4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
52 #include <asm/unistd.h>
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
73 * Some helpers for converting nanosecond timing to jiffy resolution
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
79 * These are the 'tuning knobs' of the scheduler:
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
104 * This part scales the interactivity limit depending on niceness.
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
169 static unsigned int task_timeslice(task_t
*p
)
171 if (p
->static_prio
< NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
174 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
180 * These are the runqueue data structures:
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
185 typedef struct runqueue runqueue_t
;
188 unsigned int nr_active
;
189 unsigned long bitmap
[BITMAP_SIZE
];
190 struct list_head queue
[MAX_PRIO
];
194 * This is the main, per-CPU runqueue data structure.
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
207 unsigned long nr_running
;
209 unsigned long cpu_load
[3];
211 unsigned long long nr_switches
;
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
219 unsigned long nr_uninterruptible
;
221 unsigned long expired_timestamp
;
222 unsigned long long timestamp_last_tick
;
224 struct mm_struct
*prev_mm
;
225 prio_array_t
*active
, *expired
, arrays
[2];
226 int best_expired_prio
;
230 struct sched_domain
*sd
;
232 /* For active balancing */
236 task_t
*migration_thread
;
237 struct list_head migration_queue
;
240 #ifdef CONFIG_SCHEDSTATS
242 struct sched_info rq_sched_info
;
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty
;
246 unsigned long yld_act_empty
;
247 unsigned long yld_both_empty
;
248 unsigned long yld_cnt
;
250 /* schedule() stats */
251 unsigned long sched_switch
;
252 unsigned long sched_cnt
;
253 unsigned long sched_goidle
;
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt
;
257 unsigned long ttwu_local
;
261 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
288 return rq
->curr
== p
;
291 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
295 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
297 spin_unlock_irq(&rq
->lock
);
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
306 return rq
->curr
== p
;
310 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq
->lock
);
323 spin_unlock(&rq
->lock
);
327 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
349 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
355 local_irq_save(*flags
);
357 spin_lock(&rq
->lock
);
358 if (unlikely(rq
!= task_rq(p
))) {
359 spin_unlock_irqrestore(&rq
->lock
, *flags
);
360 goto repeat_lock_task
;
365 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
368 spin_unlock_irqrestore(&rq
->lock
, *flags
);
371 #ifdef CONFIG_SCHEDSTATS
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
376 #define SCHEDSTAT_VERSION 12
378 static int show_schedstat(struct seq_file
*seq
, void *v
)
382 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
383 seq_printf(seq
, "timestamp %lu\n", jiffies
);
384 for_each_online_cpu(cpu
) {
385 runqueue_t
*rq
= cpu_rq(cpu
);
387 struct sched_domain
*sd
;
391 /* runqueue-specific stats */
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu
, rq
->yld_both_empty
,
395 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
396 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
397 rq
->ttwu_cnt
, rq
->ttwu_local
,
398 rq
->rq_sched_info
.cpu_time
,
399 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
401 seq_printf(seq
, "\n");
404 /* domain-specific stats */
406 for_each_domain(cpu
, sd
) {
407 enum idle_type itype
;
408 char mask_str
[NR_CPUS
];
410 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
411 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
412 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
414 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
416 sd
->lb_balanced
[itype
],
417 sd
->lb_failed
[itype
],
418 sd
->lb_imbalance
[itype
],
419 sd
->lb_gained
[itype
],
420 sd
->lb_hot_gained
[itype
],
421 sd
->lb_nobusyq
[itype
],
422 sd
->lb_nobusyg
[itype
]);
424 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
426 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
427 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
428 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
436 static int schedstat_open(struct inode
*inode
, struct file
*file
)
438 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
439 char *buf
= kmalloc(size
, GFP_KERNEL
);
445 res
= single_open(file
, show_schedstat
, NULL
);
447 m
= file
->private_data
;
455 struct file_operations proc_schedstat_operations
= {
456 .open
= schedstat_open
,
459 .release
= single_release
,
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
470 * rq_lock - lock a given runqueue and disable interrupts.
472 static inline runqueue_t
*this_rq_lock(void)
479 spin_lock(&rq
->lock
);
484 #ifdef CONFIG_SCHEDSTATS
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
500 static inline void sched_info_dequeued(task_t
*t
)
502 t
->sched_info
.last_queued
= 0;
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
510 static inline void sched_info_arrive(task_t
*t
)
512 unsigned long now
= jiffies
, diff
= 0;
513 struct runqueue
*rq
= task_rq(t
);
515 if (t
->sched_info
.last_queued
)
516 diff
= now
- t
->sched_info
.last_queued
;
517 sched_info_dequeued(t
);
518 t
->sched_info
.run_delay
+= diff
;
519 t
->sched_info
.last_arrival
= now
;
520 t
->sched_info
.pcnt
++;
525 rq
->rq_sched_info
.run_delay
+= diff
;
526 rq
->rq_sched_info
.pcnt
++;
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
544 static inline void sched_info_queued(task_t
*t
)
546 if (!t
->sched_info
.last_queued
)
547 t
->sched_info
.last_queued
= jiffies
;
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
554 static inline void sched_info_depart(task_t
*t
)
556 struct runqueue
*rq
= task_rq(t
);
557 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
559 t
->sched_info
.cpu_time
+= diff
;
562 rq
->rq_sched_info
.cpu_time
+= diff
;
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
570 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
572 struct runqueue
*rq
= task_rq(prev
);
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
579 if (prev
!= rq
->idle
)
580 sched_info_depart(prev
);
582 if (next
!= rq
->idle
)
583 sched_info_arrive(next
);
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
591 * Adding/removing a task to/from a priority array:
593 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
596 list_del(&p
->run_list
);
597 if (list_empty(array
->queue
+ p
->prio
))
598 __clear_bit(p
->prio
, array
->bitmap
);
601 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
603 sched_info_queued(p
);
604 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
605 __set_bit(p
->prio
, array
->bitmap
);
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
614 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
616 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
619 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
621 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
622 __set_bit(p
->prio
, array
->bitmap
);
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
634 * We use 25% of the full 0...39 priority range so that:
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
639 * Both properties are important to certain workloads.
641 static int effective_prio(task_t
*p
)
648 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
650 prio
= p
->static_prio
- bonus
;
651 if (prio
< MAX_RT_PRIO
)
653 if (prio
> MAX_PRIO
-1)
659 * __activate_task - move a task to the runqueue.
661 static inline void __activate_task(task_t
*p
, runqueue_t
*rq
)
663 enqueue_task(p
, rq
->active
);
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
670 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
672 enqueue_task_head(p
, rq
->active
);
676 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time
= now
- p
->timestamp
;
680 unsigned long sleep_time
;
682 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
683 sleep_time
= NS_MAX_SLEEP_AVG
;
685 sleep_time
= (unsigned long)__sleep_time
;
687 if (likely(sleep_time
> 0)) {
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
694 if (p
->mm
&& p
->activated
!= -1 &&
695 sleep_time
> INTERACTIVE_SLEEP(p
)) {
696 p
->sleep_avg
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
703 sleep_time
*= (MAX_BONUS
- CURRENT_BONUS(p
)) ? : 1;
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
710 if (p
->activated
== -1 && p
->mm
) {
711 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
713 else if (p
->sleep_avg
+ sleep_time
>=
714 INTERACTIVE_SLEEP(p
)) {
715 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
721 * This code gives a bonus to interactive tasks.
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
728 p
->sleep_avg
+= sleep_time
;
730 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
731 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
735 return effective_prio(p
);
739 * activate_task - move a task to the runqueue and do priority recalculation
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
744 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
746 unsigned long long now
;
751 /* Compensate for drifting sched_clock */
752 runqueue_t
*this_rq
= this_rq();
753 now
= (now
- this_rq
->timestamp_last_tick
)
754 + rq
->timestamp_last_tick
;
758 p
->prio
= recalc_task_prio(p
, now
);
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
784 __activate_task(p
, rq
);
788 * deactivate_task - remove a task from the runqueue.
790 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
793 dequeue_task(p
, p
->array
);
798 * resched_task - mark a task 'to be rescheduled now'.
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
805 static void resched_task(task_t
*p
)
807 int need_resched
, nrpolling
;
809 assert_spin_locked(&task_rq(p
)->lock
);
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling
= test_tsk_thread_flag(p
,TIF_POLLING_NRFLAG
);
813 need_resched
= test_and_set_tsk_thread_flag(p
,TIF_NEED_RESCHED
);
814 nrpolling
|= test_tsk_thread_flag(p
,TIF_POLLING_NRFLAG
);
816 if (!need_resched
&& !nrpolling
&& (task_cpu(p
) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p
));
820 static inline void resched_task(task_t
*p
)
822 set_tsk_need_resched(p
);
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
830 inline int task_curr(const task_t
*p
)
832 return cpu_curr(task_cpu(p
)) == p
;
837 struct list_head list
;
842 struct completion done
;
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
849 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
851 runqueue_t
*rq
= task_rq(p
);
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
857 if (!p
->array
&& !task_running(rq
, p
)) {
858 set_task_cpu(p
, dest_cpu
);
862 init_completion(&req
->done
);
864 req
->dest_cpu
= dest_cpu
;
865 list_add(&req
->list
, &rq
->migration_queue
);
870 * wait_task_inactive - wait for a thread to unschedule.
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
878 void wait_task_inactive(task_t
* p
)
885 rq
= task_rq_lock(p
, &flags
);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p
->array
|| task_running(rq
, p
))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted
= !task_running(rq
, p
);
890 task_rq_unlock(rq
, &flags
);
896 task_rq_unlock(rq
, &flags
);
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
912 void kick_process(task_t
*p
)
918 if ((cpu
!= smp_processor_id()) && task_curr(p
))
919 smp_send_reschedule(cpu
);
924 * Return a low guess at the load of a migration-source cpu.
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
929 static inline unsigned long source_load(int cpu
, int type
)
931 runqueue_t
*rq
= cpu_rq(cpu
);
932 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
936 return min(rq
->cpu_load
[type
-1], load_now
);
940 * Return a high guess at the load of a migration-target cpu
942 static inline unsigned long target_load(int cpu
, int type
)
944 runqueue_t
*rq
= cpu_rq(cpu
);
945 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
949 return max(rq
->cpu_load
[type
-1], load_now
);
953 * find_idlest_group finds and returns the least busy CPU group within the
956 static struct sched_group
*
957 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
959 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
960 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
961 int load_idx
= sd
->forkexec_idx
;
962 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
965 unsigned long load
, avg_load
;
969 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
970 /* XXX: put a cpus allowed check */
972 /* Tally up the load of all CPUs in the group */
975 for_each_cpu_mask(i
, group
->cpumask
) {
976 /* Bias balancing toward cpus of our domain */
978 load
= source_load(i
, load_idx
);
980 load
= target_load(i
, load_idx
);
985 /* Adjust by relative CPU power of the group */
986 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
989 this_load
= avg_load
;
991 } else if (avg_load
< min_load
) {
996 } while (group
!= sd
->groups
);
998 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1004 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1006 static int find_idlest_cpu(struct sched_group
*group
, int this_cpu
)
1008 unsigned long load
, min_load
= ULONG_MAX
;
1012 for_each_cpu_mask(i
, group
->cpumask
) {
1013 load
= source_load(i
, 0);
1015 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1025 * sched_balance_self: balance the current task (running on cpu) in domains
1026 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1029 * Balance, ie. select the least loaded group.
1031 * Returns the target CPU number, or the same CPU if no balancing is needed.
1033 * preempt must be disabled.
1035 static int sched_balance_self(int cpu
, int flag
)
1037 struct task_struct
*t
= current
;
1038 struct sched_domain
*tmp
, *sd
= NULL
;
1040 for_each_domain(cpu
, tmp
)
1041 if (tmp
->flags
& flag
)
1046 struct sched_group
*group
;
1051 group
= find_idlest_group(sd
, t
, cpu
);
1055 new_cpu
= find_idlest_cpu(group
, cpu
);
1056 if (new_cpu
== -1 || new_cpu
== cpu
)
1059 /* Now try balancing at a lower domain level */
1063 weight
= cpus_weight(span
);
1064 for_each_domain(cpu
, tmp
) {
1065 if (weight
<= cpus_weight(tmp
->span
))
1067 if (tmp
->flags
& flag
)
1070 /* while loop will break here if sd == NULL */
1076 #endif /* CONFIG_SMP */
1079 * wake_idle() will wake a task on an idle cpu if task->cpu is
1080 * not idle and an idle cpu is available. The span of cpus to
1081 * search starts with cpus closest then further out as needed,
1082 * so we always favor a closer, idle cpu.
1084 * Returns the CPU we should wake onto.
1086 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1087 static int wake_idle(int cpu
, task_t
*p
)
1090 struct sched_domain
*sd
;
1096 for_each_domain(cpu
, sd
) {
1097 if (sd
->flags
& SD_WAKE_IDLE
) {
1098 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1099 for_each_cpu_mask(i
, tmp
) {
1110 static inline int wake_idle(int cpu
, task_t
*p
)
1117 * try_to_wake_up - wake up a thread
1118 * @p: the to-be-woken-up thread
1119 * @state: the mask of task states that can be woken
1120 * @sync: do a synchronous wakeup?
1122 * Put it on the run-queue if it's not already there. The "current"
1123 * thread is always on the run-queue (except when the actual
1124 * re-schedule is in progress), and as such you're allowed to do
1125 * the simpler "current->state = TASK_RUNNING" to mark yourself
1126 * runnable without the overhead of this.
1128 * returns failure only if the task is already active.
