2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/smp_lock.h>
30 #include <linux/delay.h>
31 #include <linux/major.h>
33 #include <linux/bio.h>
34 #include <linux/blkpg.h>
35 #include <linux/timer.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/init.h>
39 #include <linux/jiffies.h>
40 #include <linux/hdreg.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/mutex.h>
44 #include <asm/uaccess.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/blkdev.h>
49 #include <linux/genhd.h>
50 #include <linux/completion.h>
51 #include <scsi/scsi.h>
53 #include <scsi/scsi_ioctl.h>
54 #include <linux/cdrom.h>
55 #include <linux/scatterlist.h>
56 #include <linux/kthread.h>
58 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
59 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
60 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
62 /* Embedded module documentation macros - see modules.h */
63 MODULE_AUTHOR("Hewlett-Packard Company");
64 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
65 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
66 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
67 " Smart Array G2 Series SAS/SATA Controllers");
68 MODULE_VERSION("3.6.20");
69 MODULE_LICENSE("GPL");
71 static int cciss_allow_hpsa
;
72 module_param(cciss_allow_hpsa
, int, S_IRUGO
|S_IWUSR
);
73 MODULE_PARM_DESC(cciss_allow_hpsa
,
74 "Prevent cciss driver from accessing hardware known to be "
75 " supported by the hpsa driver");
77 #include "cciss_cmd.h"
79 #include <linux/cciss_ioctl.h>
81 /* define the PCI info for the cards we can control */
82 static const struct pci_device_id cciss_pci_device_id
[] = {
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
86 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
87 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
88 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
89 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
90 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
91 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
113 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
115 /* board_id = Subsystem Device ID & Vendor ID
116 * product = Marketing Name for the board
117 * access = Address of the struct of function pointers
119 static struct board_type products
[] = {
120 {0x40700E11, "Smart Array 5300", &SA5_access
},
121 {0x40800E11, "Smart Array 5i", &SA5B_access
},
122 {0x40820E11, "Smart Array 532", &SA5B_access
},
123 {0x40830E11, "Smart Array 5312", &SA5B_access
},
124 {0x409A0E11, "Smart Array 641", &SA5_access
},
125 {0x409B0E11, "Smart Array 642", &SA5_access
},
126 {0x409C0E11, "Smart Array 6400", &SA5_access
},
127 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
128 {0x40910E11, "Smart Array 6i", &SA5_access
},
129 {0x3225103C, "Smart Array P600", &SA5_access
},
130 {0x3235103C, "Smart Array P400i", &SA5_access
},
131 {0x3211103C, "Smart Array E200i", &SA5_access
},
132 {0x3212103C, "Smart Array E200", &SA5_access
},
133 {0x3213103C, "Smart Array E200i", &SA5_access
},
134 {0x3214103C, "Smart Array E200i", &SA5_access
},
135 {0x3215103C, "Smart Array E200i", &SA5_access
},
136 {0x3237103C, "Smart Array E500", &SA5_access
},
137 /* controllers below this line are also supported by the hpsa driver. */
138 #define HPSA_BOUNDARY 0x3223103C
139 {0x3223103C, "Smart Array P800", &SA5_access
},
140 {0x3234103C, "Smart Array P400", &SA5_access
},
141 {0x323D103C, "Smart Array P700m", &SA5_access
},
142 {0x3241103C, "Smart Array P212", &SA5_access
},
143 {0x3243103C, "Smart Array P410", &SA5_access
},
144 {0x3245103C, "Smart Array P410i", &SA5_access
},
145 {0x3247103C, "Smart Array P411", &SA5_access
},
146 {0x3249103C, "Smart Array P812", &SA5_access
},
147 {0x324A103C, "Smart Array P712m", &SA5_access
},
148 {0x324B103C, "Smart Array P711m", &SA5_access
},
151 /* How long to wait (in milliseconds) for board to go into simple mode */
152 #define MAX_CONFIG_WAIT 30000
153 #define MAX_IOCTL_CONFIG_WAIT 1000
155 /*define how many times we will try a command because of bus resets */
156 #define MAX_CMD_RETRIES 3
160 /* Originally cciss driver only supports 8 major numbers */
161 #define MAX_CTLR_ORIG 8
163 static ctlr_info_t
*hba
[MAX_CTLR
];
165 static struct task_struct
*cciss_scan_thread
;
166 static DEFINE_MUTEX(scan_mutex
);
167 static LIST_HEAD(scan_q
);
169 static void do_cciss_request(struct request_queue
*q
);
170 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
);
171 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
172 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
173 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
174 unsigned int cmd
, unsigned long arg
);
175 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
177 static int cciss_revalidate(struct gendisk
*disk
);
178 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
179 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
180 int clear_all
, int via_ioctl
);
182 static void cciss_read_capacity(int ctlr
, int logvol
, int withirq
,
183 sector_t
*total_size
, unsigned int *block_size
);
184 static void cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
,
185 sector_t
*total_size
, unsigned int *block_size
);
186 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
187 int withirq
, sector_t total_size
,
188 unsigned int block_size
, InquiryData_struct
*inq_buff
,
189 drive_info_struct
*drv
);
190 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*, struct pci_dev
*,
192 static void start_io(ctlr_info_t
*h
);
193 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
194 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
);
195 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
196 __u8 page_code
, unsigned char scsi3addr
[],
198 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
200 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
202 static void fail_all_cmds(unsigned long ctlr
);
203 static int add_to_scan_list(struct ctlr_info
*h
);
204 static int scan_thread(void *data
);
205 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
206 static void cciss_hba_release(struct device
*dev
);
207 static void cciss_device_release(struct device
*dev
);
208 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
209 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
211 #ifdef CONFIG_PROC_FS
212 static void cciss_procinit(int i
);
214 static void cciss_procinit(int i
)
217 #endif /* CONFIG_PROC_FS */
220 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
221 unsigned, unsigned long);
224 static const struct block_device_operations cciss_fops
= {
225 .owner
= THIS_MODULE
,
227 .release
= cciss_release
,
228 .locked_ioctl
= cciss_ioctl
,
229 .getgeo
= cciss_getgeo
,
231 .compat_ioctl
= cciss_compat_ioctl
,
233 .revalidate_disk
= cciss_revalidate
,
237 * Enqueuing and dequeuing functions for cmdlists.
239 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
241 hlist_add_head(&c
->list
, list
);
244 static inline void removeQ(CommandList_struct
*c
)
247 * After kexec/dump some commands might still
248 * be in flight, which the firmware will try
249 * to complete. Resetting the firmware doesn't work
250 * with old fw revisions, so we have to mark
251 * them off as 'stale' to prevent the driver from
254 if (WARN_ON(hlist_unhashed(&c
->list
))) {
255 c
->cmd_type
= CMD_MSG_STALE
;
259 hlist_del_init(&c
->list
);
262 #include "cciss_scsi.c" /* For SCSI tape support */
264 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
267 #define RAID_UNKNOWN (sizeof(raid_label) / sizeof(raid_label[0])-1)
269 #ifdef CONFIG_PROC_FS
272 * Report information about this controller.
274 #define ENG_GIG 1000000000
275 #define ENG_GIG_FACTOR (ENG_GIG/512)
276 #define ENGAGE_SCSI "engage scsi"
278 static struct proc_dir_entry
*proc_cciss
;
280 static void cciss_seq_show_header(struct seq_file
*seq
)
282 ctlr_info_t
*h
= seq
->private;
284 seq_printf(seq
, "%s: HP %s Controller\n"
285 "Board ID: 0x%08lx\n"
286 "Firmware Version: %c%c%c%c\n"
288 "Logical drives: %d\n"
289 "Current Q depth: %d\n"
290 "Current # commands on controller: %d\n"
291 "Max Q depth since init: %d\n"
292 "Max # commands on controller since init: %d\n"
293 "Max SG entries since init: %d\n",
296 (unsigned long)h
->board_id
,
297 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
298 h
->firm_ver
[3], (unsigned int)h
->intr
[SIMPLE_MODE_INT
],
300 h
->Qdepth
, h
->commands_outstanding
,
301 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
303 #ifdef CONFIG_CISS_SCSI_TAPE
304 cciss_seq_tape_report(seq
, h
->ctlr
);
305 #endif /* CONFIG_CISS_SCSI_TAPE */
308 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
310 ctlr_info_t
*h
= seq
->private;
311 unsigned ctlr
= h
->ctlr
;
314 /* prevent displaying bogus info during configuration
315 * or deconfiguration of a logical volume
317 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
318 if (h
->busy_configuring
) {
319 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
320 return ERR_PTR(-EBUSY
);
322 h
->busy_configuring
= 1;
323 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
326 cciss_seq_show_header(seq
);
331 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
333 sector_t vol_sz
, vol_sz_frac
;
334 ctlr_info_t
*h
= seq
->private;
335 unsigned ctlr
= h
->ctlr
;
337 drive_info_struct
*drv
= h
->drv
[*pos
];
339 if (*pos
> h
->highest_lun
)
345 vol_sz
= drv
->nr_blocks
;
346 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
348 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
350 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
351 drv
->raid_level
= RAID_UNKNOWN
;
352 seq_printf(seq
, "cciss/c%dd%d:"
353 "\t%4u.%02uGB\tRAID %s\n",
354 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
355 raid_label
[drv
->raid_level
]);
359 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
361 ctlr_info_t
*h
= seq
->private;
363 if (*pos
> h
->highest_lun
)
370 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
372 ctlr_info_t
*h
= seq
->private;
374 /* Only reset h->busy_configuring if we succeeded in setting
375 * it during cciss_seq_start. */
376 if (v
== ERR_PTR(-EBUSY
))
379 h
->busy_configuring
= 0;
382 static const struct seq_operations cciss_seq_ops
= {
383 .start
= cciss_seq_start
,
384 .show
= cciss_seq_show
,
385 .next
= cciss_seq_next
,
386 .stop
= cciss_seq_stop
,
389 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
391 int ret
= seq_open(file
, &cciss_seq_ops
);
392 struct seq_file
*seq
= file
->private_data
;
395 seq
->private = PDE(inode
)->data
;
401 cciss_proc_write(struct file
*file
, const char __user
*buf
,
402 size_t length
, loff_t
*ppos
)
407 #ifndef CONFIG_CISS_SCSI_TAPE
411 if (!buf
|| length
> PAGE_SIZE
- 1)
414 buffer
= (char *)__get_free_page(GFP_KERNEL
);
419 if (copy_from_user(buffer
, buf
, length
))
421 buffer
[length
] = '\0';
423 #ifdef CONFIG_CISS_SCSI_TAPE
424 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
425 struct seq_file
*seq
= file
->private_data
;
426 ctlr_info_t
*h
= seq
->private;
429 rc
= cciss_engage_scsi(h
->ctlr
);
435 #endif /* CONFIG_CISS_SCSI_TAPE */
437 /* might be nice to have "disengage" too, but it's not
438 safely possible. (only 1 module use count, lock issues.) */
441 free_page((unsigned long)buffer
);
445 static const struct file_operations cciss_proc_fops
= {
446 .owner
= THIS_MODULE
,
447 .open
= cciss_seq_open
,
450 .release
= seq_release
,
451 .write
= cciss_proc_write
,
454 static void __devinit
cciss_procinit(int i
)
456 struct proc_dir_entry
*pde
;
458 if (proc_cciss
== NULL
)
459 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
462 pde
= proc_create_data(hba
[i
]->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
464 &cciss_proc_fops
, hba
[i
]);
466 #endif /* CONFIG_PROC_FS */
468 #define MAX_PRODUCT_NAME_LEN 19
470 #define to_hba(n) container_of(n, struct ctlr_info, dev)
471 #define to_drv(n) container_of(n, drive_info_struct, dev)
473 static ssize_t
host_store_rescan(struct device
*dev
,
474 struct device_attribute
*attr
,
475 const char *buf
, size_t count
)
477 struct ctlr_info
*h
= to_hba(dev
);
480 wake_up_process(cciss_scan_thread
);
481 wait_for_completion_interruptible(&h
->scan_wait
);
485 DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
487 static ssize_t
dev_show_unique_id(struct device
*dev
,
488 struct device_attribute
*attr
,
491 drive_info_struct
*drv
= to_drv(dev
);
492 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
497 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
498 if (h
->busy_configuring
)
501 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
502 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
507 return snprintf(buf
, 16 * 2 + 2,
508 "%02X%02X%02X%02X%02X%02X%02X%02X"
509 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
510 sn
[0], sn
[1], sn
[2], sn
[3],
511 sn
[4], sn
[5], sn
[6], sn
[7],
512 sn
[8], sn
[9], sn
[10], sn
[11],
513 sn
[12], sn
[13], sn
[14], sn
[15]);
515 DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
517 static ssize_t
dev_show_vendor(struct device
*dev
,
518 struct device_attribute
*attr
,
521 drive_info_struct
*drv
= to_drv(dev
);
522 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
523 char vendor
[VENDOR_LEN
+ 1];
527 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
528 if (h
->busy_configuring
)
531 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
532 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
537 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
539 DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
541 static ssize_t
dev_show_model(struct device
*dev
,
542 struct device_attribute
*attr
,
545 drive_info_struct
*drv
= to_drv(dev
);
546 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
547 char model
[MODEL_LEN
+ 1];
551 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
552 if (h
->busy_configuring
)
555 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
556 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
561 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
563 DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
565 static ssize_t
dev_show_rev(struct device
*dev
,
566 struct device_attribute
*attr
,
569 drive_info_struct
*drv
= to_drv(dev
);
570 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
571 char rev
[REV_LEN
+ 1];
575 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
576 if (h
->busy_configuring
)
579 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
580 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
585 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
587 DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
589 static ssize_t
cciss_show_lunid(struct device
*dev
,
590 struct device_attribute
*attr
, char *buf
)
592 drive_info_struct
*drv
= to_drv(dev
);
593 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
595 unsigned char lunid
[8];
597 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
598 if (h
->busy_configuring
) {
599 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
603 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
606 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
607 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
608 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
609 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
610 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
612 DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
614 static ssize_t
cciss_show_raid_level(struct device
*dev
,
615 struct device_attribute
*attr
, char *buf
)
617 drive_info_struct
*drv
= to_drv(dev
);
618 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
622 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
623 if (h
->busy_configuring
) {
624 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
627 raid
= drv
->raid_level
;
628 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
629 if (raid
< 0 || raid
> RAID_UNKNOWN
)
632 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
635 DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
637 static ssize_t
cciss_show_usage_count(struct device
*dev
,
638 struct device_attribute
*attr
, char *buf
)
640 drive_info_struct
*drv
= to_drv(dev
);
641 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
645 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
646 if (h
->busy_configuring
) {
647 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
650 count
= drv
->usage_count
;
651 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
652 return snprintf(buf
, 20, "%d\n", count
);
654 DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
656 static struct attribute
*cciss_host_attrs
[] = {
657 &dev_attr_rescan
.attr
,
661 static struct attribute_group cciss_host_attr_group
= {
662 .attrs
= cciss_host_attrs
,
665 static const struct attribute_group
*cciss_host_attr_groups
[] = {
666 &cciss_host_attr_group
,
670 static struct device_type cciss_host_type
= {
671 .name
= "cciss_host",
672 .groups
= cciss_host_attr_groups
,
673 .release
= cciss_hba_release
,
676 static struct attribute
*cciss_dev_attrs
[] = {
677 &dev_attr_unique_id
.attr
,
678 &dev_attr_model
.attr
,
679 &dev_attr_vendor
.attr
,
681 &dev_attr_lunid
.attr
,
682 &dev_attr_raid_level
.attr
,
683 &dev_attr_usage_count
.attr
,
687 static struct attribute_group cciss_dev_attr_group
= {
688 .attrs
= cciss_dev_attrs
,
691 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
692 &cciss_dev_attr_group
,
696 static struct device_type cciss_dev_type
= {
697 .name
= "cciss_device",
698 .groups
= cciss_dev_attr_groups
,
699 .release
= cciss_device_release
,
702 static struct bus_type cciss_bus_type
= {
707 * cciss_hba_release is called when the reference count
708 * of h->dev goes to zero.
