Btrfs: check return value of btrfs_alloc_path()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / inode.c
blob04e9fffee8ccd597471bfdd781235debfe97bd33
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
55 struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
60 static const struct inode_operations btrfs_dir_inode_operations;
61 static const struct inode_operations btrfs_symlink_inode_operations;
62 static const struct inode_operations btrfs_dir_ro_inode_operations;
63 static const struct inode_operations btrfs_special_inode_operations;
64 static const struct inode_operations btrfs_file_inode_operations;
65 static const struct address_space_operations btrfs_aops;
66 static const struct address_space_operations btrfs_symlink_aops;
67 static const struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_path_cachep;
74 struct kmem_cache *btrfs_free_space_cachep;
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87 static int btrfs_setsize(struct inode *inode, loff_t newsize);
88 static int btrfs_truncate(struct inode *inode);
89 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
90 static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
95 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
98 int err;
100 err = btrfs_init_acl(trans, inode, dir);
101 if (!err)
102 err = btrfs_xattr_security_init(trans, inode, dir);
103 return err;
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
111 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
114 struct page **compressed_pages)
116 struct btrfs_key key;
117 struct btrfs_path *path;
118 struct extent_buffer *leaf;
119 struct page *page = NULL;
120 char *kaddr;
121 unsigned long ptr;
122 struct btrfs_file_extent_item *ei;
123 int err = 0;
124 int ret;
125 size_t cur_size = size;
126 size_t datasize;
127 unsigned long offset;
128 int compress_type = BTRFS_COMPRESS_NONE;
130 if (compressed_size && compressed_pages) {
131 compress_type = root->fs_info->compress_type;
132 cur_size = compressed_size;
135 path = btrfs_alloc_path();
136 if (!path)
137 return -ENOMEM;
139 path->leave_spinning = 1;
140 btrfs_set_trans_block_group(trans, inode);
142 key.objectid = inode->i_ino;
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
153 goto fail;
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
165 if (compress_type != BTRFS_COMPRESS_NONE) {
166 struct page *cpage;
167 int i = 0;
168 while (compressed_size > 0) {
169 cpage = compressed_pages[i];
170 cur_size = min_t(unsigned long, compressed_size,
171 PAGE_CACHE_SIZE);
173 kaddr = kmap_atomic(cpage, KM_USER0);
174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 kunmap_atomic(kaddr, KM_USER0);
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
181 btrfs_set_file_extent_compression(leaf, ei,
182 compress_type);
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
208 return 0;
209 fail:
210 btrfs_free_path(path);
211 return err;
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size,
224 struct page **compressed_pages)
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
235 if (compressed_size)
236 data_len = compressed_size;
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 &hint_byte, 1);
250 BUG_ON(ret);
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compressed_pages);
257 BUG_ON(ret);
258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 return 0;
263 struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
269 int compress_type;
270 struct list_head list;
273 struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
283 static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
287 unsigned long nr_pages,
288 int compress_type)
290 struct async_extent *async_extent;
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 BUG_ON(!async_extent);
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
299 async_extent->compress_type = compress_type;
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
320 static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
328 u64 num_bytes;
329 u64 blocksize = root->sectorsize;
330 u64 actual_end;
331 u64 isize = i_size_read(inode);
332 int ret = 0;
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
339 unsigned long max_uncompressed = 128 * 1024;
340 int i;
341 int will_compress;
342 int compress_type = root->fs_info->compress_type;
344 actual_end = min_t(u64, isize, end + 1);
345 again:
346 will_compress = 0;
347 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
348 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
351 * we don't want to send crud past the end of i_size through
352 * compression, that's just a waste of CPU time. So, if the
353 * end of the file is before the start of our current
354 * requested range of bytes, we bail out to the uncompressed
355 * cleanup code that can deal with all of this.
357 * It isn't really the fastest way to fix things, but this is a
358 * very uncommon corner.
360 if (actual_end <= start)
361 goto cleanup_and_bail_uncompressed;
363 total_compressed = actual_end - start;
365 /* we want to make sure that amount of ram required to uncompress
366 * an extent is reasonable, so we limit the total size in ram
367 * of a compressed extent to 128k. This is a crucial number
368 * because it also controls how easily we can spread reads across
369 * cpus for decompression.
371 * We also want to make sure the amount of IO required to do
372 * a random read is reasonably small, so we limit the size of
373 * a compressed extent to 128k.
375 total_compressed = min(total_compressed, max_uncompressed);
376 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
377 num_bytes = max(blocksize, num_bytes);
378 total_in = 0;
379 ret = 0;
382 * we do compression for mount -o compress and when the
383 * inode has not been flagged as nocompress. This flag can
384 * change at any time if we discover bad compression ratios.
386 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
387 (btrfs_test_opt(root, COMPRESS) ||
388 (BTRFS_I(inode)->force_compress) ||
389 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
390 WARN_ON(pages);
391 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
392 BUG_ON(!pages);
394 if (BTRFS_I(inode)->force_compress)
395 compress_type = BTRFS_I(inode)->force_compress;
397 ret = btrfs_compress_pages(compress_type,
398 inode->i_mapping, start,
399 total_compressed, pages,
400 nr_pages, &nr_pages_ret,
401 &total_in,
402 &total_compressed,
403 max_compressed);
405 if (!ret) {
406 unsigned long offset = total_compressed &
407 (PAGE_CACHE_SIZE - 1);
408 struct page *page = pages[nr_pages_ret - 1];
409 char *kaddr;
411 /* zero the tail end of the last page, we might be
412 * sending it down to disk
414 if (offset) {
415 kaddr = kmap_atomic(page, KM_USER0);
416 memset(kaddr + offset, 0,
417 PAGE_CACHE_SIZE - offset);
418 kunmap_atomic(kaddr, KM_USER0);
420 will_compress = 1;
423 if (start == 0) {
424 trans = btrfs_join_transaction(root, 1);
425 BUG_ON(IS_ERR(trans));
426 btrfs_set_trans_block_group(trans, inode);
427 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
429 /* lets try to make an inline extent */
430 if (ret || total_in < (actual_end - start)) {
431 /* we didn't compress the entire range, try
432 * to make an uncompressed inline extent.
434 ret = cow_file_range_inline(trans, root, inode,
435 start, end, 0, NULL);
436 } else {
437 /* try making a compressed inline extent */
438 ret = cow_file_range_inline(trans, root, inode,
439 start, end,
440 total_compressed, pages);
442 if (ret == 0) {
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
448 extent_clear_unlock_delalloc(inode,
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
452 EXTENT_CLEAR_DELALLOC |
453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
455 btrfs_end_transaction(trans, root);
456 goto free_pages_out;
458 btrfs_end_transaction(trans, root);
461 if (will_compress) {
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
479 num_bytes = total_in;
482 if (!will_compress && pages) {
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
487 for (i = 0; i < nr_pages_ret; i++) {
488 WARN_ON(pages[i]->mapping);
489 page_cache_release(pages[i]);
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
496 /* flag the file so we don't compress in the future */
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
502 if (will_compress) {
503 *num_added += 1;
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
509 add_async_extent(async_cow, start, num_bytes,
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
513 if (start + num_bytes < end) {
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
519 } else {
520 cleanup_and_bail_uncompressed:
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
535 *num_added += 1;
538 out:
539 return 0;
541 free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
546 kfree(pages);
548 goto out;
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
557 static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
568 int ret = 0;
570 if (list_empty(&async_cow->extents))
571 return 0;
574 while (!list_empty(&async_cow->extents)) {
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
579 io_tree = &BTRFS_I(inode)->io_tree;
581 retry:
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
587 lock_extent(io_tree, async_extent->start,
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
591 /* allocate blocks */
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
604 if (!page_started && !ret)
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
607 async_extent->start +
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
620 trans = btrfs_join_transaction(root, 1);
621 BUG_ON(IS_ERR(trans));
622 ret = btrfs_reserve_extent(trans, root,
623 async_extent->compressed_size,
624 async_extent->compressed_size,
625 0, alloc_hint,
626 (u64)-1, &ins, 1);
627 btrfs_end_transaction(trans, root);
629 if (ret) {
630 int i;
631 for (i = 0; i < async_extent->nr_pages; i++) {
632 WARN_ON(async_extent->pages[i]->mapping);
633 page_cache_release(async_extent->pages[i]);
635 kfree(async_extent->pages);
636 async_extent->nr_pages = 0;
637 async_extent->pages = NULL;
638 unlock_extent(io_tree, async_extent->start,
639 async_extent->start +
640 async_extent->ram_size - 1, GFP_NOFS);
641 goto retry;
645 * here we're doing allocation and writeback of the
646 * compressed pages
648 btrfs_drop_extent_cache(inode, async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1, 0);
652 em = alloc_extent_map(GFP_NOFS);
653 BUG_ON(!em);
654 em->start = async_extent->start;
655 em->len = async_extent->ram_size;
656 em->orig_start = em->start;
658 em->block_start = ins.objectid;
659 em->block_len = ins.offset;
660 em->bdev = root->fs_info->fs_devices->latest_bdev;
661 em->compress_type = async_extent->compress_type;
662 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
665 while (1) {
666 write_lock(&em_tree->lock);
667 ret = add_extent_mapping(em_tree, em);
668 write_unlock(&em_tree->lock);
669 if (ret != -EEXIST) {
670 free_extent_map(em);
671 break;
673 btrfs_drop_extent_cache(inode, async_extent->start,
674 async_extent->start +
675 async_extent->ram_size - 1, 0);
678 ret = btrfs_add_ordered_extent_compress(inode,
679 async_extent->start,
680 ins.objectid,
681 async_extent->ram_size,
682 ins.offset,
683 BTRFS_ORDERED_COMPRESSED,
684 async_extent->compress_type);
685 BUG_ON(ret);
688 * clear dirty, set writeback and unlock the pages.
690 extent_clear_unlock_delalloc(inode,
691 &BTRFS_I(inode)->io_tree,
692 async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1,
695 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696 EXTENT_CLEAR_UNLOCK |
697 EXTENT_CLEAR_DELALLOC |
698 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
700 ret = btrfs_submit_compressed_write(inode,
701 async_extent->start,
702 async_extent->ram_size,
703 ins.objectid,
704 ins.offset, async_extent->pages,
705 async_extent->nr_pages);
707 BUG_ON(ret);
708 alloc_hint = ins.objectid + ins.offset;
709 kfree(async_extent);
710 cond_resched();
713 return 0;
716 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717 u64 num_bytes)
719 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720 struct extent_map *em;
721 u64 alloc_hint = 0;
723 read_lock(&em_tree->lock);
724 em = search_extent_mapping(em_tree, start, num_bytes);
725 if (em) {
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
731 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732 free_extent_map(em);
733 em = search_extent_mapping(em_tree, 0, 0);
734 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735 alloc_hint = em->block_start;
736 if (em)
737 free_extent_map(em);
738 } else {
739 alloc_hint = em->block_start;
740 free_extent_map(em);
743 read_unlock(&em_tree->lock);
745 return alloc_hint;
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
759 * IO when we return.