1130 static int try_to_wake_up(task_t
* p
, unsigned int state
, int sync
)
1132 int cpu
, this_cpu
, success
= 0;
1133 unsigned long flags
;
1137 unsigned long load
, this_load
;
1138 struct sched_domain
*sd
, *this_sd
= NULL
;
1142 rq
= task_rq_lock(p
, &flags
);
1143 old_state
= p
->state
;
1144 if (!(old_state
& state
))
1151 this_cpu
= smp_processor_id();
1154 if (unlikely(task_running(rq
, p
)))
1159 schedstat_inc(rq
, ttwu_cnt
);
1160 if (cpu
== this_cpu
) {
1161 schedstat_inc(rq
, ttwu_local
);
1165 for_each_domain(this_cpu
, sd
) {
1166 if (cpu_isset(cpu
, sd
->span
)) {
1167 schedstat_inc(sd
, ttwu_wake_remote
);
1173 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1177 * Check for affine wakeup and passive balancing possibilities.
1180 int idx
= this_sd
->wake_idx
;
1181 unsigned int imbalance
;
1183 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1185 load
= source_load(cpu
, idx
);
1186 this_load
= target_load(this_cpu
, idx
);
1188 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1190 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1191 unsigned long tl
= this_load
;
1193 * If sync wakeup then subtract the (maximum possible)
1194 * effect of the currently running task from the load
1195 * of the current CPU:
1198 tl
-= SCHED_LOAD_SCALE
;
1201 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1202 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1204 * This domain has SD_WAKE_AFFINE and
1205 * p is cache cold in this domain, and
1206 * there is no bad imbalance.
1208 schedstat_inc(this_sd
, ttwu_move_affine
);
1214 * Start passive balancing when half the imbalance_pct
1217 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1218 if (imbalance
*this_load
<= 100*load
) {
1219 schedstat_inc(this_sd
, ttwu_move_balance
);
1225 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1227 new_cpu
= wake_idle(new_cpu
, p
);
1228 if (new_cpu
!= cpu
) {
1229 set_task_cpu(p
, new_cpu
);
1230 task_rq_unlock(rq
, &flags
);
1231 /* might preempt at this point */
1232 rq
= task_rq_lock(p
, &flags
);
1233 old_state
= p
->state
;
1234 if (!(old_state
& state
))
1239 this_cpu
= smp_processor_id();
1244 #endif /* CONFIG_SMP */
1245 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1246 rq
->nr_uninterruptible
--;
1248 * Tasks on involuntary sleep don't earn
1249 * sleep_avg beyond just interactive state.
1255 * Sync wakeups (i.e. those types of wakeups where the waker
1256 * has indicated that it will leave the CPU in short order)
1257 * don't trigger a preemption, if the woken up task will run on
1258 * this cpu. (in this case the 'I will reschedule' promise of
1259 * the waker guarantees that the freshly woken up task is going
1260 * to be considered on this CPU.)
1262 activate_task(p
, rq
, cpu
== this_cpu
);
1263 if (!sync
|| cpu
!= this_cpu
) {
1264 if (TASK_PREEMPTS_CURR(p
, rq
))
1265 resched_task(rq
->curr
);
1270 p
->state
= TASK_RUNNING
;
1272 task_rq_unlock(rq
, &flags
);
1277 int fastcall
wake_up_process(task_t
* p
)
1279 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1280 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1283 EXPORT_SYMBOL(wake_up_process
);
1285 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1287 return try_to_wake_up(p
, state
, 0);
1291 * Perform scheduler related setup for a newly forked process p.
1292 * p is forked by current.
1294 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1296 int cpu
= get_cpu();
1299 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1301 set_task_cpu(p
, cpu
);
1304 * We mark the process as running here, but have not actually
1305 * inserted it onto the runqueue yet. This guarantees that
1306 * nobody will actually run it, and a signal or other external
1307 * event cannot wake it up and insert it on the runqueue either.
1309 p
->state
= TASK_RUNNING
;
1310 INIT_LIST_HEAD(&p
->run_list
);
1312 #ifdef CONFIG_SCHEDSTATS
1313 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1315 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1318 #ifdef CONFIG_PREEMPT
1319 /* Want to start with kernel preemption disabled. */
1320 p
->thread_info
->preempt_count
= 1;
1323 * Share the timeslice between parent and child, thus the
1324 * total amount of pending timeslices in the system doesn't change,
1325 * resulting in more scheduling fairness.
1327 local_irq_disable();
1328 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1330 * The remainder of the first timeslice might be recovered by
1331 * the parent if the child exits early enough.
1333 p
->first_time_slice
= 1;
1334 current
->time_slice
>>= 1;
1335 p
->timestamp
= sched_clock();
1336 if (unlikely(!current
->time_slice
)) {
1338 * This case is rare, it happens when the parent has only
1339 * a single jiffy left from its timeslice. Taking the
1340 * runqueue lock is not a problem.
1342 current
->time_slice
= 1;
1350 * wake_up_new_task - wake up a newly created task for the first time.
1352 * This function will do some initial scheduler statistics housekeeping
1353 * that must be done for every newly created context, then puts the task
1354 * on the runqueue and wakes it.
1356 void fastcall
wake_up_new_task(task_t
* p
, unsigned long clone_flags
)
1358 unsigned long flags
;
1360 runqueue_t
*rq
, *this_rq
;
1362 rq
= task_rq_lock(p
, &flags
);
1363 BUG_ON(p
->state
!= TASK_RUNNING
);
1364 this_cpu
= smp_processor_id();
1368 * We decrease the sleep average of forking parents
1369 * and children as well, to keep max-interactive tasks
1370 * from forking tasks that are max-interactive. The parent
1371 * (current) is done further down, under its lock.
1373 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1374 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1376 p
->prio
= effective_prio(p
);
1378 if (likely(cpu
== this_cpu
)) {
1379 if (!(clone_flags
& CLONE_VM
)) {
1381 * The VM isn't cloned, so we're in a good position to
1382 * do child-runs-first in anticipation of an exec. This
1383 * usually avoids a lot of COW overhead.
1385 if (unlikely(!current
->array
))
1386 __activate_task(p
, rq
);
1388 p
->prio
= current
->prio
;
1389 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1390 p
->array
= current
->array
;
1391 p
->array
->nr_active
++;
1396 /* Run child last */
1397 __activate_task(p
, rq
);
1399 * We skip the following code due to cpu == this_cpu
1401 * task_rq_unlock(rq, &flags);
1402 * this_rq = task_rq_lock(current, &flags);
1406 this_rq
= cpu_rq(this_cpu
);
1409 * Not the local CPU - must adjust timestamp. This should
1410 * get optimised away in the !CONFIG_SMP case.
1412 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1413 + rq
->timestamp_last_tick
;
1414 __activate_task(p
, rq
);
1415 if (TASK_PREEMPTS_CURR(p
, rq
))
1416 resched_task(rq
->curr
);
1419 * Parent and child are on different CPUs, now get the
1420 * parent runqueue to update the parent's ->sleep_avg:
1422 task_rq_unlock(rq
, &flags
);
1423 this_rq
= task_rq_lock(current
, &flags
);
1425 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1426 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1427 task_rq_unlock(this_rq
, &flags
);
1431 * Potentially available exiting-child timeslices are
1432 * retrieved here - this way the parent does not get
1433 * penalized for creating too many threads.
1435 * (this cannot be used to 'generate' timeslices
1436 * artificially, because any timeslice recovered here
1437 * was given away by the parent in the first place.)
1439 void fastcall
sched_exit(task_t
* p
)
1441 unsigned long flags
;
1445 * If the child was a (relative-) CPU hog then decrease
1446 * the sleep_avg of the parent as well.
1448 rq
= task_rq_lock(p
->parent
, &flags
);
1449 if (p
->first_time_slice
) {
1450 p
->parent
->time_slice
+= p
->time_slice
;
1451 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1452 p
->parent
->time_slice
= task_timeslice(p
);
1454 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1455 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1456 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1458 task_rq_unlock(rq
, &flags
);
1462 * prepare_task_switch - prepare to switch tasks
1463 * @rq: the runqueue preparing to switch
1464 * @next: the task we are going to switch to.
1466 * This is called with the rq lock held and interrupts off. It must
1467 * be paired with a subsequent finish_task_switch after the context
1470 * prepare_task_switch sets up locking and calls architecture specific
1473 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1475 prepare_lock_switch(rq
, next
);
1476 prepare_arch_switch(next
);
1480 * finish_task_switch - clean up after a task-switch
1481 * @prev: the thread we just switched away from.
1483 * finish_task_switch must be called after the context switch, paired
1484 * with a prepare_task_switch call before the context switch.
1485 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1486 * and do any other architecture-specific cleanup actions.
1488 * Note that we may have delayed dropping an mm in context_switch(). If
1489 * so, we finish that here outside of the runqueue lock. (Doing it
1490 * with the lock held can cause deadlocks; see schedule() for
1493 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1494 __releases(rq
->lock
)
1496 struct mm_struct
*mm
= rq
->prev_mm
;
1497 unsigned long prev_task_flags
;
1502 * A task struct has one reference for the use as "current".
1503 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1504 * calls schedule one last time. The schedule call will never return,
1505 * and the scheduled task must drop that reference.
1506 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1507 * still held, otherwise prev could be scheduled on another cpu, die
1508 * there before we look at prev->state, and then the reference would
1510 * Manfred Spraul <manfred@colorfullife.com>
1512 prev_task_flags
= prev
->flags
;
1513 finish_arch_switch(prev
);
1514 finish_lock_switch(rq
, prev
);
1517 if (unlikely(prev_task_flags
& PF_DEAD
))
1518 put_task_struct(prev
);
1522 * schedule_tail - first thing a freshly forked thread must call.
1523 * @prev: the thread we just switched away from.
1525 asmlinkage
void schedule_tail(task_t
*prev
)
1526 __releases(rq
->lock
)
1528 runqueue_t
*rq
= this_rq();
1529 finish_task_switch(rq
, prev
);
1530 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1531 /* In this case, finish_task_switch does not reenable preemption */
1534 if (current
->set_child_tid
)
1535 put_user(current
->pid
, current
->set_child_tid
);
1539 * context_switch - switch to the new MM and the new
1540 * thread's register state.
1543 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1545 struct mm_struct
*mm
= next
->mm
;
1546 struct mm_struct
*oldmm
= prev
->active_mm
;
1548 if (unlikely(!mm
)) {
1549 next
->active_mm
= oldmm
;
1550 atomic_inc(&oldmm
->mm_count
);
1551 enter_lazy_tlb(oldmm
, next
);
1553 switch_mm(oldmm
, mm
, next
);
1555 if (unlikely(!prev
->mm
)) {
1556 prev
->active_mm
= NULL
;
1557 WARN_ON(rq
->prev_mm
);
1558 rq
->prev_mm
= oldmm
;
1561 /* Here we just switch the register state and the stack. */
1562 switch_to(prev
, next
, prev
);
1568 * nr_running, nr_uninterruptible and nr_context_switches:
1570 * externally visible scheduler statistics: current number of runnable
1571 * threads, current number of uninterruptible-sleeping threads, total
1572 * number of context switches performed since bootup.
1574 unsigned long nr_running(void)
1576 unsigned long i
, sum
= 0;
1578 for_each_online_cpu(i
)
1579 sum
+= cpu_rq(i
)->nr_running
;
1584 unsigned long nr_uninterruptible(void)
1586 unsigned long i
, sum
= 0;
1589 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1592 * Since we read the counters lockless, it might be slightly
1593 * inaccurate. Do not allow it to go below zero though:
1595 if (unlikely((long)sum
< 0))
1601 unsigned long long nr_context_switches(void)
1603 unsigned long long i
, sum
= 0;
1606 sum
+= cpu_rq(i
)->nr_switches
;
1611 unsigned long nr_iowait(void)
1613 unsigned long i
, sum
= 0;
1616 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1624 * double_rq_lock - safely lock two runqueues
1626 * Note this does not disable interrupts like task_rq_lock,
1627 * you need to do so manually before calling.
1629 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1630 __acquires(rq1
->lock
)
1631 __acquires(rq2
->lock
)
1634 spin_lock(&rq1
->lock
);
1635 __acquire(rq2
->lock
); /* Fake it out ;) */
1638 spin_lock(&rq1
->lock
);
1639 spin_lock(&rq2
->lock
);
1641 spin_lock(&rq2
->lock
);
1642 spin_lock(&rq1
->lock
);
1648 * double_rq_unlock - safely unlock two runqueues
1650 * Note this does not restore interrupts like task_rq_unlock,
1651 * you need to do so manually after calling.
1653 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1654 __releases(rq1
->lock
)
1655 __releases(rq2
->lock
)
1657 spin_unlock(&rq1
->lock
);
1659 spin_unlock(&rq2
->lock
);
1661 __release(rq2
->lock
);
1665 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1667 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1668 __releases(this_rq
->lock
)
1669 __acquires(busiest
->lock
)
1670 __acquires(this_rq
->lock
)
1672 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1673 if (busiest
< this_rq
) {
1674 spin_unlock(&this_rq
->lock
);
1675 spin_lock(&busiest
->lock
);
1676 spin_lock(&this_rq
->lock
);
1678 spin_lock(&busiest
->lock
);
1683 * If dest_cpu is allowed for this process, migrate the task to it.
1684 * This is accomplished by forcing the cpu_allowed mask to only
1685 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1686 * the cpu_allowed mask is restored.
1688 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1690 migration_req_t req
;
1692 unsigned long flags
;
1694 rq
= task_rq_lock(p
, &flags
);
1695 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1696 || unlikely(cpu_is_offline(dest_cpu
)))
1699 /* force the process onto the specified CPU */
1700 if (migrate_task(p
, dest_cpu
, &req
)) {
1701 /* Need to wait for migration thread (might exit: take ref). */
1702 struct task_struct
*mt
= rq
->migration_thread
;
1703 get_task_struct(mt
);
1704 task_rq_unlock(rq
, &flags
);
1705 wake_up_process(mt
);
1706 put_task_struct(mt
);
1707 wait_for_completion(&req
.done
);
1711 task_rq_unlock(rq
, &flags
);
1715 * sched_exec - execve() is a valuable balancing opportunity, because at
1716 * this point the task has the smallest effective memory and cache footprint.
