounts(&umounts
);
1750 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
1753 * Ripoff of 'select_parent()'
1755 * search the list of submounts for a given mountpoint, and move any
1756 * shrinkable submounts to the 'graveyard' list.
1758 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
1760 struct vfsmount
*this_parent
= parent
;
1761 struct list_head
*next
;
1765 next
= this_parent
->mnt_mounts
.next
;
1767 while (next
!= &this_parent
->mnt_mounts
) {
1768 struct list_head
*tmp
= next
;
1769 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
1772 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
1775 * Descend a level if the d_mounts list is non-empty.
1777 if (!list_empty(&mnt
->mnt_mounts
)) {
1782 if (!propagate_mount_busy(mnt
, 1)) {
1783 list_move_tail(&mnt
->mnt_expire
, graveyard
);
1788 * All done at this level ... ascend and resume the search
1790 if (this_parent
!= parent
) {
1791 next
= this_parent
->mnt_child
.next
;
1792 this_parent
= this_parent
->mnt_parent
;
1799 * process a list of expirable mountpoints with the intent of discarding any
1800 * submounts of a specific parent mountpoint
1802 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
1804 LIST_HEAD(graveyard
);
1807 /* extract submounts of 'mountpoint' from the expiration list */
1808 while (select_submounts(mnt
, &graveyard
)) {
1809 while (!list_empty(&graveyard
)) {
1810 m
= list_first_entry(&graveyard
, struct vfsmount
,
1812 touch_mnt_namespace(mnt
->mnt_ns
);
1813 umount_tree(mnt
, 1, umounts
);
1819 * Some copy_from_user() implementations do not return the exact number of
1820 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1821 * Note that this function differs from copy_from_user() in that it will oops
1822 * on bad values of `to', rather than returning a short copy.
1824 static long exact_copy_from_user(void *to
, const void __user
* from
,
1828 const char __user
*f
= from
;
1831 if (!access_ok(VERIFY_READ
, from
, n
))
1835 if (__get_user(c
, f
)) {
1846 int copy_mount_options(const void __user
* data
, unsigned long *where
)
1856 if (!(page
= __get_free_page(GFP_KERNEL
)))
1859 /* We only care that *some* data at the address the user
1860 * gave us is valid. Just in case, we'll zero
1861 * the remainder of the page.
1863 /* copy_from_user cannot cross TASK_SIZE ! */
1864 size
= TASK_SIZE
- (unsigned long)data
;
1865 if (size
> PAGE_SIZE
)
1868 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
1874 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
1880 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1881 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1883 * data is a (void *) that can point to any structure up to
1884 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1885 * information (or be NULL).
1887 * Pre-0.97 versions of mount() didn't have a flags word.
1888 * When the flags word was introduced its top half was required
1889 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1890 * Therefore, if this magic number is present, it carries no information
1891 * and must be discarded.