761 static noinline int cow_file_range(struct inode *inode,
762 struct page *locked_page,
763 u64 start, u64 end, int *page_started,
764 unsigned long *nr_written,
765 int unlock)
767 struct btrfs_root *root = BTRFS_I(inode)->root;
768 struct btrfs_trans_handle *trans;
769 u64 alloc_hint = 0;
770 u64 num_bytes;
771 unsigned long ram_size;
772 u64 disk_num_bytes;
773 u64 cur_alloc_size;
774 u64 blocksize = root->sectorsize;
775 struct btrfs_key ins;
776 struct extent_map *em;
777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778 int ret = 0;
780 BUG_ON(root == root->fs_info->tree_root);
781 trans = btrfs_join_transaction(root, 1);
782 BUG_ON(IS_ERR(trans));
783 btrfs_set_trans_block_group(trans, inode);
784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
786 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787 num_bytes = max(blocksize, num_bytes);
788 disk_num_bytes = num_bytes;
789 ret = 0;
791 if (start == 0) {
792 /* lets try to make an inline extent */
793 ret = cow_file_range_inline(trans, root, inode,
794 start, end, 0, NULL);
795 if (ret == 0) {
796 extent_clear_unlock_delalloc(inode,
797 &BTRFS_I(inode)->io_tree,
798 start, end, NULL,
799 EXTENT_CLEAR_UNLOCK_PAGE |
800 EXTENT_CLEAR_UNLOCK |
801 EXTENT_CLEAR_DELALLOC |
802 EXTENT_CLEAR_DIRTY |
803 EXTENT_SET_WRITEBACK |
804 EXTENT_END_WRITEBACK);
806 *nr_written = *nr_written +
807 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808 *page_started = 1;
809 ret = 0;
810 goto out;
814 BUG_ON(disk_num_bytes >
815 btrfs_super_total_bytes(&root->fs_info->super_copy));
817 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
818 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
820 while (disk_num_bytes > 0) {
821 unsigned long op;
823 cur_alloc_size = disk_num_bytes;
824 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
825 root->sectorsize, 0, alloc_hint,
826 (u64)-1, &ins, 1);
827 BUG_ON(ret);
829 em = alloc_extent_map(GFP_NOFS);
830 BUG_ON(!em);
831 em->start = start;
832 em->orig_start = em->start;
833 ram_size = ins.offset;
834 em->len = ins.offset;
836 em->block_start = ins.objectid;
837 em->block_len = ins.offset;
838 em->bdev = root->fs_info->fs_devices->latest_bdev;
839 set_bit(EXTENT_FLAG_PINNED, &em->flags);
841 while (1) {
842 write_lock(&em_tree->lock);
843 ret = add_extent_mapping(em_tree, em);
844 write_unlock(&em_tree->lock);
845 if (ret != -EEXIST) {
846 free_extent_map(em);
847 break;
849 btrfs_drop_extent_cache(inode, start,
850 start + ram_size - 1, 0);
853 cur_alloc_size = ins.offset;
854 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
855 ram_size, cur_alloc_size, 0);
856 BUG_ON(ret);
858 if (root->root_key.objectid ==
859 BTRFS_DATA_RELOC_TREE_OBJECTID) {
860 ret = btrfs_reloc_clone_csums(inode, start,
861 cur_alloc_size);
862 BUG_ON(ret);
865 if (disk_num_bytes < cur_alloc_size)
866 break;
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
875 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877 EXTENT_SET_PRIVATE2;
879 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880 start, start + ram_size - 1,
881 locked_page, op);
882 disk_num_bytes -= cur_alloc_size;
883 num_bytes -= cur_alloc_size;
884 alloc_hint = ins.objectid + ins.offset;
885 start += cur_alloc_size;
887 out:
888 ret = 0;
889 btrfs_end_transaction(trans, root);
891 return ret;
895 * work queue call back to started compression on a file and pages
897 static noinline void async_cow_start(struct btrfs_work *work)
899 struct async_cow *async_cow;
900 int num_added = 0;
901 async_cow = container_of(work, struct async_cow, work);
903 compress_file_range(async_cow->inode, async_cow->locked_page,
904 async_cow->start, async_cow->end, async_cow,
905 &num_added);
906 if (num_added == 0)
907 async_cow->inode = NULL;
911 * work queue call back to submit previously compressed pages
913 static noinline void async_cow_submit(struct btrfs_work *work)
915 struct async_cow *async_cow;
916 struct btrfs_root *root;
917 unsigned long nr_pages;
919 async_cow = container_of(work, struct async_cow, work);
921 root = async_cow->root;
922 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923 PAGE_CACHE_SHIFT;
925 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
927 if (atomic_read(&root->fs_info->async_delalloc_pages) <
928 5 * 1042 * 1024 &&
929 waitqueue_active(&root->fs_info->async_submit_wait))
930 wake_up(&root->fs_info->async_submit_wait);
932 if (async_cow->inode)
933 submit_compressed_extents(async_cow->inode, async_cow);
936 static noinline void async_cow_free(struct btrfs_work *work)
938 struct async_cow *async_cow;
939 async_cow = container_of(work, struct async_cow, work);
940 kfree(async_cow);
943 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started,
945 unsigned long *nr_written)
947 struct async_cow *async_cow;
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long nr_pages;
950 u64 cur_end;
951 int limit = 10 * 1024 * 1042;
953 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954 1, 0, NULL, GFP_NOFS);
955 while (start < end) {
956 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957 async_cow->inode = inode;
958 async_cow->root = root;
959 async_cow->locked_page = locked_page;
960 async_cow->start = start;
962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
963 cur_end = end;
964 else
965 cur_end = min(end, start + 512 * 1024 - 1);
967 async_cow->end = cur_end;
968 INIT_LIST_HEAD(&async_cow->extents);
970 async_cow->work.func = async_cow_start;
971 async_cow->work.ordered_func = async_cow_submit;
972 async_cow->work.ordered_free = async_cow_free;
973 async_cow->work.flags = 0;
975 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976 PAGE_CACHE_SHIFT;
977 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
979 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980 &async_cow->work);
982 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983 wait_event(root->fs_info->async_submit_wait,
984 (atomic_read(&root->fs_info->async_delalloc_pages) <
985 limit));
988 while (atomic_read(&root->fs_info->async_submit_draining) &&
989 atomic_read(&root->fs_info->async_delalloc_pages)) {
990 wait_event(root->fs_info->async_submit_wait,
991 (atomic_read(&root->fs_info->async_delalloc_pages) ==
992 0));
995 *nr_written += nr_pages;
996 start = cur_end + 1;
998 *page_started = 1;
999 return 0;
1002 static noinline int csum_exist_in_range(struct btrfs_root *root,
1003 u64 bytenr, u64 num_bytes)
1005 int ret;
1006 struct btrfs_ordered_sum *sums;
1007 LIST_HEAD(list);
1009 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010 bytenr + num_bytes - 1, &list);
1011 if (ret == 0 && list_empty(&list))
1012 return 0;
1014 while (!list_empty(&list)) {
1015 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016 list_del(&sums->list);
1017 kfree(sums);
1019 return 1;
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1026 * If no cow copies or snapshots exist, we write directly to the existing
1027 * blocks on disk
1029 static noinline int run_delalloc_nocow(struct inode *inode,
1030 struct page *locked_page,
1031 u64 start, u64 end, int *page_started, int force,
1032 unsigned long *nr_written)
1034 struct btrfs_root *root = BTRFS_I(inode)->root;
1035 struct btrfs_trans_handle *trans;
1036 struct extent_buffer *leaf;
1037 struct btrfs_path *path;
1038 struct btrfs_file_extent_item *fi;
1039 struct btrfs_key found_key;
1040 u64 cow_start;
1041 u64 cur_offset;
1042 u64 extent_end;
1043 u64 extent_offset;
1044 u64 disk_bytenr;
1045 u64 num_bytes;
1046 int extent_type;
1047 int ret;
1048 int type;
1049 int nocow;
1050 int check_prev = 1;
1051 bool nolock = false;
1053 path = btrfs_alloc_path();
1054 BUG_ON(!path);
1055 if (root == root->fs_info->tree_root) {
1056 nolock = true;
1057 trans = btrfs_join_transaction_nolock(root, 1);
1058 } else {
1059 trans = btrfs_join_transaction(root, 1);
1061 BUG_ON(IS_ERR(trans));
1063 cow_start = (u64)-1;
1064 cur_offset = start;
1065 while (1) {
1066 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067 cur_offset, 0);
1068 BUG_ON(ret < 0);
1069 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070 leaf = path->nodes[0];
1071 btrfs_item_key_to_cpu(leaf, &found_key,
1072 path->slots[0] - 1);
1073 if (found_key.objectid == inode->i_ino &&
1074 found_key.type == BTRFS_EXTENT_DATA_KEY)
1075 path->slots[0]--;
1077 check_prev = 0;
1078 next_slot:
1079 leaf = path->nodes[0];
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 BUG_ON(1);
1084 if (ret > 0)
1085 break;
1086 leaf = path->nodes[0];
1089 nocow = 0;
1090 disk_bytenr = 0;
1091 num_bytes = 0;
1092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1094 if (found_key.objectid > inode->i_ino ||
1095 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096 found_key.offset > end)
1097 break;
1099 if (found_key.offset > cur_offset) {
1100 extent_end = found_key.offset;
1101 extent_type = 0;
1102 goto out_check;
1105 fi = btrfs_item_ptr(leaf, path->slots[0],
1106 struct btrfs_file_extent_item);
1107 extent_type = btrfs_file_extent_type(leaf, fi);
1109 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1111 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1112 extent_offset = btrfs_file_extent_offset(leaf, fi);
1113 extent_end = found_key.offset +
1114 btrfs_file_extent_num_bytes(leaf, fi);
1115 if (extent_end <= start) {
1116 path->slots[0]++;
1117 goto next_slot;
1119 if (disk_bytenr == 0)
1120 goto out_check;
1121 if (btrfs_file_extent_compression(leaf, fi) ||
1122 btrfs_file_extent_encryption(leaf, fi) ||
1123 btrfs_file_extent_other_encoding(leaf, fi))
1124 goto out_check;
1125 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126 goto out_check;
1127 if (btrfs_extent_readonly(root, disk_bytenr))
1128 goto out_check;
1129 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1130 found_key.offset -
1131 extent_offset, disk_bytenr))
1132 goto out_check;
1133 disk_bytenr += extent_offset;
1134 disk_bytenr += cur_offset - found_key.offset;
1135 num_bytes = min(end + 1, extent_end) - cur_offset;
1137 * force cow if csum exists in the range.
1138 * this ensure that csum for a given extent are
1139 * either valid or do not exist.
1141 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142 goto out_check;
1143 nocow = 1;
1144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145 extent_end = found_key.offset +
1146 btrfs_file_extent_inline_len(leaf, fi);
1147 extent_end = ALIGN(extent_end, root->sectorsize);
1148 } else {
1149 BUG_ON(1);
1151 out_check:
1152 if (extent_end <= start) {
1153 path->slots[0]++;
1154 goto next_slot;
1156 if (!nocow) {
1157 if (cow_start == (u64)-1)
1158 cow_start = cur_offset;
1159 cur_offset = extent_end;
1160 if (cur_offset > end)
1161 break;
1162 path->slots[0]++;
1163 goto next_slot;
1166 btrfs_release_path(root, path);
1167 if (cow_start != (u64)-1) {
1168 ret = cow_file_range(inode, locked_page, cow_start,
1169 found_key.offset - 1, page_started,
1170 nr_written, 1);
1171 BUG_ON(ret);
1172 cow_start = (u64)-1;
1175 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176 struct extent_map *em;
1177 struct extent_map_tree *em_tree;
1178 em_tree = &BTRFS_I(inode)->extent_tree;
1179 em = alloc_extent_map(GFP_NOFS);
1180 BUG_ON(!em);
1181 em->start = cur_offset;
1182 em->orig_start = em->start;
1183 em->len = num_bytes;
1184 em->block_len = num_bytes;
1185 em->block_start = disk_bytenr;
1186 em->bdev = root->fs_info->fs_devices->latest_bdev;
1187 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188 while (1) {
1189 write_lock(&em_tree->lock);
1190 ret = add_extent_mapping(em_tree, em);
1191 write_unlock(&em_tree->lock);
1192 if (ret != -EEXIST) {
1193 free_extent_map(em);
1194 break;
1196 btrfs_drop_extent_cache(inode, em->start,
1197 em->start + em->len - 1, 0);
1199 type = BTRFS_ORDERED_PREALLOC;
1200 } else {
1201 type = BTRFS_ORDERED_NOCOW;
1204 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1205 num_bytes, num_bytes, type);
1206 BUG_ON(ret);
1208 if (root->root_key.objectid ==
1209 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211 num_bytes);
1212 BUG_ON(ret);
1215 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1216 cur_offset, cur_offset + num_bytes - 1,
1217 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219 EXTENT_SET_PRIVATE2);
1220 cur_offset = extent_end;
1221 if (cur_offset > end)
1222 break;
1224 btrfs_release_path(root, path);
1226 if (cur_offset <= end && cow_start == (u64)-1)
1227 cow_start = cur_offset;
1228 if (cow_start != (u64)-1) {
1229 ret = cow_file_range(inode, locked_page, cow_start, end,
1230 page_started, nr_written, 1);
1231 BUG_ON(ret);
1234 if (nolock) {
1235 ret = btrfs_end_transaction_nolock(trans, root);
1236 BUG_ON(ret);
1237 } else {
1238 ret = btrfs_end_transaction(trans, root);
1239 BUG_ON(ret);
1241 btrfs_free_path(path);
1242 return 0;
1246 * extent_io.c call back to do delayed allocation processing
1248 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1249 u64 start, u64 end, int *page_started,
1250 unsigned long *nr_written)
1252 int ret;
1253 struct btrfs_root *root = BTRFS_I(inode)->root;
1255 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257 page_started, 1, nr_written);
1258 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1259 ret = run_delalloc_nocow(inode, locked_page, start, end,
1260 page_started, 0, nr_written);
1261 else if (!btrfs_test_opt(root, COMPRESS) &&
1262 !(BTRFS_I(inode)->force_compress) &&
1263 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1264 ret = cow_file_range(inode, locked_page, start, end,
1265 page_started, nr_written, 1);
1266 else
1267 ret = cow_file_range_async(inode, locked_page, start, end,
1268 page_started, nr_written);
1269 return ret;
1272 static int btrfs_split_extent_hook(struct inode *inode,
1273 struct extent_state *orig, u64 split)
1275 /* not delalloc, ignore it */
1276 if (!(orig->state & EXTENT_DELALLOC))
1277 return 0;
1279 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280 return 0;
1284 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285 * extents so we can keep track of new extents that are just merged onto old
1286 * extents, such as when we are doing sequential writes, so we can properly
1287 * account for the metadata space we'll need.