1718 void sched_exec(void)
1720 int new_cpu
, this_cpu
= get_cpu();
1721 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1723 if (new_cpu
!= this_cpu
)
1724 sched_migrate_task(current
, new_cpu
);
1728 * pull_task - move a task from a remote runqueue to the local runqueue.
1729 * Both runqueues must be locked.
1732 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1733 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1735 dequeue_task(p
, src_array
);
1736 src_rq
->nr_running
--;
1737 set_task_cpu(p
, this_cpu
);
1738 this_rq
->nr_running
++;
1739 enqueue_task(p
, this_array
);
1740 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1741 + this_rq
->timestamp_last_tick
;
1743 * Note that idle threads have a prio of MAX_PRIO, for this test
1744 * to be always true for them.
1746 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1747 resched_task(this_rq
->curr
);
1751 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1754 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1755 struct sched_domain
*sd
, enum idle_type idle
, int *all_pinned
)
1758 * We do not migrate tasks that are:
1759 * 1) running (obviously), or
1760 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1761 * 3) are cache-hot on their current CPU.
1763 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1767 if (task_running(rq
, p
))
1771 * Aggressive migration if:
1772 * 1) task is cache cold, or
1773 * 2) too many balance attempts have failed.
1776 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1779 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1785 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1786 * as part of a balancing operation within "domain". Returns the number of
1789 * Called with both runqueues locked.
1791 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1792 unsigned long max_nr_move
, struct sched_domain
*sd
,
1793 enum idle_type idle
, int *all_pinned
)
1795 prio_array_t
*array
, *dst_array
;
1796 struct list_head
*head
, *curr
;
1797 int idx
, pulled
= 0, pinned
= 0;
1800 if (max_nr_move
== 0)
1806 * We first consider expired tasks. Those will likely not be
1807 * executed in the near future, and they are most likely to
1808 * be cache-cold, thus switching CPUs has the least effect
1811 if (busiest
->expired
->nr_active
) {
1812 array
= busiest
->expired
;
1813 dst_array
= this_rq
->expired
;
1815 array
= busiest
->active
;
1816 dst_array
= this_rq
->active
;
1820 /* Start searching at priority 0: */
1824 idx
= sched_find_first_bit(array
->bitmap
);
1826 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1827 if (idx
>= MAX_PRIO
) {
1828 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1829 array
= busiest
->active
;
1830 dst_array
= this_rq
->active
;
1836 head
= array
->queue
+ idx
;
1839 tmp
= list_entry(curr
, task_t
, run_list
);
1843 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1850 #ifdef CONFIG_SCHEDSTATS
1851 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1852 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1855 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
1858 /* We only want to steal up to the prescribed number of tasks. */
1859 if (pulled
< max_nr_move
) {
1867 * Right now, this is the only place pull_task() is called,
1868 * so we can safely collect pull_task() stats here rather than
1869 * inside pull_task().
1871 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1874 *all_pinned
= pinned
;
1879 * find_busiest_group finds and returns the busiest CPU group within the
1880 * domain. It calculates and returns the number of tasks which should be
1881 * moved to restore balance via the imbalance parameter.
1883 static struct sched_group
*
1884 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
1885 unsigned long *imbalance
, enum idle_type idle
)
1887 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1888 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
1891 max_load
= this_load
= total_load
= total_pwr
= 0;
1892 if (idle
== NOT_IDLE
)
1893 load_idx
= sd
->busy_idx
;
1894 else if (idle
== NEWLY_IDLE
)
1895 load_idx
= sd
->newidle_idx
;
1897 load_idx
= sd
->idle_idx
;
1904 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1906 /* Tally up the load of all CPUs in the group */
1909 for_each_cpu_mask(i
, group
->cpumask
) {
1910 /* Bias balancing toward cpus of our domain */
1912 load
= target_load(i
, load_idx
);
1914 load
= source_load(i
, load_idx
);
1919 total_load
+= avg_load
;
1920 total_pwr
+= group
->cpu_power
;
1922 /* Adjust by relative CPU power of the group */
1923 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1926 this_load
= avg_load
;
1928 } else if (avg_load
> max_load
) {
1929 max_load
= avg_load
;
1932 group
= group
->next
;
1933 } while (group
!= sd
->groups
);
1935 if (!busiest
|| this_load
>= max_load
)
1938 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
1940 if (this_load
>= avg_load
||
1941 100*max_load
<= sd
->imbalance_pct
*this_load
)
1945 * We're trying to get all the cpus to the average_load, so we don't
1946 * want to push ourselves above the average load, nor do we wish to
1947 * reduce the max loaded cpu below the average load, as either of these
1948 * actions would just result in more rebalancing later, and ping-pong
1949 * tasks around. Thus we look for the minimum possible imbalance.
1950 * Negative imbalances (*we* are more loaded than anyone else) will
1951 * be counted as no imbalance for these purposes -- we can't fix that
1952 * by pulling tasks to us. Be careful of negative numbers as they'll
1953 * appear as very large values with unsigned longs.
1955 /* How much load to actually move to equalise the imbalance */
1956 *imbalance
= min((max_load
- avg_load
) * busiest
->cpu_power
,
1957 (avg_load
- this_load
) * this->cpu_power
)
1960 if (*imbalance
< SCHED_LOAD_SCALE
) {
1961 unsigned long pwr_now
= 0, pwr_move
= 0;
1964 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
1970 * OK, we don't have enough imbalance to justify moving tasks,
1971 * however we may be able to increase total CPU power used by
1975 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
1976 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
1977 pwr_now
/= SCHED_LOAD_SCALE
;
1979 /* Amount of load we'd subtract */
1980 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
1982 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
1985 /* Amount of load we'd add */
1986 if (max_load
*busiest
->cpu_power
<
1987 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
1988 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
1990 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
1991 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
1992 pwr_move
/= SCHED_LOAD_SCALE
;
1994 /* Move if we gain throughput */
1995 if (pwr_move
<= pwr_now
)
2002 /* Get rid of the scaling factor, rounding down as we divide */
2003 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2013 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2015 static runqueue_t
*find_busiest_queue(struct sched_group
*group
)
2017 unsigned long load
, max_load
= 0;
2018 runqueue_t
*busiest
= NULL
;
2021 for_each_cpu_mask(i
, group
->cpumask
) {
2022 load
= source_load(i
, 0);
2024 if (load
> max_load
) {
2026 busiest
= cpu_rq(i
);
2034 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2035 * so long as it is large enough.
2037 #define MAX_PINNED_INTERVAL 512
2040 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2041 * tasks if there is an imbalance.
2043 * Called with this_rq unlocked.
2045 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2046 struct sched_domain
*sd
, enum idle_type idle
)
2048 struct sched_group
*group
;
2049 runqueue_t
*busiest
;
2050 unsigned long imbalance
;
2051 int nr_moved
, all_pinned
= 0;
2052 int active_balance
= 0;
2054 spin_lock(&this_rq
->lock
);
2055 schedstat_inc(sd
, lb_cnt
[idle
]);
2057 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
);
2059 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2063 busiest
= find_busiest_queue(group
);
2065 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2069 BUG_ON(busiest
== this_rq
);
2071 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2074 if (busiest
->nr_running
> 1) {
2076 * Attempt to move tasks. If find_busiest_group has found
2077 * an imbalance but busiest->nr_running <= 1, the group is
2078 * still unbalanced. nr_moved simply stays zero, so it is
2079 * correctly treated as an imbalance.
2081 double_lock_balance(this_rq
, busiest
);
2082 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2083 imbalance
, sd
, idle
,
2085 spin_unlock(&busiest
->lock
);
2087 /* All tasks on this runqueue were pinned by CPU affinity */
2088 if (unlikely(all_pinned
))
2092 spin_unlock(&this_rq
->lock
);
2095 schedstat_inc(sd
, lb_failed
[idle
]);
2096 sd
->nr_balance_failed
++;
2098 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2100 spin_lock(&busiest
->lock
);
2101 if (!busiest
->active_balance
) {
2102 busiest
->active_balance
= 1;
2103 busiest
->push_cpu
= this_cpu
;
2106 spin_unlock(&busiest
->lock
);
2108 wake_up_process(busiest
->migration_thread
);
2111 * We've kicked active balancing, reset the failure
2114 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2117 sd
->nr_balance_failed
= 0;
2119 if (likely(!active_balance
)) {
2120 /* We were unbalanced, so reset the balancing interval */
2121 sd
->balance_interval
= sd
->min_interval
;
2124 * If we've begun active balancing, start to back off. This
2125 * case may not be covered by the all_pinned logic if there
2126 * is only 1 task on the busy runqueue (because we don't call
2129 if (sd
->balance_interval
< sd
->max_interval
)
2130 sd
->balance_interval
*= 2;
2136 spin_unlock(&this_rq
->lock
);
2138 schedstat_inc(sd
, lb_balanced
[idle
]);
2140 sd
->nr_balance_failed
= 0;
2141 /* tune up the balancing interval */
2142 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2143 (sd
->balance_interval
< sd
->max_interval
))
2144 sd
->balance_interval
*= 2;
2150 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2151 * tasks if there is an imbalance.
2153 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2154 * this_rq is locked.
2156 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2157 struct sched_domain
*sd
)
2159 struct sched_group
*group
;
2160 runqueue_t
*busiest
= NULL
;
2161 unsigned long imbalance
;
2164 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2165 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
);
2167 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2171 busiest
= find_busiest_queue(group
);
2173 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2177 BUG_ON(busiest
== this_rq
);
2179 /* Attempt to move tasks */
2180 double_lock_balance(this_rq
, busiest
);
2182 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2183 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2184 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2186 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2188 sd
->nr_balance_failed
= 0;
2190 spin_unlock(&busiest
->lock
);
2194 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2195 sd
->nr_balance_failed
= 0;
2200 * idle_balance is called by schedule() if this_cpu is about to become
2201 * idle. Attempts to pull tasks from other CPUs.
2203 static inline void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2205 struct sched_domain
*sd
;
2207 for_each_domain(this_cpu
, sd
) {
2208 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2209 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2210 /* We've pulled tasks over so stop searching */
2218 * active_load_balance is run by migration threads. It pushes running tasks
2219 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2220 * running on each physical CPU where possible, and avoids physical /
2221 * logical imbalances.
2223 * Called with busiest_rq locked.
2225 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2227 struct sched_domain
*sd
;
2228 runqueue_t
*target_rq
;
2229 int target_cpu
= busiest_rq
->push_cpu
;
2231 if (busiest_rq
->nr_running
<= 1)
2232 /* no task to move */
2235 target_rq
= cpu_rq(target_cpu
);
2238 * This condition is "impossible", if it occurs
2239 * we need to fix it. Originally reported by
2240 * Bjorn Helgaas on a 128-cpu setup.
2242 BUG_ON(busiest_rq
== target_rq
);
2244 /* move a task from busiest_rq to target_rq */
2245 double_lock_balance(busiest_rq
, target_rq
);
2247 /* Search for an sd spanning us and the target CPU. */
2248 for_each_domain(target_cpu
, sd
)
2249 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2250 cpu_isset(busiest_cpu
, sd
->span
))
2253 if (unlikely(sd
== NULL
))
2256 schedstat_inc(sd
, alb_cnt
);
2258 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2259 schedstat_inc(sd
, alb_pushed
);
2261 schedstat_inc(sd
, alb_failed
);
2263 spin_unlock(&target_rq
->lock
);
2267 * rebalance_tick will get called every timer tick, on every CPU.
2269 * It checks each scheduling domain to see if it is due to be balanced,
2270 * and initiates a balancing operation if so.
2272 * Balancing parameters are set up in arch_init_sched_domains.
2275 /* Don't have all balancing operations going off at once */
2276 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2278 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2279 enum idle_type idle
)
2281 unsigned long old_load
, this_load
;
2282 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2283 struct sched_domain
*sd
;
2286 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2287 /* Update our load */
2288 for (i
= 0; i
< 3; i
++) {
2289 unsigned long new_load
= this_load
;
2291 old_load
= this_rq
->cpu_load
[i
];
2293 * Round up the averaging division if load is increasing. This
2294 * prevents us from getting stuck on 9 if the load is 10, for
2297 if (new_load
> old_load
)
2298 new_load
+= scale
-1;
2299 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2302 for_each_domain(this_cpu
, sd
) {
2303 unsigned long interval
;
2305 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2308 interval
= sd
->balance_interval
;
2309 if (idle
!= SCHED_IDLE
)
2310 interval
*= sd
->busy_factor
;
2312 /* scale ms to jiffies */
2313 interval
= msecs_to_jiffies(interval
);
2314 if (unlikely(!interval
))
2317 if (j
- sd
->last_balance
>= interval
) {
2318 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2319 /* We've pulled tasks over so no longer idle */
2322 sd
->last_balance
+= interval
;
2328 * on UP we do not need to balance between CPUs:
2330 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2333 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2338 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2341 #ifdef CONFIG_SCHED_SMT
2342 spin_lock(&rq
->lock
);
2344 * If an SMT sibling task has been put to sleep for priority
2345 * reasons reschedule the idle task to see if it can now run.
2347 if (rq
->nr_running
) {
2348 resched_task(rq
->idle
);
2351 spin_unlock(&rq
->lock
);
2356 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2358 EXPORT_PER_CPU_SYMBOL(kstat
);
2361 * This is called on clock ticks and on context switches.
2362 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2364 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2365 unsigned long long now
)
2367 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2368 p
->sched_time
+= now
- last
;
2372 * Return current->sched_time plus any more ns on the sched_clock
2373 * that have not yet been banked.
2375 unsigned long long current_sched_time(const task_t
*tsk
)
2377 unsigned long long ns
;
2378 unsigned long flags
;
2379 local_irq_save(flags
);
2380 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2381 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2382 local_irq_restore(flags
);
2387 * We place interactive tasks back into the active array, if possible.
