Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / block / pktcdvd.c
blob2ddf03ae034e1aa552d6740ee171c6739f9335bd
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
66 #include <asm/uaccess.h>
68 #define DRIVER_NAME "pktcdvd"
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
82 #define MAX_SPEED 0xffff
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
94 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
95 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
105 * create and register a pktcdvd kernel object.
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108 const char* name,
109 struct kobject* parent,
110 struct kobj_type* ktype)
112 struct pktcdvd_kobj *p;
113 int error;
115 p = kzalloc(sizeof(*p), GFP_KERNEL);
116 if (!p)
117 return NULL;
118 p->pd = pd;
119 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
120 if (error) {
121 kobject_put(&p->kobj);
122 return NULL;
124 kobject_uevent(&p->kobj, KOBJ_ADD);
125 return p;
128 * remove a pktcdvd kernel object.
130 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
132 if (p)
133 kobject_put(&p->kobj);
136 * default release function for pktcdvd kernel objects.
138 static void pkt_kobj_release(struct kobject *kobj)
140 kfree(to_pktcdvdkobj(kobj));
144 /**********************************************************
146 * sysfs interface for pktcdvd
147 * by (C) 2006 Thomas Maier <balagi@justmail.de>
149 **********************************************************/
151 #define DEF_ATTR(_obj,_name,_mode) \
152 static struct attribute _obj = { .name = _name, .mode = _mode }
154 /**********************************************************
155 /sys/class/pktcdvd/pktcdvd[0-7]/
156 stat/reset
157 stat/packets_started
158 stat/packets_finished
159 stat/kb_written
160 stat/kb_read
161 stat/kb_read_gather
162 write_queue/size
163 write_queue/congestion_off
164 write_queue/congestion_on
165 **********************************************************/
167 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
168 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
169 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
170 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
171 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
172 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
174 static struct attribute *kobj_pkt_attrs_stat[] = {
175 &kobj_pkt_attr_st1,
176 &kobj_pkt_attr_st2,
177 &kobj_pkt_attr_st3,
178 &kobj_pkt_attr_st4,
179 &kobj_pkt_attr_st5,
180 &kobj_pkt_attr_st6,
181 NULL
184 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
185 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
186 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
188 static struct attribute *kobj_pkt_attrs_wqueue[] = {
189 &kobj_pkt_attr_wq1,
190 &kobj_pkt_attr_wq2,
191 &kobj_pkt_attr_wq3,
192 NULL
195 static ssize_t kobj_pkt_show(struct kobject *kobj,
196 struct attribute *attr, char *data)
198 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
199 int n = 0;
200 int v;
201 if (strcmp(attr->name, "packets_started") == 0) {
202 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
204 } else if (strcmp(attr->name, "packets_finished") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
207 } else if (strcmp(attr->name, "kb_written") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
210 } else if (strcmp(attr->name, "kb_read") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
213 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
216 } else if (strcmp(attr->name, "size") == 0) {
217 spin_lock(&pd->lock);
218 v = pd->bio_queue_size;
219 spin_unlock(&pd->lock);
220 n = sprintf(data, "%d\n", v);
222 } else if (strcmp(attr->name, "congestion_off") == 0) {
223 spin_lock(&pd->lock);
224 v = pd->write_congestion_off;
225 spin_unlock(&pd->lock);
226 n = sprintf(data, "%d\n", v);
228 } else if (strcmp(attr->name, "congestion_on") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->write_congestion_on;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
234 return n;
237 static void init_write_congestion_marks(int* lo, int* hi)
239 if (*hi > 0) {
240 *hi = max(*hi, 500);
241 *hi = min(*hi, 1000000);
242 if (*lo <= 0)
243 *lo = *hi - 100;
244 else {
245 *lo = min(*lo, *hi - 100);
246 *lo = max(*lo, 100);
248 } else {
249 *hi = -1;
250 *lo = -1;
254 static ssize_t kobj_pkt_store(struct kobject *kobj,
255 struct attribute *attr,
256 const char *data, size_t len)
258 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
259 int val;
261 if (strcmp(attr->name, "reset") == 0 && len > 0) {
262 pd->stats.pkt_started = 0;
263 pd->stats.pkt_ended = 0;
264 pd->stats.secs_w = 0;
265 pd->stats.secs_rg = 0;
266 pd->stats.secs_r = 0;
268 } else if (strcmp(attr->name, "congestion_off") == 0
269 && sscanf(data, "%d", &val) == 1) {
270 spin_lock(&pd->lock);
271 pd->write_congestion_off = val;
272 init_write_congestion_marks(&pd->write_congestion_off,
273 &pd->write_congestion_on);
274 spin_unlock(&pd->lock);
276 } else if (strcmp(attr->name, "congestion_on") == 0
277 && sscanf(data, "%d", &val) == 1) {
278 spin_lock(&pd->lock);
279 pd->write_congestion_on = val;
280 init_write_congestion_marks(&pd->write_congestion_off,
281 &pd->write_congestion_on);
282 spin_unlock(&pd->lock);
284 return len;
287 static struct sysfs_ops kobj_pkt_ops = {
288 .show = kobj_pkt_show,
289 .store = kobj_pkt_store
291 static struct kobj_type kobj_pkt_type_stat = {
292 .release = pkt_kobj_release,
293 .sysfs_ops = &kobj_pkt_ops,
294 .default_attrs = kobj_pkt_attrs_stat
296 static struct kobj_type kobj_pkt_type_wqueue = {
297 .release = pkt_kobj_release,
298 .sysfs_ops = &kobj_pkt_ops,
299 .default_attrs = kobj_pkt_attrs_wqueue
302 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
304 if (class_pktcdvd) {
305 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
306 "%s", pd->name);
307 if (IS_ERR(pd->dev))
308 pd->dev = NULL;
310 if (pd->dev) {
311 pd->kobj_stat = pkt_kobj_create(pd, "stat",
312 &pd->dev->kobj,
313 &kobj_pkt_type_stat);
314 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
315 &pd->dev->kobj,
316 &kobj_pkt_type_wqueue);
320 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
322 pkt_kobj_remove(pd->kobj_stat);
323 pkt_kobj_remove(pd->kobj_wqueue);
324 if (class_pktcdvd)
325 device_destroy(class_pktcdvd, pd->pkt_dev);
329 /********************************************************************
330 /sys/class/pktcdvd/
331 add map block device
332 remove unmap packet dev
333 device_map show mappings
334 *******************************************************************/
336 static void class_pktcdvd_release(struct class *cls)
338 kfree(cls);
340 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
342 int n = 0;
343 int idx;
344 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
345 for (idx = 0; idx < MAX_WRITERS; idx++) {
346 struct pktcdvd_device *pd = pkt_devs[idx];
347 if (!pd)
348 continue;
349 n += sprintf(data+n, "%s %u:%u %u:%u\n",
350 pd->name,
351 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
352 MAJOR(pd->bdev->bd_dev),
353 MINOR(pd->bdev->bd_dev));
355 mutex_unlock(&ctl_mutex);
356 return n;
359 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
360 size_t count)
362 unsigned int major, minor;
364 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
365 /* pkt_setup_dev() expects caller to hold reference to self */
366 if (!try_module_get(THIS_MODULE))
367 return -ENODEV;
369 pkt_setup_dev(MKDEV(major, minor), NULL);
371 module_put(THIS_MODULE);
373 return count;
376 return -EINVAL;
379 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
380 size_t count)
382 unsigned int major, minor;
383 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
384 pkt_remove_dev(MKDEV(major, minor));
385 return count;
387 return -EINVAL;
390 static struct class_attribute class_pktcdvd_attrs[] = {
391 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
392 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
393 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
394 __ATTR_NULL
398 static int pkt_sysfs_init(void)
400 int ret = 0;
403 * create control files in sysfs
404 * /sys/class/pktcdvd/...
