nilfs2: return f_fsid for statfs2
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nilfs2 / super.c
blob8a965f9523aaeb74f41dd572d6090e6d3d42b985
1 /*
2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
30 * from
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include "nilfs.h"
54 #include "mdt.h"
55 #include "alloc.h"
56 #include "page.h"
57 #include "cpfile.h"
58 #include "ifile.h"
59 #include "dat.h"
60 #include "segment.h"
61 #include "segbuf.h"
63 MODULE_AUTHOR("NTT Corp.");
64 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
65 "(NILFS)");
66 MODULE_VERSION(NILFS_VERSION);
67 MODULE_LICENSE("GPL");
69 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
70 static int test_exclusive_mount(struct file_system_type *fs_type,
71 struct block_device *bdev, int flags);
73 /**
74 * nilfs_error() - report failure condition on a filesystem
76 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
77 * reporting an error message. It should be called when NILFS detects
78 * incoherences or defects of meta data on disk. As for sustainable
79 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
80 * function should be used instead.
82 * The segment constructor must not call this function because it can
83 * kill itself.
85 void nilfs_error(struct super_block *sb, const char *function,
86 const char *fmt, ...)
88 struct nilfs_sb_info *sbi = NILFS_SB(sb);
89 va_list args;
91 va_start(args, fmt);
92 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
93 vprintk(fmt, args);
94 printk("\n");
95 va_end(args);
97 if (!(sb->s_flags & MS_RDONLY)) {
98 struct the_nilfs *nilfs = sbi->s_nilfs;
100 if (!nilfs_test_opt(sbi, ERRORS_CONT))
101 nilfs_detach_segment_constructor(sbi);
103 down_write(&nilfs->ns_sem);
104 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
105 nilfs->ns_mount_state |= NILFS_ERROR_FS;
106 nilfs->ns_sbp[0]->s_state |=
107 cpu_to_le16(NILFS_ERROR_FS);
108 nilfs_commit_super(sbi, 1);
110 up_write(&nilfs->ns_sem);
112 if (nilfs_test_opt(sbi, ERRORS_RO)) {
113 printk(KERN_CRIT "Remounting filesystem read-only\n");
114 sb->s_flags |= MS_RDONLY;
118 if (nilfs_test_opt(sbi, ERRORS_PANIC))
119 panic("NILFS (device %s): panic forced after error\n",
120 sb->s_id);
123 void nilfs_warning(struct super_block *sb, const char *function,
124 const char *fmt, ...)
126 va_list args;
128 va_start(args, fmt);
129 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
130 sb->s_id, function);
131 vprintk(fmt, args);
132 printk("\n");
133 va_end(args);
136 static struct kmem_cache *nilfs_inode_cachep;
138 struct inode *nilfs_alloc_inode(struct super_block *sb)
140 struct nilfs_inode_info *ii;
142 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
143 if (!ii)
144 return NULL;
145 ii->i_bh = NULL;
146 ii->i_state = 0;
147 ii->vfs_inode.i_version = 1;
148 nilfs_btnode_cache_init(&ii->i_btnode_cache);
149 return &ii->vfs_inode;
152 void nilfs_destroy_inode(struct inode *inode)
154 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
157 static void init_once(void *obj)
159 struct nilfs_inode_info *ii = obj;
161 INIT_LIST_HEAD(&ii->i_dirty);
162 #ifdef CONFIG_NILFS_XATTR
163 init_rwsem(&ii->xattr_sem);
164 #endif
165 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
166 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
167 inode_init_once(&ii->vfs_inode);
170 static int nilfs_init_inode_cache(void)
172 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
173 sizeof(struct nilfs_inode_info),
174 0, SLAB_RECLAIM_ACCOUNT,
175 init_once);
177 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
180 static inline void nilfs_destroy_inode_cache(void)
182 kmem_cache_destroy(nilfs_inode_cachep);
185 static void nilfs_clear_inode(struct inode *inode)
187 struct nilfs_inode_info *ii = NILFS_I(inode);
189 #ifdef CONFIG_NILFS_POSIX_ACL
190 if (ii->i_acl && ii->i_acl != NILFS_ACL_NOT_CACHED) {
191 posix_acl_release(ii->i_acl);
192 ii->i_acl = NILFS_ACL_NOT_CACHED;
194 if (ii->i_default_acl && ii->i_default_acl != NILFS_ACL_NOT_CACHED) {
195 posix_acl_release(ii->i_default_acl);
196 ii->i_default_acl = NILFS_ACL_NOT_CACHED;
198 #endif
200 * Free resources allocated in nilfs_read_inode(), here.