1893 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
1894 unsigned long flags
, void *data_page
)
1896 struct nameidata nd
;
1901 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
1902 flags
&= ~MS_MGC_MSK
;
1904 /* Basic sanity checks */
1906 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
1908 if (dev_name
&& !memchr(dev_name
, 0, PAGE_SIZE
))
1912 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
1914 /* Separate the per-mountpoint flags */
1915 if (flags
& MS_NOSUID
)
1916 mnt_flags
|= MNT_NOSUID
;
1917 if (flags
& MS_NODEV
)
1918 mnt_flags
|= MNT_NODEV
;
1919 if (flags
& MS_NOEXEC
)
1920 mnt_flags
|= MNT_NOEXEC
;
1921 if (flags
& MS_NOATIME
)
1922 mnt_flags
|= MNT_NOATIME
;
1923 if (flags
& MS_NODIRATIME
)
1924 mnt_flags
|= MNT_NODIRATIME
;
1925 if (flags
& MS_RELATIME
)
1926 mnt_flags
|= MNT_RELATIME
;
1927 if (flags
& MS_RDONLY
)
1928 mnt_flags
|= MNT_READONLY
;
1930 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
|
1931 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
);
1933 /* ... and get the mountpoint */
1934 retval
= path_lookup(dir_name
, LOOKUP_FOLLOW
, &nd
);
1938 retval
= security_sb_mount(dev_name
, &nd
.path
,
1939 type_page
, flags
, data_page
);
1943 if (flags
& MS_REMOUNT
)
1944 retval
= do_remount(&nd
, flags
& ~MS_REMOUNT
, mnt_flags
,
1946 else if (flags
& MS_BIND
)
1947 retval
= do_loopback(&nd
, dev_name
, flags
& MS_REC
);
1948 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1949 retval
= do_change_type(&nd
, flags
);
1950 else if (flags
& MS_MOVE
)
1951 retval
= do_move_mount(&nd
, dev_name
);
1953 retval
= do_new_mount(&nd
, type_page
, flags
, mnt_flags
,
1954 dev_name
, data_page
);
1961 * Allocate a new namespace structure and populate it with contents
1962 * copied from the namespace of the passed in task structure.
1964 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
1965 struct fs_struct
*fs
)
1967 struct mnt_namespace
*new_ns
;
1968 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
, *altrootmnt
= NULL
;
1969 struct vfsmount
*p
, *q
;
1971 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
1973 return ERR_PTR(-ENOMEM
);
1975 atomic_set(&new_ns
->count
, 1);
1976 INIT_LIST_HEAD(&new_ns
->list
);
1977 init_waitqueue_head(&new_ns
->poll
);
1980 down_write(&namespace_sem
);
1981 /* First pass: copy the tree topology */
1982 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
1983 CL_COPY_ALL
| CL_EXPIRE
);
1984 if (!new_ns
->root
) {
1985 up_write(&namespace_sem
);
1987 return ERR_PTR(-ENOMEM
);;
1989 spin_lock(&vfsmount_lock
);
1990 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
1991 spin_unlock(&vfsmount_lock
);
1994 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1995 * as belonging to new namespace. We have already acquired a private
1996 * fs_struct, so tsk->fs->lock is not needed.
2003 if (p
== fs
->root
.mnt
) {
2005 fs
->root
.mnt
= mntget(q
);
2007 if (p
== fs
->pwd
.mnt
) {
2009 fs
->pwd
.mnt
= mntget(q
);
2011 if (p
== fs
->altroot
.mnt
) {
2013 fs
->altroot
.mnt
= mntget(q
);
2016 p
= next_mnt(p
, mnt_ns
->root
);
2017 q
= next_mnt(q
, new_ns
->root
);
2019 up_write(&namespace_sem
);
2031 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2032 struct fs_struct
*new_fs
)
2034 struct mnt_namespace
*new_ns
;
2039 if (!(flags
& CLONE_NEWNS
))
2042 new_ns
= dup_mnt_ns(ns
, new_fs
);
2048 asmlinkage
long sys_mount(char __user
* dev_name
, char __user
* dir_name
,
2049 char __user
* type
, unsigned long flags
,
2053 unsigned long data_page
;
2054 unsigned long type_page
;
2055 unsigned long dev_page
;
2058 retval
= copy_mount_options(type
, &type_page
);
2062 dir_page
= getname(dir_name
);
2063 retval
= PTR_ERR(dir_page
);
2064 if (IS_ERR(dir_page
))
2067 retval
= copy_mount_options(dev_name
, &dev_page
);
2071 retval
= copy_mount_options(data
, &data_page
);
2076 retval
= do_mount((char *)dev_page
, dir_page
, (char *)type_page
,
2077 flags
, (void *)data_page
);
2079 free_page(data_page
);
2082 free_page(dev_page
);
2086 free_page(type_page
);
2091 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2092 * It can block. Requires the big lock held.