406 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
407 if (!class_pktcdvd)
408 return -ENOMEM;
409 class_pktcdvd->name = DRIVER_NAME;
410 class_pktcdvd->owner = THIS_MODULE;
411 class_pktcdvd->class_release = class_pktcdvd_release;
412 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
413 ret = class_register(class_pktcdvd);
414 if (ret) {
415 kfree(class_pktcdvd);
416 class_pktcdvd = NULL;
417 printk(DRIVER_NAME": failed to create class pktcdvd\n");
418 return ret;
420 return 0;
423 static void pkt_sysfs_cleanup(void)
425 if (class_pktcdvd)
426 class_destroy(class_pktcdvd);
427 class_pktcdvd = NULL;
430 /********************************************************************
431 entries in debugfs
433 /sys/kernel/debug/pktcdvd[0-7]/
434 info
436 *******************************************************************/
438 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
440 return pkt_seq_show(m, p);
443 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
445 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
448 static const struct file_operations debug_fops = {
449 .open = pkt_debugfs_fops_open,
450 .read = seq_read,
451 .llseek = seq_lseek,
452 .release = single_release,
453 .owner = THIS_MODULE,
456 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
458 if (!pkt_debugfs_root)
459 return;
460 pd->dfs_f_info = NULL;
461 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
462 if (IS_ERR(pd->dfs_d_root)) {
463 pd->dfs_d_root = NULL;
464 return;
466 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
467 pd->dfs_d_root, pd, &debug_fops);
468 if (IS_ERR(pd->dfs_f_info)) {
469 pd->dfs_f_info = NULL;
470 return;
474 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
476 if (!pkt_debugfs_root)
477 return;
478 if (pd->dfs_f_info)
479 debugfs_remove(pd->dfs_f_info);
480 pd->dfs_f_info = NULL;
481 if (pd->dfs_d_root)
482 debugfs_remove(pd->dfs_d_root);
483 pd->dfs_d_root = NULL;
486 static void pkt_debugfs_init(void)
488 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
489 if (IS_ERR(pkt_debugfs_root)) {
490 pkt_debugfs_root = NULL;
491 return;
495 static void pkt_debugfs_cleanup(void)
497 if (!pkt_debugfs_root)
498 return;
499 debugfs_remove(pkt_debugfs_root);
500 pkt_debugfs_root = NULL;
503 /* ----------------------------------------------------------*/
506 static void pkt_bio_finished(struct pktcdvd_device *pd)
508 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
509 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
510 VPRINTK(DRIVER_NAME": queue empty\n");
511 atomic_set(&pd->iosched.attention, 1);
512 wake_up(&pd->wqueue);
516 static void pkt_bio_destructor(struct bio *bio)
518 kfree(bio->bi_io_vec);
519 kfree(bio);
522 static struct bio *pkt_bio_alloc(int nr_iovecs)
524 struct bio_vec *bvl = NULL;
525 struct bio *bio;
527 bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
528 if (!bio)
529 goto no_bio;
530 bio_init(bio);
532 bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
533 if (!bvl)
534 goto no_bvl;
536 bio->bi_max_vecs = nr_iovecs;
537 bio->bi_io_vec = bvl;
538 bio->bi_destructor = pkt_bio_destructor;
540 return bio;
542 no_bvl:
543 kfree(bio);
544 no_bio:
545 return NULL;
549 * Allocate a packet_data struct
551 static struct packet_data *pkt_alloc_packet_data(int frames)
553 int i;
554 struct packet_data *pkt;
556 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
557 if (!pkt)
558 goto no_pkt;
560 pkt->frames = frames;
561 pkt->w_bio = pkt_bio_alloc(frames);
562 if (!pkt->w_bio)
563 goto no_bio;
565 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
566 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
567 if (!pkt->pages[i])
568 goto no_page;
571 spin_lock_init(&pkt->lock);
573 for (i = 0; i < frames; i++) {
574 struct bio *bio = pkt_bio_alloc(1);
575 if (!bio)
576 goto no_rd_bio;
577 pkt->r_bios[i] = bio;
580 return pkt;
582 no_rd_bio:
583 for (i = 0; i < frames; i++) {
584 struct bio *bio = pkt->r_bios[i];
585 if (bio)
586 bio_put(bio);
589 no_page:
590 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
591 if (pkt->pages[i])
592 __free_page(pkt->pages[i]);
593 bio_put(pkt->w_bio);
594 no_bio:
595 kfree(pkt);
596 no_pkt:
597 return NULL;
601 * Free a packet_data struct
603 static void pkt_free_packet_data(struct packet_data *pkt)
605 int i;
607 for (i = 0; i < pkt->frames; i++) {
608 struct bio *bio = pkt->r_bios[i];
609 if (bio)
610 bio_put(bio);
612 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
613 __free_page(pkt->pages[i]);
614 bio_put(pkt->w_bio);
615 kfree(pkt);
618 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
620 struct packet_data *pkt, *next;
622 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
624 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
625 pkt_free_packet_data(pkt);
627 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
630 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
632 struct packet_data *pkt;
634 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
636 while (nr_packets > 0) {
637 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
638 if (!pkt) {
639 pkt_shrink_pktlist(pd);
640 return 0;
642 pkt->id = nr_packets;
643 pkt->pd = pd;
644 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
645 nr_packets--;
647 return 1;
650 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
652 struct rb_node *n = rb_next(&node->rb_node);
653 if (!n)
654 return NULL;
655 return rb_entry(n, struct pkt_rb_node, rb_node);
658 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
660 rb_erase(&node->rb_node, &pd->bio_queue);
661 mempool_free(node, pd->rb_pool);
662 pd->bio_queue_size--;
663 BUG_ON(pd->bio_queue_size < 0);
667 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
669 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
671 struct rb_node *n = pd->bio_queue.rb_node;
672 struct rb_node *next;
673 struct pkt_rb_node *tmp;
675 if (!n) {
676 BUG_ON(pd->bio_queue_size > 0);
677 return NULL;
680 for (;;) {
681 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
682 if (s <= tmp->bio->bi_sector)
683 next = n->rb_left;
684 else
685 next = n->rb_right;
686 if (!next)
687 break;
688 n = next;
691 if (s > tmp->bio->bi_sector) {
692 tmp = pkt_rbtree_next(tmp);
693 if (!tmp)
694 return NULL;
696 BUG_ON(s > tmp->bio->bi_sector);
697 return tmp;
701 * Insert a node into the pd->bio_queue rb tree.
703 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
705 struct rb_node **p = &pd->bio_queue.rb_node;
706 struct rb_node *parent = NULL;
707 sector_t s = node->bio->bi_sector;
708 struct pkt_rb_node *tmp;
710 while (*p) {
711 parent = *p;
712 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
713 if (s < tmp->bio->bi_sector)
714 p = &(*p)->rb_left;
715 else
716 p = &(*p)->rb_right;
718 rb_link_node(&node->rb_node, parent, p);
719 rb_insert_color(&node->rb_node, &pd->bio_queue);
720 pd->bio_queue_size++;
724 * Add a bio to a single linked list defined by its head and tail pointers.
726 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
728 bio->bi_next = NULL;
729 if (*list_tail) {
730 BUG_ON((*list_head) == NULL);
731 (*list_tail)->bi_next = bio;
732 (*list_tail) = bio;
733 } else {
734 BUG_ON((*list_head) != NULL);
735 (*list_head) = bio;
736 (*list_tail) = bio;
741 * Remove and return the first bio from a single linked list defined by its
742 * head and tail pointers.
744 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
746 struct bio *bio;
748 if (*list_head == NULL)
749 return NULL;
751 bio = *list_head;
752 *list_head = bio->bi_next;
753 if (*list_head == NULL)
754 *list_tail = NULL;
756 bio->bi_next = NULL;
757 return bio;
761 * Send a packet_command to the underlying block device and
762 * wait for completion.
764 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
766 struct request_queue *q = bdev_get_queue(pd->bdev);
767 struct request *rq;
768 int ret = 0;
770 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
771 WRITE : READ, __GFP_WAIT);
773 if (cgc->buflen) {
774 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
775 goto out;
778 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
779 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
781 rq->timeout = 60*HZ;
782 rq->cmd_type = REQ_TYPE_BLOCK_PC;
783 rq->cmd_flags |= REQ_HARDBARRIER;
784 if (cgc->quiet)
785 rq->cmd_flags |= REQ_QUIET;
787 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
788 if (rq->errors)
789 ret = -EIO;
790 out:
791 blk_put_request(rq);
792 return ret;
796 * A generic sense dump / resolve mechanism should be implemented across
797 * all ATAPI + SCSI devices.
799 static void pkt_dump_sense(struct packet_command *cgc)
801 static char *info[9] = { "No sense", "Recovered error", "Not ready",
802 "Medium error", "Hardware error", "Illegal request",
803 "Unit attention", "Data protect", "Blank check" };
804 int i;
805 struct request_sense *sense = cgc->sense;
807 printk(DRIVER_NAME":");
808 for (i = 0; i < CDROM_PACKET_SIZE; i++)
809 printk(" %02x", cgc->cmd[i]);
810 printk(" - ");
812 if (sense == NULL) {
813 printk("no sense\n");
814 return;
817 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
819 if (sense->sense_key > 8) {
820 printk(" (INVALID)\n");
821 return;
824 printk(" (%s)\n", info[sense->sense_key]);
828 * flush the drive cache to media
830 static int pkt_flush_cache(struct pktcdvd_device *pd)
832 struct packet_command cgc;
834 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
835 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
836 cgc.quiet = 1;
839 * the IMMED bit -- we default to not setting it, although that
840 * would allow a much faster close, this is safer
842 #if 0
843 cgc.cmd[1] = 1 << 1;
844 #endif
845 return pkt_generic_packet(pd, &cgc);
849 * speed is given as the normal factor, e.g. 4 for 4x
851 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
852 unsigned write_speed, unsigned read_speed)
854 struct packet_command cgc;
855 struct request_sense sense;
856 int ret;
858 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
859 cgc.sense = &sense;
860 cgc.cmd[0] = GPCMD_SET_SPEED;
861 cgc.cmd[2] = (read_speed >> 8) & 0xff;
862 cgc.cmd[3] = read_speed & 0xff;
863 cgc.cmd[4] = (write_speed >> 8) & 0xff;
864 cgc.cmd[5] = write_speed & 0xff;
866 if ((ret = pkt_generic_packet(pd, &cgc)))
867 pkt_dump_sense(&cgc);
869 return ret;
873 * Queue a bio for processing by the low-level CD device. Must be called
874 * from process context.
876 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
878 spin_lock(&pd->iosched.lock);
879 if (bio_data_dir(bio) == READ) {
880 pkt_add_list_last(bio, &pd->iosched.read_queue,
881 &pd->iosched.read_queue_tail);
882 } else {
883 pkt_add_list_last(bio, &pd->iosched.write_queue,
884 &pd->iosched.write_queue_tail);
886 spin_unlock(&pd->iosched.lock);
888 atomic_set(&pd->iosched.attention, 1);
889 wake_up(&pd->wqueue);
893 * Process the queued read/write requests. This function handles special
894 * requirements for CDRW drives:
895 * - A cache flush command must be inserted before a read request if the
896 * previous request was a write.
897 * - Switching between reading and writing is slow, so don't do it more often
898 * than necessary.