202 BUG_ON(!list_empty(&ii->i_dirty));
203 brelse(ii->i_bh);
204 ii->i_bh = NULL;
206 if (test_bit(NILFS_I_BMAP, &ii->i_state))
207 nilfs_bmap_clear(ii->i_bmap);
209 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
212 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
214 struct the_nilfs *nilfs = sbi->s_nilfs;
215 int err;
216 int barrier_done = 0;
218 if (nilfs_test_opt(sbi, BARRIER)) {
219 set_buffer_ordered(nilfs->ns_sbh[0]);
220 barrier_done = 1;
222 retry:
223 set_buffer_dirty(nilfs->ns_sbh[0]);
224 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
225 if (err == -EOPNOTSUPP && barrier_done) {
226 nilfs_warning(sbi->s_super, __func__,
227 "barrier-based sync failed. "
228 "disabling barriers\n");
229 nilfs_clear_opt(sbi, BARRIER);
230 barrier_done = 0;
231 clear_buffer_ordered(nilfs->ns_sbh[0]);
232 goto retry;
234 if (unlikely(err)) {
235 printk(KERN_ERR
236 "NILFS: unable to write superblock (err=%d)\n", err);
237 if (err == -EIO && nilfs->ns_sbh[1]) {
238 nilfs_fall_back_super_block(nilfs);
239 goto retry;
241 } else {
242 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
245 * The latest segment becomes trailable from the position
246 * written in superblock.
248 clear_nilfs_discontinued(nilfs);
250 /* update GC protection for recent segments */
251 if (nilfs->ns_sbh[1]) {
252 sbp = NULL;
253 if (dupsb) {
254 set_buffer_dirty(nilfs->ns_sbh[1]);
255 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
256 sbp = nilfs->ns_sbp[1];
259 if (sbp) {
260 spin_lock(&nilfs->ns_last_segment_lock);
261 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
262 spin_unlock(&nilfs->ns_last_segment_lock);
266 return err;
269 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
271 struct the_nilfs *nilfs = sbi->s_nilfs;
272 struct nilfs_super_block **sbp = nilfs->ns_sbp;
273 sector_t nfreeblocks;
274 time_t t;
275 int err;
277 /* nilfs->sem must be locked by the caller. */
278 if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
279 if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
280 nilfs_swap_super_block(nilfs);
281 else {
282 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
283 sbi->s_super->s_id);
284 return -EIO;
287 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
288 if (unlikely(err)) {
289 printk(KERN_ERR "NILFS: failed to count free blocks\n");
290 return err;
292 spin_lock(&nilfs->ns_last_segment_lock);
293 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
294 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
295 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
296 spin_unlock(&nilfs->ns_last_segment_lock);
298 t = get_seconds();
299 nilfs->ns_sbwtime[0] = t;
300 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
301 sbp[0]->s_wtime = cpu_to_le64(t);
302 sbp[0]->s_sum = 0;
303 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
304 (unsigned char *)sbp[0],
305 nilfs->ns_sbsize));
306 if (dupsb && sbp[1]) {
307 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
308 nilfs->ns_sbwtime[1] = t;
310 sbi->s_super->s_dirt = 0;
311 return nilfs_sync_super(sbi, dupsb);
314 static void nilfs_put_super(struct super_block *sb)
316 struct nilfs_sb_info *sbi = NILFS_SB(sb);
317 struct the_nilfs *nilfs = sbi->s_nilfs;
319 nilfs_detach_segment_constructor(sbi);
321 if (!(sb->s_flags & MS_RDONLY)) {
322 down_write(&nilfs->ns_sem);
323 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
324 nilfs_commit_super(sbi, 1);
325 up_write(&nilfs->ns_sem);
328 nilfs_detach_checkpoint(sbi);
329 put_nilfs(sbi->s_nilfs);
330 sbi->s_super = NULL;
331 sb->s_fs_info = NULL;
332 kfree(sbi);
336 * nilfs_write_super - write super block(s) of NILFS
337 * @sb: super_block
339 * nilfs_write_super() gets a fs-dependent lock, writes super block(s), and
340 * clears s_dirt. This function is called in the section protected by
341 * lock_super().
343 * The s_dirt flag is managed by each filesystem and we protect it by ns_sem
344 * of the struct the_nilfs. Lock order must be as follows:
346 * 1. lock_super()
347 * 2. down_write(&nilfs->ns_sem)
349 * Inside NILFS, locking ns_sem is enough to protect s_dirt and the buffer
350 * of the super block (nilfs->ns_sbp[]).
352 * In most cases, VFS functions call lock_super() before calling these
353 * methods. So we must be careful not to bring on deadlocks when using
354 * lock_super(); see generic_shutdown_super(), write_super(), and so on.
356 * Note that order of lock_kernel() and lock_super() depends on contexts
357 * of VFS. We should also note that lock_kernel() can be used in its
358 * protective section and only the outermost one has an effect.