2094 void set_fs_root(struct fs_struct
*fs
, struct path
*path
)
2096 struct path old_root
;
2098 write_lock(&fs
->lock
);
2099 old_root
= fs
->root
;
2102 write_unlock(&fs
->lock
);
2103 if (old_root
.dentry
)
2104 path_put(&old_root
);
2108 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2109 * It can block. Requires the big lock held.
2111 void set_fs_pwd(struct fs_struct
*fs
, struct path
*path
)
2113 struct path old_pwd
;
2115 write_lock(&fs
->lock
);
2119 write_unlock(&fs
->lock
);
2125 static void chroot_fs_refs(struct path
*old_root
, struct path
*new_root
)
2127 struct task_struct
*g
, *p
;
2128 struct fs_struct
*fs
;
2130 read_lock(&tasklist_lock
);
2131 do_each_thread(g
, p
) {
2135 atomic_inc(&fs
->count
);
2137 if (fs
->root
.dentry
== old_root
->dentry
2138 && fs
->root
.mnt
== old_root
->mnt
)
2139 set_fs_root(fs
, new_root
);
2140 if (fs
->pwd
.dentry
== old_root
->dentry
2141 && fs
->pwd
.mnt
== old_root
->mnt
)
2142 set_fs_pwd(fs
, new_root
);
2146 } while_each_thread(g
, p
);
2147 read_unlock(&tasklist_lock
);
2151 * pivot_root Semantics:
2152 * Moves the root file system of the current process to the directory put_old,
2153 * makes new_root as the new root file system of the current process, and sets
2154 * root/cwd of all processes which had them on the current root to new_root.
2157 * The new_root and put_old must be directories, and must not be on the
2158 * same file system as the current process root. The put_old must be
2159 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2160 * pointed to by put_old must yield the same directory as new_root. No other
2161 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2163 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2164 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2165 * in this situation.
2168 * - we don't move root/cwd if they are not at the root (reason: if something
2169 * cared enough to change them, it's probably wrong to force them elsewhere)
2170 * - it's okay to pick a root that isn't the root of a file system, e.g.
2171 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2172 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2175 asmlinkage
long sys_pivot_root(const char __user
* new_root
,
2176 const char __user
* put_old
)
2178 struct vfsmount
*tmp
;
2179 struct nameidata new_nd
, old_nd
;
2180 struct path parent_path
, root_parent
, root
;
2183 if (!capable(CAP_SYS_ADMIN
))
2186 error
= __user_walk(new_root
, LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
,
2191 if (!check_mnt(new_nd
.path
.mnt
))
2194 error
= __user_walk(put_old
, LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
, &old_nd
);
2198 error
= security_sb_pivotroot(&old_nd
.path
, &new_nd
.path
);
2200 path_put(&old_nd
.path
);
2204 read_lock(¤t
->fs
->lock
);
2205 root
= current
->fs
->root
;
2206 path_get(¤t
->fs
->root
);
2207 read_unlock(¤t
->fs
->lock
);
2208 down_write(&namespace_sem
);
2209 mutex_lock(&old_nd
.path
.dentry
->d_inode
->i_mutex
);
2211 if (IS_MNT_SHARED(old_nd
.path
.mnt
) ||
2212 IS_MNT_SHARED(new_nd
.path
.mnt
->mnt_parent
) ||
2213 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2215 if (!check_mnt(root
.mnt
))
2218 if (IS_DEADDIR(new_nd
.path
.dentry
->d_inode
))
2220 if (d_unhashed(new_nd
.path
.dentry
) && !IS_ROOT(new_nd
.path
.dentry
))
2222 if (d_unhashed(old_nd
.path
.dentry