899 * - Optimize for throughput at the expense of latency. This means that streaming
900 * writes will never be interrupted by a read, but if the drive has to seek
901 * before the next write, switch to reading instead if there are any pending
902 * read requests.
903 * - Set the read speed according to current usage pattern. When only reading
904 * from the device, it's best to use the highest possible read speed, but
905 * when switching often between reading and writing, it's better to have the
906 * same read and write speeds.
908 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
911 if (atomic_read(&pd->iosched.attention) == 0)
912 return;
913 atomic_set(&pd->iosched.attention, 0);
915 for (;;) {
916 struct bio *bio;
917 int reads_queued, writes_queued;
919 spin_lock(&pd->iosched.lock);
920 reads_queued = (pd->iosched.read_queue != NULL);
921 writes_queued = (pd->iosched.write_queue != NULL);
922 spin_unlock(&pd->iosched.lock);
924 if (!reads_queued && !writes_queued)
925 break;
927 if (pd->iosched.writing) {
928 int need_write_seek = 1;
929 spin_lock(&pd->iosched.lock);
930 bio = pd->iosched.write_queue;
931 spin_unlock(&pd->iosched.lock);
932 if (bio && (bio->bi_sector == pd->iosched.last_write))
933 need_write_seek = 0;
934 if (need_write_seek && reads_queued) {
935 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
936 VPRINTK(DRIVER_NAME": write, waiting\n");
937 break;
939 pkt_flush_cache(pd);
940 pd->iosched.writing = 0;
942 } else {
943 if (!reads_queued && writes_queued) {
944 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
945 VPRINTK(DRIVER_NAME": read, waiting\n");
946 break;
948 pd->iosched.writing = 1;
952 spin_lock(&pd->iosched.lock);
953 if (pd->iosched.writing) {
954 bio = pkt_get_list_first(&pd->iosched.write_queue,
955 &pd->iosched.write_queue_tail);
956 } else {
957 bio = pkt_get_list_first(&pd->iosched.read_queue,
958 &pd->iosched.read_queue_tail);
960 spin_unlock(&pd->iosched.lock);
962 if (!bio)
963 continue;
965 if (bio_data_dir(bio) == READ)
966 pd->iosched.successive_reads += bio->bi_size >> 10;
967 else {
968 pd->iosched.successive_reads = 0;
969 pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
971 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
972 if (pd->read_speed == pd->write_speed) {
973 pd->read_speed = MAX_SPEED;
974 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
976 } else {
977 if (pd->read_speed != pd->write_speed) {
978 pd->read_speed = pd->write_speed;
979 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
983 atomic_inc(&pd->cdrw.pending_bios);
984 generic_make_request(bio);
989 * Special care is needed if the underlying block device has a small
990 * max_phys_segments value.
992 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
994 if ((pd->settings.size << 9) / CD_FRAMESIZE
995 <= queue_max_phys_segments(q)) {
997 * The cdrom device can handle one segment/frame
999 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
1000 return 0;
1001 } else if ((pd->settings.size << 9) / PAGE_SIZE
1002 <= queue_max_phys_segments(q)) {
1004 * We can handle this case at the expense of some extra memory
1005 * copies during write operations
1007 set_bit(PACKET_MERGE_SEGS, &pd->flags);
1008 return 0;
1009 } else {
1010 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
1011 return -EIO;
1016 * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1018 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1020 unsigned int copy_size = CD_FRAMESIZE;
1022 while (copy_size > 0) {
1023 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1024 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1025 src_bvl->bv_offset + offs;
1026 void *vto = page_address(dst_page) + dst_offs;
1027 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1029 BUG_ON(len < 0);
1030 memcpy(vto, vfrom, len);
1031 kunmap_atomic(vfrom, KM_USER0);
1033 seg++;
1034 offs = 0;
1035 dst_offs += len;
1036 copy_size -= len;
1041 * Copy all data for this packet to pkt->pages[], so that
1042 * a) The number of required segments for the write bio is minimized, which
1043 * is necessary for some scsi controllers.
1044 * b) The data can be used as cache to avoid read requests if we receive a
1045 * new write request for the same zone.
1047 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1049 int f, p, offs;
1051 /* Copy all data to pkt->pages[] */
1052 p = 0;
1053 offs = 0;
1054 for (f = 0; f < pkt->frames; f++) {
1055 if (bvec[f].bv_page != pkt->pages[p]) {
1056 void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1057 void *vto = page_address(pkt->pages[p]) + offs;
1058 memcpy(vto, vfrom, CD_FRAMESIZE);
1059 kunmap_atomic(vfrom, KM_USER0);
1060 bvec[f].bv_page = pkt->pages[p];
1061 bvec[f].bv_offset = offs;
1062 } else {
1063 BUG_ON(bvec[f].bv_offset != offs);
1065 offs += CD_FRAMESIZE;
1066 if (offs >= PAGE_SIZE) {
1067 offs = 0;
1068 p++;
1073 static void pkt_end_io_read(struct bio *bio, int err)
1075 struct packet_data *pkt = bio->bi_private;
1076 struct pktcdvd_device *pd = pkt->pd;
1077 BUG_ON(!pd);
1079 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1080 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1082 if (err)
1083 atomic_inc(&pkt->io_errors);
1084 if (atomic_dec_and_test(&pkt->io_wait)) {
1085 atomic_inc(&pkt->run_sm);
1086 wake_up(&pd->wqueue);
1088 pkt_bio_finished(pd);
1091 static void pkt_end_io_packet_write(struct bio *bio, int err)
1093 struct packet_data *pkt = bio->bi_private;
1094 struct pktcdvd_device *pd = pkt->pd;
1095 BUG_ON(!pd);
1097 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1099 pd->stats.pkt_ended++;
1101 pkt_bio_finished(pd);
1102 atomic_dec(&pkt->io_wait);
1103 atomic_inc(&pkt->run_sm);
1104 wake_up(&pd->wqueue);
1108 * Schedule reads for the holes in a packet
1110 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1112 int frames_read = 0;
1113 struct bio *bio;
1114 int f;
1115 char written[PACKET_MAX_SIZE];
1117 BUG_ON(!pkt->orig_bios);
1119 atomic_set(&pkt->io_wait, 0);
1120 atomic_set(&pkt->io_errors, 0);
1123 * Figure out which frames we need to read before we can write.
1125 memset(written, 0, sizeof(written));
1126 spin_lock(&pkt->lock);
1127 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1128 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1129 int num_frames = bio->bi_size / CD_FRAMESIZE;
1130 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1131 BUG_ON(first_frame < 0);
1132 BUG_ON(first_frame + num_frames > pkt->frames);
1133 for (f = first_frame; f < first_frame + num_frames; f++)
1134 written[f] = 1;
1136 spin_unlock(&pkt->lock);
1138 if (pkt->cache_valid) {
1139 VPRINTK("pkt_gather_data: zone %llx cached\n",
1140 (unsigned long long)pkt->sector);
1141 goto out_account;
1145 * Schedule reads for missing parts of the packet.
1147 for (f = 0; f < pkt->frames; f++) {
1148 struct bio_vec *vec;
1150 int p, offset;
1151 if (written[f])
1152 continue;
1153 bio = pkt->r_bios[f];
1154 vec = bio->bi_io_vec;
1155 bio_init(bio);
1156 bio->bi_max_vecs = 1;
1157 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1158 bio->bi_bdev = pd->bdev;
1159 bio->bi_end_io = pkt_end_io_read;
1160 bio->bi_private = pkt;
1161 bio->bi_io_vec = vec;
1162 bio->bi_destructor = pkt_bio_destructor;
1164 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1165 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1166 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1167 f, pkt->pages[p], offset);
1168 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1169 BUG();
1171 atomic_inc(&pkt->io_wait);
1172 bio->bi_rw = READ;
1173 pkt_queue_bio(pd, bio);
1174 frames_read++;
1177 out_account:
1178 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1179 frames_read, (unsigned long long)pkt->sector);
1180 pd->stats.pkt_started++;
1181 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1185 * Find a packet matching zone, or the least recently used packet if
1186 * there is no match.
1188 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1190 struct packet_data *pkt;
1192 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1193 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1194 list_del_init(&pkt->list);
1195 if (pkt->sector != zone)
1196 pkt->cache_valid = 0;
1197 return pkt;
1200 BUG();
1201 return NULL;
1204 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1206 if (pkt->cache_valid) {
1207 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1208 } else {
1209 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1214 * recover a failed write, query for relocation if possible
1216 * returns 1 if recovery is possible, or 0 if not
1219 static int pkt_start_recovery(struct packet_data *pkt)
1222 * FIXME. We need help from the file system to implement
1223 * recovery handling.
1225 return 0;
1226 #if 0
1227 struct request *rq = pkt->rq;
1228 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1229 struct block_device *pkt_bdev;
1230 struct super_block *sb = NULL;
1231 unsigned long old_block, new_block;
1232 sector_t new_sector;
1234 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1235 if (pkt_bdev) {
1236 sb = get_super(pkt_bdev);
1237 bdput(pkt_bdev);
1240 if (!sb)
1241 return 0;
1243 if (!sb->s_op || !sb->s_op->relocate_blocks)
1244 goto out;
1246 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1247 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1248 goto out;
1250 new_sector = new_block * (CD_FRAMESIZE >> 9);
1251 pkt->sector = new_sector;
1253 pkt->bio->bi_sector = new_sector;
1254 pkt->bio->bi_next = NULL;
1255 pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1256 pkt->bio->bi_idx = 0;
1258 BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1259 BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1260 BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1261 BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1262 BUG_ON(pkt->bio->bi_private != pkt);
1264 drop_super(sb);
1265 return 1;
1267 out:
1268 drop_super(sb);
1269 return 0;
1270 #endif
1273 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1275 #if PACKET_DEBUG > 1
1276 static const char *state_name[] = {
1277 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1279 enum packet_data_state old_state = pkt->state;
1280 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1281 state_name[old_state], state_name[state]);
1282 #endif
1283 pkt->state = state;
1287 * Scan the work queue to see if we can start a new packet.