360 static void nilfs_write_super(struct super_block *sb)
362 struct nilfs_sb_info *sbi = NILFS_SB(sb);
363 struct the_nilfs *nilfs = sbi->s_nilfs;
365 down_write(&nilfs->ns_sem);
366 if (!(sb->s_flags & MS_RDONLY)) {
367 struct nilfs_super_block **sbp = nilfs->ns_sbp;
368 u64 t = get_seconds();
369 int dupsb;
371 if (!nilfs_discontinued(nilfs) && t >= nilfs->ns_sbwtime[0] &&
372 t < nilfs->ns_sbwtime[0] + NILFS_SB_FREQ) {
373 up_write(&nilfs->ns_sem);
374 return;
376 dupsb = sbp[1] && t > nilfs->ns_sbwtime[1] + NILFS_ALTSB_FREQ;
377 nilfs_commit_super(sbi, dupsb);
379 sb->s_dirt = 0;
380 up_write(&nilfs->ns_sem);
383 static int nilfs_sync_fs(struct super_block *sb, int wait)
385 int err = 0;
387 /* This function is called when super block should be written back */
388 if (wait)
389 err = nilfs_construct_segment(sb);
390 return err;
393 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
395 struct the_nilfs *nilfs = sbi->s_nilfs;
396 struct nilfs_checkpoint *raw_cp;
397 struct buffer_head *bh_cp;
398 int err;
400 down_write(&nilfs->ns_sem);
401 list_add(&sbi->s_list, &nilfs->ns_supers);
402 up_write(&nilfs->ns_sem);
404 sbi->s_ifile = nilfs_mdt_new(
405 nilfs, sbi->s_super, NILFS_IFILE_INO, NILFS_IFILE_GFP);
406 if (!sbi->s_ifile)
407 return -ENOMEM;
409 err = nilfs_palloc_init_blockgroup(sbi->s_ifile, nilfs->ns_inode_size);
410 if (unlikely(err))
411 goto failed;
413 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
414 &bh_cp);
415 if (unlikely(err)) {
416 if (err == -ENOENT || err == -EINVAL) {
417 printk(KERN_ERR
418 "NILFS: Invalid checkpoint "
419 "(checkpoint number=%llu)\n",
420 (unsigned long long)cno);
421 err = -EINVAL;
423 goto failed;
425 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
426 if (unlikely(err))
427 goto failed_bh;
428 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
429 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
431 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
432 return 0;
434 failed_bh:
435 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
436 failed:
437 nilfs_mdt_destroy(sbi->s_ifile);
438 sbi->s_ifile = NULL;
440 down_write(&nilfs->ns_sem);
441 list_del_init(&sbi->s_list);
442 up_write(&nilfs->ns_sem);
444 return err;
447 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
449 struct the_nilfs *nilfs = sbi->s_nilfs;
451 nilfs_mdt_clear(sbi->s_ifile);
452 nilfs_mdt_destroy(sbi->s_ifile);
453 sbi->s_ifile = NULL;
454 down_write(&nilfs->ns_sem);
455 list_del_init(&sbi->s_list);
456 up_write(&nilfs->ns_sem);
459 static int nilfs_mark_recovery_complete(struct nilfs_sb_info *sbi)
461 struct the_nilfs *nilfs = sbi->s_nilfs;
462 int err = 0;
464 down_write(&nilfs->ns_sem);
465 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
466 nilfs->ns_mount_state |= NILFS_VALID_FS;
467 err = nilfs_commit_super(sbi, 1);
468 if (likely(!err))
469 printk(KERN_INFO "NILFS: recovery complete.\n");
471 up_write(&nilfs->ns_sem);
472 return err;
475 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
477 struct super_block *sb = dentry->d_sb;
478 struct nilfs_sb_info *sbi = NILFS_SB(sb);
479 struct the_nilfs *nilfs = sbi->s_nilfs;
480 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
481 unsigned long long blocks;
482 unsigned long overhead;
483 unsigned long nrsvblocks;
484 sector_t nfreeblocks;
485 int err;
488 * Compute all of the segment blocks
490 * The blocks before first segment and after last segment
491 * are excluded.
493 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
494 - nilfs->ns_first_data_block;
495 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
498 * Compute the overhead
500 * When distributing meta data blocks outside semgent structure,
501 * We must count them as the overhead.