2389 * To guarantee that this does not starve expired tasks we ignore the
2390 * interactivity of a task if the first expired task had to wait more
2391 * than a 'reasonable' amount of time. This deadline timeout is
2392 * load-dependent, as the frequency of array switched decreases with
2393 * increasing number of running tasks. We also ignore the interactivity
2394 * if a better static_prio task has expired:
2396 #define EXPIRED_STARVING(rq) \
2397 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2398 (jiffies - (rq)->expired_timestamp >= \
2399 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2400 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2403 * Account user cpu time to a process.
2404 * @p: the process that the cpu time gets accounted to
2405 * @hardirq_offset: the offset to subtract from hardirq_count()
2406 * @cputime: the cpu time spent in user space since the last update
2408 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2410 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2413 p
->utime
= cputime_add(p
->utime
, cputime
);
2415 /* Add user time to cpustat. */
2416 tmp
= cputime_to_cputime64(cputime
);
2417 if (TASK_NICE(p
) > 0)
2418 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2420 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2424 * Account system cpu time to a process.
2425 * @p: the process that the cpu time gets accounted to
2426 * @hardirq_offset: the offset to subtract from hardirq_count()
2427 * @cputime: the cpu time spent in kernel space since the last update
2429 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2432 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2433 runqueue_t
*rq
= this_rq();
2436 p
->stime
= cputime_add(p
->stime
, cputime
);
2438 /* Add system time to cpustat. */
2439 tmp
= cputime_to_cputime64(cputime
);
2440 if (hardirq_count() - hardirq_offset
)
2441 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2442 else if (softirq_count())
2443 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2444 else if (p
!= rq
->idle
)
2445 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2446 else if (atomic_read(&rq
->nr_iowait
) > 0)
2447 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2449 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2450 /* Account for system time used */
2451 acct_update_integrals(p
);
2452 /* Update rss highwater mark */
2453 update_mem_hiwater(p
);
2457 * Account for involuntary wait time.
2458 * @p: the process from which the cpu time has been stolen
2459 * @steal: the cpu time spent in involuntary wait
2461 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2463 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2464 cputime64_t tmp
= cputime_to_cputime64(steal
);
2465 runqueue_t
*rq
= this_rq();
2467 if (p
== rq
->idle
) {
2468 p
->stime
= cputime_add(p
->stime
, steal
);
2469 if (atomic_read(&rq
->nr_iowait
) > 0)
2470 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2472 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2474 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2478 * This function gets called by the timer code, with HZ frequency.
2479 * We call it with interrupts disabled.
2481 * It also gets called by the fork code, when changing the parent's
2484 void scheduler_tick(void)
2486 int cpu
= smp_processor_id();
2487 runqueue_t
*rq
= this_rq();
2488 task_t
*p
= current
;
2489 unsigned long long now
= sched_clock();
2491 update_cpu_clock(p
, rq
, now
);
2493 rq
->timestamp_last_tick
= now
;
2495 if (p
== rq
->idle
) {
2496 if (wake_priority_sleeper(rq
))
2498 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2502 /* Task might have expired already, but not scheduled off yet */
2503 if (p
->array
!= rq
->active
) {
2504 set_tsk_need_resched(p
);
2507 spin_lock(&rq
->lock
);
2509 * The task was running during this tick - update the
2510 * time slice counter. Note: we do not update a thread's
2511 * priority until it either goes to sleep or uses up its
2512 * timeslice. This makes it possible for interactive tasks
2513 * to use up their timeslices at their highest priority levels.
2517 * RR tasks need a special form of timeslice management.
2518 * FIFO tasks have no timeslices.
2520 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2521 p
->time_slice
= task_timeslice(p
);
2522 p
->first_time_slice
= 0;
2523 set_tsk_need_resched(p
);
2525 /* put it at the end of the queue: */
2526 requeue_task(p
, rq
->active
);
2530 if (!--p
->time_slice
) {
2531 dequeue_task(p
, rq
->active
);
2532 set_tsk_need_resched(p
);
2533 p
->prio
= effective_prio(p
);
2534 p
->time_slice
= task_timeslice(p
);
2535 p
->first_time_slice
= 0;
2537 if (!rq
->expired_timestamp
)
2538 rq
->expired_timestamp
= jiffies
;
2539 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2540 enqueue_task(p
, rq
->expired
);
2541 if (p
->static_prio
< rq
->best_expired_prio
)
2542 rq
->best_expired_prio
= p
->static_prio
;
2544 enqueue_task(p
, rq
->active
);
2547 * Prevent a too long timeslice allowing a task to monopolize
2548 * the CPU. We do this by splitting up the timeslice into
2551 * Note: this does not mean the task's timeslices expire or
2552 * get lost in any way, they just might be preempted by
2553 * another task of equal priority. (one with higher
2554 * priority would have preempted this task already.) We
2555 * requeue this task to the end of the list on this priority
2556 * level, which is in essence a round-robin of tasks with
2559 * This only applies to tasks in the interactive
2560 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2562 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2563 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2564 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2565 (p
->array
== rq
->active
)) {
2567 requeue_task(p
, rq
->active
);
2568 set_tsk_need_resched(p
);
2572 spin_unlock(&rq
->lock
);
2574 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2577 #ifdef CONFIG_SCHED_SMT
2578 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2580 struct sched_domain
*tmp
, *sd
= NULL
;
2581 cpumask_t sibling_map
;
2584 for_each_domain(this_cpu
, tmp
)
2585 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2592 * Unlock the current runqueue because we have to lock in
2593 * CPU order to avoid deadlocks. Caller knows that we might
2594 * unlock. We keep IRQs disabled.
2596 spin_unlock(&this_rq
->lock
);
2598 sibling_map
= sd
->span
;
2600 for_each_cpu_mask(i
, sibling_map
)
2601 spin_lock(&cpu_rq(i
)->lock
);
2603 * We clear this CPU from the mask. This both simplifies the
2604 * inner loop and keps this_rq locked when we exit:
2606 cpu_clear(this_cpu
, sibling_map
);
2608 for_each_cpu_mask(i
, sibling_map
) {
2609 runqueue_t
*smt_rq
= cpu_rq(i
);
2612 * If an SMT sibling task is sleeping due to priority
2613 * reasons wake it up now.
2615 if (smt_rq
->curr
== smt_rq
->idle
&& smt_rq
->nr_running
)
2616 resched_task(smt_rq
->idle
);
2619 for_each_cpu_mask(i
, sibling_map
)
2620 spin_unlock(&cpu_rq(i
)->lock
);
2622 * We exit with this_cpu's rq still held and IRQs
2627 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2629 struct sched_domain
*tmp
, *sd
= NULL
;
2630 cpumask_t sibling_map
;
2631 prio_array_t
*array
;
2635 for_each_domain(this_cpu
, tmp
)
2636 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2643 * The same locking rules and details apply as for
2644 * wake_sleeping_dependent():
2646 spin_unlock(&this_rq
->lock
);
2647 sibling_map
= sd
->span
;
2648 for_each_cpu_mask(i
, sibling_map
)
2649 spin_lock(&cpu_rq(i
)->lock
);
2650 cpu_clear(this_cpu
, sibling_map
);
2653 * Establish next task to be run - it might have gone away because
2654 * we released the runqueue lock above:
2656 if (!this_rq
->nr_running
)
2658 array
= this_rq
->active
;
2659 if (!array
->nr_active
)
2660 array
= this_rq
->expired
;
2661 BUG_ON(!array
->nr_active
);
2663 p
= list_entry(array
->queue
[sched_find_first_bit(array
->bitmap
)].next
,
2666 for_each_cpu_mask(i
, sibling_map
) {
2667 runqueue_t
*smt_rq
= cpu_rq(i
);
2668 task_t
*smt_curr
= smt_rq
->curr
;
2671 * If a user task with lower static priority than the
2672 * running task on the SMT sibling is trying to schedule,
2673 * delay it till there is proportionately less timeslice
2674 * left of the sibling task to prevent a lower priority
2675 * task from using an unfair proportion of the
2676 * physical cpu's resources. -ck
2678 if (((smt_curr
->time_slice
* (100 - sd
->per_cpu_gain
) / 100) >
2679 task_timeslice(p
) || rt_task(smt_curr
)) &&
2680 p
->mm
&& smt_curr
->mm
&& !rt_task(p
))
2684 * Reschedule a lower priority task on the SMT sibling,
2685 * or wake it up if it has been put to sleep for priority
2688 if ((((p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100) >
2689 task_timeslice(smt_curr
) || rt_task(p
)) &&
2690 smt_curr
->mm
&& p
->mm
&& !rt_task(smt_curr
)) ||
2691 (smt_curr
== smt_rq
->idle
&& smt_rq
->nr_running
))
2692 resched_task(smt_curr
);
2695 for_each_cpu_mask(i
, sibling_map
)
2696 spin_unlock(&cpu_rq(i
)->lock
);
2700 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2704 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2710 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2712 void fastcall
add_preempt_count(int val
)
2717 BUG_ON((preempt_count() < 0));
2718 preempt_count() += val
;
2720 * Spinlock count overflowing soon?
2722 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2724 EXPORT_SYMBOL(add_preempt_count
);
2726 void fastcall
sub_preempt_count(int val
)
2731 BUG_ON(val
> preempt_count());
2733 * Is the spinlock portion underflowing?
2735 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2736 preempt_count() -= val
;
2738 EXPORT_SYMBOL(sub_preempt_count
);
2743 * schedule() is the main scheduler function.
2745 asmlinkage
void __sched
schedule(void)
2748 task_t
*prev
, *next
;
2750 prio_array_t
*array
;
2751 struct list_head
*queue
;
2752 unsigned long long now
;
2753 unsigned long run_time
;
2754 int cpu
, idx
, new_prio
;
2757 * Test if we are atomic. Since do_exit() needs to call into
2758 * schedule() atomically, we ignore that path for now.
2759 * Otherwise, whine if we are scheduling when we should not be.
2761 if (likely(!current
->exit_state
)) {
2762 if (unlikely(in_atomic())) {
2763 printk(KERN_ERR
"scheduling while atomic: "
2765 current
->comm
, preempt_count(), current
->pid
);
2769 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2774 release_kernel_lock(prev
);
2775 need_resched_nonpreemptible
:
2779 * The idle thread is not allowed to schedule!
2780 * Remove this check after it has been exercised a bit.
2782 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
2783 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
2787 schedstat_inc(rq
, sched_cnt
);
2788 now
= sched_clock();
2789 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
2790 run_time
= now
- prev
->timestamp
;
2791 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
2794 run_time
= NS_MAX_SLEEP_AVG
;
2797 * Tasks charged proportionately less run_time at high sleep_avg to
2798 * delay them losing their interactive status
2800 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
2802 spin_lock_irq(&rq
->lock
);
2804 if (unlikely(prev
->flags
& PF_DEAD
))
2805 prev
->state
= EXIT_DEAD
;
2807 switch_count
= &prev
->nivcsw
;
2808 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2809 switch_count
= &prev
->nvcsw
;
2810 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
2811 unlikely(signal_pending(prev
))))
2812 prev
->state
= TASK_RUNNING
;
2814 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
2815 rq
->nr_uninterruptible
++;
2816 deactivate_task(prev
, rq
);
2820 cpu
= smp_processor_id();
2821 if (unlikely(!rq
->nr_running
)) {
2823 idle_balance(cpu
, rq
);
2824 if (!rq
->nr_running
) {
2826 rq
->expired_timestamp
= 0;
2827 wake_sleeping_dependent(cpu
, rq
);
2829 * wake_sleeping_dependent() might have released
2830 * the runqueue, so break out if we got new
2833 if (!rq
->nr_running
)
2837 if (dependent_sleeper(cpu
, rq
)) {
2842 * dependent_sleeper() releases and reacquires the runqueue
2843 * lock, hence go into the idle loop if the rq went
2846 if (unlikely(!rq
->nr_running
))
2851 if (unlikely(!array
->nr_active
)) {
2853 * Switch the active and expired arrays.
2855 schedstat_inc(rq
, sched_switch
);
2856 rq
->active
= rq
->expired
;
2857 rq
->expired
= array
;
2859 rq
->expired_timestamp
= 0;
2860 rq
->best_expired_prio
= MAX_PRIO
;
2863 idx
= sched_find_first_bit(array
->bitmap
);
2864 queue
= array
->queue
+ idx
;
2865 next
= list_entry(queue
->next
, task_t
, run_list
);
2867 if (!rt_task(next
) && next
->activated
> 0) {
2868 unsigned long long delta
= now
- next
->timestamp
;
2869 if (unlikely((long long)(now
- next
->timestamp
) < 0))
2872 if (next
->activated
== 1)
2873 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
2875 array
= next
->array
;
2876 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
2878 if (unlikely(next
->prio
!= new_prio
)) {
2879 dequeue_task(next
, array
);
2880 next
->prio
= new_prio
;
2881 enqueue_task(next
, array
);
2883 requeue_task(next
, array
);
2885 next
->activated
= 0;
2887 if (next
== rq
->idle
)
2888 schedstat_inc(rq
, sched_goidle
);
2890 clear_tsk_need_resched(prev
);
2891 rcu_qsctr_inc(task_cpu(prev
));
2893 update_cpu_clock(prev
, rq
, now
);
2895 prev
->sleep_avg
-= run_time
;
2896 if ((long)prev
->sleep_avg
<= 0)
2897 prev
->sleep_avg
= 0;
2898 prev
->timestamp
= prev
->last_ran
= now
;
2900 sched_info_switch(prev
, next
);
2901 if (likely(prev
!= next
)) {
2902 next
->timestamp
= now
;
2907 prepare_task_switch(rq
, next
);
2908 prev
= context_switch(rq
, prev
, next
);
2911 * this_rq must be evaluated again because prev may have moved
2912 * CPUs since it called schedule(), thus the 'rq' on its stack
2913 * frame will be invalid.