1288 * returns non-zero if any work was done.
1290 static int pkt_handle_queue(struct pktcdvd_device *pd)
1292 struct packet_data *pkt, *p;
1293 struct bio *bio = NULL;
1294 sector_t zone = 0; /* Suppress gcc warning */
1295 struct pkt_rb_node *node, *first_node;
1296 struct rb_node *n;
1297 int wakeup;
1299 VPRINTK("handle_queue\n");
1301 atomic_set(&pd->scan_queue, 0);
1303 if (list_empty(&pd->cdrw.pkt_free_list)) {
1304 VPRINTK("handle_queue: no pkt\n");
1305 return 0;
1309 * Try to find a zone we are not already working on.
1311 spin_lock(&pd->lock);
1312 first_node = pkt_rbtree_find(pd, pd->current_sector);
1313 if (!first_node) {
1314 n = rb_first(&pd->bio_queue);
1315 if (n)
1316 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1318 node = first_node;
1319 while (node) {
1320 bio = node->bio;
1321 zone = ZONE(bio->bi_sector, pd);
1322 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1323 if (p->sector == zone) {
1324 bio = NULL;
1325 goto try_next_bio;
1328 break;
1329 try_next_bio:
1330 node = pkt_rbtree_next(node);
1331 if (!node) {
1332 n = rb_first(&pd->bio_queue);
1333 if (n)
1334 node = rb_entry(n, struct pkt_rb_node, rb_node);
1336 if (node == first_node)
1337 node = NULL;
1339 spin_unlock(&pd->lock);
1340 if (!bio) {
1341 VPRINTK("handle_queue: no bio\n");
1342 return 0;
1345 pkt = pkt_get_packet_data(pd, zone);
1347 pd->current_sector = zone + pd->settings.size;
1348 pkt->sector = zone;
1349 BUG_ON(pkt->frames != pd->settings.size >> 2);
1350 pkt->write_size = 0;
1353 * Scan work queue for bios in the same zone and link them
1354 * to this packet.
1356 spin_lock(&pd->lock);
1357 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1358 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1359 bio = node->bio;
1360 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1361 (unsigned long long)ZONE(bio->bi_sector, pd));
1362 if (ZONE(bio->bi_sector, pd) != zone)
1363 break;
1364 pkt_rbtree_erase(pd, node);
1365 spin_lock(&pkt->lock);
1366 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1367 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1368 spin_unlock(&pkt->lock);
1370 /* check write congestion marks, and if bio_queue_size is
1371 below, wake up any waiters */
1372 wakeup = (pd->write_congestion_on > 0
1373 && pd->bio_queue_size <= pd->write_congestion_off);
1374 spin_unlock(&pd->lock);
1375 if (wakeup) {
1376 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1377 BLK_RW_ASYNC);
1380 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1381 pkt_set_state(pkt, PACKET_WAITING_STATE);
1382 atomic_set(&pkt->run_sm, 1);
1384 spin_lock(&pd->cdrw.active_list_lock);
1385 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1386 spin_unlock(&pd->cdrw.active_list_lock);
1388 return 1;
1392 * Assemble a bio to write one packet and queue the bio for processing
1393 * by the underlying block device.
1395 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1397 struct bio *bio;
1398 int f;
1399 int frames_write;
1400 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1402 for (f = 0; f < pkt->frames; f++) {
1403 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1404 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1408 * Fill-in bvec with data from orig_bios.
1410 frames_write = 0;
1411 spin_lock(&pkt->lock);
1412 for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1413 int segment = bio->bi_idx;
1414 int src_offs = 0;
1415 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1416 int num_frames = bio->bi_size / CD_FRAMESIZE;
1417 BUG_ON(first_frame < 0);
1418 BUG_ON(first_frame + num_frames > pkt->frames);
1419 for (f = first_frame; f < first_frame + num_frames; f++) {
1420 struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1422 while (src_offs >= src_bvl->bv_len) {
1423 src_offs -= src_bvl->bv_len;
1424 segment++;
1425 BUG_ON(segment >= bio->bi_vcnt);
1426 src_bvl = bio_iovec_idx(bio, segment);
1429 if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1430 bvec[f].bv_page = src_bvl->bv_page;
1431 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1432 } else {
1433 pkt_copy_bio_data(bio, segment, src_offs,
1434 bvec[f].bv_page, bvec[f].bv_offset);
1436 src_offs += CD_FRAMESIZE;
1437 frames_write++;
1440 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1441 spin_unlock(&pkt->lock);
1443 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1444 frames_write, (unsigned long long)pkt->sector);
1445 BUG_ON(frames_write != pkt->write_size);
1447 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1448 pkt_make_local_copy(pkt, bvec);
1449 pkt->cache_valid = 1;
1450 } else {
1451 pkt->cache_valid = 0;
1454 /* Start the write request */
1455 bio_init(pkt->w_bio);
1456 pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1457 pkt->w_bio->bi_sector = pkt->sector;
1458 pkt->w_bio->bi_bdev = pd->bdev;
1459 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1460 pkt->w_bio->bi_private = pkt;
1461 pkt->w_bio->bi_io_vec = bvec;
1462 pkt->w_bio->bi_destructor = pkt_bio_destructor;
1463 for (f = 0; f < pkt->frames; f++)
1464 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1465 BUG();
1466 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1468 atomic_set(&pkt->io_wait, 1);
1469 pkt->w_bio->bi_rw = WRITE;
1470 pkt_queue_bio(pd, pkt->w_bio);
1473 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1475 struct bio *bio, *next;
1477 if (!uptodate)
1478 pkt->cache_valid = 0;
1480 /* Finish all bios corresponding to this packet */
1481 bio = pkt->orig_bios;
1482 while (bio) {
1483 next = bio->bi_next;
1484 bio->bi_next = NULL;
1485 bio_endio(bio, uptodate ? 0 : -EIO);
1486 bio = next;
1488 pkt->orig_bios = pkt->orig_bios_tail = NULL;
1491 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1493 int uptodate;
1495 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1497 for (;;) {
1498 switch (pkt->state) {
1499 case PACKET_WAITING_STATE:
1500 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1501 return;
1503 pkt->sleep_time = 0;
1504 pkt_gather_data(pd, pkt);
1505 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1506 break;
1508 case PACKET_READ_WAIT_STATE:
1509 if (atomic_read(&pkt->io_wait) > 0)
1510 return;
1512 if (atomic_read(&pkt->io_errors) > 0) {
1513 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1514 } else {
1515 pkt_start_write(pd, pkt);
1517 break;
1519 case PACKET_WRITE_WAIT_STATE:
1520 if (atomic_read(&pkt->io_wait) > 0)
1521 return;
1523 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1524 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1525 } else {
1526 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1528 break;
1530 case PACKET_RECOVERY_STATE:
1531 if (pkt_start_recovery(pkt)) {
1532 pkt_start_write(pd, pkt);
1533 } else {
1534 VPRINTK("No recovery possible\n");
1535 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1537 break;
1539 case PACKET_FINISHED_STATE:
1540 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1541 pkt_finish_packet(pkt, uptodate);
1542 return;
1544 default:
1545 BUG();
1546 break;
1551 static void pkt_handle_packets(struct pktcdvd_device *pd)
1553 struct packet_data *pkt, *next;
1555 VPRINTK("pkt_handle_packets\n");
1558 * Run state machine for active packets
1560 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1561 if (atomic_read(&pkt->run_sm) > 0) {
1562 atomic_set(&pkt->run_sm, 0);
1563 pkt_run_state_machine(pd, pkt);
1568 * Move no longer active packets to the free list
1570 spin_lock(&pd->cdrw.active_list_lock);
1571 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1572 if (pkt->state == PACKET_FINISHED_STATE) {
1573 list_del(&pkt->list);
1574 pkt_put_packet_data(pd, pkt);
1575 pkt_set_state(pkt, PACKET_IDLE_STATE);
1576 atomic_set(&pd->scan_queue, 1);
1579 spin_unlock(&pd->cdrw.active_list_lock);
1582 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1584 struct packet_data *pkt;
1585 int i;
1587 for (i = 0; i < PACKET_NUM_STATES; i++)
1588 states[i] = 0;
1590 spin_lock(&pd->cdrw.active_list_lock);
1591 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1592 states[pkt->state]++;
1594 spin_unlock(&pd->cdrw.active_list_lock);
1598 * kcdrwd is woken up when writes have been queued for one of our
1599 * registered devices
1601 static int kcdrwd(void *foobar)
1603 struct pktcdvd_device *pd = foobar;
1604 struct packet_data *pkt;
1605 long min_sleep_time, residue;
1607 set_user_nice(current, -20);
1608 set_freezable();
1610 for (;;) {
1611 DECLARE_WAITQUEUE(wait, current);
1614 * Wait until there is something to do
1616 add_wait_queue(&pd->wqueue, &wait);
1617 for (;;) {
1618 set_current_state(TASK_INTERRUPTIBLE);
1620 /* Check if we need to run pkt_handle_queue */
1621 if (atomic_read(&pd->scan_queue) > 0)
1622 goto work_to_do;
1624 /* Check if we need to run the state machine for some packet */
1625 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1626 if (atomic_read(&pkt->run_sm) > 0)
1627 goto work_to_do;
1630 /* Check if we need to process the iosched queues */
1631 if (atomic_read(&pd->iosched.attention) != 0)
1632 goto work_to_do;
1634 /* Otherwise, go to sleep */
1635 if (PACKET_DEBUG > 1) {
1636 int states[PACKET_NUM_STATES];
1637 pkt_count_states(pd, states);
1638 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1639 states[0], states[1], states[2], states[3],
1640 states[4], states[5]);
1643 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1644 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1645 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1646 min_sleep_time = pkt->sleep_time;
1649 generic_unplug_device(bdev_get_queue(pd->bdev));
1651 VPRINTK("kcdrwd: sleeping\n");
1652 residue = schedule_timeout(min_sleep_time);
1653 VPRINTK("kcdrwd: wake up\n");
1655 /* make swsusp happy with our thread */
1656 try_to_freeze();
1658 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1659 if (!pkt->sleep_time)
1660 continue;
1661 pkt->sleep_time -= min_sleep_time - residue;
1662 if (pkt->sleep_time <= 0) {
1663 pkt->sleep_time = 0;
1664 atomic_inc(&pkt->run_sm);
1668 if (kthread_should_stop())
1669 break;
1671 work_to_do:
1672 set_current_state(TASK_RUNNING);
1673 remove_wait_queue(&pd->wqueue, &wait);
1675 if (kthread_should_stop())
1676 break;
1679 * if pkt_handle_queue returns true, we can queue
1680 * another request.