710 static void cciss_hba_release(struct device
*dev
)
713 * nothing to do, but need this to avoid a warning
714 * about not having a release handler from lib/kref.c.
719 * Initialize sysfs entry for each controller. This sets up and registers
720 * the 'cciss#' directory for each individual controller under
721 * /sys/bus/pci/devices/<dev>/.
723 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
725 device_initialize(&h
->dev
);
726 h
->dev
.type
= &cciss_host_type
;
727 h
->dev
.bus
= &cciss_bus_type
;
728 dev_set_name(&h
->dev
, "%s", h
->devname
);
729 h
->dev
.parent
= &h
->pdev
->dev
;
731 return device_add(&h
->dev
);
735 * Remove sysfs entries for an hba.
737 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
740 put_device(&h
->dev
); /* final put. */
743 /* cciss_device_release is called when the reference count
744 * of h->drv[x]dev goes to zero.
746 static void cciss_device_release(struct device
*dev
)
748 drive_info_struct
*drv
= to_drv(dev
);
753 * Initialize sysfs for each logical drive. This sets up and registers
754 * the 'c#d#' directory for each individual logical drive under
755 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
756 * /sys/block/cciss!c#d# to this entry.
758 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
763 if (h
->drv
[drv_index
]->device_initialized
)
766 dev
= &h
->drv
[drv_index
]->dev
;
767 device_initialize(dev
);
768 dev
->type
= &cciss_dev_type
;
769 dev
->bus
= &cciss_bus_type
;
770 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
771 dev
->parent
= &h
->dev
;
772 h
->drv
[drv_index
]->device_initialized
= 1;
773 return device_add(dev
);
777 * Remove sysfs entries for a logical drive.
779 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
782 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
784 /* special case for c*d0, we only destroy it on controller exit */
785 if (drv_index
== 0 && !ctlr_exiting
)
789 put_device(dev
); /* the "final" put. */
790 h
->drv
[drv_index
] = NULL
;
794 * For operations that cannot sleep, a command block is allocated at init,
795 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
796 * which ones are free or in use. For operations that can wait for kmalloc
797 * to possible sleep, this routine can be called with get_from_pool set to 0.
798 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
800 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
, int get_from_pool
)
802 CommandList_struct
*c
;
805 dma_addr_t cmd_dma_handle
, err_dma_handle
;
807 if (!get_from_pool
) {
808 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
809 sizeof(CommandList_struct
), &cmd_dma_handle
);
812 memset(c
, 0, sizeof(CommandList_struct
));
816 c
->err_info
= (ErrorInfo_struct
*)
817 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
820 if (c
->err_info
== NULL
) {
821 pci_free_consistent(h
->pdev
,
822 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
825 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
826 } else { /* get it out of the controllers pool */
829 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
832 } while (test_and_set_bit
833 (i
& (BITS_PER_LONG
- 1),
834 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
836 printk(KERN_DEBUG
"cciss: using command buffer %d\n", i
);
839 memset(c
, 0, sizeof(CommandList_struct
));
840 cmd_dma_handle
= h
->cmd_pool_dhandle
841 + i
* sizeof(CommandList_struct
);
842 c
->err_info
= h
->errinfo_pool
+ i
;
843 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
844 err_dma_handle
= h
->errinfo_pool_dhandle
845 + i
* sizeof(ErrorInfo_struct
);
851 INIT_HLIST_NODE(&c
->list
);
852 c
->busaddr
= (__u32
) cmd_dma_handle
;
853 temp64
.val
= (__u64
) err_dma_handle
;
854 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
855 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
856 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
863 * Frees a command block that was previously allocated with cmd_alloc().
865 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
, int got_from_pool
)
870 if (!got_from_pool
) {
871 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
872 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
873 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
874 c
->err_info
, (dma_addr_t
) temp64
.val
);
875 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
876 c
, (dma_addr_t
) c
->busaddr
);
879 clear_bit(i
& (BITS_PER_LONG
- 1),
880 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
885 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
887 return disk
->queue
->queuedata
;
890 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
892 return disk
->private_data
;
896 * Open. Make sure the device is really there.
898 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
900 ctlr_info_t
*host
= get_host(bdev
->bd_disk
);
901 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
904 printk(KERN_DEBUG
"cciss_open %s\n", bdev
->bd_disk
->disk_name
);
905 #endif /* CCISS_DEBUG */
907 if (drv
->busy_configuring
)
910 * Root is allowed to open raw volume zero even if it's not configured
911 * so array config can still work. Root is also allowed to open any
912 * volume that has a LUN ID, so it can issue IOCTL to reread the
913 * disk information. I don't think I really like this
914 * but I'm already using way to many device nodes to claim another one
915 * for "raw controller".
917 if (drv
->heads
== 0) {
918 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
919 /* if not node 0 make sure it is a partition = 0 */
920 if (MINOR(bdev
->bd_dev
) & 0x0f) {
922 /* if it is, make sure we have a LUN ID */
923 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
924 sizeof(drv
->LunID
))) {
928 if (!capable(CAP_SYS_ADMIN
))
939 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
941 ctlr_info_t
*host
= get_host(disk
);
942 drive_info_struct
*drv
= get_drv(disk
);
945 printk(KERN_DEBUG
"cciss_release %s\n", disk
->disk_name
);
946 #endif /* CCISS_DEBUG */
955 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
956 unsigned cmd
, unsigned long arg
)
960 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
965 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
966 unsigned cmd
, unsigned long arg
);
967 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
968 unsigned cmd
, unsigned long arg
);
970 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
971 unsigned cmd
, unsigned long arg
)
974 case CCISS_GETPCIINFO
:
975 case CCISS_GETINTINFO
:
976 case CCISS_SETINTINFO
:
977 case CCISS_GETNODENAME
:
978 case CCISS_SETNODENAME
:
979 case CCISS_GETHEARTBEAT
:
980 case CCISS_GETBUSTYPES
:
981 case CCISS_GETFIRMVER
:
982 case CCISS_GETDRIVVER
:
983 case CCISS_REVALIDVOLS
:
984 case CCISS_DEREGDISK
:
985 case CCISS_REGNEWDISK
:
987 case CCISS_RESCANDISK
:
988 case CCISS_GETLUNINFO
:
989 return do_ioctl(bdev
, mode
, cmd
, arg
);
991 case CCISS_PASSTHRU32
:
992 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
993 case CCISS_BIG_PASSTHRU32
:
994 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1001 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1002 unsigned cmd
, unsigned long arg
)
1004 IOCTL32_Command_struct __user
*arg32
=
1005 (IOCTL32_Command_struct __user
*) arg
;
1006 IOCTL_Command_struct arg64
;
1007 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1013 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1014 sizeof(arg64
.LUN_info
));
1016 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1017 sizeof(arg64
.Request
));
1019 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1020 sizeof(arg64
.error_info
));
1021 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1022 err
|= get_user(cp
, &arg32
->buf
);
1023 arg64
.buf
= compat_ptr(cp
);
1024 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1029 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1033 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1034 sizeof(arg32
->error_info
));
1040 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1041 unsigned cmd
, unsigned long arg
)
1043 BIG_IOCTL32_Command_struct __user
*arg32
=
1044 (BIG_IOCTL32_Command_struct __user
*) arg
;
1045 BIG_IOCTL_Command_struct arg64
;
1046 BIG_IOCTL_Command_struct __user
*p
=
1047 compat_alloc_user_space(sizeof(arg64
));
1053 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1054 sizeof(arg64
.LUN_info
));
1056 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1057 sizeof(arg64
.Request
));
1059 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1060 sizeof(arg64
.error_info
));
1061 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1062 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1063 err
|= get_user(cp
, &arg32
->buf
);
1064 arg64
.buf
= compat_ptr(cp
);
1065 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1070 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1074 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1075 sizeof(arg32
->error_info
));
1082 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1084 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1086 if (!drv
->cylinders
)
1089 geo
->heads
= drv
->heads
;
1090 geo
->sectors
= drv
->sectors
;
1091 geo
->cylinders
= drv
->cylinders
;
1095 static void check_ioctl_unit_attention(ctlr_info_t
*host
, CommandList_struct
*c
)
1097 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1098 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1099 (void)check_for_unit_attention(host
, c
);
1104 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1105 unsigned int cmd
, unsigned long arg
)
1107 struct gendisk
*disk
= bdev
->bd_disk
;
1108 ctlr_info_t
*host
= get_host(disk
);
1109 drive_info_struct
*drv
= get_drv(disk
);
1110 int ctlr
= host
->ctlr
;
1111 void __user
*argp
= (void __user
*)arg
;
1114 printk(KERN_DEBUG
"cciss_ioctl: Called with cmd=%x %lx\n", cmd
, arg
);
1115 #endif /* CCISS_DEBUG */
1118 case CCISS_GETPCIINFO
:
1120 cciss_pci_info_struct pciinfo
;
1124 pciinfo
.domain
= pci_domain_nr(host
->pdev
->bus
);
1125 pciinfo
.bus
= host
->pdev
->bus
->number
;
1126 pciinfo
.dev_fn
= host
->pdev
->devfn
;
1127 pciinfo
.board_id
= host
->board_id
;
1129 (argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1133 case CCISS_GETINTINFO
:
1135 cciss_coalint_struct intinfo
;
1139 readl(&host
->cfgtable
->HostWrite
.CoalIntDelay
);
1141 readl(&host
->cfgtable
->HostWrite
.CoalIntCount
);
1143 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1147 case CCISS_SETINTINFO
:
1149 cciss_coalint_struct intinfo
;
1150 unsigned long flags
;
1155 if (!capable(CAP_SYS_ADMIN
))
1158 (&intinfo
, argp
, sizeof(cciss_coalint_struct
)))
1160 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1162 // printk("cciss_ioctl: delay and count cannot be 0\n");
1165 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1166 /* Update the field, and then ring the doorbell */
1167 writel(intinfo
.delay
,
1168 &(host
->cfgtable
->HostWrite
.CoalIntDelay
));
1169 writel(intinfo
.count
,
1170 &(host
->cfgtable
->HostWrite
.CoalIntCount
));
1171 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1173 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1174 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1175 & CFGTBL_ChangeReq
))
1177 /* delay and try again */
1180 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1181 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1185 case CCISS_GETNODENAME
:
1187 NodeName_type NodeName
;
1192 for (i
= 0; i
< 16; i
++)
1194 readb(&host
->cfgtable
->ServerName
[i
]);
1195 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1199 case CCISS_SETNODENAME
:
1201 NodeName_type NodeName
;
1202 unsigned long flags
;
1207 if (!capable(CAP_SYS_ADMIN
))
1211 (NodeName
, argp
, sizeof(NodeName_type
)))
1214 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1216 /* Update the field, and then ring the doorbell */
1217 for (i
= 0; i
< 16; i
++)
1219 &host
->cfgtable
->ServerName
[i
]);
1221 writel(CFGTBL_ChangeReq
, host
->vaddr
+ SA5_DOORBELL
);
1223 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1224 if (!(readl(host
->vaddr
+ SA5_DOORBELL
)
1225 & CFGTBL_ChangeReq
))
1227 /* delay and try again */
1230 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1231 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1236 case CCISS_GETHEARTBEAT
:
1238 Heartbeat_type heartbeat
;
1242 heartbeat
= readl(&host
->cfgtable
->HeartBeat
);
1244 (argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1248 case CCISS_GETBUSTYPES
:
1250 BusTypes_type BusTypes
;
1254 BusTypes
= readl(&host
->cfgtable
->BusTypes
);
1256 (argp
, &BusTypes
, sizeof(BusTypes_type
)))
1260 case CCISS_GETFIRMVER
:
1262 FirmwareVer_type firmware
;
1266 memcpy(firmware
, host
->firm_ver
, 4);
1269 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1273 case CCISS_GETDRIVVER
:
1275 DriverVer_type DriverVer
= DRIVER_VERSION
;
1281 (argp
, &DriverVer
, sizeof(DriverVer_type
)))
1286 case CCISS_DEREGDISK
:
1288 case CCISS_REVALIDVOLS
:
1289 return rebuild_lun_table(host
, 0, 1);
1291 case CCISS_GETLUNINFO
:{
1292 LogvolInfo_struct luninfo
;
1294 memcpy(&luninfo
.LunID
, drv
->LunID
,
1295 sizeof(luninfo
.LunID
));
1296 luninfo
.num_opens
= drv
->usage_count
;
1297 luninfo
.num_parts
= 0;
1298 if (copy_to_user(argp
, &luninfo
,
1299 sizeof(LogvolInfo_struct
)))
1303 case CCISS_PASSTHRU
:
1305 IOCTL_Command_struct iocommand
;
1306 CommandList_struct
*c
;
1309 unsigned long flags
;
1310 DECLARE_COMPLETION_ONSTACK(wait
);
1315 if (!capable(CAP_SYS_RAWIO
))
1319 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1321 if ((iocommand
.buf_size
< 1) &&
1322 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1325 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1326 /* Check kmalloc limits */
1327 if (iocommand
.buf_size
> 128000)
1330 if (iocommand
.buf_size
> 0) {
1331 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1335 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1336 /* Copy the data into the buffer we created */
1338 (buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1343 memset(buff
, 0, iocommand
.buf_size
);
1345 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1349 // Fill in the command type
1350 c
->cmd_type
= CMD_IOCTL_PEND
;
1351 // Fill in Command Header
1352 c
->Header
.ReplyQueue
= 0; // unused in simple mode
1353 if (iocommand
.buf_size
> 0) // buffer to fill
1355 c
->Header
.SGList
= 1;
1356 c
->Header
.SGTotal
= 1;
1357 } else // no buffers to fill
1359 c
->Header
.SGList
= 0;
1360 c
->Header
.SGTotal
= 0;
1362 c
->Header
.LUN
= iocommand
.LUN_info
;
1363 c
->Header
.Tag
.lower
= c
->busaddr
; // use the kernel address the cmd block for tag
1365 // Fill in Request block
1366 c
->Request
= iocommand
.Request
;
1368 // Fill in the scatter gather information
1369 if (iocommand
.buf_size
> 0) {
1370 temp64
.val
= pci_map_single(host
->pdev
, buff
,
1372 PCI_DMA_BIDIRECTIONAL
);
1373 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1374 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1375 c
->SG
[0].Len
= iocommand
.buf_size
;
1376 c
->SG
[0].Ext
= 0; // we are not chaining
1380 /* Put the request on the tail of the request queue */
1381 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1382 addQ(&host
->reqQ
, c
);
1385 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1387 wait_for_completion(&wait
);
1389 /* unlock the buffers from DMA */