1289 static int btrfs_merge_extent_hook(struct inode *inode,
1290 struct extent_state *new,
1291 struct extent_state *other)
1293 /* not delalloc, ignore it */
1294 if (!(other->state & EXTENT_DELALLOC))
1295 return 0;
1297 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1298 return 0;
1302 * extent_io.c set_bit_hook, used to track delayed allocation
1303 * bytes in this file, and to maintain the list of inodes that
1304 * have pending delalloc work to be done.
1306 static int btrfs_set_bit_hook(struct inode *inode,
1307 struct extent_state *state, int *bits)
1311 * set_bit and clear bit hooks normally require _irqsave/restore
1312 * but in this case, we are only testeing for the DELALLOC
1313 * bit, which is only set or cleared with irqs on
1315 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1316 struct btrfs_root *root = BTRFS_I(inode)->root;
1317 u64 len = state->end + 1 - state->start;
1318 int do_list = (root->root_key.objectid !=
1319 BTRFS_ROOT_TREE_OBJECTID);
1321 if (*bits & EXTENT_FIRST_DELALLOC)
1322 *bits &= ~EXTENT_FIRST_DELALLOC;
1323 else
1324 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1326 spin_lock(&root->fs_info->delalloc_lock);
1327 BTRFS_I(inode)->delalloc_bytes += len;
1328 root->fs_info->delalloc_bytes += len;
1329 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1333 spin_unlock(&root->fs_info->delalloc_lock);
1335 return 0;
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342 struct extent_state *state, int *bits)
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1349 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1350 struct btrfs_root *root = BTRFS_I(inode)->root;
1351 u64 len = state->end + 1 - state->start;
1352 int do_list = (root->root_key.objectid !=
1353 BTRFS_ROOT_TREE_OBJECTID);
1355 if (*bits & EXTENT_FIRST_DELALLOC)
1356 *bits &= ~EXTENT_FIRST_DELALLOC;
1357 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1360 if (*bits & EXTENT_DO_ACCOUNTING)
1361 btrfs_delalloc_release_metadata(inode, len);
1363 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364 && do_list)
1365 btrfs_free_reserved_data_space(inode, len);
1367 spin_lock(&root->fs_info->delalloc_lock);
1368 root->fs_info->delalloc_bytes -= len;
1369 BTRFS_I(inode)->delalloc_bytes -= len;
1371 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1375 spin_unlock(&root->fs_info->delalloc_lock);
1377 return 0;
1381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382 * we don't create bios that span stripes or chunks
1384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1385 size_t size, struct bio *bio,
1386 unsigned long bio_flags)
1388 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389 struct btrfs_mapping_tree *map_tree;
1390 u64 logical = (u64)bio->bi_sector << 9;
1391 u64 length = 0;
1392 u64 map_length;
1393 int ret;
1395 if (bio_flags & EXTENT_BIO_COMPRESSED)
1396 return 0;
1398 length = bio->bi_size;
1399 map_tree = &root->fs_info->mapping_tree;
1400 map_length = length;
1401 ret = btrfs_map_block(map_tree, READ, logical,
1402 &map_length, NULL, 0);
1404 if (map_length < length + size)
1405 return 1;
1406 return ret;
1410 * in order to insert checksums into the metadata in large chunks,
1411 * we wait until bio submission time. All the pages in the bio are
1412 * checksummed and sums are attached onto the ordered extent record.
1414 * At IO completion time the cums attached on the ordered extent record
1415 * are inserted into the btree
1417 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418 struct bio *bio, int mirror_num,
1419 unsigned long bio_flags,
1420 u64 bio_offset)
1422 struct btrfs_root *root = BTRFS_I(inode)->root;
1423 int ret = 0;
1425 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1426 BUG_ON(ret);
1427 return 0;
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1438 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1439 int mirror_num, unsigned long bio_flags,
1440 u64 bio_offset)
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
1443 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1447 * extent_io.c submission hook. This does the right thing for csum calculation
1448 * on write, or reading the csums from the tree before a read
1450 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1451 int mirror_num, unsigned long bio_flags,
1452 u64 bio_offset)
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 int ret = 0;
1456 int skip_sum;
1458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1460 if (root == root->fs_info->tree_root)
1461 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462 else
1463 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1464 BUG_ON(ret);
1466 if (!(rw & REQ_WRITE)) {
1467 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1468 return btrfs_submit_compressed_read(inode, bio,
1469 mirror_num, bio_flags);
1470 } else if (!skip_sum) {
1471 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472 if (ret)
1473 return ret;
1475 goto mapit;
1476 } else if (!skip_sum) {
1477 /* csum items have already been cloned */
1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 goto mapit;
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482 inode, rw, bio, mirror_num,
1483 bio_flags, bio_offset,
1484 __btrfs_submit_bio_start,
1485 __btrfs_submit_bio_done);
1488 mapit:
1489 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1493 * given a list of ordered sums record them in the inode. This happens
1494 * at IO completion time based on sums calculated at bio submission time.
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497 struct inode *inode, u64 file_offset,
1498 struct list_head *list)
1500 struct btrfs_ordered_sum *sum;
1502 btrfs_set_trans_block_group(trans, inode);
1504 list_for_each_entry(sum, list, list) {
1505 btrfs_csum_file_blocks(trans,
1506 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1508 return 0;
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512 struct extent_state **cached_state)
1514 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1515 WARN_ON(1);
1516 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1517 cached_state, GFP_NOFS);
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup {
1522 struct page *page;
1523 struct btrfs_work work;
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1528 struct btrfs_writepage_fixup *fixup;
1529 struct btrfs_ordered_extent *ordered;
1530 struct extent_state *cached_state = NULL;
1531 struct page *page;
1532 struct inode *inode;
1533 u64 page_start;
1534 u64 page_end;
1536 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537 page = fixup->page;
1538 again:
1539 lock_page(page);
1540 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541 ClearPageChecked(page);
1542 goto out_page;
1545 inode = page->mapping->host;
1546 page_start = page_offset(page);
1547 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1549 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550 &cached_state, GFP_NOFS);
1552 /* already ordered? We're done */
1553 if (PagePrivate2(page))
1554 goto out;
1556 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557 if (ordered) {
1558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559 page_end, &cached_state, GFP_NOFS);
1560 unlock_page(page);
1561 btrfs_start_ordered_extent(inode, ordered, 1);
1562 goto again;
1565 BUG();
1566 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1567 ClearPageChecked(page);
1568 out:
1569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570 &cached_state, GFP_NOFS);
1571 out_page:
1572 unlock_page(page);
1573 page_cache_release(page);
1574 kfree(fixup);
1578 * There are a few paths in the higher layers of the kernel that directly
1579 * set the page dirty bit without asking the filesystem if it is a
1580 * good idea. This causes problems because we want to make sure COW
1581 * properly happens and the data=ordered rules are followed.
1583 * In our case any range that doesn't have the ORDERED bit set
1584 * hasn't been properly setup for IO. We kick off an async process
1585 * to fix it up. The async helper will wait for ordered extents, set
1586 * the delalloc bit and make it safe to write the page.
1588 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1590 struct inode *inode = page->mapping->host;
1591 struct btrfs_writepage_fixup *fixup;
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
1594 /* this page is properly in the ordered list */
1595 if (TestClearPagePrivate2(page))
1596 return 0;
1598 if (PageChecked(page))
1599 return -EAGAIN;
1601 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602 if (!fixup)
1603 return -EAGAIN;
1605 SetPageChecked(page);
1606 page_cache_get(page);
1607 fixup->work.func = btrfs_writepage_fixup_worker;
1608 fixup->page = page;
1609 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610 return -EAGAIN;
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614 struct inode *inode, u64 file_pos,
1615 u64 disk_bytenr, u64 disk_num_bytes,
1616 u64 num_bytes, u64 ram_bytes,
1617 u8 compression, u8 encryption,
1618 u16 other_encoding, int extent_type)
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1621 struct btrfs_file_extent_item *fi;
1622 struct btrfs_path *path;
1623 struct extent_buffer *leaf;
1624 struct btrfs_key ins;
1625 u64 hint;
1626 int ret;
1628 path = btrfs_alloc_path();
1629 BUG_ON(!path);
1631 path->leave_spinning = 1;
1634 * we may be replacing one extent in the tree with another.
1635 * The new extent is pinned in the extent map, and we don't want
1636 * to drop it from the cache until it is completely in the btree.
1638 * So, tell btrfs_drop_extents to leave this extent in the cache.
1639 * the caller is expected to unpin it and allow it to be merged
1640 * with the others.
1642 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643 &hint, 0);
1644 BUG_ON(ret);
1646 ins.objectid = inode->i_ino;
1647 ins.offset = file_pos;
1648 ins.type = BTRFS_EXTENT_DATA_KEY;
1649 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650 BUG_ON(ret);
1651 leaf = path->nodes[0];
1652 fi = btrfs_item_ptr(leaf, path->slots[0],
1653 struct btrfs_file_extent_item);
1654 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655 btrfs_set_file_extent_type(leaf, fi, extent_type);
1656 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658 btrfs_set_file_extent_offset(leaf, fi, 0);
1659 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661 btrfs_set_file_extent_compression(leaf, fi, compression);
1662 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1665 btrfs_unlock_up_safe(path, 1);
1666 btrfs_set_lock_blocking(leaf);
1668 btrfs_mark_buffer_dirty(leaf);
1670 inode_add_bytes(inode, num_bytes);
1672 ins.objectid = disk_bytenr;
1673 ins.offset = disk_num_bytes;
1674 ins.type = BTRFS_EXTENT_ITEM_KEY;
1675 ret = btrfs_alloc_reserved_file_extent(trans, root,
1676 root->root_key.objectid,
1677 inode->i_ino, file_pos, &ins);
1678 BUG_ON(ret);
1679 btrfs_free_path(path);
1681 return 0;
1685 * helper function for btrfs_finish_ordered_io, this
1686 * just reads in some of the csum leaves to prime them into ram
1687 * before we start the transaction. It limits the amount of btree
1688 * reads required while inside the transaction.
1690 /* as ordered data IO finishes, this gets called so we can finish
1691 * an ordered extent if the range of bytes in the file it covers are
1692 * fully written.