2915 finish_task_switch(this_rq(), prev
);
2917 spin_unlock_irq(&rq
->lock
);
2920 if (unlikely(reacquire_kernel_lock(prev
) < 0))
2921 goto need_resched_nonpreemptible
;
2922 preempt_enable_no_resched();
2923 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
2927 EXPORT_SYMBOL(schedule
);
2929 #ifdef CONFIG_PREEMPT
2931 * this is is the entry point to schedule() from in-kernel preemption
2932 * off of preempt_enable. Kernel preemptions off return from interrupt
2933 * occur there and call schedule directly.
2935 asmlinkage
void __sched
preempt_schedule(void)
2937 struct thread_info
*ti
= current_thread_info();
2938 #ifdef CONFIG_PREEMPT_BKL
2939 struct task_struct
*task
= current
;
2940 int saved_lock_depth
;
2943 * If there is a non-zero preempt_count or interrupts are disabled,
2944 * we do not want to preempt the current task. Just return..
2946 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
2950 add_preempt_count(PREEMPT_ACTIVE
);
2952 * We keep the big kernel semaphore locked, but we
2953 * clear ->lock_depth so that schedule() doesnt
2954 * auto-release the semaphore:
2956 #ifdef CONFIG_PREEMPT_BKL
2957 saved_lock_depth
= task
->lock_depth
;
2958 task
->lock_depth
= -1;
2961 #ifdef CONFIG_PREEMPT_BKL
2962 task
->lock_depth
= saved_lock_depth
;
2964 sub_preempt_count(PREEMPT_ACTIVE
);
2966 /* we could miss a preemption opportunity between schedule and now */
2968 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
2972 EXPORT_SYMBOL(preempt_schedule
);
2975 * this is is the entry point to schedule() from kernel preemption
2976 * off of irq context.
2977 * Note, that this is called and return with irqs disabled. This will
2978 * protect us against recursive calling from irq.
2980 asmlinkage
void __sched
preempt_schedule_irq(void)
2982 struct thread_info
*ti
= current_thread_info();
2983 #ifdef CONFIG_PREEMPT_BKL
2984 struct task_struct
*task
= current
;
2985 int saved_lock_depth
;
2987 /* Catch callers which need to be fixed*/
2988 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
2991 add_preempt_count(PREEMPT_ACTIVE
);
2993 * We keep the big kernel semaphore locked, but we
2994 * clear ->lock_depth so that schedule() doesnt
2995 * auto-release the semaphore:
2997 #ifdef CONFIG_PREEMPT_BKL
2998 saved_lock_depth
= task
->lock_depth
;
2999 task
->lock_depth
= -1;
3003 local_irq_disable();
3004 #ifdef CONFIG_PREEMPT_BKL
3005 task
->lock_depth
= saved_lock_depth
;
3007 sub_preempt_count(PREEMPT_ACTIVE
);
3009 /* we could miss a preemption opportunity between schedule and now */
3011 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3015 #endif /* CONFIG_PREEMPT */
3017 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
, void *key
)
3019 task_t
*p
= curr
->private;
3020 return try_to_wake_up(p
, mode
, sync
);
3023 EXPORT_SYMBOL(default_wake_function
);
3026 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3027 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3028 * number) then we wake all the non-exclusive tasks and one exclusive task.
3030 * There are circumstances in which we can try to wake a task which has already
3031 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3032 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3034 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3035 int nr_exclusive
, int sync
, void *key
)
3037 struct list_head
*tmp
, *next
;
3039 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3042 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3043 flags
= curr
->flags
;
3044 if (curr
->func(curr
, mode
, sync
, key
) &&
3045 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3052 * __wake_up - wake up threads blocked on a waitqueue.
3054 * @mode: which threads
3055 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3056 * @key: is directly passed to the wakeup function
3058 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3059 int nr_exclusive
, void *key
)
3061 unsigned long flags
;
3063 spin_lock_irqsave(&q
->lock
, flags
);
3064 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3065 spin_unlock_irqrestore(&q
->lock
, flags
);
3068 EXPORT_SYMBOL(__wake_up
);
3071 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3073 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3075 __wake_up_common(q
, mode
, 1, 0, NULL
);
3079 * __wake_up_sync - wake up threads blocked on a waitqueue.
3081 * @mode: which threads
3082 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3084 * The sync wakeup differs that the waker knows that it will schedule
3085 * away soon, so while the target thread will be woken up, it will not
3086 * be migrated to another CPU - ie. the two threads are 'synchronized'
3087 * with each other. This can prevent needless bouncing between CPUs.
3089 * On UP it can prevent extra preemption.
3091 void fastcall
__wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3093 unsigned long flags
;
3099 if (unlikely(!nr_exclusive
))
3102 spin_lock_irqsave(&q
->lock
, flags
);
3103 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3104 spin_unlock_irqrestore(&q
->lock
, flags
);
3106 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3108 void fastcall
complete(struct completion
*x
)
3110 unsigned long flags
;
3112 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3114 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3116 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3118 EXPORT_SYMBOL(complete
);
3120 void fastcall
complete_all(struct completion
*x
)
3122 unsigned long flags
;
3124 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3125 x
->done
+= UINT_MAX
/2;
3126 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3128 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3130 EXPORT_SYMBOL(complete_all
);
3132 void fastcall __sched
wait_for_completion(struct completion
*x
)
3135 spin_lock_irq(&x
->wait
.lock
);
3137 DECLARE_WAITQUEUE(wait
, current
);
3139 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3140 __add_wait_queue_tail(&x
->wait
, &wait
);
3142 __set_current_state(TASK_UNINTERRUPTIBLE
);
3143 spin_unlock_irq(&x
->wait
.lock
);
3145 spin_lock_irq(&x
->wait
.lock
);
3147 __remove_wait_queue(&x
->wait
, &wait
);
3150 spin_unlock_irq(&x
->wait
.lock
);
3152 EXPORT_SYMBOL(wait_for_completion
);
3154 unsigned long fastcall __sched
3155 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3159 spin_lock_irq(&x
->wait
.lock
);
3161 DECLARE_WAITQUEUE(wait
, current
);
3163 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3164 __add_wait_queue_tail(&x
->wait
, &wait
);
3166 __set_current_state(TASK_UNINTERRUPTIBLE
);
3167 spin_unlock_irq(&x
->wait
.lock
);
3168 timeout
= schedule_timeout(timeout
);
3169 spin_lock_irq(&x
->wait
.lock
);
3171 __remove_wait_queue(&x
->wait
, &wait
);
3175 __remove_wait_queue(&x
->wait
, &wait
);
3179 spin_unlock_irq(&x
->wait
.lock
);
3182 EXPORT_SYMBOL(wait_for_completion_timeout
);
3184 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3190 spin_lock_irq(&x
->wait
.lock
);
3192 DECLARE_WAITQUEUE(wait
, current
);
3194 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3195 __add_wait_queue_tail(&x
->wait
, &wait
);
3197 if (signal_pending(current
)) {
3199 __remove_wait_queue(&x
->wait
, &wait
);
3202 __set_current_state(TASK_INTERRUPTIBLE
);
3203 spin_unlock_irq(&x
->wait
.lock
);
3205 spin_lock_irq(&x
->wait
.lock
);
3207 __remove_wait_queue(&x
->wait
, &wait
);
3211 spin_unlock_irq(&x
->wait
.lock
);
3215 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3217 unsigned long fastcall __sched
3218 wait_for_completion_interruptible_timeout(struct completion
*x
,
3219 unsigned long timeout
)
3223 spin_lock_irq(&x
->wait
.lock
);
3225 DECLARE_WAITQUEUE(wait
, current
);
3227 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3228 __add_wait_queue_tail(&x
->wait
, &wait
);
3230 if (signal_pending(current
)) {
3231 timeout
= -ERESTARTSYS
;
3232 __remove_wait_queue(&x
->wait
, &wait
);
3235 __set_current_state(TASK_INTERRUPTIBLE
);
3236 spin_unlock_irq(&x
->wait
.lock
);
3237 timeout
= schedule_timeout(timeout
);
3238 spin_lock_irq(&x
->wait
.lock
);
3240 __remove_wait_queue(&x
->wait
, &wait
);
3244 __remove_wait_queue(&x
->wait
, &wait
);
3248 spin_unlock_irq(&x
->wait
.lock
);
3251 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3254 #define SLEEP_ON_VAR \
3255 unsigned long flags; \
3256 wait_queue_t wait; \
3257 init_waitqueue_entry(&wait, current);
3259 #define SLEEP_ON_HEAD \
3260 spin_lock_irqsave(&q->lock,flags); \
3261 __add_wait_queue(q, &wait); \
3262 spin_unlock(&q->lock);
3264 #define SLEEP_ON_TAIL \
3265 spin_lock_irq(&q->lock); \
3266 __remove_wait_queue(q, &wait); \
3267 spin_unlock_irqrestore(&q->lock, flags);
3269 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3273 current
->state
= TASK_INTERRUPTIBLE
;
3280 EXPORT_SYMBOL(interruptible_sleep_on
);
3282 long fastcall __sched
interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3286 current
->state
= TASK_INTERRUPTIBLE
;
3289 timeout
= schedule_timeout(timeout
);
3295 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3297 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3301 current
->state
= TASK_UNINTERRUPTIBLE
;
3308 EXPORT_SYMBOL(sleep_on
);
3310 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3314 current
->state
= TASK_UNINTERRUPTIBLE
;
3317 timeout
= schedule_timeout(timeout
);
3323 EXPORT_SYMBOL(sleep_on_timeout
);
3325 void set_user_nice(task_t
*p
, long nice
)
3327 unsigned long flags
;
3328 prio_array_t
*array
;
3330 int old_prio
, new_prio
, delta
;
3332 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3335 * We have to be careful, if called from sys_setpriority(),
3336 * the task might be in the middle of scheduling on another CPU.
3338 rq
= task_rq_lock(p
, &flags
);
3340 * The RT priorities are set via sched_setscheduler(), but we still
3341 * allow the 'normal' nice value to be set - but as expected
3342 * it wont have any effect on scheduling until the task is
3346 p
->static_prio
= NICE_TO_PRIO(nice
);
3351 dequeue_task(p
, array
);
3354 new_prio
= NICE_TO_PRIO(nice
);
3355 delta
= new_prio
- old_prio
;
3356 p
->static_prio
= NICE_TO_PRIO(nice
);
3360 enqueue_task(p
, array
);
3362 * If the task increased its priority or is running and
3363 * lowered its priority, then reschedule its CPU:
3365 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3366 resched_task(rq
->curr
);
3369 task_rq_unlock(rq
, &flags
);
3372 EXPORT_SYMBOL(set_user_nice
);
3375 * can_nice - check if a task can reduce its nice value
3379 int can_nice(const task_t
*p
, const int nice
)
3381 /* convert nice value [19,-20] to rlimit style value [0,39] */
3382 int nice_rlim
= 19 - nice
;
3383 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3384 capable(CAP_SYS_NICE
));
3387 #ifdef __ARCH_WANT_SYS_NICE
3390 * sys_nice - change the priority of the current process.
3391 * @increment: priority increment
3393 * sys_setpriority is a more generic, but much slower function that
3394 * does similar things.
3396 asmlinkage
long sys_nice(int increment
)
3402 * Setpriority might change our priority at the same moment.
3403 * We don't have to worry. Conceptually one call occurs first
3404 * and we have a single winner.
3406 if (increment
< -40)
3411 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3417 if (increment
< 0 && !can_nice(current
, nice
))
3420 retval
= security_task_setnice(current
, nice
);
3424 set_user_nice(current
, nice
);
3431 * task_prio - return the priority value of a given task.
3432 * @p: the task in question.
3434 * This is the priority value as seen by users in /proc.
3435 * RT tasks are offset by -200. Normal tasks are centered
3436 * around 0, value goes from -16 to +15.
3438 int task_prio(const task_t
*p
)
3440 return p
->prio
- MAX_RT_PRIO
;
3444 * task_nice - return the nice value of a given task.
3445 * @p: the task in question.
3447 int task_nice(const task_t
*p
)
3449 return TASK_NICE(p
);
3451 EXPORT_SYMBOL_GPL(task_nice
);
3454 * idle_cpu - is a given cpu idle currently?
3455 * @cpu: the processor in question.
3457 int idle_cpu(int cpu
)
3459 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3462 EXPORT_SYMBOL_GPL(idle_cpu
);
3465 * idle_task - return the idle task for a given cpu.
3466 * @cpu: the processor in question.
3468 task_t
*idle_task(int cpu
)
3470 return cpu_rq(cpu
)->idle
;
3474 * find_process_by_pid - find a process with a matching PID value.
3475 * @pid: the pid in question.
3477 static inline task_t
*find_process_by_pid(pid_t pid
)
3479 return pid
? find_task_by_pid(pid
) : current
;
3482 /* Actually do priority change: must hold rq lock. */
3483 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3487 p
->rt_priority
= prio
;
3488 if (policy
!= SCHED_NORMAL
)
3489 p
->prio
= MAX_USER_RT_PRIO
-1 - p
->rt_priority
;
3491 p
->prio
= p
->static_prio
;
3495 * sched_setscheduler - change the scheduling policy and/or RT priority of
3497 * @p: the task in question.
3498 * @policy: new policy.
3499 * @param: structure containing the new RT priority.