1390 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1391 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1392 pci_unmap_single(host
->pdev
, (dma_addr_t
) temp64
.val
,
1394 PCI_DMA_BIDIRECTIONAL
);
1396 check_ioctl_unit_attention(host
, c
);
1398 /* Copy the error information out */
1399 iocommand
.error_info
= *(c
->err_info
);
1401 (argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1403 cmd_free(host
, c
, 0);
1407 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1408 /* Copy the data out of the buffer we created */
1410 (iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1412 cmd_free(host
, c
, 0);
1417 cmd_free(host
, c
, 0);
1420 case CCISS_BIG_PASSTHRU
:{
1421 BIG_IOCTL_Command_struct
*ioc
;
1422 CommandList_struct
*c
;
1423 unsigned char **buff
= NULL
;
1424 int *buff_size
= NULL
;
1426 unsigned long flags
;
1430 DECLARE_COMPLETION_ONSTACK(wait
);
1433 BYTE __user
*data_ptr
;
1437 if (!capable(CAP_SYS_RAWIO
))
1439 ioc
= (BIG_IOCTL_Command_struct
*)
1440 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1445 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1449 if ((ioc
->buf_size
< 1) &&
1450 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1454 /* Check kmalloc limits using all SGs */
1455 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1459 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1464 kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1469 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int),
1475 left
= ioc
->buf_size
;
1476 data_ptr
= ioc
->buf
;
1479 ioc
->malloc_size
) ? ioc
->
1481 buff_size
[sg_used
] = sz
;
1482 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1483 if (buff
[sg_used
] == NULL
) {
1487 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1489 (buff
[sg_used
], data_ptr
, sz
)) {
1494 memset(buff
[sg_used
], 0, sz
);
1500 if ((c
= cmd_alloc(host
, 0)) == NULL
) {
1504 c
->cmd_type
= CMD_IOCTL_PEND
;
1505 c
->Header
.ReplyQueue
= 0;
1507 if (ioc
->buf_size
> 0) {
1508 c
->Header
.SGList
= sg_used
;
1509 c
->Header
.SGTotal
= sg_used
;
1511 c
->Header
.SGList
= 0;
1512 c
->Header
.SGTotal
= 0;
1514 c
->Header
.LUN
= ioc
->LUN_info
;
1515 c
->Header
.Tag
.lower
= c
->busaddr
;
1517 c
->Request
= ioc
->Request
;
1518 if (ioc
->buf_size
> 0) {
1520 for (i
= 0; i
< sg_used
; i
++) {
1522 pci_map_single(host
->pdev
, buff
[i
],
1524 PCI_DMA_BIDIRECTIONAL
);
1525 c
->SG
[i
].Addr
.lower
=
1527 c
->SG
[i
].Addr
.upper
=
1529 c
->SG
[i
].Len
= buff_size
[i
];
1530 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1534 /* Put the request on the tail of the request queue */
1535 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
1536 addQ(&host
->reqQ
, c
);
1539 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
1540 wait_for_completion(&wait
);
1541 /* unlock the buffers from DMA */
1542 for (i
= 0; i
< sg_used
; i
++) {
1543 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1544 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1545 pci_unmap_single(host
->pdev
,
1546 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1547 PCI_DMA_BIDIRECTIONAL
);
1549 check_ioctl_unit_attention(host
, c
);
1550 /* Copy the error information out */
1551 ioc
->error_info
= *(c
->err_info
);
1552 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1553 cmd_free(host
, c
, 0);
1557 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1558 /* Copy the data out of the buffer we created */
1559 BYTE __user
*ptr
= ioc
->buf
;
1560 for (i
= 0; i
< sg_used
; i
++) {
1562 (ptr
, buff
[i
], buff_size
[i
])) {
1563 cmd_free(host
, c
, 0);
1567 ptr
+= buff_size
[i
];
1570 cmd_free(host
, c
, 0);
1574 for (i
= 0; i
< sg_used
; i
++)
1583 /* scsi_cmd_ioctl handles these, below, though some are not */
1584 /* very meaningful for cciss. SG_IO is the main one people want. */
1586 case SG_GET_VERSION_NUM
:
1587 case SG_SET_TIMEOUT
:
1588 case SG_GET_TIMEOUT
:
1589 case SG_GET_RESERVED_SIZE
:
1590 case SG_SET_RESERVED_SIZE
:
1591 case SG_EMULATED_HOST
:
1593 case SCSI_IOCTL_SEND_COMMAND
:
1594 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1596 /* scsi_cmd_ioctl would normally handle these, below, but */
1597 /* they aren't a good fit for cciss, as CD-ROMs are */
1598 /* not supported, and we don't have any bus/target/lun */
1599 /* which we present to the kernel. */
1601 case CDROM_SEND_PACKET
:
1602 case CDROMCLOSETRAY
:
1604 case SCSI_IOCTL_GET_IDLUN
:
1605 case SCSI_IOCTL_GET_BUS_NUMBER
:
1611 static void cciss_check_queues(ctlr_info_t
*h
)
1613 int start_queue
= h
->next_to_run
;
1616 /* check to see if we have maxed out the number of commands that can
1617 * be placed on the queue. If so then exit. We do this check here
1618 * in case the interrupt we serviced was from an ioctl and did not
1619 * free any new commands.
1621 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1624 /* We have room on the queue for more commands. Now we need to queue
1625 * them up. We will also keep track of the next queue to run so
1626 * that every queue gets a chance to be started first.
1628 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1629 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1630 /* make sure the disk has been added and the drive is real
1631 * because this can be called from the middle of init_one.
1633 if (!h
->drv
[curr_queue
])
1635 if (!(h
->drv
[curr_queue
]->queue
) ||
1636 !(h
->drv
[curr_queue
]->heads
))
1638 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1640 /* check to see if we have maxed out the number of commands
1641 * that can be placed on the queue.
1643 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1644 if (curr_queue
== start_queue
) {
1646 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1649 h
->next_to_run
= curr_queue
;
1656 static void cciss_softirq_done(struct request
*rq
)
1658 CommandList_struct
*cmd
= rq
->completion_data
;
1659 ctlr_info_t
*h
= hba
[cmd
->ctlr
];
1660 unsigned long flags
;
1664 if (cmd
->Request
.Type
.Direction
== XFER_READ
)
1665 ddir
= PCI_DMA_FROMDEVICE
;
1667 ddir
= PCI_DMA_TODEVICE
;
1669 /* command did not need to be retried */
1670 /* unmap the DMA mapping for all the scatter gather elements */
1671 for (i
= 0; i
< cmd
->Header
.SGList
; i
++) {
1672 temp64
.val32
.lower
= cmd
->SG
[i
].Addr
.lower
;
1673 temp64
.val32
.upper
= cmd
->SG
[i
].Addr
.upper
;
1674 pci_unmap_page(h
->pdev
, temp64
.val
, cmd
->SG
[i
].Len
, ddir
);
1678 printk("Done with %p\n", rq
);
1679 #endif /* CCISS_DEBUG */
1681 /* set the residual count for pc requests */
1682 if (blk_pc_request(rq
))
1683 rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
1685 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1687 spin_lock_irqsave(&h
->lock
, flags
);
1688 cmd_free(h
, cmd
, 1);
1689 cciss_check_queues(h
);
1690 spin_unlock_irqrestore(&h
->lock
, flags
);
1693 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1694 unsigned char scsi3addr
[], uint32_t log_unit
)
1696 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1697 sizeof(h
->drv
[log_unit
]->LunID
));
1700 /* This function gets the SCSI vendor, model, and revision of a logical drive
1701 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1702 * they cannot be read.
1704 static void cciss_get_device_descr(int ctlr
, int logvol
, int withirq
,
1705 char *vendor
, char *model
, char *rev
)
1708 InquiryData_struct
*inq_buf
;
1709 unsigned char scsi3addr
[8];
1715 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1719 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1721 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, inq_buf
,
1722 sizeof(InquiryData_struct
), 0,
1723 scsi3addr
, TYPE_CMD
);
1725 rc
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buf
,
1726 sizeof(InquiryData_struct
), 0,
1727 scsi3addr
, TYPE_CMD
);
1729 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1730 vendor
[VENDOR_LEN
] = '\0';
1731 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1732 model
[MODEL_LEN
] = '\0';
1733 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1734 rev
[REV_LEN
] = '\0';
1741 /* This function gets the serial number of a logical drive via
1742 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1743 * number cannot be had, for whatever reason, 16 bytes of 0xff
1744 * are returned instead.
1746 static void cciss_get_serial_no(int ctlr
, int logvol
, int withirq
,
1747 unsigned char *serial_no
, int buflen
)
1749 #define PAGE_83_INQ_BYTES 64
1752 unsigned char scsi3addr
[8];
1756 memset(serial_no
, 0xff, buflen
);
1757 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1760 memset(serial_no
, 0, buflen
);
1761 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
1763 rc
= sendcmd_withirq(CISS_INQUIRY
, ctlr
, buf
,
1764 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1766 rc
= sendcmd(CISS_INQUIRY
, ctlr
, buf
,
1767 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1769 memcpy(serial_no
, &buf
[8], buflen
);
1775 * cciss_add_disk sets up the block device queue for a logical drive
1777 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1780 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1782 goto init_queue_failure
;
1783 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1784 disk
->major
= h
->major
;
1785 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1786 disk
->fops
= &cciss_fops
;
1787 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1789 disk
->private_data
= h
->drv
[drv_index
];
1790 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1792 /* Set up queue information */
1793 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1795 /* This is a hardware imposed limit. */
1796 blk_queue_max_hw_segments(disk
->queue
, MAXSGENTRIES
);
1798 /* This is a limit in the driver and could be eliminated. */
1799 blk_queue_max_phys_segments(disk
->queue
, MAXSGENTRIES
);
1801 blk_queue_max_sectors(disk
->queue
, h
->cciss_max_sectors
);
1803 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1805 disk
->queue
->queuedata
= h
;
1807 blk_queue_logical_block_size(disk
->queue
,
1808 h
->drv
[drv_index
]->block_size
);
1810 /* Make sure all queue data is written out before */
1811 /* setting h->drv[drv_index]->queue, as setting this */
1812 /* allows the interrupt handler to start the queue */
1814 h
->drv
[drv_index
]->queue
= disk
->queue
;
1819 blk_cleanup_queue(disk
->queue
);
1825 /* This function will check the usage_count of the drive to be updated/added.
1826 * If the usage_count is zero and it is a heretofore unknown drive, or,
1827 * the drive's capacity, geometry, or serial number has changed,
1828 * then the drive information will be updated and the disk will be
1829 * re-registered with the kernel. If these conditions don't hold,
1830 * then it will be left alone for the next reboot. The exception to this
1831 * is disk 0 which will always be left registered with the kernel since it
1832 * is also the controller node. Any changes to disk 0 will show up on
1835 static void cciss_update_drive_info(int ctlr
, int drv_index
, int first_time
,
1838 ctlr_info_t
*h
= hba
[ctlr
];
1839 struct gendisk
*disk
;
1840 InquiryData_struct
*inq_buff
= NULL
;
1841 unsigned int block_size
;
1842 sector_t total_size
;
1843 unsigned long flags
= 0;
1845 drive_info_struct
*drvinfo
;
1847 /* Get information about the disk and modify the driver structure */
1848 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1849 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1850 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1853 /* testing to see if 16-byte CDBs are already being used */
1854 if (h
->cciss_read
== CCISS_READ_16
) {
1855 cciss_read_capacity_16(h
->ctlr
, drv_index
, 1,
1856 &total_size
, &block_size
);
1859 cciss_read_capacity(ctlr
, drv_index
, 1,
1860 &total_size
, &block_size
);
1862 /* if read_capacity returns all F's this volume is >2TB */
1863 /* in size so we switch to 16-byte CDB's for all */
1864 /* read/write ops */
1865 if (total_size
== 0xFFFFFFFFULL
) {
1866 cciss_read_capacity_16(ctlr
, drv_index
, 1,
1867 &total_size
, &block_size
);
1868 h
->cciss_read
= CCISS_READ_16
;
1869 h
->cciss_write
= CCISS_WRITE_16
;
1871 h
->cciss_read
= CCISS_READ_10
;
1872 h
->cciss_write
= CCISS_WRITE_10
;
1876 cciss_geometry_inquiry(ctlr
, drv_index
, 1, total_size
, block_size
,
1878 drvinfo
->block_size
= block_size
;
1879 drvinfo
->nr_blocks
= total_size
+ 1;
1881 cciss_get_device_descr(ctlr
, drv_index
, 1, drvinfo
->vendor
,
1882 drvinfo
->model
, drvinfo
->rev
);
1883 cciss_get_serial_no(ctlr
, drv_index
, 1, drvinfo
->serial_no
,
1884 sizeof(drvinfo
->serial_no
));
1885 /* Save the lunid in case we deregister the disk, below. */
1886 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1887 sizeof(drvinfo
->LunID
));
1889 /* Is it the same disk we already know, and nothing's changed? */
1890 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1891 ((memcmp(drvinfo
->serial_no
,
1892 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
1893 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
1894 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
1895 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
1896 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
1897 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
1898 /* The disk is unchanged, nothing to update */
1901 /* If we get here it's not the same disk, or something's changed,
1902 * so we need to * deregister it, and re-register it, if it's not
1904 * If the disk already exists then deregister it before proceeding
1905 * (unless it's the first disk (for the controller node).
1907 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
1908 printk(KERN_WARNING
"disk %d has changed.\n", drv_index
);
1909 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
1910 h
->drv
[drv_index
]->busy_configuring
= 1;
1911 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
1913 /* deregister_disk sets h->drv[drv_index]->queue = NULL
1914 * which keeps the interrupt handler from starting
1917 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
1920 /* If the disk is in use return */
1924 /* Save the new information from cciss_geometry_inquiry
1925 * and serial number inquiry. If the disk was deregistered
1926 * above, then h->drv[drv_index] will be NULL.
1928 if (h
->drv
[drv_index
] == NULL
) {
1929 drvinfo
->device_initialized
= 0;
1930 h
->drv
[drv_index
] = drvinfo
;
1931 drvinfo
= NULL
; /* so it won't be freed below. */
1933 /* special case for cxd0 */
1934 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
1935 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
1936 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
1937 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
1938 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
1939 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
1940 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
1941 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
1943 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
1944 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
1948 disk
= h
->gendisk
[drv_index
];
1949 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
1951 /* If it's not disk 0 (drv_index != 0)
1952 * or if it was disk 0, but there was previously
1953 * no actual corresponding configured logical drive
1954 * (raid_leve == -1) then we want to update the
1955 * logical drive's information.