1694 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1696 struct btrfs_root *root = BTRFS_I(inode)->root;
1697 struct btrfs_trans_handle *trans = NULL;
1698 struct btrfs_ordered_extent *ordered_extent = NULL;
1699 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1700 struct extent_state *cached_state = NULL;
1701 int compress_type = 0;
1702 int ret;
1703 bool nolock = false;
1705 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706 end - start + 1);
1707 if (!ret)
1708 return 0;
1709 BUG_ON(!ordered_extent);
1711 nolock = (root == root->fs_info->tree_root);
1713 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714 BUG_ON(!list_empty(&ordered_extent->list));
1715 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 if (!ret) {
1717 if (nolock)
1718 trans = btrfs_join_transaction_nolock(root, 1);
1719 else
1720 trans = btrfs_join_transaction(root, 1);
1721 BUG_ON(IS_ERR(trans));
1722 btrfs_set_trans_block_group(trans, inode);
1723 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1724 ret = btrfs_update_inode(trans, root, inode);
1725 BUG_ON(ret);
1727 goto out;
1730 lock_extent_bits(io_tree, ordered_extent->file_offset,
1731 ordered_extent->file_offset + ordered_extent->len - 1,
1732 0, &cached_state, GFP_NOFS);
1734 if (nolock)
1735 trans = btrfs_join_transaction_nolock(root, 1);
1736 else
1737 trans = btrfs_join_transaction(root, 1);
1738 BUG_ON(IS_ERR(trans));
1739 btrfs_set_trans_block_group(trans, inode);
1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1742 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1743 compress_type = ordered_extent->compress_type;
1744 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1745 BUG_ON(compress_type);
1746 ret = btrfs_mark_extent_written(trans, inode,
1747 ordered_extent->file_offset,
1748 ordered_extent->file_offset +
1749 ordered_extent->len);
1750 BUG_ON(ret);
1751 } else {
1752 BUG_ON(root == root->fs_info->tree_root);
1753 ret = insert_reserved_file_extent(trans, inode,
1754 ordered_extent->file_offset,
1755 ordered_extent->start,
1756 ordered_extent->disk_len,
1757 ordered_extent->len,
1758 ordered_extent->len,
1759 compress_type, 0, 0,
1760 BTRFS_FILE_EXTENT_REG);
1761 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762 ordered_extent->file_offset,
1763 ordered_extent->len);
1764 BUG_ON(ret);
1766 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1770 add_pending_csums(trans, inode, ordered_extent->file_offset,
1771 &ordered_extent->list);
1773 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774 ret = btrfs_update_inode(trans, root, inode);
1775 BUG_ON(ret);
1776 out:
1777 if (nolock) {
1778 if (trans)
1779 btrfs_end_transaction_nolock(trans, root);
1780 } else {
1781 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1782 if (trans)
1783 btrfs_end_transaction(trans, root);
1786 /* once for us */
1787 btrfs_put_ordered_extent(ordered_extent);
1788 /* once for the tree */
1789 btrfs_put_ordered_extent(ordered_extent);
1791 return 0;
1794 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1795 struct extent_state *state, int uptodate)
1797 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1799 ClearPagePrivate2(page);
1800 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1804 * When IO fails, either with EIO or csum verification fails, we
1805 * try other mirrors that might have a good copy of the data. This
1806 * io_failure_record is used to record state as we go through all the
1807 * mirrors. If another mirror has good data, the page is set up to date
1808 * and things continue. If a good mirror can't be found, the original
1809 * bio end_io callback is called to indicate things have failed.
1811 struct io_failure_record {
1812 struct page *page;
1813 u64 start;
1814 u64 len;
1815 u64 logical;
1816 unsigned long bio_flags;
1817 int last_mirror;
1820 static int btrfs_io_failed_hook(struct bio *failed_bio,
1821 struct page *page, u64 start, u64 end,
1822 struct extent_state *state)
1824 struct io_failure_record *failrec = NULL;
1825 u64 private;
1826 struct extent_map *em;
1827 struct inode *inode = page->mapping->host;
1828 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1829 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1830 struct bio *bio;
1831 int num_copies;
1832 int ret;
1833 int rw;
1834 u64 logical;
1836 ret = get_state_private(failure_tree, start, &private);
1837 if (ret) {
1838 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1839 if (!failrec)
1840 return -ENOMEM;
1841 failrec->start = start;
1842 failrec->len = end - start + 1;
1843 failrec->last_mirror = 0;
1844 failrec->bio_flags = 0;
1846 read_lock(&em_tree->lock);
1847 em = lookup_extent_mapping(em_tree, start, failrec->len);
1848 if (em->start > start || em->start + em->len < start) {
1849 free_extent_map(em);
1850 em = NULL;
1852 read_unlock(&em_tree->lock);
1854 if (!em || IS_ERR(em)) {
1855 kfree(failrec);
1856 return -EIO;
1858 logical = start - em->start;
1859 logical = em->block_start + logical;
1860 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1861 logical = em->block_start;
1862 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1863 extent_set_compress_type(&failrec->bio_flags,
1864 em->compress_type);
1866 failrec->logical = logical;
1867 free_extent_map(em);
1868 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1869 EXTENT_DIRTY, GFP_NOFS);
1870 set_state_private(failure_tree, start,
1871 (u64)(unsigned long)failrec);
1872 } else {
1873 failrec = (struct io_failure_record *)(unsigned long)private;
1875 num_copies = btrfs_num_copies(
1876 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1877 failrec->logical, failrec->len);
1878 failrec->last_mirror++;
1879 if (!state) {
1880 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1881 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1882 failrec->start,
1883 EXTENT_LOCKED);
1884 if (state && state->start != failrec->start)
1885 state = NULL;
1886 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1888 if (!state || failrec->last_mirror > num_copies) {
1889 set_state_private(failure_tree, failrec->start, 0);
1890 clear_extent_bits(failure_tree, failrec->start,
1891 failrec->start + failrec->len - 1,
1892 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1893 kfree(failrec);
1894 return -EIO;
1896 bio = bio_alloc(GFP_NOFS, 1);
1897 bio->bi_private = state;
1898 bio->bi_end_io = failed_bio->bi_end_io;
1899 bio->bi_sector = failrec->logical >> 9;
1900 bio->bi_bdev = failed_bio->bi_bdev;
1901 bio->bi_size = 0;
1903 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1904 if (failed_bio->bi_rw & REQ_WRITE)
1905 rw = WRITE;
1906 else
1907 rw = READ;
1909 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1910 failrec->last_mirror,
1911 failrec->bio_flags, 0);
1912 return ret;
1916 * each time an IO finishes, we do a fast check in the IO failure tree
1917 * to see if we need to process or clean up an io_failure_record
1919 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1921 u64 private;
1922 u64 private_failure;
1923 struct io_failure_record *failure;
1924 int ret;
1926 private = 0;
1927 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1928 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1929 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1930 start, &private_failure);
1931 if (ret == 0) {
1932 failure = (struct io_failure_record *)(unsigned long)
1933 private_failure;
1934 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1935 failure->start, 0);
1936 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1937 failure->start,
1938 failure->start + failure->len - 1,
1939 EXTENT_DIRTY | EXTENT_LOCKED,
1940 GFP_NOFS);
1941 kfree(failure);
1944 return 0;
1948 * when reads are done, we need to check csums to verify the data is correct
1949 * if there's a match, we allow the bio to finish. If not, we go through
1950 * the io_failure_record routines to find good copies
1952 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1953 struct extent_state *state)
1955 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1956 struct inode *inode = page->mapping->host;
1957 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1958 char *kaddr;
1959 u64 private = ~(u32)0;
1960 int ret;
1961 struct btrfs_root *root = BTRFS_I(inode)->root;
1962 u32 csum = ~(u32)0;
1964 if (PageChecked(page)) {
1965 ClearPageChecked(page);
1966 goto good;
1969 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1970 return 0;
1972 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1973 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1974 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1975 GFP_NOFS);
1976 return 0;
1979 if (state && state->start == start) {
1980 private = state->private;
1981 ret = 0;
1982 } else {
1983 ret = get_state_private(io_tree, start, &private);
1985 kaddr = kmap_atomic(page, KM_USER0);
1986 if (ret)
1987 goto zeroit;
1989 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1990 btrfs_csum_final(csum, (char *)&csum);
1991 if (csum != private)
1992 goto zeroit;
1994 kunmap_atomic(kaddr, KM_USER0);
1995 good:
1996 /* if the io failure tree for this inode is non-empty,
1997 * check to see if we've recovered from a failed IO
1999 btrfs_clean_io_failures(inode, start);
2000 return 0;
2002 zeroit:
2003 if (printk_ratelimit()) {
2004 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2005 "private %llu\n", page->mapping->host->i_ino,
2006 (unsigned long long)start, csum,
2007 (unsigned long long)private);
2009 memset(kaddr + offset, 1, end - start + 1);
2010 flush_dcache_page(page);
2011 kunmap_atomic(kaddr, KM_USER0);
2012 if (private == 0)
2013 return 0;
2014 return -EIO;
2017 struct delayed_iput {
2018 struct list_head list;
2019 struct inode *inode;
2022 void btrfs_add_delayed_iput(struct inode *inode)
2024 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2025 struct delayed_iput *delayed;
2027 if (atomic_add_unless(&inode->i_count, -1, 1))
2028 return;
2030 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2031 delayed->inode = inode;
2033 spin_lock(&fs_info->delayed_iput_lock);
2034 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2035 spin_unlock(&fs_info->delayed_iput_lock);
2038 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2040 LIST_HEAD(list);
2041 struct btrfs_fs_info *fs_info = root->fs_info;
2042 struct delayed_iput *delayed;
2043 int empty;
2045 spin_lock(&fs_info->delayed_iput_lock);
2046 empty = list_empty(&fs_info->delayed_iputs);
2047 spin_unlock(&fs_info->delayed_iput_lock);
2048 if (empty)
2049 return;
2051 down_read(&root->fs_info->cleanup_work_sem);
2052 spin_lock(&fs_info->delayed_iput_lock);
2053 list_splice_init(&fs_info->delayed_iputs, &list);
2054 spin_unlock(&fs_info->delayed_iput_lock);
2056 while (!list_empty(&list)) {
2057 delayed = list_entry(list.next, struct delayed_iput, list);
2058 list_del(&delayed->list);
2059 iput(delayed->inode);
2060 kfree(delayed);
2062 up_read(&root->fs_info->cleanup_work_sem);
2066 * calculate extra metadata reservation when snapshotting a subvolume
2067 * contains orphan files.
2069 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2070 struct btrfs_pending_snapshot *pending,
2071 u64 *bytes_to_reserve)
2073 struct btrfs_root *root;
2074 struct btrfs_block_rsv *block_rsv;
2075 u64 num_bytes;
2076 int index;
2078 root = pending->root;
2079 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2080 return;
2082 block_rsv = root->orphan_block_rsv;
2084 /* orphan block reservation for the snapshot */
2085 num_bytes = block_rsv->size;
2088 * after the snapshot is created, COWing tree blocks may use more
2089 * space than it frees. So we should make sure there is enough
2090 * reserved space.
2092 index = trans->transid & 0x1;
2093 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2094 num_bytes += block_rsv->size -
2095 (block_rsv->reserved + block_rsv->freed[index]);
2098 *bytes_to_reserve += num_bytes;
2101 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2102 struct btrfs_pending_snapshot *pending)
2104 struct btrfs_root *root = pending->root;
2105 struct btrfs_root *snap = pending->snap;
2106 struct btrfs_block_rsv *block_rsv;
2107 u64 num_bytes;
2108 int index;
2109 int ret;
2111 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2112 return;
2114 /* refill source subvolume's orphan block reservation */
2115 block_rsv = root->orphan_block_rsv;
2116 index = trans->transid & 0x1;
2117 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2118 num_bytes = block_rsv->size -
2119 (block_rsv->reserved + block_rsv->freed[index]);
2120 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2121 root->orphan_block_rsv,
2122 num_bytes);
2123 BUG_ON(ret);
2126 /* setup orphan block reservation for the snapshot */
2127 block_rsv = btrfs_alloc_block_rsv(snap);
2128 BUG_ON(!block_rsv);
2130 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2131 snap->orphan_block_rsv = block_rsv;
2133 num_bytes = root->orphan_block_rsv->size;
2134 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2135 block_rsv, num_bytes);
2136 BUG_ON(ret);
2138 #if 0
2139 /* insert orphan item for the snapshot */
2140 WARN_ON(!root->orphan_item_inserted);
2141 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2142 snap->root_key.objectid);
2143 BUG_ON(ret);
2144 snap->orphan_item_inserted = 1;
2145 #endif
2148 enum btrfs_orphan_cleanup_state {
2149 ORPHAN_CLEANUP_STARTED = 1,
2150 ORPHAN_CLEANUP_DONE = 2,
2154 * This is called in transaction commmit time. If there are no orphan
2155 * files in the subvolume, it removes orphan item and frees block_rsv
2156 * structure.
2158 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2159 struct btrfs_root *root)
2161 int ret;
2163 if (!list_empty(&root->orphan_list) ||
2164 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2165 return;
2167 if (root->orphan_item_inserted &&
2168 btrfs_root_refs(&root->root_item) > 0) {
2169 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2170 root->root_key.objectid);
2171 BUG_ON(ret);
2172 root->orphan_item_inserted = 0;
2175 if (root->orphan_block_rsv) {
2176 WARN_ON(root->orphan_block_rsv->size > 0);
2177 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2178 root->orphan_block_rsv = NULL;
2183 * This creates an orphan entry for the given inode in case something goes
2184 * wrong in the middle of an unlink/truncate.
2186 * NOTE: caller of this function should reserve 5 units of metadata for
2187 * this function.
2189 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2191 struct btrfs_root *root = BTRFS_I(inode)->root;
2192 struct btrfs_block_rsv *block_rsv = NULL;
2193 int reserve = 0;
2194 int insert = 0;
2195 int ret;
2197 if (!root->orphan_block_rsv) {
2198 block_rsv = btrfs_alloc_block_rsv(root);
2199 BUG_ON(!block_rsv);
2202 spin_lock(&root->orphan_lock);
2203 if (!root->orphan_block_rsv) {
2204 root->orphan_block_rsv = block_rsv;
2205 } else if (block_rsv) {
2206 btrfs_free_block_rsv(root, block_rsv);
2207 block_rsv = NULL;
2210 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2211 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2212 #if 0
2214 * For proper ENOSPC handling, we should do orphan
2215 * cleanup when mounting. But this introduces backward
2216 * compatibility issue.