503 overhead = 0;
505 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
506 if (unlikely(err))
507 return err;
509 buf->f_type = NILFS_SUPER_MAGIC;
510 buf->f_bsize = sb->s_blocksize;
511 buf->f_blocks = blocks - overhead;
512 buf->f_bfree = nfreeblocks;
513 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
514 (buf->f_bfree - nrsvblocks) : 0;
515 buf->f_files = atomic_read(&sbi->s_inodes_count);
516 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
517 buf->f_namelen = NILFS_NAME_LEN;
518 buf->f_fsid.val[0] = (u32)id;
519 buf->f_fsid.val[1] = (u32)(id >> 32);
521 return 0;
524 static struct super_operations nilfs_sops = {
525 .alloc_inode = nilfs_alloc_inode,
526 .destroy_inode = nilfs_destroy_inode,
527 .dirty_inode = nilfs_dirty_inode,
528 /* .write_inode = nilfs_write_inode, */
529 /* .put_inode = nilfs_put_inode, */
530 /* .drop_inode = nilfs_drop_inode, */
531 .delete_inode = nilfs_delete_inode,
532 .put_super = nilfs_put_super,
533 .write_super = nilfs_write_super,
534 .sync_fs = nilfs_sync_fs,
535 /* .write_super_lockfs */
536 /* .unlockfs */
537 .statfs = nilfs_statfs,
538 .remount_fs = nilfs_remount,
539 .clear_inode = nilfs_clear_inode,
540 /* .umount_begin */
541 /* .show_options */
544 static struct inode *
545 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
547 struct inode *inode;
549 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
550 ino != NILFS_SKETCH_INO)
551 return ERR_PTR(-ESTALE);
553 inode = nilfs_iget(sb, ino);
554 if (IS_ERR(inode))
555 return ERR_CAST(inode);
556 if (generation && inode->i_generation != generation) {
557 iput(inode);
558 return ERR_PTR(-ESTALE);
561 return inode;
564 static struct dentry *
565 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
566 int fh_type)
568 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
569 nilfs_nfs_get_inode);
572 static struct dentry *
573 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
574 int fh_type)
576 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
577 nilfs_nfs_get_inode);
580 static struct export_operations nilfs_export_ops = {
581 .fh_to_dentry = nilfs_fh_to_dentry,
582 .fh_to_parent = nilfs_fh_to_parent,
583 .get_parent = nilfs_get_parent,
586 enum {
587 Opt_err_cont, Opt_err_panic, Opt_err_ro,
588 Opt_barrier, Opt_snapshot, Opt_order,
589 Opt_err,
592 static match_table_t tokens = {
593 {Opt_err_cont, "errors=continue"},
594 {Opt_err_panic, "errors=panic"},
595 {Opt_err_ro, "errors=remount-ro"},
596 {Opt_barrier, "barrier=%s"},
597 {Opt_snapshot, "cp=%u"},
598 {Opt_order, "order=%s"},
599 {Opt_err, NULL}
602 static int match_bool(substring_t *s, int *result)
604 int len = s->to - s->from;
606 if (strncmp(s->from, "on", len) == 0)
607 *result = 1;
608 else if (strncmp(s->from, "off", len) == 0)
609 *result = 0;
610 else
611 return 1;
612 return 0;
615 static int parse_options(char *options, struct super_block *sb)
617 struct nilfs_sb_info *sbi = NILFS_SB(sb);
618 char *p;
619 substring_t args[MAX_OPT_ARGS];
620 int option;
622 if (!options)
623 return 1;
625 while ((p = strsep(&options, ",")) != NULL) {
626 int token;
627 if (!*p)
628 continue;
630 token = match_token(p, tokens, args);
631 switch (token) {
632 case Opt_barrier:
633 if (match_bool(&args[0], &option))
634 return 0;
635 if (option)
636 nilfs_set_opt(sbi, BARRIER);
637 else
638 nilfs_clear_opt(sbi, BARRIER);
639 break;
640 case Opt_order:
641 if (strcmp(args[0].from, "relaxed") == 0)
642 /* Ordered data semantics */
643 nilfs_clear_opt(sbi, STRICT_ORDER);
644 else if (strcmp(args[0].from, "strict") == 0)
645 /* Strict in-order semantics */
646 nilfs_set_opt(sbi, STRICT_ORDER);
647 else
648 return 0;
649 break;
650 case Opt_err_panic:
651 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
652 break;
653 case Opt_err_ro:
654 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
655 break;
656 case Opt_err_cont:
657 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
658 break;
659 case Opt_snapshot:
660 if (match_int(&args[0], &option) || option <= 0)
661 return 0;
662 if (!(sb->s_flags & MS_RDONLY))
663 return 0;
664 sbi->s_snapshot_cno = option;
665 nilfs_set_opt(sbi, SNAPSHOT);
666 break;
667 default:
668 printk(KERN_ERR
669 "NILFS: Unrecognized mount option \"%s\"\n", p);
670 return 0;
673 return 1;
676 static inline void
677 nilfs_set_default_options(struct nilfs_sb_info *sbi,
678 struct nilfs_super_block *sbp)
680 sbi->s_mount_opt =
681 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
684 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
686 struct the_nilfs *nilfs = sbi->s_nilfs;
687 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
688 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
689 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
691 /* nilfs->sem must be locked by the caller. */
692 if (!(nilfs->ns_mount_state & NILFS_VALID_FS)) {
693 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
694 } else if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
695 printk(KERN_WARNING
696 "NILFS warning: mounting fs with errors\n");
697 #if 0
698 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
699 printk(KERN_WARNING
700 "NILFS warning: maximal mount count reached\n");
701 #endif
703 if (!max_mnt_count)
704 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
706 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
707 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
708 sbp->s_mtime = cpu_to_le64(get_seconds());
709 return nilfs_commit_super(sbi, 1);
712 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
713 u64 pos, int blocksize,
714 struct buffer_head **pbh)
716 unsigned long long sb_index = pos;
717 unsigned long offset;
719 offset = do_div(sb_index, blocksize);
720 *pbh = sb_bread(sb, sb_index);
721 if (!*pbh)
722 return NULL;
723 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
726 int nilfs_store_magic_and_option(struct super_block *sb,
727 struct nilfs_super_block *sbp,
728 char *data)
730 struct nilfs_sb_info *sbi = NILFS_SB(sb);
732 sb->s_magic = le16_to_cpu(sbp->s_magic);
734 /* FS independent flags */
735 #ifdef NILFS_ATIME_DISABLE
736 sb->s_flags |= MS_NOATIME;
737 #endif
739 nilfs_set_default_options(sbi, sbp);
741 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
742 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
743 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
744 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
746 return !parse_options(data, sb) ? -EINVAL : 0 ;
750 * nilfs_fill_super() - initialize a super block instance
751 * @sb: super_block
752 * @data: mount options
753 * @silent: silent mode flag
754 * @nilfs: the_nilfs struct
756 * This function is called exclusively by bd_mount_mutex.
757 * So, the recovery process is protected from other simultaneous mounts.
759 static int
760 nilfs_fill_super(struct super_block *sb, void *data, int silent,
761 struct the_nilfs *nilfs)
763 struct nilfs_sb_info *sbi;
764 struct inode *root;
765 __u64 cno;
766 int err;
768 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
769 if (!sbi)
770 return -ENOMEM;
772 sb->s_fs_info = sbi;
774 get_nilfs(nilfs);
775 sbi->s_nilfs = nilfs;
776 sbi->s_super = sb;
778 err = init_nilfs(nilfs, sbi, (char *)data);
779 if (err)
780 goto failed_sbi;
782 spin_lock_init(&sbi->s_inode_lock);
783 INIT_LIST_HEAD(&sbi->s_dirty_files);
784 INIT_LIST_HEAD(&sbi->s_list);
787 * Following initialization is overlapped because
788 * nilfs_sb_info structure has been cleared at the beginning.
789 * But we reserve them to keep our interest and make ready
790 * for the future change.
792 get_random_bytes(&sbi->s_next_generation,
793 sizeof(sbi->s_next_generation));
794 spin_lock_init(&sbi->s_next_gen_lock);
796 sb->s_op = &nilfs_sops;
797 sb->s_export_op = &nilfs_export_ops;
798 sb->s_root = NULL;
799 sb->s_time_gran = 1;
801 if (!nilfs_loaded(nilfs)) {
802 err = load_nilfs(nilfs, sbi);
803 if (err)
804 goto failed_sbi;
806 cno = nilfs_last_cno(nilfs);
808 if (sb->s_flags & MS_RDONLY) {
809 if (nilfs_test_opt(sbi, SNAPSHOT)) {
810 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
811 sbi->s_snapshot_cno);
812 if (err < 0)
813 goto failed_sbi;
814 if (!err) {
815 printk(KERN_ERR
816 "NILFS: The specified checkpoint is "
817 "not a snapshot "
818 "(checkpoint number=%llu).\n",
819 (unsigned long long)sbi->s_snapshot_cno);
820 err = -EINVAL;
821 goto failed_sbi;