1957 if (drv_index
|| first_time
) {
1958 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
1959 cciss_free_gendisk(h
, drv_index
);
1960 cciss_free_drive_info(h
, drv_index
);
1961 printk(KERN_WARNING
"cciss:%d could not update "
1962 "disk %d\n", h
->ctlr
, drv_index
);
1972 printk(KERN_ERR
"cciss: out of memory\n");
1976 /* This function will find the first index of the controllers drive array
1977 * that has a null drv pointer and allocate the drive info struct and
1978 * will return that index This is where new drives will be added.
1979 * If the index to be returned is greater than the highest_lun index for
1980 * the controller then highest_lun is set * to this new index.
1981 * If there are no available indexes or if tha allocation fails, then -1
1982 * is returned. * "controller_node" is used to know if this is a real
1983 * logical drive, or just the controller node, which determines if this
1984 * counts towards highest_lun.
1986 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
1989 drive_info_struct
*drv
;
1991 /* Search for an empty slot for our drive info */
1992 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
1994 /* if not cxd0 case, and it's occupied, skip it. */
1995 if (h
->drv
[i
] && i
!= 0)
1998 * If it's cxd0 case, and drv is alloc'ed already, and a
1999 * disk is configured there, skip it.
2001 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2005 * We've found an empty slot. Update highest_lun
2006 * provided this isn't just the fake cxd0 controller node.
2008 if (i
> h
->highest_lun
&& !controller_node
)
2011 /* If adding a real disk at cxd0, and it's already alloc'ed */
2012 if (i
== 0 && h
->drv
[i
] != NULL
)
2016 * Found an empty slot, not already alloc'ed. Allocate it.
2017 * Mark it with raid_level == -1, so we know it's new later on.
2019 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2022 drv
->raid_level
= -1; /* so we know it's new */
2029 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2031 kfree(h
->drv
[drv_index
]);
2032 h
->drv
[drv_index
] = NULL
;
2035 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2037 put_disk(h
->gendisk
[drv_index
]);
2038 h
->gendisk
[drv_index
] = NULL
;
2041 /* cciss_add_gendisk finds a free hba[]->drv structure
2042 * and allocates a gendisk if needed, and sets the lunid
2043 * in the drvinfo structure. It returns the index into
2044 * the ->drv[] array, or -1 if none are free.
2045 * is_controller_node indicates whether highest_lun should
2046 * count this disk, or if it's only being added to provide
2047 * a means to talk to the controller in case no logical
2048 * drives have yet been configured.
2050 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2051 int controller_node
)
2055 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2056 if (drv_index
== -1)
2059 /*Check if the gendisk needs to be allocated */
2060 if (!h
->gendisk
[drv_index
]) {
2061 h
->gendisk
[drv_index
] =
2062 alloc_disk(1 << NWD_SHIFT
);
2063 if (!h
->gendisk
[drv_index
]) {
2064 printk(KERN_ERR
"cciss%d: could not "
2065 "allocate a new disk %d\n",
2066 h
->ctlr
, drv_index
);
2067 goto err_free_drive_info
;
2070 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2071 sizeof(h
->drv
[drv_index
]->LunID
));
2072 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2074 /* Don't need to mark this busy because nobody */
2075 /* else knows about this disk yet to contend */
2076 /* for access to it. */
2077 h
->drv
[drv_index
]->busy_configuring
= 0;
2082 cciss_free_gendisk(h
, drv_index
);
2083 err_free_drive_info
:
2084 cciss_free_drive_info(h
, drv_index
);
2088 /* This is for the special case of a controller which
2089 * has no logical drives. In this case, we still need
2090 * to register a disk so the controller can be accessed
2091 * by the Array Config Utility.
2093 static void cciss_add_controller_node(ctlr_info_t
*h
)
2095 struct gendisk
*disk
;
2098 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2101 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2102 if (drv_index
== -1)
2104 h
->drv
[drv_index
]->block_size
= 512;
2105 h
->drv
[drv_index
]->nr_blocks
= 0;
2106 h
->drv
[drv_index
]->heads
= 0;
2107 h
->drv
[drv_index
]->sectors
= 0;
2108 h
->drv
[drv_index
]->cylinders
= 0;
2109 h
->drv
[drv_index
]->raid_level
= -1;
2110 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2111 disk
= h
->gendisk
[drv_index
];
2112 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2114 cciss_free_gendisk(h
, drv_index
);
2115 cciss_free_drive_info(h
, drv_index
);
2117 printk(KERN_WARNING
"cciss%d: could not "
2118 "add disk 0.\n", h
->ctlr
);
2122 /* This function will add and remove logical drives from the Logical
2123 * drive array of the controller and maintain persistency of ordering
2124 * so that mount points are preserved until the next reboot. This allows
2125 * for the removal of logical drives in the middle of the drive array
2126 * without a re-ordering of those drives.
2128 * h = The controller to perform the operations on
2130 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2135 ReportLunData_struct
*ld_buff
= NULL
;
2141 unsigned char lunid
[8] = CTLR_LUNID
;
2142 unsigned long flags
;
2144 if (!capable(CAP_SYS_RAWIO
))
2147 /* Set busy_configuring flag for this operation */
2148 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2149 if (h
->busy_configuring
) {
2150 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2153 h
->busy_configuring
= 1;
2154 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2156 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2157 if (ld_buff
== NULL
)
2160 return_code
= sendcmd_withirq(CISS_REPORT_LOG
, ctlr
, ld_buff
,
2161 sizeof(ReportLunData_struct
),
2162 0, CTLR_LUNID
, TYPE_CMD
);
2164 if (return_code
== IO_OK
)
2165 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2166 else { /* reading number of logical volumes failed */
2167 printk(KERN_WARNING
"cciss: report logical volume"
2168 " command failed\n");
2173 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2174 if (num_luns
> CISS_MAX_LUN
) {
2175 num_luns
= CISS_MAX_LUN
;
2176 printk(KERN_WARNING
"cciss: more luns configured"
2177 " on controller than can be handled by"
2182 cciss_add_controller_node(h
);
2184 /* Compare controller drive array to driver's drive array
2185 * to see if any drives are missing on the controller due
2186 * to action of Array Config Utility (user deletes drive)
2187 * and deregister logical drives which have disappeared.
2189 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2193 /* skip holes in the array from already deleted drives */
2194 if (h
->drv
[i
] == NULL
)
2197 for (j
= 0; j
< num_luns
; j
++) {
2198 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2199 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2200 sizeof(lunid
)) == 0) {
2206 /* Deregister it from the OS, it's gone. */
2207 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2208 h
->drv
[i
]->busy_configuring
= 1;
2209 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2210 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2211 if (h
->drv
[i
] != NULL
)
2212 h
->drv
[i
]->busy_configuring
= 0;
2216 /* Compare controller drive array to driver's drive array.
2217 * Check for updates in the drive information and any new drives
2218 * on the controller due to ACU adding logical drives, or changing
2219 * a logical drive's size, etc. Reregister any new/changed drives
2221 for (i
= 0; i
< num_luns
; i
++) {
2226 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2227 /* Find if the LUN is already in the drive array
2228 * of the driver. If so then update its info
2229 * if not in use. If it does not exist then find
2230 * the first free index and add it.
2232 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2233 if (h
->drv
[j
] != NULL
&&
2234 memcmp(h
->drv
[j
]->LunID
, lunid
,
2235 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2242 /* check if the drive was found already in the array */
2244 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2245 if (drv_index
== -1)
2248 cciss_update_drive_info(ctlr
, drv_index
, first_time
,
2254 h
->busy_configuring
= 0;
2255 /* We return -1 here to tell the ACU that we have registered/updated
2256 * all of the drives that we can and to keep it from calling us
2261 printk(KERN_ERR
"cciss: out of memory\n");
2262 h
->busy_configuring
= 0;
2266 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2268 /* zero out the disk size info */
2269 drive_info
->nr_blocks
= 0;
2270 drive_info
->block_size
= 0;
2271 drive_info
->heads
= 0;
2272 drive_info
->sectors
= 0;
2273 drive_info
->cylinders
= 0;
2274 drive_info
->raid_level
= -1;
2275 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2276 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2277 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2278 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2280 * don't clear the LUNID though, we need to remember which
2285 /* This function will deregister the disk and it's queue from the
2286 * kernel. It must be called with the controller lock held and the
2287 * drv structures busy_configuring flag set. It's parameters are:
2289 * disk = This is the disk to be deregistered
2290 * drv = This is the drive_info_struct associated with the disk to be
2291 * deregistered. It contains information about the disk used
2293 * clear_all = This flag determines whether or not the disk information
2294 * is going to be completely cleared out and the highest_lun
2295 * reset. Sometimes we want to clear out information about
2296 * the disk in preparation for re-adding it. In this case
2297 * the highest_lun should be left unchanged and the LunID
2298 * should not be cleared.
2300 * This indicates whether we've reached this path via ioctl.
2301 * This affects the maximum usage count allowed for c0d0 to be messed with.
2302 * If this path is reached via ioctl(), then the max_usage_count will
2303 * be 1, as the process calling ioctl() has got to have the device open.
2304 * If we get here via sysfs, then the max usage count will be zero.
2306 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2307 int clear_all
, int via_ioctl
)
2310 struct gendisk
*disk
;
2311 drive_info_struct
*drv
;
2312 int recalculate_highest_lun
;
2314 if (!capable(CAP_SYS_RAWIO
))
2317 drv
= h
->drv
[drv_index
];
2318 disk
= h
->gendisk
[drv_index
];
2320 /* make sure logical volume is NOT is use */
2321 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2322 if (drv
->usage_count
> via_ioctl
)
2324 } else if (drv
->usage_count
> 0)
2327 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2329 /* invalidate the devices and deregister the disk. If it is disk
2330 * zero do not deregister it but just zero out it's values. This
2331 * allows us to delete disk zero but keep the controller registered.
2333 if (h
->gendisk
[0] != disk
) {
2334 struct request_queue
*q
= disk
->queue
;
2335 if (disk
->flags
& GENHD_FL_UP
) {
2336 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2340 blk_cleanup_queue(q
);
2341 /* If clear_all is set then we are deleting the logical
2342 * drive, not just refreshing its info. For drives
2343 * other than disk 0 we will call put_disk. We do not
2344 * do this for disk 0 as we need it to be able to
2345 * configure the controller.
2348 /* This isn't pretty, but we need to find the
2349 * disk in our array and NULL our the pointer.
2350 * This is so that we will call alloc_disk if
2351 * this index is used again later.
2353 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2354 if (h
->gendisk
[i
] == disk
) {
2355 h
->gendisk
[i
] = NULL
;
2362 set_capacity(disk
, 0);
2363 cciss_clear_drive_info(drv
);
2368 /* if it was the last disk, find the new hightest lun */
2369 if (clear_all
&& recalculate_highest_lun
) {
2370 int i
, newhighest
= -1;
2371 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2372 /* if the disk has size > 0, it is available */
2373 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2376 h
->highest_lun
= newhighest
;
2381 static int fill_cmd(CommandList_struct
*c
, __u8 cmd
, int ctlr
, void *buff
,
2382 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2385 ctlr_info_t
*h
= hba
[ctlr
];
2386 u64bit buff_dma_handle
;
2389 c
->cmd_type
= CMD_IOCTL_PEND
;
2390 c
->Header
.ReplyQueue
= 0;
2392 c
->Header
.SGList
= 1;
2393 c
->Header
.SGTotal
= 1;
2395 c
->Header
.SGList
= 0;
2396 c
->Header
.SGTotal
= 0;
2398 c
->Header
.Tag
.lower
= c
->busaddr
;
2399 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2401 c
->Request
.Type
.Type
= cmd_type
;
2402 if (cmd_type
== TYPE_CMD
) {
2405 /* are we trying to read a vital product page */
2406 if (page_code
!= 0) {
2407 c
->Request
.CDB
[1] = 0x01;
2408 c
->Request
.CDB
[2] = page_code
;
2410 c
->Request
.CDBLen
= 6;
2411 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2412 c
->Request
.Type
.Direction
= XFER_READ
;
2413 c
->Request
.Timeout
= 0;
2414 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2415 c
->Request
.CDB
[4] = size
& 0xFF;
2417 case CISS_REPORT_LOG
:
2418 case CISS_REPORT_PHYS
:
2419 /* Talking to controller so It's a physical command
2420 mode = 00 target = 0. Nothing to write.