1682 while (pkt_handle_queue(pd))
1686 * Handle packet state machine
1688 pkt_handle_packets(pd);
1691 * Handle iosched queues
1693 pkt_iosched_process_queue(pd);
1696 return 0;
1699 static void pkt_print_settings(struct pktcdvd_device *pd)
1701 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1702 printk("%u blocks, ", pd->settings.size >> 2);
1703 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1706 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1708 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1710 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1711 cgc->cmd[2] = page_code | (page_control << 6);
1712 cgc->cmd[7] = cgc->buflen >> 8;
1713 cgc->cmd[8] = cgc->buflen & 0xff;
1714 cgc->data_direction = CGC_DATA_READ;
1715 return pkt_generic_packet(pd, cgc);
1718 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1720 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1721 memset(cgc->buffer, 0, 2);
1722 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1723 cgc->cmd[1] = 0x10; /* PF */
1724 cgc->cmd[7] = cgc->buflen >> 8;
1725 cgc->cmd[8] = cgc->buflen & 0xff;
1726 cgc->data_direction = CGC_DATA_WRITE;
1727 return pkt_generic_packet(pd, cgc);
1730 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1732 struct packet_command cgc;
1733 int ret;
1735 /* set up command and get the disc info */
1736 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1737 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1738 cgc.cmd[8] = cgc.buflen = 2;
1739 cgc.quiet = 1;
1741 if ((ret = pkt_generic_packet(pd, &cgc)))
1742 return ret;
1744 /* not all drives have the same disc_info length, so requeue
1745 * packet with the length the drive tells us it can supply
1747 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1748 sizeof(di->disc_information_length);
1750 if (cgc.buflen > sizeof(disc_information))
1751 cgc.buflen = sizeof(disc_information);
1753 cgc.cmd[8] = cgc.buflen;
1754 return pkt_generic_packet(pd, &cgc);
1757 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1759 struct packet_command cgc;
1760 int ret;
1762 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1763 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1764 cgc.cmd[1] = type & 3;
1765 cgc.cmd[4] = (track & 0xff00) >> 8;
1766 cgc.cmd[5] = track & 0xff;
1767 cgc.cmd[8] = 8;
1768 cgc.quiet = 1;
1770 if ((ret = pkt_generic_packet(pd, &cgc)))
1771 return ret;
1773 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1774 sizeof(ti->track_information_length);
1776 if (cgc.buflen > sizeof(track_information))
1777 cgc.buflen = sizeof(track_information);
1779 cgc.cmd[8] = cgc.buflen;
1780 return pkt_generic_packet(pd, &cgc);
1783 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1784 long *last_written)
1786 disc_information di;
1787 track_information ti;
1788 __u32 last_track;
1789 int ret = -1;
1791 if ((ret = pkt_get_disc_info(pd, &di)))
1792 return ret;
1794 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1795 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1796 return ret;
1798 /* if this track is blank, try the previous. */
1799 if (ti.blank) {
1800 last_track--;
1801 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1802 return ret;
1805 /* if last recorded field is valid, return it. */
1806 if (ti.lra_v) {
1807 *last_written = be32_to_cpu(ti.last_rec_address);
1808 } else {
1809 /* make it up instead */
1810 *last_written = be32_to_cpu(ti.track_start) +
1811 be32_to_cpu(ti.track_size);
1812 if (ti.free_blocks)
1813 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1815 return 0;
1819 * write mode select package based on pd->settings
1821 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1823 struct packet_command cgc;
1824 struct request_sense sense;
1825 write_param_page *wp;
1826 char buffer[128];
1827 int ret, size;
1829 /* doesn't apply to DVD+RW or DVD-RAM */
1830 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1831 return 0;
1833 memset(buffer, 0, sizeof(buffer));
1834 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1835 cgc.sense = &sense;
1836 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1837 pkt_dump_sense(&cgc);
1838 return ret;
1841 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1842 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1843 if (size > sizeof(buffer))
1844 size = sizeof(buffer);
1847 * now get it all
1849 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1850 cgc.sense = &sense;
1851 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1852 pkt_dump_sense(&cgc);
1853 return ret;
1857 * write page is offset header + block descriptor length
1859 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1861 wp->fp = pd->settings.fp;
1862 wp->track_mode = pd->settings.track_mode;
1863 wp->write_type = pd->settings.write_type;
1864 wp->data_block_type = pd->settings.block_mode;
1866 wp->multi_session = 0;
1868 #ifdef PACKET_USE_LS
1869 wp->link_size = 7;
1870 wp->ls_v = 1;
1871 #endif
1873 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1874 wp->session_format = 0;
1875 wp->subhdr2 = 0x20;
1876 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1877 wp->session_format = 0x20;
1878 wp->subhdr2 = 8;
1879 #if 0
1880 wp->mcn[0] = 0x80;
1881 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1882 #endif
1883 } else {
1885 * paranoia
1887 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1888 return 1;
1890 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1892 cgc.buflen = cgc.cmd[8] = size;
1893 if ((ret = pkt_mode_select(pd, &cgc))) {
1894 pkt_dump_sense(&cgc);
1895 return ret;
1898 pkt_print_settings(pd);
1899 return 0;
1903 * 1 -- we can write to this track, 0 -- we can't
1905 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1907 switch (pd->mmc3_profile) {
1908 case 0x1a: /* DVD+RW */
1909 case 0x12: /* DVD-RAM */
1910 /* The track is always writable on DVD+RW/DVD-RAM */
1911 return 1;
1912 default:
1913 break;
1916 if (!ti->packet || !ti->fp)
1917 return 0;
1920 * "good" settings as per Mt Fuji.
1922 if (ti->rt == 0 && ti->blank == 0)
1923 return 1;
1925 if (ti->rt == 0 && ti->blank == 1)
1926 return 1;
1928 if (ti->rt == 1 && ti->blank == 0)
1929 return 1;
1931 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1932 return 0;
1936 * 1 -- we can write to this disc, 0 -- we can't
1938 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1940 switch (pd->mmc3_profile) {
1941 case 0x0a: /* CD-RW */
1942 case 0xffff: /* MMC3 not supported */
1943 break;
1944 case 0x1a: /* DVD+RW */
1945 case 0x13: /* DVD-RW */
1946 case 0x12: /* DVD-RAM */
1947 return 1;
1948 default:
1949 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1950 return 0;
1954 * for disc type 0xff we should probably reserve a new track.
1955 * but i'm not sure, should we leave this to user apps? probably.
1957 if (di->disc_type == 0xff) {
1958 printk(DRIVER_NAME": Unknown disc. No track?\n");
1959 return 0;
1962 if (di->disc_type != 0x20 && di->disc_type != 0) {
1963 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1964 return 0;
1967 if (di->erasable == 0) {
1968 printk(DRIVER_NAME": Disc not erasable\n");
1969 return 0;
1972 if (di->border_status == PACKET_SESSION_RESERVED) {
1973 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1974 return 0;
1977 return 1;
1980 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1982 struct packet_command cgc;
1983 unsigned char buf[12];
1984 disc_information di;
1985 track_information ti;
1986 int ret, track;
1988 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1989 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1990 cgc.cmd[8] = 8;
1991 ret = pkt_generic_packet(pd, &cgc);
1992 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1994 memset(&di, 0, sizeof(disc_information));
1995 memset(&ti, 0, sizeof(track_information));
1997 if ((ret = pkt_get_disc_info(pd, &di))) {
1998 printk("failed get_disc\n");
1999 return ret;
2002 if (!pkt_writable_disc(pd, &di))
2003 return -EROFS;
2005 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
2007 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
2008 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
2009 printk(DRIVER_NAME": failed get_track\n");
2010 return ret;
2013 if (!pkt_writable_track(pd, &ti)) {
2014 printk(DRIVER_NAME": can't write to this track\n");
2015 return -EROFS;
2019 * we keep packet size in 512 byte units, makes it easier to
2020 * deal with request calculations.