823 cno = sbi->s_snapshot_cno;
824 } else
825 /* Read-only mount */
826 sbi->s_snapshot_cno = cno;
829 err = nilfs_attach_checkpoint(sbi, cno);
830 if (err) {
831 printk(KERN_ERR "NILFS: error loading a checkpoint"
832 " (checkpoint number=%llu).\n", (unsigned long long)cno);
833 goto failed_sbi;
836 if (!(sb->s_flags & MS_RDONLY)) {
837 err = nilfs_attach_segment_constructor(sbi);
838 if (err)
839 goto failed_checkpoint;
842 root = nilfs_iget(sb, NILFS_ROOT_INO);
843 if (IS_ERR(root)) {
844 printk(KERN_ERR "NILFS: get root inode failed\n");
845 err = PTR_ERR(root);
846 goto failed_segctor;
848 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
849 iput(root);
850 printk(KERN_ERR "NILFS: corrupt root inode.\n");
851 err = -EINVAL;
852 goto failed_segctor;
854 sb->s_root = d_alloc_root(root);
855 if (!sb->s_root) {
856 iput(root);
857 printk(KERN_ERR "NILFS: get root dentry failed\n");
858 err = -ENOMEM;
859 goto failed_segctor;
862 if (!(sb->s_flags & MS_RDONLY)) {
863 down_write(&nilfs->ns_sem);
864 nilfs_setup_super(sbi);
865 up_write(&nilfs->ns_sem);
868 err = nilfs_mark_recovery_complete(sbi);
869 if (unlikely(err)) {
870 printk(KERN_ERR "NILFS: recovery failed.\n");
871 goto failed_root;
874 return 0;
876 failed_root:
877 dput(sb->s_root);
878 sb->s_root = NULL;
880 failed_segctor:
881 nilfs_detach_segment_constructor(sbi);
883 failed_checkpoint:
884 nilfs_detach_checkpoint(sbi);
886 failed_sbi:
887 put_nilfs(nilfs);
888 sb->s_fs_info = NULL;
889 kfree(sbi);
890 return err;
893 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
895 struct nilfs_sb_info *sbi = NILFS_SB(sb);
896 struct nilfs_super_block *sbp;
897 struct the_nilfs *nilfs = sbi->s_nilfs;
898 unsigned long old_sb_flags;
899 struct nilfs_mount_options old_opts;
900 int err;
902 old_sb_flags = sb->s_flags;
903 old_opts.mount_opt = sbi->s_mount_opt;
904 old_opts.snapshot_cno = sbi->s_snapshot_cno;
906 if (!parse_options(data, sb)) {
907 err = -EINVAL;
908 goto restore_opts;
910 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
912 if ((*flags & MS_RDONLY) &&
913 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
914 printk(KERN_WARNING "NILFS (device %s): couldn't "
915 "remount to a different snapshot. \n",
916 sb->s_id);
917 err = -EINVAL;
918 goto restore_opts;
921 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
922 goto out;
923 if (*flags & MS_RDONLY) {
924 /* Shutting down the segment constructor */
925 nilfs_detach_segment_constructor(sbi);
926 sb->s_flags |= MS_RDONLY;
928 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
929 /* nilfs_set_opt(sbi, SNAPSHOT); */
932 * Remounting a valid RW partition RDONLY, so set
933 * the RDONLY flag and then mark the partition as valid again.
935 down_write(&nilfs->ns_sem);
936 sbp = nilfs->ns_sbp[0];
937 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
938 (nilfs->ns_mount_state & NILFS_VALID_FS))
939 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
940 sbp->s_mtime = cpu_to_le64(get_seconds());
941 nilfs_commit_super(sbi, 1);
942 up_write(&nilfs->ns_sem);
943 } else {
945 * Mounting a RDONLY partition read-write, so reread and
946 * store the current valid flag. (It may have been changed
947 * by fsck since we originally mounted the partition.)
949 down(&sb->s_bdev->bd_mount_sem);
950 /* Check existing RW-mount */
951 if (test_exclusive_mount(sb->s_type, sb->s_bdev, 0)) {
952 printk(KERN_WARNING "NILFS (device %s): couldn't "
953 "remount because a RW-mount exists.\n",
954 sb->s_id);
955 err = -EBUSY;
956 goto rw_remount_failed;
958 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
959 printk(KERN_WARNING "NILFS (device %s): couldn't "
960 "remount because the current RO-mount is not "
961 "the latest one.\n",
962 sb->s_id);
963 err = -EINVAL;
964 goto rw_remount_failed;
966 sb->s_flags &= ~MS_RDONLY;
967 nilfs_clear_opt(sbi, SNAPSHOT);
968 sbi->s_snapshot_cno = 0;
970 err = nilfs_attach_segment_constructor(sbi);
971 if (err)
972 goto rw_remount_failed;
974 down_write(&nilfs->ns_sem);
975 nilfs_setup_super(sbi);
976 up_write(&nilfs->ns_sem);
978 up(&sb->s_bdev->bd_mount_sem);
980 out:
981 return 0;
983 rw_remount_failed:
984 up(&sb->s_bdev->bd_mount_sem);