2218 if (!xchg(&root->orphan_item_inserted, 1))
2219 insert = 2;
2220 else
2221 insert = 1;
2222 #endif
2223 insert = 1;
2224 } else {
2225 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2228 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2229 BTRFS_I(inode)->orphan_meta_reserved = 1;
2230 reserve = 1;
2232 spin_unlock(&root->orphan_lock);
2234 if (block_rsv)
2235 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2237 /* grab metadata reservation from transaction handle */
2238 if (reserve) {
2239 ret = btrfs_orphan_reserve_metadata(trans, inode);
2240 BUG_ON(ret);
2243 /* insert an orphan item to track this unlinked/truncated file */
2244 if (insert >= 1) {
2245 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2246 BUG_ON(ret);
2249 /* insert an orphan item to track subvolume contains orphan files */
2250 if (insert >= 2) {
2251 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2252 root->root_key.objectid);
2253 BUG_ON(ret);
2255 return 0;
2259 * We have done the truncate/delete so we can go ahead and remove the orphan
2260 * item for this particular inode.
2262 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2264 struct btrfs_root *root = BTRFS_I(inode)->root;
2265 int delete_item = 0;
2266 int release_rsv = 0;
2267 int ret = 0;
2269 spin_lock(&root->orphan_lock);
2270 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2271 list_del_init(&BTRFS_I(inode)->i_orphan);
2272 delete_item = 1;
2275 if (BTRFS_I(inode)->orphan_meta_reserved) {
2276 BTRFS_I(inode)->orphan_meta_reserved = 0;
2277 release_rsv = 1;
2279 spin_unlock(&root->orphan_lock);
2281 if (trans && delete_item) {
2282 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2283 BUG_ON(ret);
2286 if (release_rsv)
2287 btrfs_orphan_release_metadata(inode);
2289 return 0;
2293 * this cleans up any orphans that may be left on the list from the last use
2294 * of this root.
2296 int btrfs_orphan_cleanup(struct btrfs_root *root)
2298 struct btrfs_path *path;
2299 struct extent_buffer *leaf;
2300 struct btrfs_key key, found_key;
2301 struct btrfs_trans_handle *trans;
2302 struct inode *inode;
2303 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2305 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2306 return 0;
2308 path = btrfs_alloc_path();
2309 if (!path) {
2310 ret = -ENOMEM;
2311 goto out;
2313 path->reada = -1;
2315 key.objectid = BTRFS_ORPHAN_OBJECTID;
2316 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2317 key.offset = (u64)-1;
2319 while (1) {
2320 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2321 if (ret < 0)
2322 goto out;
2325 * if ret == 0 means we found what we were searching for, which
2326 * is weird, but possible, so only screw with path if we didnt
2327 * find the key and see if we have stuff that matches
2329 if (ret > 0) {
2330 ret = 0;
2331 if (path->slots[0] == 0)
2332 break;
2333 path->slots[0]--;
2336 /* pull out the item */
2337 leaf = path->nodes[0];
2338 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2340 /* make sure the item matches what we want */
2341 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2342 break;
2343 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2344 break;
2346 /* release the path since we're done with it */
2347 btrfs_release_path(root, path);
2350 * this is where we are basically btrfs_lookup, without the
2351 * crossing root thing. we store the inode number in the
2352 * offset of the orphan item.
2354 found_key.objectid = found_key.offset;
2355 found_key.type = BTRFS_INODE_ITEM_KEY;
2356 found_key.offset = 0;
2357 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2358 if (IS_ERR(inode)) {
2359 ret = PTR_ERR(inode);
2360 goto out;
2364 * add this inode to the orphan list so btrfs_orphan_del does
2365 * the proper thing when we hit it
2367 spin_lock(&root->orphan_lock);
2368 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2369 spin_unlock(&root->orphan_lock);
2372 * if this is a bad inode, means we actually succeeded in
2373 * removing the inode, but not the orphan record, which means
2374 * we need to manually delete the orphan since iput will just
2375 * do a destroy_inode
2377 if (is_bad_inode(inode)) {
2378 trans = btrfs_start_transaction(root, 0);
2379 if (IS_ERR(trans)) {
2380 ret = PTR_ERR(trans);
2381 goto out;
2383 btrfs_orphan_del(trans, inode);
2384 btrfs_end_transaction(trans, root);
2385 iput(inode);
2386 continue;
2389 /* if we have links, this was a truncate, lets do that */
2390 if (inode->i_nlink) {
2391 if (!S_ISREG(inode->i_mode)) {
2392 WARN_ON(1);
2393 iput(inode);
2394 continue;
2396 nr_truncate++;
2397 ret = btrfs_truncate(inode);
2398 } else {
2399 nr_unlink++;
2402 /* this will do delete_inode and everything for us */
2403 iput(inode);
2404 if (ret)
2405 goto out;
2407 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2409 if (root->orphan_block_rsv)
2410 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2411 (u64)-1);
2413 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2414 trans = btrfs_join_transaction(root, 1);
2415 if (!IS_ERR(trans))
2416 btrfs_end_transaction(trans, root);
2419 if (nr_unlink)
2420 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2421 if (nr_truncate)
2422 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2424 out:
2425 if (ret)
2426 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2427 btrfs_free_path(path);
2428 return ret;
2432 * very simple check to peek ahead in the leaf looking for xattrs. If we
2433 * don't find any xattrs, we know there can't be any acls.
2435 * slot is the slot the inode is in, objectid is the objectid of the inode
2437 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2438 int slot, u64 objectid)
2440 u32 nritems = btrfs_header_nritems(leaf);
2441 struct btrfs_key found_key;
2442 int scanned = 0;
2444 slot++;
2445 while (slot < nritems) {
2446 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2448 /* we found a different objectid, there must not be acls */
2449 if (found_key.objectid != objectid)
2450 return 0;
2452 /* we found an xattr, assume we've got an acl */
2453 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2454 return 1;
2457 * we found a key greater than an xattr key, there can't
2458 * be any acls later on
2460 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2461 return 0;
2463 slot++;
2464 scanned++;
2467 * it goes inode, inode backrefs, xattrs, extents,
2468 * so if there are a ton of hard links to an inode there can
2469 * be a lot of backrefs. Don't waste time searching too hard,
2470 * this is just an optimization
2472 if (scanned >= 8)
2473 break;
2475 /* we hit the end of the leaf before we found an xattr or
2476 * something larger than an xattr. We have to assume the inode
2477 * has acls
2479 return 1;
2483 * read an inode from the btree into the in-memory inode
2485 static void btrfs_read_locked_inode(struct inode *inode)
2487 struct btrfs_path *path;
2488 struct extent_buffer *leaf;
2489 struct btrfs_inode_item *inode_item;
2490 struct btrfs_timespec *tspec;
2491 struct btrfs_root *root = BTRFS_I(inode)->root;
2492 struct btrfs_key location;
2493 int maybe_acls;
2494 u64 alloc_group_block;
2495 u32 rdev;
2496 int ret;
2498 path = btrfs_alloc_path();
2499 BUG_ON(!path);
2500 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2502 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2503 if (ret)
2504 goto make_bad;
2506 leaf = path->nodes[0];
2507 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2508 struct btrfs_inode_item);
2510 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2511 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2512 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2513 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2514 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2516 tspec = btrfs_inode_atime(inode_item);
2517 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2518 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520 tspec = btrfs_inode_mtime(inode_item);
2521 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2522 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524 tspec = btrfs_inode_ctime(inode_item);
2525 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2526 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2528 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2529 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2530 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2531 inode->i_generation = BTRFS_I(inode)->generation;
2532 inode->i_rdev = 0;
2533 rdev = btrfs_inode_rdev(leaf, inode_item);
2535 BTRFS_I(inode)->index_cnt = (u64)-1;
2536 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2538 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2541 * try to precache a NULL acl entry for files that don't have
2542 * any xattrs or acls
2544 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2545 if (!maybe_acls)
2546 cache_no_acl(inode);
2548 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2549 alloc_group_block, 0);
2550 btrfs_free_path(path);
2551 inode_item = NULL;
2553 switch (inode->i_mode & S_IFMT) {
2554 case S_IFREG:
2555 inode->i_mapping->a_ops = &btrfs_aops;
2556 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2557 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2558 inode->i_fop = &btrfs_file_operations;
2559 inode->i_op = &btrfs_file_inode_operations;
2560 break;
2561 case S_IFDIR:
2562 inode->i_fop = &btrfs_dir_file_operations;
2563 if (root == root->fs_info->tree_root)
2564 inode->i_op = &btrfs_dir_ro_inode_operations;
2565 else
2566 inode->i_op = &btrfs_dir_inode_operations;
2567 break;
2568 case S_IFLNK:
2569 inode->i_op = &btrfs_symlink_inode_operations;
2570 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2571 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2572 break;
2573 default:
2574 inode->i_op = &btrfs_special_inode_operations;
2575 init_special_inode(inode, inode->i_mode, rdev);
2576 break;
2579 btrfs_update_iflags(inode);
2580 return;
2582 make_bad:
2583 btrfs_free_path(path);
2584 make_bad_inode(inode);
2588 * given a leaf and an inode, copy the inode fields into the leaf
2590 static void fill_inode_item(struct btrfs_trans_handle *trans,
2591 struct extent_buffer *leaf,
2592 struct btrfs_inode_item *item,
2593 struct inode *inode)
2595 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2596 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2597 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2598 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2599 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2601 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2602 inode->i_atime.tv_sec);
2603 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2604 inode->i_atime.tv_nsec);
2606 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2607 inode->i_mtime.tv_sec);
2608 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2609 inode->i_mtime.tv_nsec);
2611 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2612 inode->i_ctime.tv_sec);
2613 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2614 inode->i_ctime.tv_nsec);
2616 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2617 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2618 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2619 btrfs_set_inode_transid(leaf, item, trans->transid);
2620 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2621 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2622 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2626 * copy everything in the in-memory inode into the btree.
2628 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2629 struct btrfs_root *root, struct inode *inode)
2631 struct btrfs_inode_item *inode_item;
2632 struct btrfs_path *path;
2633 struct extent_buffer *leaf;
2634 int ret;
2636 path = btrfs_alloc_path();
2637 BUG_ON(!path);
2638 path->leave_spinning = 1;
2639 ret = btrfs_lookup_inode(trans, root, path,
2640 &BTRFS_I(inode)->location, 1);
2641 if (ret) {
2642 if (ret > 0)
2643 ret = -ENOENT;
2644 goto failed;
2647 btrfs_unlock_up_safe(path, 1);
2648 leaf = path->nodes[0];
2649 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2650 struct btrfs_inode_item);
2652 fill_inode_item(trans, leaf, inode_item, inode);
2653 btrfs_mark_buffer_dirty(leaf);
2654 btrfs_set_inode_last_trans(trans, inode);
2655 ret = 0;
2656 failed:
2657 btrfs_free_path(path);
2658 return ret;
2663 * unlink helper that gets used here in inode.c and in the tree logging
2664 * recovery code. It remove a link in a directory with a given name, and
2665 * also drops the back refs in the inode to the directory
2667 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2668 struct btrfs_root *root,
2669 struct inode *dir, struct inode *inode,
2670 const char *name, int name_len)
2672 struct btrfs_path *path;
2673 int ret = 0;
2674 struct extent_buffer *leaf;
2675 struct btrfs_dir_item *di;
2676 struct btrfs_key key;
2677 u64 index;
2679 path = btrfs_alloc_path();
2680 if (!path) {
2681 ret = -ENOMEM;
2682 goto out;
2685 path->leave_spinning = 1;
2686 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2687 name, name_len, -1);
2688 if (IS_ERR(di)) {
2689 ret = PTR_ERR(di);
2690 goto err;
2692 if (!di) {
2693 ret = -ENOENT;
2694 goto err;
2696 leaf = path->nodes[0];
2697 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2698 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2699 if (ret)
2700 goto err;
2701 btrfs_release_path(root, path);
2703 ret = btrfs_del_inode_ref(trans, root, name, name_len,
2704 inode->i_ino,
2705 dir->i_ino, &index);
2706 if (ret) {
2707 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2708 "inode %lu parent %lu\n", name_len, name,
2709 inode->i_ino, dir->i_ino);
2710 goto err;
2713 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2714 index, name, name_len, -1);
2715 if (IS_ERR(di)) {
2716 ret = PTR_ERR(di);
2717 goto err;
2719 if (!di) {
2720 ret = -ENOENT;
2721 goto err;
2723 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2724 btrfs_release_path(root, path);
2726 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2727 inode, dir->i_ino);
2728 BUG_ON(ret != 0 && ret != -ENOENT);
2730 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2731 dir, index);
2732 if (ret == -ENOENT)
2733 ret = 0;
2734 err:
2735 btrfs_free_path(path);
2736 if (ret)
2737 goto out;
2739 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2740 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2741 btrfs_update_inode(trans, root, dir);
2742 btrfs_drop_nlink(inode);
2743 ret = btrfs_update_inode(trans, root, inode);
2744 out:
2745 return ret;
2748 /* helper to check if there is any shared block in the path */
2749 static int check_path_shared(struct btrfs_root *root,
2750 struct btrfs_path *path)
2752 struct extent_buffer *eb;
2753 int level;
2754 u64 refs = 1;
2756 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2757 int ret;
2759 if (!path->nodes[level])
2760 break;
2761 eb = path->nodes[level];
2762 if (!btrfs_block_can_be_shared(root, eb))
2763 continue;
2764 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2765 &refs, NULL);
2766 if (refs > 1)
2767 return 1;
2769 return 0;
2773 * helper to start transaction for unlink and rmdir.