2422 c
->Request
.CDBLen
= 12;
2423 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2424 c
->Request
.Type
.Direction
= XFER_READ
;
2425 c
->Request
.Timeout
= 0;
2426 c
->Request
.CDB
[0] = cmd
;
2427 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; //MSB
2428 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2429 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2430 c
->Request
.CDB
[9] = size
& 0xFF;
2433 case CCISS_READ_CAPACITY
:
2434 c
->Request
.CDBLen
= 10;
2435 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2436 c
->Request
.Type
.Direction
= XFER_READ
;
2437 c
->Request
.Timeout
= 0;
2438 c
->Request
.CDB
[0] = cmd
;
2440 case CCISS_READ_CAPACITY_16
:
2441 c
->Request
.CDBLen
= 16;
2442 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2443 c
->Request
.Type
.Direction
= XFER_READ
;
2444 c
->Request
.Timeout
= 0;
2445 c
->Request
.CDB
[0] = cmd
;
2446 c
->Request
.CDB
[1] = 0x10;
2447 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2448 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2449 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2450 c
->Request
.CDB
[13] = size
& 0xFF;
2451 c
->Request
.Timeout
= 0;
2452 c
->Request
.CDB
[0] = cmd
;
2454 case CCISS_CACHE_FLUSH
:
2455 c
->Request
.CDBLen
= 12;
2456 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2457 c
->Request
.Type
.Direction
= XFER_WRITE
;
2458 c
->Request
.Timeout
= 0;
2459 c
->Request
.CDB
[0] = BMIC_WRITE
;
2460 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2462 case TEST_UNIT_READY
:
2463 c
->Request
.CDBLen
= 6;
2464 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2465 c
->Request
.Type
.Direction
= XFER_NONE
;
2466 c
->Request
.Timeout
= 0;
2470 "cciss%d: Unknown Command 0x%c\n", ctlr
, cmd
);
2473 } else if (cmd_type
== TYPE_MSG
) {
2475 case 0: /* ABORT message */
2476 c
->Request
.CDBLen
= 12;
2477 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2478 c
->Request
.Type
.Direction
= XFER_WRITE
;
2479 c
->Request
.Timeout
= 0;
2480 c
->Request
.CDB
[0] = cmd
; /* abort */
2481 c
->Request
.CDB
[1] = 0; /* abort a command */
2482 /* buff contains the tag of the command to abort */
2483 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2485 case 1: /* RESET message */
2486 c
->Request
.CDBLen
= 16;
2487 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2488 c
->Request
.Type
.Direction
= XFER_NONE
;
2489 c
->Request
.Timeout
= 0;
2490 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2491 c
->Request
.CDB
[0] = cmd
; /* reset */
2492 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2494 case 3: /* No-Op message */
2495 c
->Request
.CDBLen
= 1;
2496 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2497 c
->Request
.Type
.Direction
= XFER_WRITE
;
2498 c
->Request
.Timeout
= 0;
2499 c
->Request
.CDB
[0] = cmd
;
2503 "cciss%d: unknown message type %d\n", ctlr
, cmd
);
2508 "cciss%d: unknown command type %d\n", ctlr
, cmd_type
);
2511 /* Fill in the scatter gather information */
2513 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2515 PCI_DMA_BIDIRECTIONAL
);
2516 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2517 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2518 c
->SG
[0].Len
= size
;
2519 c
->SG
[0].Ext
= 0; /* we are not chaining */
2524 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2526 switch (c
->err_info
->ScsiStatus
) {
2529 case SAM_STAT_CHECK_CONDITION
:
2530 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2531 case 0: return IO_OK
; /* no sense */
2532 case 1: return IO_OK
; /* recovered error */
2534 printk(KERN_WARNING
"cciss%d: cmd 0x%02x "
2535 "check condition, sense key = 0x%02x\n",
2536 h
->ctlr
, c
->Request
.CDB
[0],
2537 c
->err_info
->SenseInfo
[2]);
2541 printk(KERN_WARNING
"cciss%d: cmd 0x%02x"
2542 "scsi status = 0x%02x\n", h
->ctlr
,
2543 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2549 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2551 int return_status
= IO_OK
;
2553 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2556 switch (c
->err_info
->CommandStatus
) {
2557 case CMD_TARGET_STATUS
:
2558 return_status
= check_target_status(h
, c
);
2560 case CMD_DATA_UNDERRUN
:
2561 case CMD_DATA_OVERRUN
:
2562 /* expected for inquiry and report lun commands */
2565 printk(KERN_WARNING
"cciss: cmd 0x%02x is "
2566 "reported invalid\n", c
->Request
.CDB
[0]);
2567 return_status
= IO_ERROR
;
2569 case CMD_PROTOCOL_ERR
:
2570 printk(KERN_WARNING
"cciss: cmd 0x%02x has "
2571 "protocol error \n", c
->Request
.CDB
[0]);
2572 return_status
= IO_ERROR
;
2574 case CMD_HARDWARE_ERR
:
2575 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2576 " hardware error\n", c
->Request
.CDB
[0]);
2577 return_status
= IO_ERROR
;
2579 case CMD_CONNECTION_LOST
:
2580 printk(KERN_WARNING
"cciss: cmd 0x%02x had "
2581 "connection lost\n", c
->Request
.CDB
[0]);
2582 return_status
= IO_ERROR
;
2585 printk(KERN_WARNING
"cciss: cmd 0x%02x was "
2586 "aborted\n", c
->Request
.CDB
[0]);
2587 return_status
= IO_ERROR
;
2589 case CMD_ABORT_FAILED
:
2590 printk(KERN_WARNING
"cciss: cmd 0x%02x reports "
2591 "abort failed\n", c
->Request
.CDB
[0]);
2592 return_status
= IO_ERROR
;
2594 case CMD_UNSOLICITED_ABORT
:
2596 "cciss%d: unsolicited abort 0x%02x\n", h
->ctlr
,
2598 return_status
= IO_NEEDS_RETRY
;
2601 printk(KERN_WARNING
"cciss: cmd 0x%02x returned "
2602 "unknown status %x\n", c
->Request
.CDB
[0],
2603 c
->err_info
->CommandStatus
);
2604 return_status
= IO_ERROR
;
2606 return return_status
;
2609 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2612 DECLARE_COMPLETION_ONSTACK(wait
);
2613 u64bit buff_dma_handle
;
2614 unsigned long flags
;
2615 int return_status
= IO_OK
;
2619 /* Put the request on the tail of the queue and send it */
2620 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
2624 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
2626 wait_for_completion(&wait
);
2628 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2631 return_status
= process_sendcmd_error(h
, c
);
2633 if (return_status
== IO_NEEDS_RETRY
&&
2634 c
->retry_count
< MAX_CMD_RETRIES
) {
2635 printk(KERN_WARNING
"cciss%d: retrying 0x%02x\n", h
->ctlr
,
2638 /* erase the old error information */
2639 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2640 return_status
= IO_OK
;
2641 INIT_COMPLETION(wait
);
2646 /* unlock the buffers from DMA */
2647 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2648 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2649 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2650 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2651 return return_status
;
2654 static int sendcmd_withirq(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2655 __u8 page_code
, unsigned char scsi3addr
[],
2658 ctlr_info_t
*h
= hba
[ctlr
];
2659 CommandList_struct
*c
;
2662 c
= cmd_alloc(h
, 0);
2665 return_status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2666 scsi3addr
, cmd_type
);
2667 if (return_status
== IO_OK
)
2668 return_status
= sendcmd_withirq_core(h
, c
, 1);
2671 return return_status
;
2674 static void cciss_geometry_inquiry(int ctlr
, int logvol
,
2675 int withirq
, sector_t total_size
,
2676 unsigned int block_size
,
2677 InquiryData_struct
*inq_buff
,
2678 drive_info_struct
*drv
)
2682 unsigned char scsi3addr
[8];
2684 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2685 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2687 return_code
= sendcmd_withirq(CISS_INQUIRY
, ctlr
,
2688 inq_buff
, sizeof(*inq_buff
),
2689 0xC1, scsi3addr
, TYPE_CMD
);
2691 return_code
= sendcmd(CISS_INQUIRY
, ctlr
, inq_buff
,
2692 sizeof(*inq_buff
), 0xC1, scsi3addr
,
2694 if (return_code
== IO_OK
) {
2695 if (inq_buff
->data_byte
[8] == 0xFF) {
2697 "cciss: reading geometry failed, volume "
2698 "does not support reading geometry\n");
2700 drv
->sectors
= 32; // Sectors per track
2701 drv
->cylinders
= total_size
+ 1;
2702 drv
->raid_level
= RAID_UNKNOWN
;
2704 drv
->heads
= inq_buff
->data_byte
[6];
2705 drv
->sectors
= inq_buff
->data_byte
[7];
2706 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2707 drv
->cylinders
+= inq_buff
->data_byte
[5];
2708 drv
->raid_level
= inq_buff
->data_byte
[8];
2710 drv
->block_size
= block_size
;
2711 drv
->nr_blocks
= total_size
+ 1;
2712 t
= drv
->heads
* drv
->sectors
;
2714 sector_t real_size
= total_size
+ 1;
2715 unsigned long rem
= sector_div(real_size
, t
);
2718 drv
->cylinders
= real_size
;
2720 } else { /* Get geometry failed */
2721 printk(KERN_WARNING
"cciss: reading geometry failed\n");
2726 cciss_read_capacity(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
,
2727 unsigned int *block_size
)
2729 ReadCapdata_struct
*buf
;
2731 unsigned char scsi3addr
[8];
2733 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2735 printk(KERN_WARNING
"cciss: out of memory\n");
2739 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2741 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY
,
2742 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2743 0, scsi3addr
, TYPE_CMD
);
2745 return_code
= sendcmd(CCISS_READ_CAPACITY
,
2746 ctlr
, buf
, sizeof(ReadCapdata_struct
),
2747 0, scsi3addr
, TYPE_CMD
);
2748 if (return_code
== IO_OK
) {
2749 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2750 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2751 } else { /* read capacity command failed */
2752 printk(KERN_WARNING
"cciss: read capacity failed\n");
2754 *block_size
= BLOCK_SIZE
;
2760 cciss_read_capacity_16(int ctlr
, int logvol
, int withirq
, sector_t
*total_size
, unsigned int *block_size
)
2762 ReadCapdata_struct_16
*buf
;
2764 unsigned char scsi3addr
[8];
2766 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2768 printk(KERN_WARNING
"cciss: out of memory\n");
2772 log_unit_to_scsi3addr(hba
[ctlr
], scsi3addr
, logvol
);
2774 return_code
= sendcmd_withirq(CCISS_READ_CAPACITY_16
,
2775 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2776 0, scsi3addr
, TYPE_CMD
);
2779 return_code
= sendcmd(CCISS_READ_CAPACITY_16
,
2780 ctlr
, buf
, sizeof(ReadCapdata_struct_16
),
2781 0, scsi3addr
, TYPE_CMD
);
2783 if (return_code
== IO_OK
) {
2784 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2785 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2786 } else { /* read capacity command failed */
2787 printk(KERN_WARNING
"cciss: read capacity failed\n");
2789 *block_size
= BLOCK_SIZE
;
2791 printk(KERN_INFO
" blocks= %llu block_size= %d\n",
2792 (unsigned long long)*total_size
+1, *block_size
);
2796 static int cciss_revalidate(struct gendisk
*disk
)
2798 ctlr_info_t
*h
= get_host(disk
);
2799 drive_info_struct
*drv
= get_drv(disk
);
2802 unsigned int block_size
;
2803 sector_t total_size
;
2804 InquiryData_struct
*inq_buff
= NULL
;
2806 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2807 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2808 sizeof(drv
->LunID
)) == 0) {
2817 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2818 if (inq_buff
== NULL
) {
2819 printk(KERN_WARNING
"cciss: out of memory\n");
2822 if (h
->cciss_read
== CCISS_READ_10
) {
2823 cciss_read_capacity(h
->ctlr
, logvol
, 1,
2824 &total_size
, &block_size
);
2826 cciss_read_capacity_16(h
->ctlr
, logvol
, 1,
2827 &total_size
, &block_size
);
2829 cciss_geometry_inquiry(h
->ctlr
, logvol
, 1, total_size
, block_size
,
2832 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2833 set_capacity(disk
, drv
->nr_blocks
);
2840 * Wait polling for a command to complete.
2841 * The memory mapped FIFO is polled for the completion.
2842 * Used only at init time, interrupts from the HBA are disabled.
2844 static unsigned long pollcomplete(int ctlr
)
2849 /* Wait (up to 20 seconds) for a command to complete */
2851 for (i
= 20 * HZ
; i
> 0; i
--) {
2852 done
= hba
[ctlr
]->access
.command_completed(hba
[ctlr
]);
2853 if (done
== FIFO_EMPTY
)
2854 schedule_timeout_uninterruptible(1);
2858 /* Invalid address to tell caller we ran out of time */
2862 /* Send command c to controller h and poll for it to complete.
2863 * Turns interrupts off on the board. Used at driver init time
2864 * and during SCSI error recovery.
2866 static int sendcmd_core(ctlr_info_t
*h
, CommandList_struct
*c
)
2869 unsigned long complete
;
2870 int status
= IO_ERROR
;
2871 u64bit buff_dma_handle
;
2875 /* Disable interrupt on the board. */
2876 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
2878 /* Make sure there is room in the command FIFO */
2879 /* Actually it should be completely empty at this time */
2880 /* unless we are in here doing error handling for the scsi */
2881 /* tape side of the driver. */
2882 for (i
= 200000; i
> 0; i
--) {
2883 /* if fifo isn't full go */
2884 if (!(h
->access
.fifo_full(h
)))
2887 printk(KERN_WARNING
"cciss cciss%d: SendCmd FIFO full,"
2888 " waiting!\n", h
->ctlr
);
2890 h
->access
.submit_command(h
, c
); /* Send the cmd */
2892 complete
= pollcomplete(h
->ctlr
);
2895 printk(KERN_DEBUG
"cciss: command completed\n");
2896 #endif /* CCISS_DEBUG */
2898 if (complete
== 1) {
2900 "cciss cciss%d: SendCmd Timeout out, "
2901 "No command list address returned!\n", h
->ctlr
);
2906 /* Make sure it's the command we're expecting. */
2907 if ((complete
& ~CISS_ERROR_BIT
) != c
->busaddr
) {
2908 printk(KERN_WARNING
"cciss%d: Unexpected command "
2909 "completion.\n", h
->ctlr
);
2913 /* It is our command. If no error, we're done. */
2914 if (!(complete
& CISS_ERROR_BIT
)) {
2919 /* There is an error... */
2921 /* if data overrun or underun on Report command ignore it */
2922 if (((c
->Request
.CDB
[0] == CISS_REPORT_LOG
) ||
2923 (c
->Request
.CDB
[0] == CISS_REPORT_PHYS
) ||
2924 (c
->Request
.CDB
[0] == CISS_INQUIRY
)) &&
2925 ((c
->err_info
->CommandStatus
== CMD_DATA_OVERRUN
) ||
2926 (c
->err_info
->CommandStatus
== CMD_DATA_UNDERRUN
))) {
2927 complete
= c
->busaddr
;
2932 if (c
->err_info
->CommandStatus
== CMD_UNSOLICITED_ABORT
) {
2933 printk(KERN_WARNING
"cciss%d: unsolicited abort %p\n",
2935 if (c
->retry_count
< MAX_CMD_RETRIES
) {
2936 printk(KERN_WARNING
"cciss%d: retrying %p\n",
2939 /* erase the old error information */
2940 memset(c
->err_info
, 0, sizeof(c
->err_info
));
2943 printk(KERN_WARNING
"cciss%d: retried %p too many "
2944 "times\n", h
->ctlr
, c
);
2949 if (c
->err_info
->CommandStatus
== CMD_UNABORTABLE
) {
2950 printk(KERN_WARNING
"cciss%d: command could not be "
2951 "aborted.\n", h
->ctlr
);
2956 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
) {
2957 status
= check_target_status(h
, c
);
2961 printk(KERN_WARNING
"cciss%d: sendcmd error\n", h
->ctlr
);
2962 printk(KERN_WARNING
"cmd = 0x%02x, CommandStatus = 0x%02x\n",
2963 c
->Request
.CDB
[0], c
->err_info
->CommandStatus
);
2969 /* unlock the data buffer from DMA */
2970 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2971 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2972 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2973 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2978 * Send a command to the controller, and wait for it to complete.
2979 * Used at init time, and during SCSI error recovery.
2981 static int sendcmd(__u8 cmd
, int ctlr
, void *buff
, size_t size
,
2982 __u8 page_code
, unsigned char *scsi3addr
, int cmd_type
)
2984 CommandList_struct
*c
;
2987 c
= cmd_alloc(hba
[ctlr
], 1);
2989 printk(KERN_WARNING
"cciss: unable to get memory");
2992 status
= fill_cmd(c
, cmd
, ctlr
, buff
, size
, page_code
,
2993 scsi3addr
, cmd_type
);
2994 if (status
== IO_OK
)
2995 status
= sendcmd_core(hba
[ctlr
], c
);
2996 cmd_free(hba
[ctlr
], c
, 1);
3001 * Map (physical) PCI mem into (virtual) kernel space
3003 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
3005 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
3006 ulong page_offs
= ((ulong
) base
) - page_base
;
3007 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
3009 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
3013 * Takes jobs of the Q and sends them to the hardware, then puts it on
3014 * the Q to wait for completion.