2022 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2023 if (pd->settings.size == 0) {
2024 printk(DRIVER_NAME": detected zero packet size!\n");
2025 return -ENXIO;
2027 if (pd->settings.size > PACKET_MAX_SECTORS) {
2028 printk(DRIVER_NAME": packet size is too big\n");
2029 return -EROFS;
2031 pd->settings.fp = ti.fp;
2032 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2034 if (ti.nwa_v) {
2035 pd->nwa = be32_to_cpu(ti.next_writable);
2036 set_bit(PACKET_NWA_VALID, &pd->flags);
2040 * in theory we could use lra on -RW media as well and just zero
2041 * blocks that haven't been written yet, but in practice that
2042 * is just a no-go. we'll use that for -R, naturally.
2044 if (ti.lra_v) {
2045 pd->lra = be32_to_cpu(ti.last_rec_address);
2046 set_bit(PACKET_LRA_VALID, &pd->flags);
2047 } else {
2048 pd->lra = 0xffffffff;
2049 set_bit(PACKET_LRA_VALID, &pd->flags);
2053 * fine for now
2055 pd->settings.link_loss = 7;
2056 pd->settings.write_type = 0; /* packet */
2057 pd->settings.track_mode = ti.track_mode;
2060 * mode1 or mode2 disc
2062 switch (ti.data_mode) {
2063 case PACKET_MODE1:
2064 pd->settings.block_mode = PACKET_BLOCK_MODE1;
2065 break;
2066 case PACKET_MODE2:
2067 pd->settings.block_mode = PACKET_BLOCK_MODE2;
2068 break;
2069 default:
2070 printk(DRIVER_NAME": unknown data mode\n");
2071 return -EROFS;
2073 return 0;
2077 * enable/disable write caching on drive
2079 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
2080 int set)
2082 struct packet_command cgc;
2083 struct request_sense sense;
2084 unsigned char buf[64];
2085 int ret;
2087 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2088 cgc.sense = &sense;
2089 cgc.buflen = pd->mode_offset + 12;
2092 * caching mode page might not be there, so quiet this command
2094 cgc.quiet = 1;
2096 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2097 return ret;
2099 buf[pd->mode_offset + 10] |= (!!set << 2);
2101 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2102 ret = pkt_mode_select(pd, &cgc);
2103 if (ret) {
2104 printk(DRIVER_NAME": write caching control failed\n");
2105 pkt_dump_sense(&cgc);
2106 } else if (!ret && set)
2107 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2108 return ret;
2111 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2113 struct packet_command cgc;
2115 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2116 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2117 cgc.cmd[4] = lockflag ? 1 : 0;
2118 return pkt_generic_packet(pd, &cgc);
2122 * Returns drive maximum write speed
2124 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
2125 unsigned *write_speed)
2127 struct packet_command cgc;
2128 struct request_sense sense;
2129 unsigned char buf[256+18];
2130 unsigned char *cap_buf;
2131 int ret, offset;
2133 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2134 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2135 cgc.sense = &sense;
2137 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2138 if (ret) {
2139 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2140 sizeof(struct mode_page_header);
2141 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2142 if (ret) {
2143 pkt_dump_sense(&cgc);
2144 return ret;
2148 offset = 20; /* Obsoleted field, used by older drives */
2149 if (cap_buf[1] >= 28)
2150 offset = 28; /* Current write speed selected */
2151 if (cap_buf[1] >= 30) {
2152 /* If the drive reports at least one "Logical Unit Write
2153 * Speed Performance Descriptor Block", use the information
2154 * in the first block. (contains the highest speed)
2156 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2157 if (num_spdb > 0)
2158 offset = 34;
2161 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2162 return 0;
2165 /* These tables from cdrecord - I don't have orange book */
2166 /* standard speed CD-RW (1-4x) */
2167 static char clv_to_speed[16] = {
2168 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2169 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2171 /* high speed CD-RW (-10x) */
2172 static char hs_clv_to_speed[16] = {
2173 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2174 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2176 /* ultra high speed CD-RW */
2177 static char us_clv_to_speed[16] = {
2178 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2179 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2183 * reads the maximum media speed from ATIP
2185 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2186 unsigned *speed)
2188 struct packet_command cgc;
2189 struct request_sense sense;
2190 unsigned char buf[64];
2191 unsigned int size, st, sp;
2192 int ret;
2194 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2195 cgc.sense = &sense;
2196 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2197 cgc.cmd[1] = 2;
2198 cgc.cmd[2] = 4; /* READ ATIP */
2199 cgc.cmd[8] = 2;
2200 ret = pkt_generic_packet(pd, &cgc);
2201 if (ret) {
2202 pkt_dump_sense(&cgc);
2203 return ret;
2205 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2206 if (size > sizeof(buf))
2207 size = sizeof(buf);
2209 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2210 cgc.sense = &sense;
2211 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2212 cgc.cmd[1] = 2;
2213 cgc.cmd[2] = 4;
2214 cgc.cmd[8] = size;
2215 ret = pkt_generic_packet(pd, &cgc);
2216 if (ret) {
2217 pkt_dump_sense(&cgc);
2218 return ret;
2221 if (!(buf[6] & 0x40)) {
2222 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2223 return 1;
2225 if (!(buf[6] & 0x4)) {
2226 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2227 return 1;
2230 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2232 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2234 /* Info from cdrecord */
2235 switch (st) {
2236 case 0: /* standard speed */
2237 *speed = clv_to_speed[sp];
2238 break;
2239 case 1: /* high speed */
2240 *speed = hs_clv_to_speed[sp];
2241 break;
2242 case 2: /* ultra high speed */
2243 *speed = us_clv_to_speed[sp];
2244 break;
2245 default:
2246 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2247 return 1;
2249 if (*speed) {
2250 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2251 return 0;
2252 } else {
2253 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2254 return 1;
2258 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2260 struct packet_command cgc;
2261 struct request_sense sense;
2262 int ret;
2264 VPRINTK(DRIVER_NAME": Performing OPC\n");
2266 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2267 cgc.sense = &sense;
2268 cgc.timeout = 60*HZ;
2269 cgc.cmd[0] = GPCMD_SEND_OPC;
2270 cgc.cmd[1] = 1;
2271 if ((ret = pkt_generic_packet(pd, &cgc)))
2272 pkt_dump_sense(&cgc);
2273 return ret;
2276 static int pkt_open_write(struct pktcdvd_device *pd)
2278 int ret;
2279 unsigned int write_speed, media_write_speed, read_speed;
2281 if ((ret = pkt_probe_settings(pd))) {
2282 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2283 return ret;
2286 if ((ret = pkt_set_write_settings(pd))) {
2287 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2288 return -EIO;
2291 pkt_write_caching(pd, USE_WCACHING);
2293 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2294 write_speed = 16 * 177;
2295 switch (pd->mmc3_profile) {
2296 case 0x13: /* DVD-RW */
2297 case 0x1a: /* DVD+RW */
2298 case 0x12: /* DVD-RAM */
2299 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2300 break;
2301 default:
2302 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2303 media_write_speed = 16;
2304 write_speed = min(write_speed, media_write_speed * 177);
2305 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2306 break;
2308 read_speed = write_speed;
2310 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2311 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2312 return -EIO;
2314 pd->write_speed = write_speed;
2315 pd->read_speed = read_speed;
2317 if ((ret = pkt_perform_opc(pd))) {
2318 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2321 return 0;
2325 * called at open time.
2327 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2329 int ret;
2330 long lba;
2331 struct request_queue *q;
2334 * We need to re-open the cdrom device without O_NONBLOCK to be able
2335 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2336 * so bdget() can't fail.
2338 bdget(pd->bdev->bd_dev);
2339 if ((ret = blkdev_get(pd->bdev, FMODE_READ)))
2340 goto out;
2342 if ((ret = bd_claim(pd->bdev, pd)))
2343 goto out_putdev;
2345 if ((ret = pkt_get_last_written(pd, &lba))) {
2346 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2347 goto out_unclaim;
2350 set_capacity(pd->disk, lba << 2);
2351 set_capacity(pd->bdev->bd_disk, lba << 2);
2352 bd_set_size(pd->bdev, (loff_t)lba << 11);
2354 q = bdev_get_queue(pd->bdev);
2355 if (write) {
2356 if ((ret = pkt_open_write(pd)))
2357 goto out_unclaim;
2359 * Some CDRW drives can not handle writes larger than one packet,
2360 * even if the size is a multiple of the packet size.
2362 spin_lock_irq(q->queue_lock);
2363 blk_queue_max_sectors(q, pd->settings.size);
2364 spin_unlock_irq(q->queue_lock);
2365 set_bit(PACKET_WRITABLE, &pd->flags);
2366 } else {
2367 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2368 clear_bit(PACKET_WRITABLE, &pd->flags);
2371 if ((ret = pkt_set_segment_merging(pd, q)))
2372 goto out_unclaim;
2374 if (write) {
2375 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2376 printk(DRIVER_NAME": not enough memory for buffers\n");
2377 ret = -ENOMEM;
2378 goto out_unclaim;
2380 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2383 return 0;
2385 out_unclaim:
2386 bd_release(pd->bdev);
2387 out_putdev:
2388 blkdev_put(pd->bdev, FMODE_READ);
2389 out:
2390 return ret;
2394 * called when the device is closed. makes sure that the device flushes
2395 * the internal cache before we close.