2775 * unlink and rmdir are special in btrfs, they do not always free space.
2776 * so in enospc case, we should make sure they will free space before
2777 * allowing them to use the global metadata reservation.
2779 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2780 struct dentry *dentry)
2782 struct btrfs_trans_handle *trans;
2783 struct btrfs_root *root = BTRFS_I(dir)->root;
2784 struct btrfs_path *path;
2785 struct btrfs_inode_ref *ref;
2786 struct btrfs_dir_item *di;
2787 struct inode *inode = dentry->d_inode;
2788 u64 index;
2789 int check_link = 1;
2790 int err = -ENOSPC;
2791 int ret;
2793 trans = btrfs_start_transaction(root, 10);
2794 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2795 return trans;
2797 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2798 return ERR_PTR(-ENOSPC);
2800 /* check if there is someone else holds reference */
2801 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2802 return ERR_PTR(-ENOSPC);
2804 if (atomic_read(&inode->i_count) > 2)
2805 return ERR_PTR(-ENOSPC);
2807 if (xchg(&root->fs_info->enospc_unlink, 1))
2808 return ERR_PTR(-ENOSPC);
2810 path = btrfs_alloc_path();
2811 if (!path) {
2812 root->fs_info->enospc_unlink = 0;
2813 return ERR_PTR(-ENOMEM);
2816 trans = btrfs_start_transaction(root, 0);
2817 if (IS_ERR(trans)) {
2818 btrfs_free_path(path);
2819 root->fs_info->enospc_unlink = 0;
2820 return trans;
2823 path->skip_locking = 1;
2824 path->search_commit_root = 1;
2826 ret = btrfs_lookup_inode(trans, root, path,
2827 &BTRFS_I(dir)->location, 0);
2828 if (ret < 0) {
2829 err = ret;
2830 goto out;
2832 if (ret == 0) {
2833 if (check_path_shared(root, path))
2834 goto out;
2835 } else {
2836 check_link = 0;
2838 btrfs_release_path(root, path);
2840 ret = btrfs_lookup_inode(trans, root, path,
2841 &BTRFS_I(inode)->location, 0);
2842 if (ret < 0) {
2843 err = ret;
2844 goto out;
2846 if (ret == 0) {
2847 if (check_path_shared(root, path))
2848 goto out;
2849 } else {
2850 check_link = 0;
2852 btrfs_release_path(root, path);
2854 if (ret == 0 && S_ISREG(inode->i_mode)) {
2855 ret = btrfs_lookup_file_extent(trans, root, path,
2856 inode->i_ino, (u64)-1, 0);
2857 if (ret < 0) {
2858 err = ret;
2859 goto out;
2861 BUG_ON(ret == 0);
2862 if (check_path_shared(root, path))
2863 goto out;
2864 btrfs_release_path(root, path);
2867 if (!check_link) {
2868 err = 0;
2869 goto out;
2872 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2873 dentry->d_name.name, dentry->d_name.len, 0);
2874 if (IS_ERR(di)) {
2875 err = PTR_ERR(di);
2876 goto out;
2878 if (di) {
2879 if (check_path_shared(root, path))
2880 goto out;
2881 } else {
2882 err = 0;
2883 goto out;
2885 btrfs_release_path(root, path);
2887 ref = btrfs_lookup_inode_ref(trans, root, path,
2888 dentry->d_name.name, dentry->d_name.len,
2889 inode->i_ino, dir->i_ino, 0);
2890 if (IS_ERR(ref)) {
2891 err = PTR_ERR(ref);
2892 goto out;
2894 BUG_ON(!ref);
2895 if (check_path_shared(root, path))
2896 goto out;
2897 index = btrfs_inode_ref_index(path->nodes[0], ref);
2898 btrfs_release_path(root, path);
2900 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2901 dentry->d_name.name, dentry->d_name.len, 0);
2902 if (IS_ERR(di)) {
2903 err = PTR_ERR(di);
2904 goto out;
2906 BUG_ON(ret == -ENOENT);
2907 if (check_path_shared(root, path))
2908 goto out;
2910 err = 0;
2911 out:
2912 btrfs_free_path(path);
2913 if (err) {
2914 btrfs_end_transaction(trans, root);
2915 root->fs_info->enospc_unlink = 0;
2916 return ERR_PTR(err);
2919 trans->block_rsv = &root->fs_info->global_block_rsv;
2920 return trans;
2923 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2924 struct btrfs_root *root)
2926 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2927 BUG_ON(!root->fs_info->enospc_unlink);
2928 root->fs_info->enospc_unlink = 0;
2930 btrfs_end_transaction_throttle(trans, root);
2933 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2935 struct btrfs_root *root = BTRFS_I(dir)->root;
2936 struct btrfs_trans_handle *trans;
2937 struct inode *inode = dentry->d_inode;
2938 int ret;
2939 unsigned long nr = 0;
2941 trans = __unlink_start_trans(dir, dentry);
2942 if (IS_ERR(trans))
2943 return PTR_ERR(trans);
2945 btrfs_set_trans_block_group(trans, dir);
2947 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2949 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2950 dentry->d_name.name, dentry->d_name.len);
2951 BUG_ON(ret);
2953 if (inode->i_nlink == 0) {
2954 ret = btrfs_orphan_add(trans, inode);
2955 BUG_ON(ret);
2958 nr = trans->blocks_used;
2959 __unlink_end_trans(trans, root);
2960 btrfs_btree_balance_dirty(root, nr);
2961 return ret;
2964 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2965 struct btrfs_root *root,
2966 struct inode *dir, u64 objectid,
2967 const char *name, int name_len)
2969 struct btrfs_path *path;
2970 struct extent_buffer *leaf;
2971 struct btrfs_dir_item *di;
2972 struct btrfs_key key;
2973 u64 index;
2974 int ret;
2976 path = btrfs_alloc_path();
2977 if (!path)
2978 return -ENOMEM;
2980 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2981 name, name_len, -1);
2982 BUG_ON(!di || IS_ERR(di));
2984 leaf = path->nodes[0];
2985 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2986 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2987 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2988 BUG_ON(ret);
2989 btrfs_release_path(root, path);
2991 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2992 objectid, root->root_key.objectid,
2993 dir->i_ino, &index, name, name_len);
2994 if (ret < 0) {
2995 BUG_ON(ret != -ENOENT);
2996 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2997 name, name_len);
2998 BUG_ON(!di || IS_ERR(di));
3000 leaf = path->nodes[0];
3001 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3002 btrfs_release_path(root, path);
3003 index = key.offset;
3006 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3007 index, name, name_len, -1);
3008 BUG_ON(!di || IS_ERR(di));
3010 leaf = path->nodes[0];
3011 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3012 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3013 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3014 BUG_ON(ret);
3015 btrfs_release_path(root, path);
3017 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3018 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3019 ret = btrfs_update_inode(trans, root, dir);
3020 BUG_ON(ret);
3022 btrfs_free_path(path);
3023 return 0;
3026 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3028 struct inode *inode = dentry->d_inode;
3029 int err = 0;
3030 struct btrfs_root *root = BTRFS_I(dir)->root;
3031 struct btrfs_trans_handle *trans;
3032 unsigned long nr = 0;
3034 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3035 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3036 return -ENOTEMPTY;
3038 trans = __unlink_start_trans(dir, dentry);
3039 if (IS_ERR(trans))
3040 return PTR_ERR(trans);
3042 btrfs_set_trans_block_group(trans, dir);
3044 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3045 err = btrfs_unlink_subvol(trans, root, dir,
3046 BTRFS_I(inode)->location.objectid,
3047 dentry->d_name.name,
3048 dentry->d_name.len);
3049 goto out;
3052 err = btrfs_orphan_add(trans, inode);
3053 if (err)
3054 goto out;
3056 /* now the directory is empty */
3057 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3058 dentry->d_name.name, dentry->d_name.len);
3059 if (!err)
3060 btrfs_i_size_write(inode, 0);
3061 out:
3062 nr = trans->blocks_used;
3063 __unlink_end_trans(trans, root);
3064 btrfs_btree_balance_dirty(root, nr);
3066 return err;
3069 #if 0
3071 * when truncating bytes in a file, it is possible to avoid reading
3072 * the leaves that contain only checksum items. This can be the
3073 * majority of the IO required to delete a large file, but it must
3074 * be done carefully.
3076 * The keys in the level just above the leaves are checked to make sure
3077 * the lowest key in a given leaf is a csum key, and starts at an offset
3078 * after the new size.
3080 * Then the key for the next leaf is checked to make sure it also has
3081 * a checksum item for the same file. If it does, we know our target leaf
3082 * contains only checksum items, and it can be safely freed without reading
3083 * it.
3085 * This is just an optimization targeted at large files. It may do
3086 * nothing. It will return 0 unless things went badly.
3088 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3089 struct btrfs_root *root,
3090 struct btrfs_path *path,
3091 struct inode *inode, u64 new_size)
3093 struct btrfs_key key;
3094 int ret;
3095 int nritems;
3096 struct btrfs_key found_key;
3097 struct btrfs_key other_key;
3098 struct btrfs_leaf_ref *ref;
3099 u64 leaf_gen;
3100 u64 leaf_start;
3102 path->lowest_level = 1;
3103 key.objectid = inode->i_ino;
3104 key.type = BTRFS_CSUM_ITEM_KEY;
3105 key.offset = new_size;
3106 again:
3107 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3108 if (ret < 0)
3109 goto out;
3111 if (path->nodes[1] == NULL) {
3112 ret = 0;
3113 goto out;
3115 ret = 0;
3116 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3117 nritems = btrfs_header_nritems(path->nodes[1]);
3119 if (!nritems)
3120 goto out;
3122 if (path->slots[1] >= nritems)
3123 goto next_node;
3125 /* did we find a key greater than anything we want to delete? */
3126 if (found_key.objectid > inode->i_ino ||
3127 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3128 goto out;
3130 /* we check the next key in the node to make sure the leave contains
3131 * only checksum items. This comparison doesn't work if our
3132 * leaf is the last one in the node
3134 if (path->slots[1] + 1 >= nritems) {
3135 next_node:
3136 /* search forward from the last key in the node, this
3137 * will bring us into the next node in the tree
3139 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3141 /* unlikely, but we inc below, so check to be safe */
3142 if (found_key.offset == (u64)-1)
3143 goto out;
3145 /* search_forward needs a path with locks held, do the
3146 * search again for the original key. It is possible
3147 * this will race with a balance and return a path that
3148 * we could modify, but this drop is just an optimization
3149 * and is allowed to miss some leaves.
3151 btrfs_release_path(root, path);
3152 found_key.offset++;
3154 /* setup a max key for search_forward */
3155 other_key.offset = (u64)-1;
3156 other_key.type = key.type;
3157 other_key.objectid = key.objectid;
3159 path->keep_locks = 1;
3160 ret = btrfs_search_forward(root, &found_key, &other_key,
3161 path, 0, 0);
3162 path->keep_locks = 0;
3163 if (ret || found_key.objectid != key.objectid ||
3164 found_key.type != key.type) {
3165 ret = 0;
3166 goto out;
3169 key.offset = found_key.offset;
3170 btrfs_release_path(root, path);
3171 cond_resched();
3172 goto again;
3175 /* we know there's one more slot after us in the tree,
3176 * read that key so we can verify it is also a checksum item
3178 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3180 if (found_key.objectid < inode->i_ino)
3181 goto next_key;
3183 if (found_key.type != key.type || found_key.offset < new_size)
3184 goto next_key;
3187 * if the key for the next leaf isn't a csum key from this objectid,
3188 * we can't be sure there aren't good items inside this leaf.