3016 static void start_io(ctlr_info_t
*h
)
3018 CommandList_struct
*c
;
3020 while (!hlist_empty(&h
->reqQ
)) {
3021 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
3022 /* can't do anything if fifo is full */
3023 if ((h
->access
.fifo_full(h
))) {
3024 printk(KERN_WARNING
"cciss: fifo full\n");
3028 /* Get the first entry from the Request Q */
3032 /* Tell the controller execute command */
3033 h
->access
.submit_command(h
, c
);
3035 /* Put job onto the completed Q */
3040 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
3041 /* Zeros out the error record and then resends the command back */
3042 /* to the controller */
3043 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
3045 /* erase the old error information */
3046 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
3048 /* add it to software queue and then send it to the controller */
3051 if (h
->Qdepth
> h
->maxQsinceinit
)
3052 h
->maxQsinceinit
= h
->Qdepth
;
3057 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
3058 unsigned int msg_byte
, unsigned int host_byte
,
3059 unsigned int driver_byte
)
3061 /* inverse of macros in scsi.h */
3062 return (scsi_status_byte
& 0xff) |
3063 ((msg_byte
& 0xff) << 8) |
3064 ((host_byte
& 0xff) << 16) |
3065 ((driver_byte
& 0xff) << 24);
3068 static inline int evaluate_target_status(ctlr_info_t
*h
,
3069 CommandList_struct
*cmd
, int *retry_cmd
)
3071 unsigned char sense_key
;
3072 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
3076 /* If we get in here, it means we got "target status", that is, scsi status */
3077 status_byte
= cmd
->err_info
->ScsiStatus
;
3078 driver_byte
= DRIVER_OK
;
3079 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
3081 if (blk_pc_request(cmd
->rq
))
3082 host_byte
= DID_PASSTHROUGH
;
3086 error_value
= make_status_bytes(status_byte
, msg_byte
,
3087 host_byte
, driver_byte
);
3089 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
3090 if (!blk_pc_request(cmd
->rq
))
3091 printk(KERN_WARNING
"cciss: cmd %p "
3092 "has SCSI Status 0x%x\n",
3093 cmd
, cmd
->err_info
->ScsiStatus
);
3097 /* check the sense key */
3098 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
3099 /* no status or recovered error */
3100 if (((sense_key
== 0x0) || (sense_key
== 0x1)) && !blk_pc_request(cmd
->rq
))
3103 if (check_for_unit_attention(h
, cmd
)) {
3104 *retry_cmd
= !blk_pc_request(cmd
->rq
);
3108 if (!blk_pc_request(cmd
->rq
)) { /* Not SG_IO or similar? */
3109 if (error_value
!= 0)
3110 printk(KERN_WARNING
"cciss: cmd %p has CHECK CONDITION"
3111 " sense key = 0x%x\n", cmd
, sense_key
);
3115 /* SG_IO or similar, copy sense data back */
3116 if (cmd
->rq
->sense
) {
3117 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3118 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3119 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3120 cmd
->rq
->sense_len
);
3122 cmd
->rq
->sense_len
= 0;
3127 /* checks the status of the job and calls complete buffers to mark all
3128 * buffers for the completed job. Note that this function does not need
3129 * to hold the hba/queue lock.
3131 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3135 struct request
*rq
= cmd
->rq
;
3140 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3142 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3143 goto after_error_processing
;
3145 switch (cmd
->err_info
->CommandStatus
) {
3146 case CMD_TARGET_STATUS
:
3147 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3149 case CMD_DATA_UNDERRUN
:
3150 if (blk_fs_request(cmd
->rq
)) {
3151 printk(KERN_WARNING
"cciss: cmd %p has"
3152 " completed with data underrun "
3154 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3157 case CMD_DATA_OVERRUN
:
3158 if (blk_fs_request(cmd
->rq
))
3159 printk(KERN_WARNING
"cciss: cmd %p has"
3160 " completed with data overrun "
3164 printk(KERN_WARNING
"cciss: cmd %p is "
3165 "reported invalid\n", cmd
);
3166 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3167 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3168 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3170 case CMD_PROTOCOL_ERR
:
3171 printk(KERN_WARNING
"cciss: cmd %p has "
3172 "protocol error \n", cmd
);
3173 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3174 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3175 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3177 case CMD_HARDWARE_ERR
:
3178 printk(KERN_WARNING
"cciss: cmd %p had "
3179 " hardware error\n", cmd
);
3180 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3181 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3182 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3184 case CMD_CONNECTION_LOST
:
3185 printk(KERN_WARNING
"cciss: cmd %p had "
3186 "connection lost\n", cmd
);
3187 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3188 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3189 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3192 printk(KERN_WARNING
"cciss: cmd %p was "
3194 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3195 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3196 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3198 case CMD_ABORT_FAILED
:
3199 printk(KERN_WARNING
"cciss: cmd %p reports "
3200 "abort failed\n", cmd
);
3201 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3202 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3203 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3205 case CMD_UNSOLICITED_ABORT
:
3206 printk(KERN_WARNING
"cciss%d: unsolicited "
3207 "abort %p\n", h
->ctlr
, cmd
);
3208 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3211 "cciss%d: retrying %p\n", h
->ctlr
, cmd
);
3215 "cciss%d: %p retried too "
3216 "many times\n", h
->ctlr
, cmd
);
3217 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3218 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3219 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ABORT
);
3222 printk(KERN_WARNING
"cciss: cmd %p timedout\n", cmd
);
3223 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3224 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3225 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3228 printk(KERN_WARNING
"cciss: cmd %p returned "
3229 "unknown status %x\n", cmd
,
3230 cmd
->err_info
->CommandStatus
);
3231 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3232 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3233 blk_pc_request(cmd
->rq
) ? DID_PASSTHROUGH
: DID_ERROR
);
3236 after_error_processing
:
3238 /* We need to return this command */
3240 resend_cciss_cmd(h
, cmd
);
3243 cmd
->rq
->completion_data
= cmd
;
3244 blk_complete_request(cmd
->rq
);
3248 * Get a request and submit it to the controller.
3250 static void do_cciss_request(struct request_queue
*q
)
3252 ctlr_info_t
*h
= q
->queuedata
;
3253 CommandList_struct
*c
;
3256 struct request
*creq
;
3258 struct scatterlist tmp_sg
[MAXSGENTRIES
];
3259 drive_info_struct
*drv
;
3262 /* We call start_io here in case there is a command waiting on the
3263 * queue that has not been sent.
3265 if (blk_queue_plugged(q
))
3269 creq
= blk_peek_request(q
);
3273 BUG_ON(creq
->nr_phys_segments
> MAXSGENTRIES
);
3275 if ((c
= cmd_alloc(h
, 1)) == NULL
)
3278 blk_start_request(creq
);
3280 spin_unlock_irq(q
->queue_lock
);
3282 c
->cmd_type
= CMD_RWREQ
;
3285 /* fill in the request */
3286 drv
= creq
->rq_disk
->private_data
;
3287 c
->Header
.ReplyQueue
= 0; // unused in simple mode
3288 /* got command from pool, so use the command block index instead */
3289 /* for direct lookups. */
3290 /* The first 2 bits are reserved for controller error reporting. */
3291 c
->Header
.Tag
.lower
= (c
->cmdindex
<< 3);
3292 c
->Header
.Tag
.lower
|= 0x04; /* flag for direct lookup. */
3293 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3294 c
->Request
.CDBLen
= 10; // 12 byte commands not in FW yet;
3295 c
->Request
.Type
.Type
= TYPE_CMD
; // It is a command.
3296 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3297 c
->Request
.Type
.Direction
=
3298 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3299 c
->Request
.Timeout
= 0; // Don't time out
3301 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3302 start_blk
= blk_rq_pos(creq
);
3304 printk(KERN_DEBUG
"ciss: sector =%d nr_sectors=%d\n",
3305 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3306 #endif /* CCISS_DEBUG */
3308 sg_init_table(tmp_sg
, MAXSGENTRIES
);
3309 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3311 /* get the DMA records for the setup */
3312 if (c
->Request
.Type
.Direction
== XFER_READ
)
3313 dir
= PCI_DMA_FROMDEVICE
;
3315 dir
= PCI_DMA_TODEVICE
;
3317 for (i
= 0; i
< seg
; i
++) {
3318 c
->SG
[i
].Len
= tmp_sg
[i
].length
;
3319 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3321 tmp_sg
[i
].length
, dir
);
3322 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
3323 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
3324 c
->SG
[i
].Ext
= 0; // we are not chaining
3326 /* track how many SG entries we are using */
3331 printk(KERN_DEBUG
"cciss: Submitting %u sectors in %d segments\n",
3332 blk_rq_sectors(creq
), seg
);
3333 #endif /* CCISS_DEBUG */
3335 c
->Header
.SGList
= c
->Header
.SGTotal
= seg
;
3336 if (likely(blk_fs_request(creq
))) {
3337 if(h
->cciss_read
== CCISS_READ_10
) {
3338 c
->Request
.CDB
[1] = 0;
3339 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; //MSB
3340 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3341 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3342 c
->Request
.CDB
[5] = start_blk
& 0xff;
3343 c
->Request
.CDB
[6] = 0; // (sect >> 24) & 0xff; MSB
3344 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3345 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3346 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3348 u32 upper32
= upper_32_bits(start_blk
);
3350 c
->Request
.CDBLen
= 16;
3351 c
->Request
.CDB
[1]= 0;
3352 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; //MSB
3353 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3354 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3355 c
->Request
.CDB
[5]= upper32
& 0xff;
3356 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3357 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3358 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3359 c
->Request
.CDB
[9]= start_blk
& 0xff;
3360 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3361 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3362 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3363 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3364 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3366 } else if (blk_pc_request(creq
)) {
3367 c
->Request
.CDBLen
= creq
->cmd_len
;
3368 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3370 printk(KERN_WARNING
"cciss%d: bad request type %d\n", h
->ctlr
, creq
->cmd_type
);
3374 spin_lock_irq(q
->queue_lock
);
3378 if (h
->Qdepth
> h
->maxQsinceinit
)
3379 h
->maxQsinceinit
= h
->Qdepth
;
3385 /* We will already have the driver lock here so not need
3391 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3393 return h
->access
.command_completed(h
);
3396 static inline int interrupt_pending(ctlr_info_t
*h
)
3398 return h
->access
.intr_pending(h
);
3401 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3403 return (((h
->access
.intr_pending(h
) == 0) ||
3404 (h
->interrupts_enabled
== 0)));
3407 static irqreturn_t
do_cciss_intr(int irq
, void *dev_id
)
3409 ctlr_info_t
*h
= dev_id
;
3410 CommandList_struct
*c
;
3411 unsigned long flags
;
3414 if (interrupt_not_for_us(h
))
3417 * If there are completed commands in the completion queue,
3418 * we had better do something about it.
3420 spin_lock_irqsave(CCISS_LOCK(h
->ctlr
), flags
);
3421 while (interrupt_pending(h
)) {
3422 while ((a
= get_next_completion(h
)) != FIFO_EMPTY
) {
3426 if (a2
>= h
->nr_cmds
) {
3428 "cciss: controller cciss%d failed, stopping.\n",
3430 fail_all_cmds(h
->ctlr
);
3434 c
= h
->cmd_pool
+ a2
;
3438 struct hlist_node
*tmp
;
3442 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3443 if (c
->busaddr
== a
)
3448 * If we've found the command, take it off the
3449 * completion Q and free it
3451 if (c
&& c
->busaddr
== a
) {
3453 if (c
->cmd_type
== CMD_RWREQ
) {
3454 complete_command(h
, c
, 0);
3455 } else if (c
->cmd_type
== CMD_IOCTL_PEND
) {
3456 complete(c
->waiting
);
3458 # ifdef CONFIG_CISS_SCSI_TAPE
3459 else if (c
->cmd_type
== CMD_SCSI
)
3460 complete_scsi_command(c
, 0, a1
);
3467 spin_unlock_irqrestore(CCISS_LOCK(h
->ctlr
), flags
);
3472 * add_to_scan_list() - add controller to rescan queue
3473 * @h: Pointer to the controller.
3475 * Adds the controller to the rescan queue if not already on the queue.
3477 * returns 1 if added to the queue, 0 if skipped (could be on the
3478 * queue already, or the controller could be initializing or shutting
3481 static int add_to_scan_list(struct ctlr_info
*h
)
3483 struct ctlr_info
*test_h
;
3487 if (h
->busy_initializing
)
3490 if (!mutex_trylock(&h
->busy_shutting_down
))
3493 mutex_lock(&scan_mutex
);
3494 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3500 if (!found
&& !h
->busy_scanning
) {
3501 INIT_COMPLETION(h
->scan_wait
);
3502 list_add_tail(&h
->scan_list
, &scan_q
);
3505 mutex_unlock(&scan_mutex
);
3506 mutex_unlock(&h
->busy_shutting_down
);
3512 * remove_from_scan_list() - remove controller from rescan queue
3513 * @h: Pointer to the controller.
3515 * Removes the controller from the rescan queue if present. Blocks if
3516 * the controller is currently conducting a rescan.
3518 static void remove_from_scan_list(struct ctlr_info
*h
)
3520 struct ctlr_info
*test_h
, *tmp_h
;
3523 mutex_lock(&scan_mutex
);
3524 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3526 list_del(&h
->scan_list
);
3527 complete_all(&h
->scan_wait
);
3528 mutex_unlock(&scan_mutex
);
3532 if (&h
->busy_scanning
)
3534 mutex_unlock(&scan_mutex
);
3537 wait_for_completion(&h
->scan_wait
);
3541 * scan_thread() - kernel thread used to rescan controllers
3544 * A kernel thread used scan for drive topology changes on
3545 * controllers. The thread processes only one controller at a time
3546 * using a queue. Controllers are added to the queue using
3547 * add_to_scan_list() and removed from the queue either after done
3548 * processing or using remove_from_scan_list().
3552 static int scan_thread(void *data
)
3554 struct ctlr_info
*h
;
3557 set_current_state(TASK_INTERRUPTIBLE
);
3559 if (kthread_should_stop())
3563 mutex_lock(&scan_mutex
);
3564 if (list_empty(&scan_q
)) {
3565 mutex_unlock(&scan_mutex
);
3569 h
= list_entry(scan_q
.next
,
3572 list_del(&h
->scan_list
);
3573 h
->busy_scanning
= 1;
3574 mutex_unlock(&scan_mutex
);
3577 rebuild_lun_table(h
, 0, 0);
3578 complete_all(&h
->scan_wait
);
3579 mutex_lock(&scan_mutex
);
3580 h
->busy_scanning
= 0;
3581 mutex_unlock(&scan_mutex
);
3589 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3591 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3594 switch (c
->err_info
->SenseInfo
[12]) {
3596 printk(KERN_WARNING
"cciss%d: a state change "
3597 "detected, command retried\n", h
->ctlr
);
3601 printk(KERN_WARNING
"cciss%d: LUN failure "
3602 "detected, action required\n", h
->ctlr
);
3605 case REPORT_LUNS_CHANGED
:
3606 printk(KERN_WARNING
"cciss%d: report LUN data "
3607 "changed\n", h
->ctlr
);
3608 add_to_scan_list(h
);
3609 wake_up_process(cciss_scan_thread
);
3612 case POWER_OR_RESET
:
3613 printk(KERN_WARNING
"cciss%d: a power on "
3614 "or device reset detected\n", h
->ctlr
);
3617 case UNIT_ATTENTION_CLEARED
:
3618 printk(KERN_WARNING
"cciss%d: unit attention "
3619 "cleared by another initiator\n", h
->ctlr
);
3623 printk(KERN_WARNING
"cciss%d: unknown "
3624 "unit attention detected\n", h
->ctlr
);
3630 * We cannot read the structure directly, for portability we must use
3632 * This is for debug only.