3501 int sched_setscheduler(struct task_struct
*p
, int policy
, struct sched_param
*param
)
3504 int oldprio
, oldpolicy
= -1;
3505 prio_array_t
*array
;
3506 unsigned long flags
;
3510 /* double check policy once rq lock held */
3512 policy
= oldpolicy
= p
->policy
;
3513 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3514 policy
!= SCHED_NORMAL
)
3517 * Valid priorities for SCHED_FIFO and SCHED_RR are
3518 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3520 if (param
->sched_priority
< 0 ||
3521 param
->sched_priority
> MAX_USER_RT_PRIO
-1)
3523 if ((policy
== SCHED_NORMAL
) != (param
->sched_priority
== 0))
3527 * Allow unprivileged RT tasks to decrease priority:
3529 if (!capable(CAP_SYS_NICE
)) {
3530 /* can't change policy */
3531 if (policy
!= p
->policy
)
3533 /* can't increase priority */
3534 if (policy
!= SCHED_NORMAL
&&
3535 param
->sched_priority
> p
->rt_priority
&&
3536 param
->sched_priority
>
3537 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3539 /* can't change other user's priorities */
3540 if ((current
->euid
!= p
->euid
) &&
3541 (current
->euid
!= p
->uid
))
3545 retval
= security_task_setscheduler(p
, policy
, param
);
3549 * To be able to change p->policy safely, the apropriate
3550 * runqueue lock must be held.
3552 rq
= task_rq_lock(p
, &flags
);
3553 /* recheck policy now with rq lock held */
3554 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3555 policy
= oldpolicy
= -1;
3556 task_rq_unlock(rq
, &flags
);
3561 deactivate_task(p
, rq
);
3563 __setscheduler(p
, policy
, param
->sched_priority
);
3565 __activate_task(p
, rq
);
3567 * Reschedule if we are currently running on this runqueue and
3568 * our priority decreased, or if we are not currently running on
3569 * this runqueue and our priority is higher than the current's
3571 if (task_running(rq
, p
)) {
3572 if (p
->prio
> oldprio
)
3573 resched_task(rq
->curr
);
3574 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3575 resched_task(rq
->curr
);
3577 task_rq_unlock(rq
, &flags
);
3580 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3582 static int do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3585 struct sched_param lparam
;
3586 struct task_struct
*p
;
3588 if (!param
|| pid
< 0)
3590 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3592 read_lock_irq(&tasklist_lock
);
3593 p
= find_process_by_pid(pid
);
3595 read_unlock_irq(&tasklist_lock
);
3598 retval
= sched_setscheduler(p
, policy
, &lparam
);
3599 read_unlock_irq(&tasklist_lock
);
3604 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3605 * @pid: the pid in question.
3606 * @policy: new policy.
3607 * @param: structure containing the new RT priority.
3609 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3610 struct sched_param __user
*param
)
3612 return do_sched_setscheduler(pid
, policy
, param
);
3616 * sys_sched_setparam - set/change the RT priority of a thread
3617 * @pid: the pid in question.
3618 * @param: structure containing the new RT priority.
3620 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3622 return do_sched_setscheduler(pid
, -1, param
);
3626 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3627 * @pid: the pid in question.
3629 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3631 int retval
= -EINVAL
;
3638 read_lock(&tasklist_lock
);
3639 p
= find_process_by_pid(pid
);
3641 retval
= security_task_getscheduler(p
);
3645 read_unlock(&tasklist_lock
);
3652 * sys_sched_getscheduler - get the RT priority of a thread
3653 * @pid: the pid in question.
3654 * @param: structure containing the RT priority.
3656 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3658 struct sched_param lp
;
3659 int retval
= -EINVAL
;
3662 if (!param
|| pid
< 0)
3665 read_lock(&tasklist_lock
);
3666 p
= find_process_by_pid(pid
);
3671 retval
= security_task_getscheduler(p
);
3675 lp
.sched_priority
= p
->rt_priority
;
3676 read_unlock(&tasklist_lock
);
3679 * This one might sleep, we cannot do it with a spinlock held ...
3681 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3687 read_unlock(&tasklist_lock
);
3691 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3695 cpumask_t cpus_allowed
;
3698 read_lock(&tasklist_lock
);
3700 p
= find_process_by_pid(pid
);
3702 read_unlock(&tasklist_lock
);
3703 unlock_cpu_hotplug();
3708 * It is not safe to call set_cpus_allowed with the
3709 * tasklist_lock held. We will bump the task_struct's
3710 * usage count and then drop tasklist_lock.
3713 read_unlock(&tasklist_lock
);
3716 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3717 !capable(CAP_SYS_NICE
))
3720 cpus_allowed
= cpuset_cpus_allowed(p
);
3721 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3722 retval
= set_cpus_allowed(p
, new_mask
);
3726 unlock_cpu_hotplug();
3730 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3731 cpumask_t
*new_mask
)
3733 if (len
< sizeof(cpumask_t
)) {
3734 memset(new_mask
, 0, sizeof(cpumask_t
));
3735 } else if (len
> sizeof(cpumask_t
)) {
3736 len
= sizeof(cpumask_t
);
3738 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3742 * sys_sched_setaffinity - set the cpu affinity of a process
3743 * @pid: pid of the process
3744 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3745 * @user_mask_ptr: user-space pointer to the new cpu mask
3747 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3748 unsigned long __user
*user_mask_ptr
)
3753 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
3757 return sched_setaffinity(pid
, new_mask
);
3761 * Represents all cpu's present in the system
3762 * In systems capable of hotplug, this map could dynamically grow
3763 * as new cpu's are detected in the system via any platform specific
3764 * method, such as ACPI for e.g.
3767 cpumask_t cpu_present_map
;
3768 EXPORT_SYMBOL(cpu_present_map
);
3771 cpumask_t cpu_online_map
= CPU_MASK_ALL
;
3772 cpumask_t cpu_possible_map
= CPU_MASK_ALL
;
3775 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
3781 read_lock(&tasklist_lock
);
3784 p
= find_process_by_pid(pid
);
3789 cpus_and(*mask
, p
->cpus_allowed
, cpu_possible_map
);
3792 read_unlock(&tasklist_lock
);
3793 unlock_cpu_hotplug();
3801 * sys_sched_getaffinity - get the cpu affinity of a process
3802 * @pid: pid of the process
3803 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3804 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3806 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
3807 unsigned long __user
*user_mask_ptr
)
3812 if (len
< sizeof(cpumask_t
))
3815 ret
= sched_getaffinity(pid
, &mask
);
3819 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
3822 return sizeof(cpumask_t
);
3826 * sys_sched_yield - yield the current processor to other threads.
3828 * this function yields the current CPU by moving the calling thread
3829 * to the expired array. If there are no other threads running on this
3830 * CPU then this function will return.
3832 asmlinkage
long sys_sched_yield(void)
3834 runqueue_t
*rq
= this_rq_lock();
3835 prio_array_t
*array
= current
->array
;
3836 prio_array_t
*target
= rq
->expired
;
3838 schedstat_inc(rq
, yld_cnt
);
3840 * We implement yielding by moving the task into the expired
3843 * (special rule: RT tasks will just roundrobin in the active
3846 if (rt_task(current
))
3847 target
= rq
->active
;
3849 if (current
->array
->nr_active
== 1) {
3850 schedstat_inc(rq
, yld_act_empty
);
3851 if (!rq
->expired
->nr_active
)
3852 schedstat_inc(rq
, yld_both_empty
);
3853 } else if (!rq
->expired
->nr_active
)
3854 schedstat_inc(rq
, yld_exp_empty
);
3856 if (array
!= target
) {
3857 dequeue_task(current
, array
);
3858 enqueue_task(current
, target
);
3861 * requeue_task is cheaper so perform that if possible.
3863 requeue_task(current
, array
);
3866 * Since we are going to call schedule() anyway, there's
3867 * no need to preempt or enable interrupts:
3869 __release(rq
->lock
);
3870 _raw_spin_unlock(&rq
->lock
);
3871 preempt_enable_no_resched();
3878 static inline void __cond_resched(void)
3881 add_preempt_count(PREEMPT_ACTIVE
);
3883 sub_preempt_count(PREEMPT_ACTIVE
);
3884 } while (need_resched());
3887 int __sched
cond_resched(void)
3889 if (need_resched()) {
3896 EXPORT_SYMBOL(cond_resched
);
3899 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3900 * call schedule, and on return reacquire the lock.
3902 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3903 * operations here to prevent schedule() from being called twice (once via
3904 * spin_unlock(), once by hand).
3906 int cond_resched_lock(spinlock_t
* lock
)
3910 if (need_lockbreak(lock
)) {
3916 if (need_resched()) {
3917 _raw_spin_unlock(lock
);
3918 preempt_enable_no_resched();
3926 EXPORT_SYMBOL(cond_resched_lock
);
3928 int __sched
cond_resched_softirq(void)
3930 BUG_ON(!in_softirq());
3932 if (need_resched()) {
3933 __local_bh_enable();
3941 EXPORT_SYMBOL(cond_resched_softirq
);
3945 * yield - yield the current processor to other threads.
3947 * this is a shortcut for kernel-space yielding - it marks the
3948 * thread runnable and calls sys_sched_yield().
3950 void __sched
yield(void)
3952 set_current_state(TASK_RUNNING
);
3956 EXPORT_SYMBOL(yield
);
3959 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
3960 * that process accounting knows that this is a task in IO wait state.
3962 * But don't do that if it is a deliberate, throttling IO wait (this task
3963 * has set its backing_dev_info: the queue against which it should throttle)
3965 void __sched
io_schedule(void)
3967 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
3969 atomic_inc(&rq
->nr_iowait
);
3971 atomic_dec(&rq
->nr_iowait
);
3974 EXPORT_SYMBOL(io_schedule
);
3976 long __sched
io_schedule_timeout(long timeout
)
3978 struct runqueue
*rq
= &per_cpu(runqueues
, raw_smp_processor_id());
3981 atomic_inc(&rq
->nr_iowait
);
3982 ret
= schedule_timeout(timeout
);
3983 atomic_dec(&rq
->nr_iowait
);
3988 * sys_sched_get_priority_max - return maximum RT priority.
3989 * @policy: scheduling class.
3991 * this syscall returns the maximum rt_priority that can be used
3992 * by a given scheduling class.
3994 asmlinkage
long sys_sched_get_priority_max(int policy
)
4001 ret
= MAX_USER_RT_PRIO
-1;
4011 * sys_sched_get_priority_min - return minimum RT priority.
4012 * @policy: scheduling class.
4014 * this syscall returns the minimum rt_priority that can be used
4015 * by a given scheduling class.
4017 asmlinkage
long sys_sched_get_priority_min(int policy
)
4033 * sys_sched_rr_get_interval - return the default timeslice of a process.
4034 * @pid: pid of the process.
4035 * @interval: userspace pointer to the timeslice value.
4037 * this syscall writes the default timeslice value of a given process
4038 * into the user-space timespec buffer. A value of '0' means infinity.
4041 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4043 int retval
= -EINVAL
;
4051 read_lock(&tasklist_lock
);
4052 p
= find_process_by_pid(pid
);
4056 retval
= security_task_getscheduler(p
);
4060 jiffies_to_timespec(p
->policy
& SCHED_FIFO
?
4061 0 : task_timeslice(p
), &t
);
4062 read_unlock(&tasklist_lock
);
4063 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4067 read_unlock(&tasklist_lock
);
4071 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4073 if (list_empty(&p
->children
)) return NULL
;
4074 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4077 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4079 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4080 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4083 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4085 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4086 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4089 static void show_task(task_t
* p
)
4093 unsigned long free
= 0;
4094 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4096 printk("%-13.13s ", p
->comm
);
4097 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4098 if (state
< ARRAY_SIZE(stat_nam
))
4099 printk(stat_nam
[state
]);
4102 #if (BITS_PER_LONG == 32)
4103 if (state
== TASK_RUNNING
)
4104 printk(" running ");
4106 printk(" %08lX ", thread_saved_pc(p
));
4108 if (state
== TASK_RUNNING
)
4109 printk(" running task ");
4111 printk(" %016lx ", thread_saved_pc(p
));
4113 #ifdef CONFIG_DEBUG_STACK_USAGE
4115 unsigned long * n
= (unsigned long *) (p
->thread_info
+1);
4118 free
= (unsigned long) n
- (unsigned long)(p
->thread_info
+1);
4121 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4122 if ((relative
= eldest_child(p
)))
4123 printk("%5d ", relative
->pid
);
4126 if ((relative
= younger_sibling(p
)))
4127 printk("%7d", relative
->pid
);
4130 if ((relative
= older_sibling(p
)))
4131 printk(" %5d", relative
->pid
);
4135 printk(" (L-TLB)\n");
4137 printk(" (NOTLB)\n");
4139 if (state
!= TASK_RUNNING
)
4140 show_stack(p
, NULL
);
4143 void show_state(void)
4147 #if (BITS_PER_LONG == 32)
4150 printk(" task PC pid father child younger older\n");
4154 printk(" task PC pid father child younger older\n");
4156 read_lock(&tasklist_lock
);
4157 do_each_thread(g
, p
) {
4159 * reset the NMI-timeout, listing all files on a slow
4160 * console might take alot of time:
4162 touch_nmi_watchdog();
4164 } while_each_thread(g
, p
);
4166 read_unlock(&tasklist_lock
);
4170 * init_idle - set up an idle thread for a given CPU
4171 * @idle: task in question
4172 * @cpu: cpu the idle task belongs to
4174 * NOTE: this function does not set the idle thread's NEED_RESCHED
4175 * flag, to make booting more robust.
4177 void __devinit
init_idle(task_t
*idle
, int cpu
)
4179 runqueue_t
*rq
= cpu_rq(cpu
);
4180 unsigned long flags
;
4182 idle
->sleep_avg
= 0;
4184 idle
->prio
= MAX_PRIO
;
4185 idle
->state
= TASK_RUNNING
;
4186 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4187 set_task_cpu(idle
, cpu
);
4189 spin_lock_irqsave(&rq
->lock
, flags
);
4190 rq
->curr
= rq
->idle
= idle
;
4191 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4194 spin_unlock_irqrestore(&rq
->lock
, flags
);
4196 /* Set the preempt count _outside_ the spinlocks! */
4197 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4198 idle
->thread_info
->preempt_count
= (idle
->lock_depth
>= 0);
4200 idle
->thread_info
->preempt_count
= 0;
4205 * In a system that switches off the HZ timer nohz_cpu_mask
4206 * indicates which cpus entered this state. This is used
4207 * in the rcu update to wait only for active cpus. For system
4208 * which do not switch off the HZ timer nohz_cpu_mask should
4209 * always be CPU_MASK_NONE.