3189 * Bail out
3191 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3192 goto out;
3194 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3195 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3197 * it is safe to delete this leaf, it contains only
3198 * csum items from this inode at an offset >= new_size
3200 ret = btrfs_del_leaf(trans, root, path, leaf_start);
3201 BUG_ON(ret);
3203 if (root->ref_cows && leaf_gen < trans->transid) {
3204 ref = btrfs_alloc_leaf_ref(root, 0);
3205 if (ref) {
3206 ref->root_gen = root->root_key.offset;
3207 ref->bytenr = leaf_start;
3208 ref->owner = 0;
3209 ref->generation = leaf_gen;
3210 ref->nritems = 0;
3212 btrfs_sort_leaf_ref(ref);
3214 ret = btrfs_add_leaf_ref(root, ref, 0);
3215 WARN_ON(ret);
3216 btrfs_free_leaf_ref(root, ref);
3217 } else {
3218 WARN_ON(1);
3221 next_key:
3222 btrfs_release_path(root, path);
3224 if (other_key.objectid == inode->i_ino &&
3225 other_key.type == key.type && other_key.offset > key.offset) {
3226 key.offset = other_key.offset;
3227 cond_resched();
3228 goto again;
3230 ret = 0;
3231 out:
3232 /* fixup any changes we've made to the path */
3233 path->lowest_level = 0;
3234 path->keep_locks = 0;
3235 btrfs_release_path(root, path);
3236 return ret;
3239 #endif
3242 * this can truncate away extent items, csum items and directory items.
3243 * It starts at a high offset and removes keys until it can't find
3244 * any higher than new_size
3246 * csum items that cross the new i_size are truncated to the new size
3247 * as well.
3249 * min_type is the minimum key type to truncate down to. If set to 0, this
3250 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3252 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3253 struct btrfs_root *root,
3254 struct inode *inode,
3255 u64 new_size, u32 min_type)
3257 struct btrfs_path *path;
3258 struct extent_buffer *leaf;
3259 struct btrfs_file_extent_item *fi;
3260 struct btrfs_key key;
3261 struct btrfs_key found_key;
3262 u64 extent_start = 0;
3263 u64 extent_num_bytes = 0;
3264 u64 extent_offset = 0;
3265 u64 item_end = 0;
3266 u64 mask = root->sectorsize - 1;
3267 u32 found_type = (u8)-1;
3268 int found_extent;
3269 int del_item;
3270 int pending_del_nr = 0;
3271 int pending_del_slot = 0;
3272 int extent_type = -1;
3273 int encoding;
3274 int ret;
3275 int err = 0;
3277 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3279 if (root->ref_cows || root == root->fs_info->tree_root)
3280 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3282 path = btrfs_alloc_path();
3283 BUG_ON(!path);
3284 path->reada = -1;
3286 key.objectid = inode->i_ino;
3287 key.offset = (u64)-1;
3288 key.type = (u8)-1;
3290 search_again:
3291 path->leave_spinning = 1;
3292 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3293 if (ret < 0) {
3294 err = ret;
3295 goto out;
3298 if (ret > 0) {
3299 /* there are no items in the tree for us to truncate, we're
3300 * done
3302 if (path->slots[0] == 0)
3303 goto out;
3304 path->slots[0]--;
3307 while (1) {
3308 fi = NULL;
3309 leaf = path->nodes[0];
3310 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3311 found_type = btrfs_key_type(&found_key);
3312 encoding = 0;
3314 if (found_key.objectid != inode->i_ino)
3315 break;
3317 if (found_type < min_type)
3318 break;
3320 item_end = found_key.offset;
3321 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3322 fi = btrfs_item_ptr(leaf, path->slots[0],
3323 struct btrfs_file_extent_item);
3324 extent_type = btrfs_file_extent_type(leaf, fi);
3325 encoding = btrfs_file_extent_compression(leaf, fi);
3326 encoding |= btrfs_file_extent_encryption(leaf, fi);
3327 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3329 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3330 item_end +=
3331 btrfs_file_extent_num_bytes(leaf, fi);
3332 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3333 item_end += btrfs_file_extent_inline_len(leaf,
3334 fi);
3336 item_end--;
3338 if (found_type > min_type) {
3339 del_item = 1;
3340 } else {
3341 if (item_end < new_size)
3342 break;
3343 if (found_key.offset >= new_size)
3344 del_item = 1;
3345 else
3346 del_item = 0;
3348 found_extent = 0;
3349 /* FIXME, shrink the extent if the ref count is only 1 */
3350 if (found_type != BTRFS_EXTENT_DATA_KEY)
3351 goto delete;
3353 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3354 u64 num_dec;
3355 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3356 if (!del_item && !encoding) {
3357 u64 orig_num_bytes =
3358 btrfs_file_extent_num_bytes(leaf, fi);
3359 extent_num_bytes = new_size -
3360 found_key.offset + root->sectorsize - 1;
3361 extent_num_bytes = extent_num_bytes &
3362 ~((u64)root->sectorsize - 1);
3363 btrfs_set_file_extent_num_bytes(leaf, fi,
3364 extent_num_bytes);
3365 num_dec = (orig_num_bytes -
3366 extent_num_bytes);
3367 if (root->ref_cows && extent_start != 0)
3368 inode_sub_bytes(inode, num_dec);
3369 btrfs_mark_buffer_dirty(leaf);
3370 } else {
3371 extent_num_bytes =
3372 btrfs_file_extent_disk_num_bytes(leaf,
3373 fi);
3374 extent_offset = found_key.offset -
3375 btrfs_file_extent_offset(leaf, fi);
3377 /* FIXME blocksize != 4096 */
3378 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3379 if (extent_start != 0) {
3380 found_extent = 1;
3381 if (root->ref_cows)
3382 inode_sub_bytes(inode, num_dec);
3385 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3387 * we can't truncate inline items that have had
3388 * special encodings
3390 if (!del_item &&
3391 btrfs_file_extent_compression(leaf, fi) == 0 &&
3392 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3393 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3394 u32 size = new_size - found_key.offset;
3396 if (root->ref_cows) {
3397 inode_sub_bytes(inode, item_end + 1 -
3398 new_size);
3400 size =
3401 btrfs_file_extent_calc_inline_size(size);
3402 ret = btrfs_truncate_item(trans, root, path,
3403 size, 1);
3404 BUG_ON(ret);
3405 } else if (root->ref_cows) {
3406 inode_sub_bytes(inode, item_end + 1 -
3407 found_key.offset);
3410 delete:
3411 if (del_item) {
3412 if (!pending_del_nr) {
3413 /* no pending yet, add ourselves */
3414 pending_del_slot = path->slots[0];
3415 pending_del_nr = 1;
3416 } else if (pending_del_nr &&
3417 path->slots[0] + 1 == pending_del_slot) {
3418 /* hop on the pending chunk */
3419 pending_del_nr++;
3420 pending_del_slot = path->slots[0];
3421 } else {
3422 BUG();
3424 } else {
3425 break;
3427 if (found_extent && (root->ref_cows ||
3428 root == root->fs_info->tree_root)) {
3429 btrfs_set_path_blocking(path);
3430 ret = btrfs_free_extent(trans, root, extent_start,
3431 extent_num_bytes, 0,
3432 btrfs_header_owner(leaf),
3433 inode->i_ino, extent_offset);
3434 BUG_ON(ret);
3437 if (found_type == BTRFS_INODE_ITEM_KEY)
3438 break;
3440 if (path->slots[0] == 0 ||
3441 path->slots[0] != pending_del_slot) {
3442 if (root->ref_cows) {
3443 err = -EAGAIN;
3444 goto out;
3446 if (pending_del_nr) {
3447 ret = btrfs_del_items(trans, root, path,
3448 pending_del_slot,
3449 pending_del_nr);
3450 BUG_ON(ret);
3451 pending_del_nr = 0;
3453 btrfs_release_path(root, path);
3454 goto search_again;
3455 } else {
3456 path->slots[0]--;
3459 out:
3460 if (pending_del_nr) {
3461 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3462 pending_del_nr);
3463 BUG_ON(ret);
3465 btrfs_free_path(path);
3466 return err;
3470 * taken from block_truncate_page, but does cow as it zeros out
3471 * any bytes left in the last page in the file.
3473 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3475 struct inode *inode = mapping->host;
3476 struct btrfs_root *root = BTRFS_I(inode)->root;
3477 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3478 struct btrfs_ordered_extent *ordered;
3479 struct extent_state *cached_state = NULL;
3480 char *kaddr;
3481 u32 blocksize = root->sectorsize;
3482 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3483 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3484 struct page *page;
3485 int ret = 0;
3486 u64 page_start;
3487 u64 page_end;
3489 if ((offset & (blocksize - 1)) == 0)
3490 goto out;
3491 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3492 if (ret)
3493 goto out;
3495 ret = -ENOMEM;
3496 again:
3497 page = grab_cache_page(mapping, index);
3498 if (!page) {
3499 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3500 goto out;
3503 page_start = page_offset(page);
3504 page_end = page_start + PAGE_CACHE_SIZE - 1;
3506 if (!PageUptodate(page)) {
3507 ret = btrfs_readpage(NULL, page);
3508 lock_page(page);
3509 if (page->mapping != mapping) {
3510 unlock_page(page);
3511 page_cache_release(page);
3512 goto again;
3514 if (!PageUptodate(page)) {
3515 ret = -EIO;
3516 goto out_unlock;
3519 wait_on_page_writeback(page);
3521 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3522 GFP_NOFS);
3523 set_page_extent_mapped(page);
3525 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3526 if (ordered) {
3527 unlock_extent_cached(io_tree, page_start, page_end,
3528 &cached_state, GFP_NOFS);
3529 unlock_page(page);
3530 page_cache_release(page);
3531 btrfs_start_ordered_extent(inode, ordered, 1);
3532 btrfs_put_ordered_extent(ordered);
3533 goto again;
3536 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3537 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3538 0, 0, &cached_state, GFP_NOFS);
3540 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3541 &cached_state);
3542 if (ret) {
3543 unlock_extent_cached(io_tree, page_start, page_end,
3544 &cached_state, GFP_NOFS);
3545 goto out_unlock;
3548 ret = 0;
3549 if (offset != PAGE_CACHE_SIZE) {
3550 kaddr = kmap(page);
3551 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3552 flush_dcache_page(page);
3553 kunmap(page);
3555 ClearPageChecked(page);
3556 set_page_dirty(page);
3557 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3558 GFP_NOFS);
3560 out_unlock:
3561 if (ret)
3562 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3563 unlock_page(page);
3564 page_cache_release(page);
3565 out:
3566 return ret;
3570 * This function puts in dummy file extents for the area we're creating a hole
3571 * for. So if we are truncating this file to a larger size we need to insert
3572 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3573 * the range between oldsize and size
3575 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3577 struct btrfs_trans_handle *trans;
3578 struct btrfs_root *root = BTRFS_I(inode)->root;
3579 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3580 struct extent_map *em = NULL;
3581 struct extent_state *cached_state = NULL;
3582 u64 mask = root->sectorsize - 1;
3583 u64 hole_start = (oldsize + mask) & ~mask;
3584 u64 block_end = (size + mask) & ~mask;
3585 u64 last_byte;
3586 u64 cur_offset;
3587 u64 hole_size;
3588 int err = 0;
3590 if (size <= hole_start)
3591 return 0;
3593 while (1) {
3594 struct btrfs_ordered_extent *ordered;
3595 btrfs_wait_ordered_range(inode, hole_start,
3596 block_end - hole_start);
3597 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3598 &cached_state, GFP_NOFS);
3599 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3600 if (!ordered)
3601 break;
3602 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3603 &cached_state, GFP_NOFS);
3604 btrfs_put_ordered_extent(ordered);
3607 cur_offset = hole_start;
3608 while (1) {
3609 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3610 block_end - cur_offset, 0);
3611 BUG_ON(IS_ERR(em) || !em);
3612 last_byte = min(extent_map_end(em), block_end);
3613 last_byte = (last_byte + mask) & ~mask;
3614 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3615 u64 hint_byte = 0;
3616 hole_size = last_byte - cur_offset;
3618 trans = btrfs_start_transaction(root, 2);
3619 if (IS_ERR(trans)) {
3620 err = PTR_ERR(trans);
3621 break;
3623 btrfs_set_trans_block_group(trans, inode);
3625 err = btrfs_drop_extents(trans, inode, cur_offset,
3626 cur_offset + hole_size,
3627 &hint_byte, 1);
3628 if (err)
3629 break;
3631 err = btrfs_insert_file_extent(trans, root,
3632 inode->i_ino, cur_offset, 0,
3633 0, hole_size, 0, hole_size,
3634 0, 0, 0);
3635 if (err)
3636 break;
3638 btrfs_drop_extent_cache(inode, hole_start,
3639 last_byte - 1, 0);
3641 btrfs_end_transaction(trans, root);
3643 free_extent_map(em);
3644 em = NULL;
3645 cur_offset = last_byte;
3646 if (cur_offset >= block_end)
3647 break;
3650 free_extent_map(em);
3651 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3652 GFP_NOFS);
3653 return err;
3656 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3658 loff_t oldsize = i_size_read(inode);
3659 int ret;
3661 if (newsize == oldsize)
3662 return 0;
3664 if (newsize > oldsize) {
3665 i_size_write(inode, newsize);
3666 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3667 truncate_pagecache(inode, oldsize, newsize);
3668 ret = btrfs_cont_expand(inode, oldsize, newsize);
3669 if (ret) {
3670 btrfs_setsize(inode, oldsize);
3671 return ret;
3674 mark_inode_dirty(inode);
3675 } else {
3678 * We're truncating a file that used to have good data down to
3679 * zero. Make sure it gets into the ordered flush list so that
3680 * any new writes get down to disk quickly.