985 restore_opts:
986 sb->s_flags = old_sb_flags;
987 sbi->s_mount_opt = old_opts.mount_opt;
988 sbi->s_snapshot_cno = old_opts.snapshot_cno;
989 return err;
992 struct nilfs_super_data {
993 struct block_device *bdev;
994 __u64 cno;
995 int flags;
999 * nilfs_identify - pre-read mount options needed to identify mount instance
1000 * @data: mount options
1001 * @sd: nilfs_super_data
1003 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1005 char *p, *options = data;
1006 substring_t args[MAX_OPT_ARGS];
1007 int option, token;
1008 int ret = 0;
1010 do {
1011 p = strsep(&options, ",");
1012 if (p != NULL && *p) {
1013 token = match_token(p, tokens, args);
1014 if (token == Opt_snapshot) {
1015 if (!(sd->flags & MS_RDONLY))
1016 ret++;
1017 else {
1018 ret = match_int(&args[0], &option);
1019 if (!ret) {
1020 if (option > 0)
1021 sd->cno = option;
1022 else
1023 ret++;
1027 if (ret)
1028 printk(KERN_ERR
1029 "NILFS: invalid mount option: %s\n", p);
1031 if (!options)
1032 break;
1033 BUG_ON(options == data);
1034 *(options - 1) = ',';
1035 } while (!ret);
1036 return ret;
1039 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1041 struct nilfs_super_data *sd = data;
1043 s->s_bdev = sd->bdev;
1044 s->s_dev = s->s_bdev->bd_dev;
1045 return 0;
1048 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1050 struct nilfs_super_data *sd = data;
1052 return s->s_bdev == sd->bdev;
1055 static int nilfs_test_bdev_super2(struct super_block *s, void *data)
1057 struct nilfs_super_data *sd = data;
1058 int ret;
1060 if (s->s_bdev != sd->bdev)
1061 return 0;
1063 if (!((s->s_flags | sd->flags) & MS_RDONLY))
1064 return 1; /* Reuse an old R/W-mode super_block */
1066 if (s->s_flags & sd->flags & MS_RDONLY) {
1067 if (down_read_trylock(&s->s_umount)) {
1068 ret = s->s_root &&
1069 (sd->cno == NILFS_SB(s)->s_snapshot_cno);
1070 up_read(&s->s_umount);
1072 * This path is locked with sb_lock by sget().
1073 * So, drop_super() causes deadlock.
1075 return ret;
1078 return 0;
1081 static int
1082 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1083 const char *dev_name, void *data, struct vfsmount *mnt)
1085 struct nilfs_super_data sd;
1086 struct super_block *s, *s2;
1087 struct the_nilfs *nilfs = NULL;
1088 int err, need_to_close = 1;
1090 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1091 if (IS_ERR(sd.bdev))
1092 return PTR_ERR(sd.bdev);
1095 * To get mount instance using sget() vfs-routine, NILFS needs
1096 * much more information than normal filesystems to identify mount
1097 * instance. For snapshot mounts, not only a mount type (ro-mount
1098 * or rw-mount) but also a checkpoint number is required.
1099 * The results are passed in sget() using nilfs_super_data.
1101 sd.cno = 0;
1102 sd.flags = flags;
1103 if (nilfs_identify((char *)data, &sd)) {
1104 err = -EINVAL;
1105 goto failed;
1109 * once the super is inserted into the list by sget, s_umount
1110 * will protect the lockfs code from trying to start a snapshot
1111 * while we are mounting
1113 down(&sd.bdev->bd_mount_sem);
1114 if (!sd.cno &&
1115 (err = test_exclusive_mount(fs_type, sd.bdev, flags ^ MS_RDONLY))) {
1116 err = (err < 0) ? : -EBUSY;
1117 goto failed_unlock;
1121 * Phase-1: search any existent instance and get the_nilfs
1123 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1124 if (IS_ERR(s))
1125 goto error_s;
1127 if (!s->s_root) {
1128 err = -ENOMEM;
1129 nilfs = alloc_nilfs(sd.bdev);
1130 if (!nilfs)
1131 goto cancel_new;
1132 } else {
1133 struct nilfs_sb_info *sbi = NILFS_SB(s);
1136 * s_umount protects super_block from unmount process;
1137 * It covers pointers of nilfs_sb_info and the_nilfs.
1139 nilfs = sbi->s_nilfs;
1140 get_nilfs(nilfs);
1141 up_write(&s->s_umount);
1144 * Phase-2: search specified snapshot or R/W mode super_block
1146 if (!sd.cno)
1147 /* trying to get the latest checkpoint. */
1148 sd.cno = nilfs_last_cno(nilfs);
1150 s2 = sget(fs_type, nilfs_test_bdev_super2,
1151 nilfs_set_bdev_super, &sd);
1152 deactivate_super(s);
1154 * Although deactivate_super() invokes close_bdev_exclusive() at
1155 * kill_block_super(). Here, s is an existent mount; we need
1156 * one more close_bdev_exclusive() call.