) && !IS_ROOT(old_nd
.path
.dentry
))
2225 if (new_nd
.path
.mnt
== root
.mnt
||
2226 old_nd
.path
.mnt
== root
.mnt
)
2227 goto out2
; /* loop, on the same file system */
2229 if (root
.mnt
->mnt_root
!= root
.dentry
)
2230 goto out2
; /* not a mountpoint */
2231 if (root
.mnt
->mnt_parent
== root
.mnt
)
2232 goto out2
; /* not attached */
2233 if (new_nd
.path
.mnt
->mnt_root
!= new_nd
.path
.dentry
)
2234 goto out2
; /* not a mountpoint */
2235 if (new_nd
.path
.mnt
->mnt_parent
== new_nd
.path
.mnt
)
2236 goto out2
; /* not attached */
2237 /* make sure we can reach put_old from new_root */
2238 tmp
= old_nd
.path
.mnt
;
2239 spin_lock(&vfsmount_lock
);
2240 if (tmp
!= new_nd
.path
.mnt
) {
2242 if (tmp
->mnt_parent
== tmp
)
2243 goto out3
; /* already mounted on put_old */
2244 if (tmp
->mnt_parent
== new_nd
.path
.mnt
)
2246 tmp
= tmp
->mnt_parent
;
2248 if (!is_subdir(tmp
->mnt_mountpoint
, new_nd
.path
.dentry
))
2250 } else if (!is_subdir(old_nd
.path
.dentry
, new_nd
.path
.dentry
))
2252 detach_mnt(new_nd
.path
.mnt
, &parent_path
);
2253 detach_mnt(root
.mnt
, &root_parent
);
2254 /* mount old root on put_old */
2255 attach_mnt(root
.mnt
, &old_nd
.path
);
2256 /* mount new_root on / */
2257 attach_mnt(new_nd
.path
.mnt
, &root_parent
);
2258 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2259 spin_unlock(&vfsmount_lock
);
2260 chroot_fs_refs(&root
, &new_nd
.path
);
2261 security_sb_post_pivotroot(&root
, &new_nd
.path
);
2263 path_put(&root_parent
);
2264 path_put(&parent_path
);
2266 mutex_unlock(&old_nd
.path
.dentry
->d_inode
->i_mutex
);
2267 up_write(&namespace_sem
);
2269 path_put(&old_nd
.path
);
2271 path_put(&new_nd
.path
);
2275 spin_unlock(&vfsmount_lock
);
2279 static void __init
init_mount_tree(void)
2281 struct vfsmount
*mnt
;
2282 struct mnt_namespace
*ns
;
2285 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2287 panic("Can't create rootfs");
2288 ns
= kmalloc(sizeof(*ns
), GFP_KERNEL
);
2290 panic("Can't allocate initial namespace");
2291 atomic_set(&ns
->count
, 1);
2292 INIT_LIST_HEAD(&ns
->list
);
2293 init_waitqueue_head(&ns
->poll
);
2295 list_add(&mnt
->mnt_list
, &ns
->list
);
2299 init_task
.nsproxy
->mnt_ns
= ns
;
2302 root
.mnt
= ns
->root
;
2303 root
.dentry
= ns
->root
->mnt_root
;
2305 set_fs_pwd(current
->fs
, &root
);
2306 set_fs_root(current
->fs
, &root
);
2309 void __init
mnt_init(void)
2314 init_rwsem(&namespace_sem
);
2316 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2317 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2319 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2321 if (!mount_hashtable
)
2322 panic("Failed to allocate mount hash table\n");
2324 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2326 for (u
= 0; u
< HASH_SIZE
; u
++)
2327 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2331 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2333 fs_kobj
= kobject_create_and_add("fs", NULL
);
2335 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2340 void __put_mnt_ns(struct mnt_namespace
*ns
)
2342 struct vfsmount
*root
= ns
->root
;
2343 LIST_HEAD(umount_list
);
2345 spin_unlock(&vfsmount_lock
);
2346 down_write(&namespace_sem
);
2347 spin_lock(&vfsmount_lock
);
2348 umount_tree(root
, 0, &umount_list
);
2349 spin_unlock(&vfsmount_lock
);
2350 up_write(&namespace_sem
);
2351 release_mounts(&umount_list
);