2397 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2399 if (flush && pkt_flush_cache(pd))
2400 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2402 pkt_lock_door(pd, 0);
2404 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2405 bd_release(pd->bdev);
2406 blkdev_put(pd->bdev, FMODE_READ);
2408 pkt_shrink_pktlist(pd);
2411 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2413 if (dev_minor >= MAX_WRITERS)
2414 return NULL;
2415 return pkt_devs[dev_minor];
2418 static int pkt_open(struct block_device *bdev, fmode_t mode)
2420 struct pktcdvd_device *pd = NULL;
2421 int ret;
2423 VPRINTK(DRIVER_NAME": entering open\n");
2425 mutex_lock(&ctl_mutex);
2426 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2427 if (!pd) {
2428 ret = -ENODEV;
2429 goto out;
2431 BUG_ON(pd->refcnt < 0);
2433 pd->refcnt++;
2434 if (pd->refcnt > 1) {
2435 if ((mode & FMODE_WRITE) &&
2436 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2437 ret = -EBUSY;
2438 goto out_dec;
2440 } else {
2441 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2442 if (ret)
2443 goto out_dec;
2445 * needed here as well, since ext2 (among others) may change
2446 * the blocksize at mount time
2448 set_blocksize(bdev, CD_FRAMESIZE);
2451 mutex_unlock(&ctl_mutex);
2452 return 0;
2454 out_dec:
2455 pd->refcnt--;
2456 out:
2457 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2458 mutex_unlock(&ctl_mutex);
2459 return ret;
2462 static int pkt_close(struct gendisk *disk, fmode_t mode)
2464 struct pktcdvd_device *pd = disk->private_data;
2465 int ret = 0;
2467 mutex_lock(&ctl_mutex);
2468 pd->refcnt--;
2469 BUG_ON(pd->refcnt < 0);
2470 if (pd->refcnt == 0) {
2471 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2472 pkt_release_dev(pd, flush);
2474 mutex_unlock(&ctl_mutex);
2475 return ret;
2479 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2481 struct packet_stacked_data *psd = bio->bi_private;
2482 struct pktcdvd_device *pd = psd->pd;
2484 bio_put(bio);
2485 bio_endio(psd->bio, err);
2486 mempool_free(psd, psd_pool);
2487 pkt_bio_finished(pd);
2490 static int pkt_make_request(struct request_queue *q, struct bio *bio)
2492 struct pktcdvd_device *pd;
2493 char b[BDEVNAME_SIZE];
2494 sector_t zone;
2495 struct packet_data *pkt;
2496 int was_empty, blocked_bio;
2497 struct pkt_rb_node *node;
2499 pd = q->queuedata;
2500 if (!pd) {
2501 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2502 goto end_io;
2506 * Clone READ bios so we can have our own bi_end_io callback.
2508 if (bio_data_dir(bio) == READ) {
2509 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2510 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2512 psd->pd = pd;
2513 psd->bio = bio;
2514 cloned_bio->bi_bdev = pd->bdev;
2515 cloned_bio->bi_private = psd;
2516 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2517 pd->stats.secs_r += bio->bi_size >> 9;
2518 pkt_queue_bio(pd, cloned_bio);
2519 return 0;
2522 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2523 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2524 pd->name, (unsigned long long)bio->bi_sector);
2525 goto end_io;
2528 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2529 printk(DRIVER_NAME": wrong bio size\n");
2530 goto end_io;
2533 blk_queue_bounce(q, &bio);
2535 zone = ZONE(bio->bi_sector, pd);
2536 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2537 (unsigned long long)bio->bi_sector,
2538 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2540 /* Check if we have to split the bio */
2542 struct bio_pair *bp;
2543 sector_t last_zone;
2544 int first_sectors;
2546 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2547 if (last_zone != zone) {
2548 BUG_ON(last_zone != zone + pd->settings.size);
2549 first_sectors = last_zone - bio->bi_sector;
2550 bp = bio_split(bio, first_sectors);
2551 BUG_ON(!bp);
2552 pkt_make_request(q, &bp->bio1);
2553 pkt_make_request(q, &bp->bio2);
2554 bio_pair_release(bp);
2555 return 0;
2560 * If we find a matching packet in state WAITING or READ_WAIT, we can
2561 * just append this bio to that packet.
2563 spin_lock(&pd->cdrw.active_list_lock);
2564 blocked_bio = 0;
2565 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2566 if (pkt->sector == zone) {
2567 spin_lock(&pkt->lock);
2568 if ((pkt->state == PACKET_WAITING_STATE) ||
2569 (pkt->state == PACKET_READ_WAIT_STATE)) {
2570 pkt_add_list_last(bio, &pkt->orig_bios,
2571 &pkt->orig_bios_tail);
2572 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2573 if ((pkt->write_size >= pkt->frames) &&
2574 (pkt->state == PACKET_WAITING_STATE)) {
2575 atomic_inc(&pkt->run_sm);
2576 wake_up(&pd->wqueue);
2578 spin_unlock(&pkt->lock);
2579 spin_unlock(&pd->cdrw.active_list_lock);
2580 return 0;
2581 } else {
2582 blocked_bio = 1;
2584 spin_unlock(&pkt->lock);
2587 spin_unlock(&pd->cdrw.active_list_lock);
2590 * Test if there is enough room left in the bio work queue
2591 * (queue size >= congestion on mark).
2592 * If not, wait till the work queue size is below the congestion off mark.
2594 spin_lock(&pd->lock);
2595 if (pd->write_congestion_on > 0
2596 && pd->bio_queue_size >= pd->write_congestion_on) {
2597 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2598 do {
2599 spin_unlock(&pd->lock);
2600 congestion_wait(BLK_RW_ASYNC, HZ);
2601 spin_lock(&pd->lock);
2602 } while(pd->bio_queue_size > pd->write_congestion_off);
2604 spin_unlock(&pd->lock);
2607 * No matching packet found. Store the bio in the work queue.
2609 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2610 node->bio = bio;
2611 spin_lock(&pd->lock);
2612 BUG_ON(pd->bio_queue_size < 0);
2613 was_empty = (pd->bio_queue_size == 0);
2614 pkt_rbtree_insert(pd, node);
2615 spin_unlock(&pd->lock);
2618 * Wake up the worker thread.
2620 atomic_set(&pd->scan_queue, 1);
2621 if (was_empty) {
2622 /* This wake_up is required for correct operation */
2623 wake_up(&pd->wqueue);
2624 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2626 * This wake up is not required for correct operation,
2627 * but improves performance in some cases.
2629 wake_up(&pd->wqueue);
2631 return 0;
2632 end_io:
2633 bio_io_error(bio);
2634 return 0;
2639 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2640 struct bio_vec *bvec)
2642 struct pktcdvd_device *pd = q->queuedata;
2643 sector_t zone = ZONE(bmd->bi_sector, pd);
2644 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2645 int remaining = (pd->settings.size << 9) - used;
2646 int remaining2;
2649 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2650 * boundary, pkt_make_request() will split the bio.
2652 remaining2 = PAGE_SIZE - bmd->bi_size;
2653 remaining = max(remaining, remaining2);
2655 BUG_ON(remaining < 0);
2656 return remaining;
2659 static void pkt_init_queue(struct pktcdvd_device *pd)
2661 struct request_queue *q = pd->disk->queue;
2663 blk_queue_make_request(q, pkt_make_request);
2664 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2665 blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2666 blk_queue_merge_bvec(q, pkt_merge_bvec);
2667 q->queuedata = pd;
2670 static int pkt_seq_show(struct seq_file *m, void *p)
2672 struct pktcdvd_device *pd = m->private;
2673 char *msg;
2674 char bdev_buf[BDEVNAME_SIZE];
2675 int states[PACKET_NUM_STATES];
2677 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2678 bdevname(pd->bdev, bdev_buf));
2680 seq_printf(m, "\nSettings:\n");
2681 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2683 if (pd->settings.write_type == 0)
2684 msg = "Packet";
2685 else
2686 msg = "Unknown";
2687 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2689 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2690 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2692 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2694 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2695 msg = "Mode 1";
2696 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2697 msg = "Mode 2";
2698 else
2699 msg = "Unknown";
2700 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2702 seq_printf(m, "\nStatistics:\n");
2703 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2704 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2705 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2706 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2707 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2709 seq_printf(m, "\nMisc:\n");
2710 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2711 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2712 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2713 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2714 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2715 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2717 seq_printf(m, "\nQueue state:\n");
2718 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2719 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2720 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2722 pkt_count_states(pd, states);
2723 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2724 states[0], states[1], states[2], states[3], states[4], states[5]);
2726 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2727 pd->write_congestion_off,
2728 pd->write_congestion_on);
2729 return 0;
2732 static int pkt_seq_open(struct inode *inode, struct file *file)
2734 return single_open(file, pkt_seq_show, PDE(inode)->data);
2737 static const struct file_operations pkt_proc_fops = {
2738 .open = pkt_seq_open,
2739 .read = seq_read,
2740 .llseek = seq_lseek,
2741 .release = single_release
2744 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2746 int i;
2747 int ret = 0;
2748 char b[BDEVNAME_SIZE];
2749 struct block_device *bdev;
2751 if (pd->pkt_dev == dev) {
2752 printk(DRIVER_NAME": Recursive setup not allowed\n");
2753 return -EBUSY;
2755 for (i = 0; i < MAX_WRITERS; i++) {
2756 struct pktcdvd_device *pd2 = pkt_devs[i];
2757 if (!pd2)
2758 continue;
2759 if (pd2->bdev->bd_dev == dev) {
2760 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2761 return -EBUSY;
2763 if (pd2->pkt_dev == dev) {
2764 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2765 return -EBUSY;
2769 bdev = bdget(dev);
2770 if (!bdev)
2771 return -ENOMEM;
2772 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY);
2773 if (ret)
2774 return ret;
2776 /* This is safe, since we have a reference from open(). */
2777 __module_get(THIS_MODULE);
2779 pd->bdev = bdev;
2780 set_blocksize(bdev, CD_FRAMESIZE);
2782 pkt_init_queue(pd);
2784 atomic_set(&pd->cdrw.pending_bios, 0);
2785 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2786 if (IS_ERR(pd->cdrw.thread)) {
2787 printk(DRIVER_NAME": can't start kernel thread\n");
2788 ret = -ENOMEM;
2789 goto out_mem;
2792 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2793 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2794 return 0;
2796 out_mem:
2797 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2798 /* This is safe: open() is still holding a reference. */
2799 module_put(THIS_MODULE);
2800 return ret;
2803 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2805 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2807 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2808 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2810 switch (cmd) {
2811 case CDROMEJECT:
2813 * The door gets locked when the device is opened, so we
2814 * have to unlock it or else the eject command fails.