1158 s = s2;
1159 if (IS_ERR(s))
1160 goto error_s;
1163 if (!s->s_root) {
1164 char b[BDEVNAME_SIZE];
1166 s->s_flags = flags;
1167 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1168 sb_set_blocksize(s, block_size(sd.bdev));
1170 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1171 if (err)
1172 goto cancel_new;
1174 s->s_flags |= MS_ACTIVE;
1175 need_to_close = 0;
1176 } else if (!(s->s_flags & MS_RDONLY)) {
1177 err = -EBUSY;
1180 up(&sd.bdev->bd_mount_sem);
1181 put_nilfs(nilfs);
1182 if (need_to_close)
1183 close_bdev_exclusive(sd.bdev, flags);
1184 simple_set_mnt(mnt, s);
1185 return 0;
1187 error_s:
1188 up(&sd.bdev->bd_mount_sem);
1189 if (nilfs)
1190 put_nilfs(nilfs);
1191 close_bdev_exclusive(sd.bdev, flags);
1192 return PTR_ERR(s);
1194 failed_unlock:
1195 up(&sd.bdev->bd_mount_sem);
1196 failed:
1197 close_bdev_exclusive(sd.bdev, flags);
1199 return err;
1201 cancel_new:
1202 /* Abandoning the newly allocated superblock */
1203 up(&sd.bdev->bd_mount_sem);
1204 if (nilfs)
1205 put_nilfs(nilfs);
1206 up_write(&s->s_umount);
1207 deactivate_super(s);
1209 * deactivate_super() invokes close_bdev_exclusive().
1210 * We must finish all post-cleaning before this call;
1211 * put_nilfs() and unlocking bd_mount_sem need the block device.
1213 return err;
1216 static int nilfs_test_bdev_super3(struct super_block *s, void *data)
1218 struct nilfs_super_data *sd = data;
1219 int ret;
1221 if (s->s_bdev != sd->bdev)
1222 return 0;
1223 if (down_read_trylock(&s->s_umount)) {
1224 ret = (s->s_flags & MS_RDONLY) && s->s_root &&
1225 nilfs_test_opt(NILFS_SB(s), SNAPSHOT);
1226 up_read(&s->s_umount);
1227 if (ret)
1228 return 0; /* ignore snapshot mounts */
1230 return !((sd->flags ^ s->s_flags) & MS_RDONLY);
1233 static int __false_bdev_super(struct super_block *s, void *data)
1235 #if 0 /* XXX: workaround for lock debug. This is not good idea */
1236 up_write(&s->s_umount);
1237 #endif
1238 return -EFAULT;
1242 * test_exclusive_mount - check whether an exclusive RW/RO mount exists or not.
1243 * fs_type: filesystem type
1244 * bdev: block device
1245 * flag: 0 (check rw-mount) or MS_RDONLY (check ro-mount)
1246 * res: pointer to an integer to store result
1248 * This function must be called within a section protected by bd_mount_mutex.
1250 static int test_exclusive_mount(struct file_system_type *fs_type,
1251 struct block_device *bdev, int flags)
1253 struct super_block *s;
1254 struct nilfs_super_data sd = { .flags = flags, .bdev = bdev };
1256 s = sget(fs_type, nilfs_test_bdev_super3, __false_bdev_super, &sd);
1257 if (IS_ERR(s)) {
1258 if (PTR_ERR(s) != -EFAULT)
1259 return PTR_ERR(s);
1260 return 0; /* Not found */
1262 up_write(&s->s_umount);
1263 deactivate_super(s);
1264 return 1; /* Found */
1267 struct file_system_type nilfs_fs_type = {
1268 .owner = THIS_MODULE,
1269 .name = "nilfs2",
1270 .get_sb = nilfs_get_sb,
1271 .kill_sb = kill_block_super,
1272 .fs_flags = FS_REQUIRES_DEV,
1275 static int __init init_nilfs_fs(void)
1277 int err;
1279 err = nilfs_init_inode_cache();
1280 if (err)
1281 goto failed;
1283 err = nilfs_init_transaction_cache();
1284 if (err)
1285 goto failed_inode_cache;
1287 err = nilfs_init_segbuf_cache();
1288 if (err)
1289 goto failed_transaction_cache;
1291 err = nilfs_btree_path_cache_init();
1292 if (err)
1293 goto failed_segbuf_cache;
1295 err = register_filesystem(&nilfs_fs_type);
1296 if (err)
1297 goto failed_btree_path_cache;
1299 return 0;
1301 failed_btree_path_cache:
1302 nilfs_btree_path_cache_destroy();
1304 failed_segbuf_cache:
1305 nilfs_destroy_segbuf_cache();
1307 failed_transaction_cache:
1308 nilfs_destroy_transaction_cache();
1310 failed_inode_cache:
1311 nilfs_destroy_inode_cache();
1313 failed:
1314 return err;
1317 static void __exit exit_nilfs_fs(void)
1319 nilfs_destroy_segbuf_cache();
1320 nilfs_destroy_transaction_cache();
1321 nilfs_destroy_inode_cache();
1322 nilfs_btree_path_cache_destroy();
1323 unregister_filesystem(&nilfs_fs_type);
1326 module_init(init_nilfs_fs)
1327 module_exit(exit_nilfs_fs)