3635 static void print_cfg_table(CfgTable_struct
*tb
)
3640 printk("Controller Configuration information\n");
3641 printk("------------------------------------\n");
3642 for (i
= 0; i
< 4; i
++)
3643 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3644 temp_name
[4] = '\0';
3645 printk(" Signature = %s\n", temp_name
);
3646 printk(" Spec Number = %d\n", readl(&(tb
->SpecValence
)));
3647 printk(" Transport methods supported = 0x%x\n",
3648 readl(&(tb
->TransportSupport
)));
3649 printk(" Transport methods active = 0x%x\n",
3650 readl(&(tb
->TransportActive
)));
3651 printk(" Requested transport Method = 0x%x\n",
3652 readl(&(tb
->HostWrite
.TransportRequest
)));
3653 printk(" Coalesce Interrupt Delay = 0x%x\n",
3654 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3655 printk(" Coalesce Interrupt Count = 0x%x\n",
3656 readl(&(tb
->HostWrite
.CoalIntCount
)));
3657 printk(" Max outstanding commands = 0x%d\n",
3658 readl(&(tb
->CmdsOutMax
)));
3659 printk(" Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
3660 for (i
= 0; i
< 16; i
++)
3661 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3662 temp_name
[16] = '\0';
3663 printk(" Server Name = %s\n", temp_name
);
3664 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb
->HeartBeat
)));
3666 #endif /* CCISS_DEBUG */
3668 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3670 int i
, offset
, mem_type
, bar_type
;
3671 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3674 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3675 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3676 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3679 mem_type
= pci_resource_flags(pdev
, i
) &
3680 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3682 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3683 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3684 offset
+= 4; /* 32 bit */
3686 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3689 default: /* reserved in PCI 2.2 */
3691 "Base address is invalid\n");
3696 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3702 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3703 * controllers that are capable. If not, we use IO-APIC mode.
3706 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*c
,
3707 struct pci_dev
*pdev
, __u32 board_id
)
3709 #ifdef CONFIG_PCI_MSI
3711 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3715 /* Some boards advertise MSI but don't really support it */
3716 if ((board_id
== 0x40700E11) ||
3717 (board_id
== 0x40800E11) ||
3718 (board_id
== 0x40820E11) || (board_id
== 0x40830E11))
3719 goto default_int_mode
;
3721 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
)) {
3722 err
= pci_enable_msix(pdev
, cciss_msix_entries
, 4);
3724 c
->intr
[0] = cciss_msix_entries
[0].vector
;
3725 c
->intr
[1] = cciss_msix_entries
[1].vector
;
3726 c
->intr
[2] = cciss_msix_entries
[2].vector
;
3727 c
->intr
[3] = cciss_msix_entries
[3].vector
;
3732 printk(KERN_WARNING
"cciss: only %d MSI-X vectors "
3733 "available\n", err
);
3734 goto default_int_mode
;
3736 printk(KERN_WARNING
"cciss: MSI-X init failed %d\n",
3738 goto default_int_mode
;
3741 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
)) {
3742 if (!pci_enable_msi(pdev
)) {
3745 printk(KERN_WARNING
"cciss: MSI init failed\n");
3749 #endif /* CONFIG_PCI_MSI */
3750 /* if we get here we're going to use the default interrupt mode */
3751 c
->intr
[SIMPLE_MODE_INT
] = pdev
->irq
;
3755 static int __devinit
cciss_pci_init(ctlr_info_t
*c
, struct pci_dev
*pdev
)
3757 ushort subsystem_vendor_id
, subsystem_device_id
, command
;
3758 __u32 board_id
, scratchpad
= 0;
3760 __u32 cfg_base_addr
;
3761 __u64 cfg_base_addr_index
;
3762 int i
, prod_index
, err
;
3764 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3765 subsystem_device_id
= pdev
->subsystem_device
;
3766 board_id
= (((__u32
) (subsystem_device_id
<< 16) & 0xffff0000) |
3767 subsystem_vendor_id
);
3769 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3770 /* Stand aside for hpsa driver on request */
3771 if (cciss_allow_hpsa
&& products
[i
].board_id
== HPSA_BOUNDARY
)
3773 if (board_id
== products
[i
].board_id
)
3777 if (prod_index
== ARRAY_SIZE(products
)) {
3778 dev_warn(&pdev
->dev
,
3779 "unrecognized board ID: 0x%08lx, ignoring.\n",
3780 (unsigned long) board_id
);
3784 /* check to see if controller has been disabled */
3785 /* BEFORE trying to enable it */
3786 (void)pci_read_config_word(pdev
, PCI_COMMAND
, &command
);
3787 if (!(command
& 0x02)) {
3789 "cciss: controller appears to be disabled\n");
3793 err
= pci_enable_device(pdev
);
3795 printk(KERN_ERR
"cciss: Unable to Enable PCI device\n");
3799 err
= pci_request_regions(pdev
, "cciss");
3801 printk(KERN_ERR
"cciss: Cannot obtain PCI resources, "
3807 printk("command = %x\n", command
);
3808 printk("irq = %x\n", pdev
->irq
);
3809 printk("board_id = %x\n", board_id
);
3810 #endif /* CCISS_DEBUG */
3812 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3813 * else we use the IO-APIC interrupt assigned to us by system ROM.
3815 cciss_interrupt_mode(c
, pdev
, board_id
);
3817 /* find the memory BAR */
3818 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3819 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
)
3822 if (i
== DEVICE_COUNT_RESOURCE
) {
3823 printk(KERN_WARNING
"cciss: No memory BAR found\n");
3825 goto err_out_free_res
;
3828 c
->paddr
= pci_resource_start(pdev
, i
); /* addressing mode bits
3833 printk("address 0 = %lx\n", c
->paddr
);
3834 #endif /* CCISS_DEBUG */
3835 c
->vaddr
= remap_pci_mem(c
->paddr
, 0x250);
3837 /* Wait for the board to become ready. (PCI hotplug needs this.)
3838 * We poll for up to 120 secs, once per 100ms. */
3839 for (i
= 0; i
< 1200; i
++) {
3840 scratchpad
= readl(c
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
3841 if (scratchpad
== CCISS_FIRMWARE_READY
)
3843 set_current_state(TASK_INTERRUPTIBLE
);
3844 schedule_timeout(msecs_to_jiffies(100)); /* wait 100ms */
3846 if (scratchpad
!= CCISS_FIRMWARE_READY
) {
3847 printk(KERN_WARNING
"cciss: Board not ready. Timed out.\n");
3849 goto err_out_free_res
;
3852 /* get the address index number */
3853 cfg_base_addr
= readl(c
->vaddr
+ SA5_CTCFG_OFFSET
);
3854 cfg_base_addr
&= (__u32
) 0x0000ffff;
3856 printk("cfg base address = %x\n", cfg_base_addr
);
3857 #endif /* CCISS_DEBUG */
3858 cfg_base_addr_index
= find_PCI_BAR_index(pdev
, cfg_base_addr
);
3860 printk("cfg base address index = %llx\n",
3861 (unsigned long long)cfg_base_addr_index
);
3862 #endif /* CCISS_DEBUG */
3863 if (cfg_base_addr_index
== -1) {
3864 printk(KERN_WARNING
"cciss: Cannot find cfg_base_addr_index\n");
3866 goto err_out_free_res
;
3869 cfg_offset
= readl(c
->vaddr
+ SA5_CTMEM_OFFSET
);
3871 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset
);
3872 #endif /* CCISS_DEBUG */
3873 c
->cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
3874 cfg_base_addr_index
) +
3875 cfg_offset
, sizeof(CfgTable_struct
));
3876 c
->board_id
= board_id
;
3879 print_cfg_table(c
->cfgtable
);
3880 #endif /* CCISS_DEBUG */
3882 /* Some controllers support Zero Memory Raid (ZMR).
3883 * When configured in ZMR mode the number of supported
3884 * commands drops to 64. So instead of just setting an
3885 * arbitrary value we make the driver a little smarter.
3886 * We read the config table to tell us how many commands
3887 * are supported on the controller then subtract 4 to
3888 * leave a little room for ioctl calls.
3890 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3891 c
->product_name
= products
[prod_index
].product_name
;
3892 c
->access
= *(products
[prod_index
].access
);
3893 c
->nr_cmds
= c
->max_commands
- 4;
3894 if ((readb(&c
->cfgtable
->Signature
[0]) != 'C') ||
3895 (readb(&c
->cfgtable
->Signature
[1]) != 'I') ||
3896 (readb(&c
->cfgtable
->Signature
[2]) != 'S') ||
3897 (readb(&c
->cfgtable
->Signature
[3]) != 'S')) {
3898 printk("Does not appear to be a valid CISS config table\n");
3900 goto err_out_free_res
;
3904 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3906 prefetch
= readl(&(c
->cfgtable
->SCSI_Prefetch
));
3908 writel(prefetch
, &(c
->cfgtable
->SCSI_Prefetch
));
3912 /* Disabling DMA prefetch and refetch for the P600.
3913 * An ASIC bug may result in accesses to invalid memory addresses.
3914 * We've disabled prefetch for some time now. Testing with XEN
3915 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3917 if(board_id
== 0x3225103C) {
3920 dma_prefetch
= readl(c
->vaddr
+ I2O_DMA1_CFG
);
3921 dma_prefetch
|= 0x8000;
3922 writel(dma_prefetch
, c
->vaddr
+ I2O_DMA1_CFG
);
3923 pci_read_config_dword(pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
3925 pci_write_config_dword(pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
3929 printk("Trying to put board into Simple mode\n");
3930 #endif /* CCISS_DEBUG */
3931 c
->max_commands
= readl(&(c
->cfgtable
->CmdsOutMax
));
3932 /* Update the field, and then ring the doorbell */
3933 writel(CFGTBL_Trans_Simple
, &(c
->cfgtable
->HostWrite
.TransportRequest
));
3934 writel(CFGTBL_ChangeReq
, c
->vaddr
+ SA5_DOORBELL
);
3936 /* under certain very rare conditions, this can take awhile.
3937 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3938 * as we enter this code.) */
3939 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3940 if (!(readl(c
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3942 /* delay and try again */
3943 set_current_state(TASK_INTERRUPTIBLE
);
3944 schedule_timeout(msecs_to_jiffies(1));
3948 printk(KERN_DEBUG
"I counter got to %d %x\n", i
,
3949 readl(c
->vaddr
+ SA5_DOORBELL
));
3950 #endif /* CCISS_DEBUG */
3952 print_cfg_table(c
->cfgtable
);
3953 #endif /* CCISS_DEBUG */
3955 if (!(readl(&(c
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
)) {
3956 printk(KERN_WARNING
"cciss: unable to get board into"
3959 goto err_out_free_res
;
3965 * Deliberately omit pci_disable_device(): it does something nasty to
3966 * Smart Array controllers that pci_enable_device does not undo
3968 pci_release_regions(pdev
);
3972 /* Function to find the first free pointer into our hba[] array
3973 * Returns -1 if no free entries are left.
3975 static int alloc_cciss_hba(void)
3979 for (i
= 0; i
< MAX_CTLR
; i
++) {
3983 p
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
3990 printk(KERN_WARNING
"cciss: This driver supports a maximum"
3991 " of %d controllers.\n", MAX_CTLR
);
3994 printk(KERN_ERR
"cciss: out of memory.\n");
3998 static void free_hba(int n
)
4000 ctlr_info_t
*h
= hba
[n
];
4004 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4005 if (h
->gendisk
[i
] != NULL
)
4006 put_disk(h
->gendisk
[i
]);
4010 /* Send a message CDB to the firmware. */
4011 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
4014 CommandListHeader_struct CommandHeader
;
4015 RequestBlock_struct Request
;
4016 ErrDescriptor_struct ErrorDescriptor
;
4018 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4021 uint32_t paddr32
, tag
;
4022 void __iomem
*vaddr
;
4025 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4029 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4030 CCISS commands, so they must be allocated from the lower 4GiB of
4032 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4038 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4044 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4045 although there's no guarantee, we assume that the address is at
4046 least 4-byte aligned (most likely, it's page-aligned). */
4049 cmd
->CommandHeader
.ReplyQueue
= 0;
4050 cmd
->CommandHeader
.SGList
= 0;
4051 cmd
->CommandHeader
.SGTotal
= 0;
4052 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4053 cmd
->CommandHeader
.Tag
.upper
= 0;
4054 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4056 cmd
->Request
.CDBLen
= 16;
4057 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4058 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4059 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4060 cmd
->Request
.Timeout
= 0; /* Don't time out */
4061 cmd
->Request
.CDB
[0] = opcode
;
4062 cmd
->Request
.CDB
[1] = type
;
4063 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4065 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4066 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4067 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4069 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4071 for (i
= 0; i
< 10; i
++) {
4072 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4073 if ((tag
& ~3) == paddr32
)
4075 schedule_timeout_uninterruptible(HZ
);
4080 /* we leak the DMA buffer here ... no choice since the controller could
4081 still complete the command. */
4083 printk(KERN_ERR
"cciss: controller message %02x:%02x timed out\n",
4088 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4091 printk(KERN_ERR
"cciss: controller message %02x:%02x failed\n",
4096 printk(KERN_INFO
"cciss: controller message %02x:%02x succeeded\n",
4101 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4102 #define cciss_noop(p) cciss_message(p, 3, 0)
4104 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
4106 /* the #defines are stolen from drivers/pci/msi.h. */
4107 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4108 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4113 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
4115 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4116 if (control
& PCI_MSI_FLAGS_ENABLE
) {
4117 printk(KERN_INFO
"cciss: resetting MSI\n");
4118 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
4122 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
4124 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4125 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
4126 printk(KERN_INFO
"cciss: resetting MSI-X\n");
4127 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
4134 /* This does a hard reset of the controller using PCI power management
4136 static __devinit
int cciss_hard_reset_controller(struct pci_dev
*pdev
)
4138 u16 pmcsr
, saved_config_space
[32];
4141 printk(KERN_INFO
"cciss: using PCI PM to reset controller\n");
4143 /* This is very nearly the same thing as
4145 pci_save_state(pci_dev);
4146 pci_set_power_state(pci_dev, PCI_D3hot);
4147 pci_set_power_state(pci_dev, PCI_D0);
4148 pci_restore_state(pci_dev);
4150 but we can't use these nice canned kernel routines on
4151 kexec, because they also check the MSI/MSI-X state in PCI
4152 configuration space and do the wrong thing when it is
4153 set/cleared. Also, the pci_save/restore_state functions
4154 violate the ordering requirements for restoring the
4155 configuration space from the CCISS document (see the
4156 comment below). So we roll our own .... */
4158 for (i
= 0; i
< 32; i
++)
4159 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
4161 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4163 printk(KERN_ERR
"cciss_reset_controller: PCI PM not supported\n");
4167 /* Quoting from the Open CISS Specification: "The Power
4168 * Management Control/Status Register (CSR) controls the power
4169 * state of the device. The normal operating state is D0,
4170 * CSR=00h. The software off state is D3, CSR=03h. To reset
4171 * the controller, place the interface device in D3 then to
4172 * D0, this causes a secondary PCI reset which will reset the
4175 /* enter the D3hot power management state */
4176 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4177 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4179 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4181 schedule_timeout_uninterruptible(HZ
>> 1);
4183 /* enter the D0 power management state */
4184 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4186 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4188 schedule_timeout_uninterruptible(HZ
>> 1);
4190 /* Restore the PCI configuration space. The Open CISS
4191 * Specification says, "Restore the PCI Configuration
4192 * Registers, offsets 00h through 60h. It is important to
4193 * restore the command register, 16-bits at offset 04h,
4194 * last. Do not restore the configuration status register,
4195 * 16-bits at offset 06h." Note that the offset is 2*i. */
4196 for (i
= 0; i
< 32; i
++) {
4197 if (i
== 2 || i
== 3)
4199 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
4202 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
4208 * This is it. Find all the controllers and register them. I really hate
4209 * stealing all these major device numbers.