4211 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4215 * This is how migration works:
4217 * 1) we queue a migration_req_t structure in the source CPU's
4218 * runqueue and wake up that CPU's migration thread.
4219 * 2) we down() the locked semaphore => thread blocks.
4220 * 3) migration thread wakes up (implicitly it forces the migrated
4221 * thread off the CPU)
4222 * 4) it gets the migration request and checks whether the migrated
4223 * task is still in the wrong runqueue.
4224 * 5) if it's in the wrong runqueue then the migration thread removes
4225 * it and puts it into the right queue.
4226 * 6) migration thread up()s the semaphore.
4227 * 7) we wake up and the migration is done.
4231 * Change a given task's CPU affinity. Migrate the thread to a
4232 * proper CPU and schedule it away if the CPU it's executing on
4233 * is removed from the allowed bitmask.
4235 * NOTE: the caller must have a valid reference to the task, the
4236 * task must not exit() & deallocate itself prematurely. The
4237 * call is not atomic; no spinlocks may be held.
4239 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4241 unsigned long flags
;
4243 migration_req_t req
;
4246 rq
= task_rq_lock(p
, &flags
);
4247 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4252 p
->cpus_allowed
= new_mask
;
4253 /* Can the task run on the task's current CPU? If so, we're done */
4254 if (cpu_isset(task_cpu(p
), new_mask
))
4257 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4258 /* Need help from migration thread: drop lock and wait. */
4259 task_rq_unlock(rq
, &flags
);
4260 wake_up_process(rq
->migration_thread
);
4261 wait_for_completion(&req
.done
);
4262 tlb_migrate_finish(p
->mm
);
4266 task_rq_unlock(rq
, &flags
);
4270 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4273 * Move (not current) task off this cpu, onto dest cpu. We're doing
4274 * this because either it can't run here any more (set_cpus_allowed()
4275 * away from this CPU, or CPU going down), or because we're
4276 * attempting to rebalance this task on exec (sched_exec).
4278 * So we race with normal scheduler movements, but that's OK, as long
4279 * as the task is no longer on this CPU.
4281 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4283 runqueue_t
*rq_dest
, *rq_src
;
4285 if (unlikely(cpu_is_offline(dest_cpu
)))
4288 rq_src
= cpu_rq(src_cpu
);
4289 rq_dest
= cpu_rq(dest_cpu
);
4291 double_rq_lock(rq_src
, rq_dest
);
4292 /* Already moved. */
4293 if (task_cpu(p
) != src_cpu
)
4295 /* Affinity changed (again). */
4296 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4299 set_task_cpu(p
, dest_cpu
);
4302 * Sync timestamp with rq_dest's before activating.
4303 * The same thing could be achieved by doing this step
4304 * afterwards, and pretending it was a local activate.
4305 * This way is cleaner and logically correct.
4307 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4308 + rq_dest
->timestamp_last_tick
;
4309 deactivate_task(p
, rq_src
);
4310 activate_task(p
, rq_dest
, 0);
4311 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4312 resched_task(rq_dest
->curr
);
4316 double_rq_unlock(rq_src
, rq_dest
);
4320 * migration_thread - this is a highprio system thread that performs
4321 * thread migration by bumping thread off CPU then 'pushing' onto
4324 static int migration_thread(void * data
)
4327 int cpu
= (long)data
;
4330 BUG_ON(rq
->migration_thread
!= current
);
4332 set_current_state(TASK_INTERRUPTIBLE
);
4333 while (!kthread_should_stop()) {
4334 struct list_head
*head
;
4335 migration_req_t
*req
;
4339 spin_lock_irq(&rq
->lock
);
4341 if (cpu_is_offline(cpu
)) {
4342 spin_unlock_irq(&rq
->lock
);
4346 if (rq
->active_balance
) {
4347 active_load_balance(rq
, cpu
);
4348 rq
->active_balance
= 0;
4351 head
= &rq
->migration_queue
;
4353 if (list_empty(head
)) {
4354 spin_unlock_irq(&rq
->lock
);
4356 set_current_state(TASK_INTERRUPTIBLE
);
4359 req
= list_entry(head
->next
, migration_req_t
, list
);
4360 list_del_init(head
->next
);
4362 spin_unlock(&rq
->lock
);
4363 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4366 complete(&req
->done
);
4368 __set_current_state(TASK_RUNNING
);
4372 /* Wait for kthread_stop */
4373 set_current_state(TASK_INTERRUPTIBLE
);
4374 while (!kthread_should_stop()) {
4376 set_current_state(TASK_INTERRUPTIBLE
);
4378 __set_current_state(TASK_RUNNING
);
4382 #ifdef CONFIG_HOTPLUG_CPU
4383 /* Figure out where task on dead CPU should go, use force if neccessary. */
4384 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4390 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4391 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4392 dest_cpu
= any_online_cpu(mask
);
4394 /* On any allowed CPU? */
4395 if (dest_cpu
== NR_CPUS
)
4396 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4398 /* No more Mr. Nice Guy. */
4399 if (dest_cpu
== NR_CPUS
) {
4400 cpus_setall(tsk
->cpus_allowed
);
4401 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4404 * Don't tell them about moving exiting tasks or
4405 * kernel threads (both mm NULL), since they never
4408 if (tsk
->mm
&& printk_ratelimit())
4409 printk(KERN_INFO
"process %d (%s) no "
4410 "longer affine to cpu%d\n",
4411 tsk
->pid
, tsk
->comm
, dead_cpu
);
4413 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4417 * While a dead CPU has no uninterruptible tasks queued at this point,
4418 * it might still have a nonzero ->nr_uninterruptible counter, because
4419 * for performance reasons the counter is not stricly tracking tasks to
4420 * their home CPUs. So we just add the counter to another CPU's counter,
4421 * to keep the global sum constant after CPU-down:
4423 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4425 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4426 unsigned long flags
;
4428 local_irq_save(flags
);
4429 double_rq_lock(rq_src
, rq_dest
);
4430 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4431 rq_src
->nr_uninterruptible
= 0;
4432 double_rq_unlock(rq_src
, rq_dest
);
4433 local_irq_restore(flags
);
4436 /* Run through task list and migrate tasks from the dead cpu. */
4437 static void migrate_live_tasks(int src_cpu
)
4439 struct task_struct
*tsk
, *t
;
4441 write_lock_irq(&tasklist_lock
);
4443 do_each_thread(t
, tsk
) {
4447 if (task_cpu(tsk
) == src_cpu
)
4448 move_task_off_dead_cpu(src_cpu
, tsk
);
4449 } while_each_thread(t
, tsk
);
4451 write_unlock_irq(&tasklist_lock
);
4454 /* Schedules idle task to be the next runnable task on current CPU.
4455 * It does so by boosting its priority to highest possible and adding it to
4456 * the _front_ of runqueue. Used by CPU offline code.
4458 void sched_idle_next(void)
4460 int cpu
= smp_processor_id();
4461 runqueue_t
*rq
= this_rq();
4462 struct task_struct
*p
= rq
->idle
;
4463 unsigned long flags
;
4465 /* cpu has to be offline */
4466 BUG_ON(cpu_online(cpu
));
4468 /* Strictly not necessary since rest of the CPUs are stopped by now
4469 * and interrupts disabled on current cpu.
4471 spin_lock_irqsave(&rq
->lock
, flags
);
4473 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4474 /* Add idle task to _front_ of it's priority queue */
4475 __activate_idle_task(p
, rq
);
4477 spin_unlock_irqrestore(&rq
->lock
, flags
);
4480 /* Ensures that the idle task is using init_mm right before its cpu goes
4483 void idle_task_exit(void)
4485 struct mm_struct
*mm
= current
->active_mm
;
4487 BUG_ON(cpu_online(smp_processor_id()));
4490 switch_mm(mm
, &init_mm
, current
);
4494 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4496 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4498 /* Must be exiting, otherwise would be on tasklist. */
4499 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4501 /* Cannot have done final schedule yet: would have vanished. */
4502 BUG_ON(tsk
->flags
& PF_DEAD
);
4504 get_task_struct(tsk
);
4507 * Drop lock around migration; if someone else moves it,
4508 * that's OK. No task can be added to this CPU, so iteration is
4511 spin_unlock_irq(&rq
->lock
);
4512 move_task_off_dead_cpu(dead_cpu
, tsk
);
4513 spin_lock_irq(&rq
->lock
);
4515 put_task_struct(tsk
);
4518 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4519 static void migrate_dead_tasks(unsigned int dead_cpu
)
4522 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4524 for (arr
= 0; arr
< 2; arr
++) {
4525 for (i
= 0; i
< MAX_PRIO
; i
++) {
4526 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4527 while (!list_empty(list
))
4528 migrate_dead(dead_cpu
,
4529 list_entry(list
->next
, task_t
,
4534 #endif /* CONFIG_HOTPLUG_CPU */
4537 * migration_call - callback that gets triggered when a CPU is added.
4538 * Here we can start up the necessary migration thread for the new CPU.
4540 static int migration_call(struct notifier_block
*nfb
, unsigned long action
,
4543 int cpu
= (long)hcpu
;
4544 struct task_struct
*p
;
4545 struct runqueue
*rq
;
4546 unsigned long flags
;
4549 case CPU_UP_PREPARE
:
4550 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4553 p
->flags
|= PF_NOFREEZE
;
4554 kthread_bind(p
, cpu
);
4555 /* Must be high prio: stop_machine expects to yield to it. */
4556 rq
= task_rq_lock(p
, &flags
);
4557 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4558 task_rq_unlock(rq
, &flags
);
4559 cpu_rq(cpu
)->migration_thread
= p
;
4562 /* Strictly unneccessary, as first user will wake it. */
4563 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4565 #ifdef CONFIG_HOTPLUG_CPU
4566 case CPU_UP_CANCELED
:
4567 /* Unbind it from offline cpu so it can run. Fall thru. */
4568 kthread_bind(cpu_rq(cpu
)->migration_thread
,smp_processor_id());
4569 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4570 cpu_rq(cpu
)->migration_thread
= NULL
;
4573 migrate_live_tasks(cpu
);
4575 kthread_stop(rq
->migration_thread
);
4576 rq
->migration_thread
= NULL
;
4577 /* Idle task back to normal (off runqueue, low prio) */
4578 rq
= task_rq_lock(rq
->idle
, &flags
);
4579 deactivate_task(rq
->idle
, rq
);
4580 rq
->idle
->static_prio
= MAX_PRIO
;
4581 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4582 migrate_dead_tasks(cpu
);
4583 task_rq_unlock(rq
, &flags
);
4584 migrate_nr_uninterruptible(rq
);
4585 BUG_ON(rq
->nr_running
!= 0);
4587 /* No need to migrate the tasks: it was best-effort if
4588 * they didn't do lock_cpu_hotplug(). Just wake up
4589 * the requestors. */
4590 spin_lock_irq(&rq
->lock
);
4591 while (!list_empty(&rq
->migration_queue
)) {
4592 migration_req_t
*req
;
4593 req
= list_entry(rq
->migration_queue
.next
,
4594 migration_req_t
, list
);
4595 list_del_init(&req
->list
);
4596 complete(&req
->done
);
4598 spin_unlock_irq(&rq
->lock
);
4605 /* Register at highest priority so that task migration (migrate_all_tasks)
4606 * happens before everything else.
4608 static struct notifier_block __devinitdata migration_notifier
= {
4609 .notifier_call
= migration_call
,
4613 int __init
migration_init(void)
4615 void *cpu
= (void *)(long)smp_processor_id();
4616 /* Start one for boot CPU. */
4617 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4618 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4619 register_cpu_notifier(&migration_notifier
);
4625 #undef SCHED_DOMAIN_DEBUG
4626 #ifdef SCHED_DOMAIN_DEBUG
4627 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4632 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4636 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4641 struct sched_group
*group
= sd
->groups
;
4642 cpumask_t groupmask
;
4644 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4645 cpus_clear(groupmask
);
4648 for (i
= 0; i
< level
+ 1; i
++)
4650 printk("domain %d: ", level
);
4652 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4653 printk("does not load-balance\n");
4655 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4659 printk("span %s\n", str
);
4661 if (!cpu_isset(cpu
, sd
->span
))
4662 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4663 if (!cpu_isset(cpu
, group
->cpumask
))
4664 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4667 for (i
= 0; i
< level
+ 2; i
++)
4673 printk(KERN_ERR
"ERROR: group is NULL\n");
4677 if (!group
->cpu_power
) {
4679 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4682 if (!cpus_weight(group
->cpumask
)) {
4684 printk(KERN_ERR
"ERROR: empty group\n");
4687 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4689 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4692 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4694 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4697 group
= group
->next
;
4698 } while (group
!= sd
->groups
);
4701 if (!cpus_equal(sd
->span
, groupmask
))
4702 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4708 if (!cpus_subset(groupmask
, sd
->span
))
4709 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4715 #define sched_domain_debug(sd, cpu) {}
4718 static int sd_degenerate(struct sched_domain
*sd
)
4720 if (cpus_weight(sd
->span
) == 1)
4723 /* Following flags need at least 2 groups */
4724 if (sd
->flags
& (SD_LOAD_BALANCE
|
4725 SD_BALANCE_NEWIDLE
|
4728 if (sd
->groups
!= sd
->groups
->next
)
4732 /* Following flags don't use groups */
4733 if (sd
->flags
& (SD_WAKE_IDLE
|
4741 static int sd_parent_degenerate(struct sched_domain
*sd
,
4742 struct sched_domain
*parent
)
4744 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
4746 if (sd_degenerate(parent
))
4749 if (!cpus_equal(sd
->span
, parent
->span
))
4752 /* Does parent contain flags not in child? */
4753 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4754 if (cflags
& SD_WAKE_AFFINE
)
4755 pflags
&= ~SD_WAKE_BALANCE
;
4756 /* Flags needing groups don't count if only 1 group in parent */
4757 if (parent
->groups
== parent
->groups
->next
) {
4758 pflags
&= ~(SD_LOAD_BALANCE
|
4759 SD_BALANCE_NEWIDLE
|
4763 if (~cflags
& pflags
)
4770 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4771 * hold the hotplug lock.