2816 if (pd->refcnt == 1)
2817 pkt_lock_door(pd, 0);
2818 /* fallthru */
2820 * forward selected CDROM ioctls to CD-ROM, for UDF
2822 case CDROMMULTISESSION:
2823 case CDROMREADTOCENTRY:
2824 case CDROM_LAST_WRITTEN:
2825 case CDROM_SEND_PACKET:
2826 case SCSI_IOCTL_SEND_COMMAND:
2827 return __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2829 default:
2830 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2831 return -ENOTTY;
2834 return 0;
2837 static int pkt_media_changed(struct gendisk *disk)
2839 struct pktcdvd_device *pd = disk->private_data;
2840 struct gendisk *attached_disk;
2842 if (!pd)
2843 return 0;
2844 if (!pd->bdev)
2845 return 0;
2846 attached_disk = pd->bdev->bd_disk;
2847 if (!attached_disk)
2848 return 0;
2849 return attached_disk->fops->media_changed(attached_disk);
2852 static const struct block_device_operations pktcdvd_ops = {
2853 .owner = THIS_MODULE,
2854 .open = pkt_open,
2855 .release = pkt_close,
2856 .locked_ioctl = pkt_ioctl,
2857 .media_changed = pkt_media_changed,
2860 static char *pktcdvd_devnode(struct gendisk *gd, mode_t *mode)
2862 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2866 * Set up mapping from pktcdvd device to CD-ROM device.
2868 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2870 int idx;
2871 int ret = -ENOMEM;
2872 struct pktcdvd_device *pd;
2873 struct gendisk *disk;
2875 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2877 for (idx = 0; idx < MAX_WRITERS; idx++)
2878 if (!pkt_devs[idx])
2879 break;
2880 if (idx == MAX_WRITERS) {
2881 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2882 ret = -EBUSY;
2883 goto out_mutex;
2886 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2887 if (!pd)
2888 goto out_mutex;
2890 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2891 sizeof(struct pkt_rb_node));
2892 if (!pd->rb_pool)
2893 goto out_mem;
2895 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2896 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2897 spin_lock_init(&pd->cdrw.active_list_lock);
2899 spin_lock_init(&pd->lock);
2900 spin_lock_init(&pd->iosched.lock);
2901 sprintf(pd->name, DRIVER_NAME"%d", idx);
2902 init_waitqueue_head(&pd->wqueue);
2903 pd->bio_queue = RB_ROOT;
2905 pd->write_congestion_on = write_congestion_on;
2906 pd->write_congestion_off = write_congestion_off;
2908 disk = alloc_disk(1);
2909 if (!disk)
2910 goto out_mem;
2911 pd->disk = disk;
2912 disk->major = pktdev_major;
2913 disk->first_minor = idx;
2914 disk->fops = &pktcdvd_ops;
2915 disk->flags = GENHD_FL_REMOVABLE;
2916 strcpy(disk->disk_name, pd->name);
2917 disk->devnode = pktcdvd_devnode;
2918 disk->private_data = pd;
2919 disk->queue = blk_alloc_queue(GFP_KERNEL);
2920 if (!disk->queue)
2921 goto out_mem2;
2923 pd->pkt_dev = MKDEV(pktdev_major, idx);
2924 ret = pkt_new_dev(pd, dev);
2925 if (ret)
2926 goto out_new_dev;
2928 add_disk(disk);
2930 pkt_sysfs_dev_new(pd);
2931 pkt_debugfs_dev_new(pd);
2933 pkt_devs[idx] = pd;
2934 if (pkt_dev)
2935 *pkt_dev = pd->pkt_dev;
2937 mutex_unlock(&ctl_mutex);
2938 return 0;
2940 out_new_dev:
2941 blk_cleanup_queue(disk->queue);
2942 out_mem2:
2943 put_disk(disk);
2944 out_mem:
2945 if (pd->rb_pool)
2946 mempool_destroy(pd->rb_pool);
2947 kfree(pd);
2948 out_mutex:
2949 mutex_unlock(&ctl_mutex);
2950 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2951 return ret;
2955 * Tear down mapping from pktcdvd device to CD-ROM device.
2957 static int pkt_remove_dev(dev_t pkt_dev)
2959 struct pktcdvd_device *pd;
2960 int idx;
2961 int ret = 0;
2963 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2965 for (idx = 0; idx < MAX_WRITERS; idx++) {
2966 pd = pkt_devs[idx];
2967 if (pd && (pd->pkt_dev == pkt_dev))
2968 break;
2970 if (idx == MAX_WRITERS) {
2971 DPRINTK(DRIVER_NAME": dev not setup\n");
2972 ret = -ENXIO;
2973 goto out;
2976 if (pd->refcnt > 0) {
2977 ret = -EBUSY;
2978 goto out;
2980 if (!IS_ERR(pd->cdrw.thread))
2981 kthread_stop(pd->cdrw.thread);
2983 pkt_devs[idx] = NULL;
2985 pkt_debugfs_dev_remove(pd);
2986 pkt_sysfs_dev_remove(pd);
2988 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2990 remove_proc_entry(pd->name, pkt_proc);
2991 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2993 del_gendisk(pd->disk);
2994 blk_cleanup_queue(pd->disk->queue);
2995 put_disk(pd->disk);
2997 mempool_destroy(pd->rb_pool);
2998 kfree(pd);
3000 /* This is safe: open() is still holding a reference. */
3001 module_put(THIS_MODULE);
3003 out:
3004 mutex_unlock(&ctl_mutex);
3005 return ret;
3008 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
3010 struct pktcdvd_device *pd;
3012 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3014 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3015 if (pd) {
3016 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3017 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3018 } else {
3019 ctrl_cmd->dev = 0;
3020 ctrl_cmd->pkt_dev = 0;
3022 ctrl_cmd->num_devices = MAX_WRITERS;
3024 mutex_unlock(&ctl_mutex);
3027 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3029 void __user *argp = (void __user *)arg;
3030 struct pkt_ctrl_command ctrl_cmd;
3031 int ret = 0;
3032 dev_t pkt_dev = 0;
3034 if (cmd != PACKET_CTRL_CMD)
3035 return -ENOTTY;
3037 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3038 return -EFAULT;
3040 switch (ctrl_cmd.command) {
3041 case PKT_CTRL_CMD_SETUP:
3042 if (!capable(CAP_SYS_ADMIN))
3043 return -EPERM;
3044 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3045 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3046 break;
3047 case PKT_CTRL_CMD_TEARDOWN:
3048 if (!capable(CAP_SYS_ADMIN))
3049 return -EPERM;
3050 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3051 break;
3052 case PKT_CTRL_CMD_STATUS:
3053 pkt_get_status(&ctrl_cmd);
3054 break;
3055 default:
3056 return -ENOTTY;
3059 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3060 return -EFAULT;
3061 return ret;
3065 static const struct file_operations pkt_ctl_fops = {
3066 .ioctl = pkt_ctl_ioctl,
3067 .owner = THIS_MODULE,
3070 static struct miscdevice pkt_misc = {
3071 .minor = MISC_DYNAMIC_MINOR,
3072 .name = DRIVER_NAME,
3073 .nodename = "pktcdvd/control",
3074 .fops = &pkt_ctl_fops
3077 static int __init pkt_init(void)
3079 int ret;
3081 mutex_init(&ctl_mutex);
3083 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3084 sizeof(struct packet_stacked_data));
3085 if (!psd_pool)
3086 return -ENOMEM;
3088 ret = register_blkdev(pktdev_major, DRIVER_NAME);
3089 if (ret < 0) {
3090 printk(DRIVER_NAME": Unable to register block device\n");
3091 goto out2;
3093 if (!pktdev_major)
3094 pktdev_major = ret;
3096 ret = pkt_sysfs_init();
3097 if (ret)
3098 goto out;
3100 pkt_debugfs_init();
3102 ret = misc_register(&pkt_misc);
3103 if (ret) {
3104 printk(DRIVER_NAME": Unable to register misc device\n");
3105 goto out_misc;
3108 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
3110 return 0;
3112 out_misc:
3113 pkt_debugfs_cleanup();
3114 pkt_sysfs_cleanup();
3115 out:
3116 unregister_blkdev(pktdev_major, DRIVER_NAME);
3117 out2:
3118 mempool_destroy(psd_pool);
3119 return ret;
3122 static void __exit pkt_exit(void)
3124 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3125 misc_deregister(&pkt_misc);
3127 pkt_debugfs_cleanup();
3128 pkt_sysfs_cleanup();
3130 unregister_blkdev(pktdev_major, DRIVER_NAME);
3131 mempool_destroy(psd_pool);
3134 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3135 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3136 MODULE_LICENSE("GPL");
3138 module_init(pkt_init);
3139 module_exit(pkt_exit);