4210 * returns the number of block devices registered.
4212 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4213 const struct pci_device_id
*ent
)
4218 int dac
, return_code
;
4219 InquiryData_struct
*inq_buff
;
4221 if (reset_devices
) {
4222 /* Reset the controller with a PCI power-cycle */
4223 if (cciss_hard_reset_controller(pdev
) || cciss_reset_msi(pdev
))
4226 /* Now try to get the controller to respond to a no-op. Some
4227 devices (notably the HP Smart Array 5i Controller) need
4228 up to 30 seconds to respond. */
4229 for (i
=0; i
<30; i
++) {
4230 if (cciss_noop(pdev
) == 0)
4233 schedule_timeout_uninterruptible(HZ
);
4236 printk(KERN_ERR
"cciss: controller seems dead\n");
4241 i
= alloc_cciss_hba();
4245 hba
[i
]->busy_initializing
= 1;
4246 INIT_HLIST_HEAD(&hba
[i
]->cmpQ
);
4247 INIT_HLIST_HEAD(&hba
[i
]->reqQ
);
4248 mutex_init(&hba
[i
]->busy_shutting_down
);
4250 if (cciss_pci_init(hba
[i
], pdev
) != 0)
4251 goto clean_no_release_regions
;
4253 sprintf(hba
[i
]->devname
, "cciss%d", i
);
4255 hba
[i
]->pdev
= pdev
;
4257 init_completion(&hba
[i
]->scan_wait
);
4259 if (cciss_create_hba_sysfs_entry(hba
[i
]))
4262 /* configure PCI DMA stuff */
4263 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4265 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4268 printk(KERN_ERR
"cciss: no suitable DMA available\n");
4273 * register with the major number, or get a dynamic major number
4274 * by passing 0 as argument. This is done for greater than
4275 * 8 controller support.
4277 if (i
< MAX_CTLR_ORIG
)
4278 hba
[i
]->major
= COMPAQ_CISS_MAJOR
+ i
;
4279 rc
= register_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4280 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4282 "cciss: Unable to get major number %d for %s "
4283 "on hba %d\n", hba
[i
]->major
, hba
[i
]->devname
, i
);
4286 if (i
>= MAX_CTLR_ORIG
)
4290 /* make sure the board interrupts are off */
4291 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_OFF
);
4292 if (request_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], do_cciss_intr
,
4293 IRQF_DISABLED
| IRQF_SHARED
, hba
[i
]->devname
, hba
[i
])) {
4294 printk(KERN_ERR
"cciss: Unable to get irq %d for %s\n",
4295 hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]->devname
);
4299 printk(KERN_INFO
"%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4300 hba
[i
]->devname
, pdev
->device
, pci_name(pdev
),
4301 hba
[i
]->intr
[SIMPLE_MODE_INT
], dac
? "" : " not");
4303 hba
[i
]->cmd_pool_bits
=
4304 kmalloc(DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4305 * sizeof(unsigned long), GFP_KERNEL
);
4306 hba
[i
]->cmd_pool
= (CommandList_struct
*)
4307 pci_alloc_consistent(hba
[i
]->pdev
,
4308 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4309 &(hba
[i
]->cmd_pool_dhandle
));
4310 hba
[i
]->errinfo_pool
= (ErrorInfo_struct
*)
4311 pci_alloc_consistent(hba
[i
]->pdev
,
4312 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4313 &(hba
[i
]->errinfo_pool_dhandle
));
4314 if ((hba
[i
]->cmd_pool_bits
== NULL
)
4315 || (hba
[i
]->cmd_pool
== NULL
)
4316 || (hba
[i
]->errinfo_pool
== NULL
)) {
4317 printk(KERN_ERR
"cciss: out of memory");
4320 spin_lock_init(&hba
[i
]->lock
);
4322 /* Initialize the pdev driver private data.
4323 have it point to hba[i]. */
4324 pci_set_drvdata(pdev
, hba
[i
]);
4325 /* command and error info recs zeroed out before
4327 memset(hba
[i
]->cmd_pool_bits
, 0,
4328 DIV_ROUND_UP(hba
[i
]->nr_cmds
, BITS_PER_LONG
)
4329 * sizeof(unsigned long));
4331 hba
[i
]->num_luns
= 0;
4332 hba
[i
]->highest_lun
= -1;
4333 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4334 hba
[i
]->drv
[j
] = NULL
;
4335 hba
[i
]->gendisk
[j
] = NULL
;
4338 cciss_scsi_setup(i
);
4340 /* Turn the interrupts on so we can service requests */
4341 hba
[i
]->access
.set_intr_mask(hba
[i
], CCISS_INTR_ON
);
4343 /* Get the firmware version */
4344 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4345 if (inq_buff
== NULL
) {
4346 printk(KERN_ERR
"cciss: out of memory\n");
4350 return_code
= sendcmd_withirq(CISS_INQUIRY
, i
, inq_buff
,
4351 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4352 if (return_code
== IO_OK
) {
4353 hba
[i
]->firm_ver
[0] = inq_buff
->data_byte
[32];
4354 hba
[i
]->firm_ver
[1] = inq_buff
->data_byte
[33];
4355 hba
[i
]->firm_ver
[2] = inq_buff
->data_byte
[34];
4356 hba
[i
]->firm_ver
[3] = inq_buff
->data_byte
[35];
4357 } else { /* send command failed */
4358 printk(KERN_WARNING
"cciss: unable to determine firmware"
4359 " version of controller\n");
4365 hba
[i
]->cciss_max_sectors
= 2048;
4367 rebuild_lun_table(hba
[i
], 1, 0);
4368 hba
[i
]->busy_initializing
= 0;
4372 kfree(hba
[i
]->cmd_pool_bits
);
4373 if (hba
[i
]->cmd_pool
)
4374 pci_free_consistent(hba
[i
]->pdev
,
4375 hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4376 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4377 if (hba
[i
]->errinfo_pool
)
4378 pci_free_consistent(hba
[i
]->pdev
,
4379 hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4380 hba
[i
]->errinfo_pool
,
4381 hba
[i
]->errinfo_pool_dhandle
);
4382 free_irq(hba
[i
]->intr
[SIMPLE_MODE_INT
], hba
[i
]);
4384 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4386 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4388 pci_release_regions(pdev
);
4389 clean_no_release_regions
:
4390 hba
[i
]->busy_initializing
= 0;
4393 * Deliberately omit pci_disable_device(): it does something nasty to
4394 * Smart Array controllers that pci_enable_device does not undo
4396 pci_set_drvdata(pdev
, NULL
);
4401 static void cciss_shutdown(struct pci_dev
*pdev
)
4403 ctlr_info_t
*tmp_ptr
;
4408 tmp_ptr
= pci_get_drvdata(pdev
);
4409 if (tmp_ptr
== NULL
)
4415 /* Turn board interrupts off and send the flush cache command */
4416 /* sendcmd will turn off interrupt, and send the flush...
4417 * To write all data in the battery backed cache to disks */
4418 memset(flush_buf
, 0, 4);
4419 return_code
= sendcmd(CCISS_CACHE_FLUSH
, i
, flush_buf
, 4, 0,
4420 CTLR_LUNID
, TYPE_CMD
);
4421 if (return_code
== IO_OK
) {
4422 printk(KERN_INFO
"Completed flushing cache on controller %d\n", i
);
4424 printk(KERN_WARNING
"Error flushing cache on controller %d\n", i
);
4426 free_irq(hba
[i
]->intr
[2], hba
[i
]);
4429 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4431 ctlr_info_t
*tmp_ptr
;
4434 if (pci_get_drvdata(pdev
) == NULL
) {
4435 printk(KERN_ERR
"cciss: Unable to remove device \n");
4439 tmp_ptr
= pci_get_drvdata(pdev
);
4441 if (hba
[i
] == NULL
) {
4442 printk(KERN_ERR
"cciss: device appears to "
4443 "already be removed \n");
4447 mutex_lock(&hba
[i
]->busy_shutting_down
);
4449 remove_from_scan_list(hba
[i
]);
4450 remove_proc_entry(hba
[i
]->devname
, proc_cciss
);
4451 unregister_blkdev(hba
[i
]->major
, hba
[i
]->devname
);
4453 /* remove it from the disk list */
4454 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4455 struct gendisk
*disk
= hba
[i
]->gendisk
[j
];
4457 struct request_queue
*q
= disk
->queue
;
4459 if (disk
->flags
& GENHD_FL_UP
) {
4460 cciss_destroy_ld_sysfs_entry(hba
[i
], j
, 1);
4464 blk_cleanup_queue(q
);
4468 #ifdef CONFIG_CISS_SCSI_TAPE
4469 cciss_unregister_scsi(i
); /* unhook from SCSI subsystem */
4472 cciss_shutdown(pdev
);
4474 #ifdef CONFIG_PCI_MSI
4475 if (hba
[i
]->msix_vector
)
4476 pci_disable_msix(hba
[i
]->pdev
);
4477 else if (hba
[i
]->msi_vector
)
4478 pci_disable_msi(hba
[i
]->pdev
);
4479 #endif /* CONFIG_PCI_MSI */
4481 iounmap(hba
[i
]->vaddr
);
4483 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(CommandList_struct
),
4484 hba
[i
]->cmd_pool
, hba
[i
]->cmd_pool_dhandle
);
4485 pci_free_consistent(hba
[i
]->pdev
, hba
[i
]->nr_cmds
* sizeof(ErrorInfo_struct
),
4486 hba
[i
]->errinfo_pool
, hba
[i
]->errinfo_pool_dhandle
);
4487 kfree(hba
[i
]->cmd_pool_bits
);
4489 * Deliberately omit pci_disable_device(): it does something nasty to
4490 * Smart Array controllers that pci_enable_device does not undo
4492 pci_release_regions(pdev
);
4493 pci_set_drvdata(pdev
, NULL
);
4494 cciss_destroy_hba_sysfs_entry(hba
[i
]);
4495 mutex_unlock(&hba
[i
]->busy_shutting_down
);
4499 static struct pci_driver cciss_pci_driver
= {
4501 .probe
= cciss_init_one
,
4502 .remove
= __devexit_p(cciss_remove_one
),
4503 .id_table
= cciss_pci_device_id
, /* id_table */
4504 .shutdown
= cciss_shutdown
,
4508 * This is it. Register the PCI driver information for the cards we control
4509 * the OS will call our registered routines when it finds one of our cards.
4511 static int __init
cciss_init(void)
4516 * The hardware requires that commands are aligned on a 64-bit
4517 * boundary. Given that we use pci_alloc_consistent() to allocate an
4518 * array of them, the size must be a multiple of 8 bytes.
4520 BUILD_BUG_ON(sizeof(CommandList_struct
) % 8);
4522 printk(KERN_INFO DRIVER_NAME
"\n");
4524 err
= bus_register(&cciss_bus_type
);
4528 /* Start the scan thread */
4529 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4530 if (IS_ERR(cciss_scan_thread
)) {
4531 err
= PTR_ERR(cciss_scan_thread
);
4532 goto err_bus_unregister
;
4535 /* Register for our PCI devices */
4536 err
= pci_register_driver(&cciss_pci_driver
);
4538 goto err_thread_stop
;
4543 kthread_stop(cciss_scan_thread
);
4545 bus_unregister(&cciss_bus_type
);
4550 static void __exit
cciss_cleanup(void)
4554 pci_unregister_driver(&cciss_pci_driver
);
4555 /* double check that all controller entrys have been removed */
4556 for (i
= 0; i
< MAX_CTLR
; i
++) {
4557 if (hba
[i
] != NULL
) {
4558 printk(KERN_WARNING
"cciss: had to remove"
4559 " controller %d\n", i
);
4560 cciss_remove_one(hba
[i
]->pdev
);
4563 kthread_stop(cciss_scan_thread
);
4564 remove_proc_entry("driver/cciss", NULL
);
4565 bus_unregister(&cciss_bus_type
);
4568 static void fail_all_cmds(unsigned long ctlr
)
4570 /* If we get here, the board is apparently dead. */
4571 ctlr_info_t
*h
= hba
[ctlr
];
4572 CommandList_struct
*c
;
4573 unsigned long flags
;
4575 printk(KERN_WARNING
"cciss%d: controller not responding.\n", h
->ctlr
);
4576 h
->alive
= 0; /* the controller apparently died... */
4578 spin_lock_irqsave(CCISS_LOCK(ctlr
), flags
);
4580 pci_disable_device(h
->pdev
); /* Make sure it is really dead. */
4582 /* move everything off the request queue onto the completed queue */
4583 while (!hlist_empty(&h
->reqQ
)) {
4584 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
4590 /* Now, fail everything on the completed queue with a HW error */
4591 while (!hlist_empty(&h
->cmpQ
)) {
4592 c
= hlist_entry(h
->cmpQ
.first
, CommandList_struct
, list
);
4594 if (c
->cmd_type
!= CMD_MSG_STALE
)
4595 c
->err_info
->CommandStatus
= CMD_HARDWARE_ERR
;
4596 if (c
->cmd_type
== CMD_RWREQ
) {
4597 complete_command(h
, c
, 0);
4598 } else if (c
->cmd_type
== CMD_IOCTL_PEND
)
4599 complete(c
->waiting
);
4600 #ifdef CONFIG_CISS_SCSI_TAPE
4601 else if (c
->cmd_type
== CMD_SCSI
)
4602 complete_scsi_command(c
, 0, 0);
4605 spin_unlock_irqrestore(CCISS_LOCK(ctlr
), flags
);
4609 module_init(cciss_init
);
4610 module_exit(cciss_cleanup
);