4773 void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
4775 runqueue_t
*rq
= cpu_rq(cpu
);
4776 struct sched_domain
*tmp
;
4778 /* Remove the sched domains which do not contribute to scheduling. */
4779 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
4780 struct sched_domain
*parent
= tmp
->parent
;
4783 if (sd_parent_degenerate(tmp
, parent
))
4784 tmp
->parent
= parent
->parent
;
4787 if (sd
&& sd_degenerate(sd
))
4790 sched_domain_debug(sd
, cpu
);
4792 rcu_assign_pointer(rq
->sd
, sd
);
4795 /* cpus with isolated domains */
4796 cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
4798 /* Setup the mask of cpus configured for isolated domains */
4799 static int __init
isolated_cpu_setup(char *str
)
4801 int ints
[NR_CPUS
], i
;
4803 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
4804 cpus_clear(cpu_isolated_map
);
4805 for (i
= 1; i
<= ints
[0]; i
++)
4806 if (ints
[i
] < NR_CPUS
)
4807 cpu_set(ints
[i
], cpu_isolated_map
);
4811 __setup ("isolcpus=", isolated_cpu_setup
);
4814 * init_sched_build_groups takes an array of groups, the cpumask we wish
4815 * to span, and a pointer to a function which identifies what group a CPU
4816 * belongs to. The return value of group_fn must be a valid index into the
4817 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4818 * keep track of groups covered with a cpumask_t).
4820 * init_sched_build_groups will build a circular linked list of the groups
4821 * covered by the given span, and will set each group's ->cpumask correctly,
4822 * and ->cpu_power to 0.
4824 void init_sched_build_groups(struct sched_group groups
[],
4825 cpumask_t span
, int (*group_fn
)(int cpu
))
4827 struct sched_group
*first
= NULL
, *last
= NULL
;
4828 cpumask_t covered
= CPU_MASK_NONE
;
4831 for_each_cpu_mask(i
, span
) {
4832 int group
= group_fn(i
);
4833 struct sched_group
*sg
= &groups
[group
];
4836 if (cpu_isset(i
, covered
))
4839 sg
->cpumask
= CPU_MASK_NONE
;
4842 for_each_cpu_mask(j
, span
) {
4843 if (group_fn(j
) != group
)
4846 cpu_set(j
, covered
);
4847 cpu_set(j
, sg
->cpumask
);
4859 #ifdef ARCH_HAS_SCHED_DOMAIN
4860 extern void build_sched_domains(const cpumask_t
*cpu_map
);
4861 extern void arch_init_sched_domains(const cpumask_t
*cpu_map
);
4862 extern void arch_destroy_sched_domains(const cpumask_t
*cpu_map
);
4864 #ifdef CONFIG_SCHED_SMT
4865 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
4866 static struct sched_group sched_group_cpus
[NR_CPUS
];
4867 static int cpu_to_cpu_group(int cpu
)
4873 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
4874 static struct sched_group sched_group_phys
[NR_CPUS
];
4875 static int cpu_to_phys_group(int cpu
)
4877 #ifdef CONFIG_SCHED_SMT
4878 return first_cpu(cpu_sibling_map
[cpu
]);
4886 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
4887 static struct sched_group sched_group_nodes
[MAX_NUMNODES
];
4888 static int cpu_to_node_group(int cpu
)
4890 return cpu_to_node(cpu
);
4894 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
4896 * The domains setup code relies on siblings not spanning
4897 * multiple nodes. Make sure the architecture has a proper
4900 static void check_sibling_maps(void)
4904 for_each_online_cpu(i
) {
4905 for_each_cpu_mask(j
, cpu_sibling_map
[i
]) {
4906 if (cpu_to_node(i
) != cpu_to_node(j
)) {
4907 printk(KERN_INFO
"warning: CPU %d siblings map "
4908 "to different node - isolating "
4910 cpu_sibling_map
[i
] = cpumask_of_cpu(i
);
4919 * Build sched domains for a given set of cpus and attach the sched domains
4920 * to the individual cpus
4922 static void build_sched_domains(const cpumask_t
*cpu_map
)
4927 * Set up domains for cpus specified by the cpu_map.
4929 for_each_cpu_mask(i
, *cpu_map
) {
4931 struct sched_domain
*sd
= NULL
, *p
;
4932 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
4934 cpus_and(nodemask
, nodemask
, *cpu_map
);
4937 sd
= &per_cpu(node_domains
, i
);
4938 group
= cpu_to_node_group(i
);
4940 sd
->span
= *cpu_map
;
4941 sd
->groups
= &sched_group_nodes
[group
];
4945 sd
= &per_cpu(phys_domains
, i
);
4946 group
= cpu_to_phys_group(i
);
4948 sd
->span
= nodemask
;
4950 sd
->groups
= &sched_group_phys
[group
];
4952 #ifdef CONFIG_SCHED_SMT
4954 sd
= &per_cpu(cpu_domains
, i
);
4955 group
= cpu_to_cpu_group(i
);
4956 *sd
= SD_SIBLING_INIT
;
4957 sd
->span
= cpu_sibling_map
[i
];
4958 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
4960 sd
->groups
= &sched_group_cpus
[group
];
4964 #ifdef CONFIG_SCHED_SMT
4965 /* Set up CPU (sibling) groups */
4966 for_each_online_cpu(i
) {
4967 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
4968 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
4969 if (i
!= first_cpu(this_sibling_map
))
4972 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
4977 /* Set up physical groups */
4978 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4979 cpumask_t nodemask
= node_to_cpumask(i
);
4981 cpus_and(nodemask
, nodemask
, *cpu_map
);
4982 if (cpus_empty(nodemask
))
4985 init_sched_build_groups(sched_group_phys
, nodemask
,
4986 &cpu_to_phys_group
);
4990 /* Set up node groups */
4991 init_sched_build_groups(sched_group_nodes
, *cpu_map
,
4992 &cpu_to_node_group
);
4995 /* Calculate CPU power for physical packages and nodes */
4996 for_each_cpu_mask(i
, *cpu_map
) {
4998 struct sched_domain
*sd
;
4999 #ifdef CONFIG_SCHED_SMT
5000 sd
= &per_cpu(cpu_domains
, i
);
5001 power
= SCHED_LOAD_SCALE
;
5002 sd
->groups
->cpu_power
= power
;
5005 sd
= &per_cpu(phys_domains
, i
);
5006 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5007 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5008 sd
->groups
->cpu_power
= power
;
5011 if (i
== first_cpu(sd
->groups
->cpumask
)) {
5012 /* Only add "power" once for each physical package. */
5013 sd
= &per_cpu(node_domains
, i
);
5014 sd
->groups
->cpu_power
+= power
;
5019 /* Attach the domains */
5020 for_each_cpu_mask(i
, *cpu_map
) {
5021 struct sched_domain
*sd
;
5022 #ifdef CONFIG_SCHED_SMT
5023 sd
= &per_cpu(cpu_domains
, i
);
5025 sd
= &per_cpu(phys_domains
, i
);
5027 cpu_attach_domain(sd
, i
);
5031 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5033 static void arch_init_sched_domains(cpumask_t
*cpu_map
)
5035 cpumask_t cpu_default_map
;
5037 #if defined(CONFIG_SCHED_SMT) && defined(CONFIG_NUMA)
5038 check_sibling_maps();
5041 * Setup mask for cpus without special case scheduling requirements.
5042 * For now this just excludes isolated cpus, but could be used to
5043 * exclude other special cases in the future.
5045 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5047 build_sched_domains(&cpu_default_map
);
5050 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5052 /* Do nothing: everything is statically allocated. */
5055 #endif /* ARCH_HAS_SCHED_DOMAIN */
5058 * Detach sched domains from a group of cpus specified in cpu_map
5059 * These cpus will now be attached to the NULL domain
5061 static inline void detach_destroy_domains(const cpumask_t
*cpu_map
)
5065 for_each_cpu_mask(i
, *cpu_map
)
5066 cpu_attach_domain(NULL
, i
);
5067 synchronize_sched();
5068 arch_destroy_sched_domains(cpu_map
);
5072 * Partition sched domains as specified by the cpumasks below.
5073 * This attaches all cpus from the cpumasks to the NULL domain,
5074 * waits for a RCU quiescent period, recalculates sched
5075 * domain information and then attaches them back to the
5076 * correct sched domains
5077 * Call with hotplug lock held
5079 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
5081 cpumask_t change_map
;
5083 cpus_and(*partition1
, *partition1
, cpu_online_map
);
5084 cpus_and(*partition2
, *partition2
, cpu_online_map
);
5085 cpus_or(change_map
, *partition1
, *partition2
);
5087 /* Detach sched domains from all of the affected cpus */
5088 detach_destroy_domains(&change_map
);
5089 if (!cpus_empty(*partition1
))
5090 build_sched_domains(partition1
);
5091 if (!cpus_empty(*partition2
))
5092 build_sched_domains(partition2
);
5095 #ifdef CONFIG_HOTPLUG_CPU
5097 * Force a reinitialization of the sched domains hierarchy. The domains
5098 * and groups cannot be updated in place without racing with the balancing
5099 * code, so we temporarily attach all running cpus to the NULL domain
5100 * which will prevent rebalancing while the sched domains are recalculated.
5102 static int update_sched_domains(struct notifier_block
*nfb
,
5103 unsigned long action
, void *hcpu
)
5106 case CPU_UP_PREPARE
:
5107 case CPU_DOWN_PREPARE
:
5108 detach_destroy_domains(&cpu_online_map
);
5111 case CPU_UP_CANCELED
:
5112 case CPU_DOWN_FAILED
:
5116 * Fall through and re-initialise the domains.
5123 /* The hotplug lock is already held by cpu_up/cpu_down */
5124 arch_init_sched_domains(&cpu_online_map
);
5130 void __init
sched_init_smp(void)
5133 arch_init_sched_domains(&cpu_online_map
);
5134 unlock_cpu_hotplug();
5135 /* XXX: Theoretical race here - CPU may be hotplugged now */
5136 hotcpu_notifier(update_sched_domains
, 0);
5139 void __init
sched_init_smp(void)
5142 #endif /* CONFIG_SMP */
5144 int in_sched_functions(unsigned long addr
)
5146 /* Linker adds these: start and end of __sched functions */
5147 extern char __sched_text_start
[], __sched_text_end
[];
5148 return in_lock_functions(addr
) ||
5149 (addr
>= (unsigned long)__sched_text_start
5150 && addr
< (unsigned long)__sched_text_end
);
5153 void __init
sched_init(void)
5158 for (i
= 0; i
< NR_CPUS
; i
++) {
5159 prio_array_t
*array
;
5162 spin_lock_init(&rq
->lock
);
5164 rq
->active
= rq
->arrays
;
5165 rq
->expired
= rq
->arrays
+ 1;
5166 rq
->best_expired_prio
= MAX_PRIO
;
5170 for (j
= 1; j
< 3; j
++)
5171 rq
->cpu_load
[j
] = 0;
5172 rq
->active_balance
= 0;
5174 rq
->migration_thread
= NULL
;
5175 INIT_LIST_HEAD(&rq
->migration_queue
);
5177 atomic_set(&rq
->nr_iowait
, 0);
5179 for (j
= 0; j
< 2; j
++) {
5180 array
= rq
->arrays
+ j
;
5181 for (k
= 0; k
< MAX_PRIO
; k
++) {
5182 INIT_LIST_HEAD(array
->queue
+ k
);
5183 __clear_bit(k
, array
->bitmap
);
5185 // delimiter for bitsearch
5186 __set_bit(MAX_PRIO
, array
->bitmap
);
5191 * The boot idle thread does lazy MMU switching as well:
5193 atomic_inc(&init_mm
.mm_count
);
5194 enter_lazy_tlb(&init_mm
, current
);
5197 * Make us the idle thread. Technically, schedule() should not be
5198 * called from this thread, however somewhere below it might be,
5199 * but because we are the idle thread, we just pick up running again
5200 * when this runqueue becomes "idle".
5202 init_idle(current
, smp_processor_id());
5205 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5206 void __might_sleep(char *file
, int line
)
5208 #if defined(in_atomic)
5209 static unsigned long prev_jiffy
; /* ratelimiting */
5211 if ((in_atomic() || irqs_disabled()) &&
5212 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
5213 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
5215 prev_jiffy
= jiffies
;
5216 printk(KERN_ERR
"Debug: sleeping function called from invalid"
5217 " context at %s:%d\n", file
, line
);
5218 printk("in_atomic():%d, irqs_disabled():%d\n",
5219 in_atomic(), irqs_disabled());
5224 EXPORT_SYMBOL(__might_sleep
);
5227 #ifdef CONFIG_MAGIC_SYSRQ
5228 void normalize_rt_tasks(void)
5230 struct task_struct
*p
;
5231 prio_array_t
*array
;
5232 unsigned long flags
;
5235 read_lock_irq(&tasklist_lock
);
5236 for_each_process (p
) {
5240 rq
= task_rq_lock(p
, &flags
);
5244 deactivate_task(p
, task_rq(p
));
5245 __setscheduler(p
, SCHED_NORMAL
, 0);
5247 __activate_task(p
, task_rq(p
));
5248 resched_task(rq
->curr
);
5251 task_rq_unlock(rq
, &flags
);
5253 read_unlock_irq(&tasklist_lock
);
5256 #endif /* CONFIG_MAGIC_SYSRQ */