3682 if (newsize == 0)
3683 BTRFS_I(inode)->ordered_data_close = 1;
3685 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3686 truncate_setsize(inode, newsize);
3687 ret = btrfs_truncate(inode);
3690 return ret;
3693 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3695 struct inode *inode = dentry->d_inode;
3696 struct btrfs_root *root = BTRFS_I(inode)->root;
3697 int err;
3699 if (btrfs_root_readonly(root))
3700 return -EROFS;
3702 err = inode_change_ok(inode, attr);
3703 if (err)
3704 return err;
3706 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3707 err = btrfs_setsize(inode, attr->ia_size);
3708 if (err)
3709 return err;
3712 if (attr->ia_valid) {
3713 setattr_copy(inode, attr);
3714 mark_inode_dirty(inode);
3716 if (attr->ia_valid & ATTR_MODE)
3717 err = btrfs_acl_chmod(inode);
3720 return err;
3723 void btrfs_evict_inode(struct inode *inode)
3725 struct btrfs_trans_handle *trans;
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 unsigned long nr;
3728 int ret;
3730 trace_btrfs_inode_evict(inode);
3732 truncate_inode_pages(&inode->i_data, 0);
3733 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3734 root == root->fs_info->tree_root))
3735 goto no_delete;
3737 if (is_bad_inode(inode)) {
3738 btrfs_orphan_del(NULL, inode);
3739 goto no_delete;
3741 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3742 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3744 if (root->fs_info->log_root_recovering) {
3745 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3746 goto no_delete;
3749 if (inode->i_nlink > 0) {
3750 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3751 goto no_delete;
3754 btrfs_i_size_write(inode, 0);
3756 while (1) {
3757 trans = btrfs_start_transaction(root, 0);
3758 BUG_ON(IS_ERR(trans));
3759 btrfs_set_trans_block_group(trans, inode);
3760 trans->block_rsv = root->orphan_block_rsv;
3762 ret = btrfs_block_rsv_check(trans, root,
3763 root->orphan_block_rsv, 0, 5);
3764 if (ret) {
3765 BUG_ON(ret != -EAGAIN);
3766 ret = btrfs_commit_transaction(trans, root);
3767 BUG_ON(ret);
3768 continue;
3771 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3772 if (ret != -EAGAIN)
3773 break;
3775 nr = trans->blocks_used;
3776 btrfs_end_transaction(trans, root);
3777 trans = NULL;
3778 btrfs_btree_balance_dirty(root, nr);
3782 if (ret == 0) {
3783 ret = btrfs_orphan_del(trans, inode);
3784 BUG_ON(ret);
3787 nr = trans->blocks_used;
3788 btrfs_end_transaction(trans, root);
3789 btrfs_btree_balance_dirty(root, nr);
3790 no_delete:
3791 end_writeback(inode);
3792 return;
3796 * this returns the key found in the dir entry in the location pointer.
3797 * If no dir entries were found, location->objectid is 0.
3799 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3800 struct btrfs_key *location)
3802 const char *name = dentry->d_name.name;
3803 int namelen = dentry->d_name.len;
3804 struct btrfs_dir_item *di;
3805 struct btrfs_path *path;
3806 struct btrfs_root *root = BTRFS_I(dir)->root;
3807 int ret = 0;
3809 path = btrfs_alloc_path();
3810 BUG_ON(!path);
3812 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3813 namelen, 0);
3814 if (IS_ERR(di))
3815 ret = PTR_ERR(di);
3817 if (!di || IS_ERR(di))
3818 goto out_err;
3820 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3821 out:
3822 btrfs_free_path(path);
3823 return ret;
3824 out_err:
3825 location->objectid = 0;
3826 goto out;
3830 * when we hit a tree root in a directory, the btrfs part of the inode
3831 * needs to be changed to reflect the root directory of the tree root. This
3832 * is kind of like crossing a mount point.
3834 static int fixup_tree_root_location(struct btrfs_root *root,
3835 struct inode *dir,
3836 struct dentry *dentry,
3837 struct btrfs_key *location,
3838 struct btrfs_root **sub_root)
3840 struct btrfs_path *path;
3841 struct btrfs_root *new_root;
3842 struct btrfs_root_ref *ref;
3843 struct extent_buffer *leaf;
3844 int ret;
3845 int err = 0;
3847 path = btrfs_alloc_path();
3848 if (!path) {
3849 err = -ENOMEM;
3850 goto out;
3853 err = -ENOENT;
3854 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3855 BTRFS_I(dir)->root->root_key.objectid,
3856 location->objectid);
3857 if (ret) {
3858 if (ret < 0)
3859 err = ret;
3860 goto out;
3863 leaf = path->nodes[0];
3864 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3865 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3866 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3867 goto out;
3869 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3870 (unsigned long)(ref + 1),
3871 dentry->d_name.len);
3872 if (ret)
3873 goto out;
3875 btrfs_release_path(root->fs_info->tree_root, path);
3877 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3878 if (IS_ERR(new_root)) {
3879 err = PTR_ERR(new_root);
3880 goto out;
3883 if (btrfs_root_refs(&new_root->root_item) == 0) {
3884 err = -ENOENT;
3885 goto out;
3888 *sub_root = new_root;
3889 location->objectid = btrfs_root_dirid(&new_root->root_item);
3890 location->type = BTRFS_INODE_ITEM_KEY;
3891 location->offset = 0;
3892 err = 0;
3893 out:
3894 btrfs_free_path(path);
3895 return err;
3898 static void inode_tree_add(struct inode *inode)
3900 struct btrfs_root *root = BTRFS_I(inode)->root;
3901 struct btrfs_inode *entry;
3902 struct rb_node **p;
3903 struct rb_node *parent;
3904 again:
3905 p = &root->inode_tree.rb_node;
3906 parent = NULL;
3908 if (inode_unhashed(inode))
3909 return;
3911 spin_lock(&root->inode_lock);
3912 while (*p) {
3913 parent = *p;
3914 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3916 if (inode->i_ino < entry->vfs_inode.i_ino)
3917 p = &parent->rb_left;
3918 else if (inode->i_ino > entry->vfs_inode.i_ino)
3919 p = &parent->rb_right;
3920 else {
3921 WARN_ON(!(entry->vfs_inode.i_state &
3922 (I_WILL_FREE | I_FREEING)));
3923 rb_erase(parent, &root->inode_tree);
3924 RB_CLEAR_NODE(parent);
3925 spin_unlock(&root->inode_lock);
3926 goto again;
3929 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3930 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3931 spin_unlock(&root->inode_lock);
3934 static void inode_tree_del(struct inode *inode)
3936 struct btrfs_root *root = BTRFS_I(inode)->root;
3937 int empty = 0;
3939 spin_lock(&root->inode_lock);
3940 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3941 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3943 empty = RB_EMPTY_ROOT(&root->inode_tree);
3945 spin_unlock(&root->inode_lock);
3948 * Free space cache has inodes in the tree root, but the tree root has a
3949 * root_refs of 0, so this could end up dropping the tree root as a
3950 * snapshot, so we need the extra !root->fs_info->tree_root check to
3951 * make sure we don't drop it.
3953 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3954 root != root->fs_info->tree_root) {
3955 synchronize_srcu(&root->fs_info->subvol_srcu);
3956 spin_lock(&root->inode_lock);
3957 empty = RB_EMPTY_ROOT(&root->inode_tree);
3958 spin_unlock(&root->inode_lock);
3959 if (empty)
3960 btrfs_add_dead_root(root);
3964 int btrfs_invalidate_inodes(struct btrfs_root *root)
3966 struct rb_node *node;
3967 struct rb_node *prev;
3968 struct btrfs_inode *entry;
3969 struct inode *inode;
3970 u64 objectid = 0;
3972 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3974 spin_lock(&root->inode_lock);
3975 again:
3976 node = root->inode_tree.rb_node;
3977 prev = NULL;
3978 while (node) {
3979 prev = node;
3980 entry = rb_entry(node, struct btrfs_inode, rb_node);
3982 if (objectid < entry->vfs_inode.i_ino)
3983 node = node->rb_left;
3984 else if (objectid > entry->vfs_inode.i_ino)
3985 node = node->rb_right;
3986 else
3987 break;
3989 if (!node) {
3990 while (prev) {
3991 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3992 if (objectid <= entry->vfs_inode.i_ino) {
3993 node = prev;
3994 break;
3996 prev = rb_next(prev);
3999 while (node) {
4000 entry = rb_entry(node, struct btrfs_inode, rb_node);
4001 objectid = entry->vfs_inode.i_ino + 1;
4002 inode = igrab(&entry->vfs_inode);
4003 if (inode) {
4004 spin_unlock(&root->inode_lock);
4005 if (atomic_read(&inode->i_count) > 1)
4006 d_prune_aliases(inode);
4008 * btrfs_drop_inode will have it removed from
4009 * the inode cache when its usage count
4010 * hits zero.
4012 iput(inode);
4013 cond_resched();
4014 spin_lock(&root->inode_lock);
4015 goto again;
4018 if (cond_resched_lock(&root->inode_lock))
4019 goto again;
4021 node = rb_next(node);
4023 spin_unlock(&root->inode_lock);
4024 return 0;
4027 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4029 struct btrfs_iget_args *args = p;
4030 inode->i_ino = args->ino;
4031 BTRFS_I(inode)->root = args->root;
4032 btrfs_set_inode_space_info(args->root, inode);
4033 return 0;
4036 static int btrfs_find_actor(struct inode *inode, void *opaque)
4038 struct btrfs_iget_args *args = opaque;
4039 return args->ino == inode->i_ino &&
4040 args->root == BTRFS_I(inode)->root;
4043 static struct inode *btrfs_iget_locked(struct super_block *s,
4044 u64 objectid,
4045 struct btrfs_root *root)
4047 struct inode *inode;
4048 struct btrfs_iget_args args;
4049 args.ino = objectid;
4050 args.root = root;
4052 inode = iget5_locked(s, objectid, btrfs_find_actor,
4053 btrfs_init_locked_inode,
4054 (void *)&args);
4055 return inode;
4058 /* Get an inode object given its location and corresponding root.
4059 * Returns in *is_new if the inode was read from disk
4061 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4062 struct btrfs_root *root, int *new)
4064 struct inode *inode;
4066 inode = btrfs_iget_locked(s, location->objectid, root);
4067 if (!inode)
4068 return ERR_PTR(-ENOMEM);
4070 if (inode->i_state & I_NEW) {
4071 BTRFS_I(inode)->root = root;
4072 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4073 btrfs_read_locked_inode(inode);
4075 inode_tree_add(inode);
4076 unlock_new_inode(inode);
4077 if (new)
4078 *new = 1;
4081 return inode;
4084 static struct inode *new_simple_dir(struct super_block *s,
4085 struct btrfs_key *key,
4086 struct btrfs_root *root)
4088 struct inode *inode = new_inode(s);
4090 if (!inode)
4091 return ERR_PTR(-ENOMEM);
4093 BTRFS_I(inode)->root = root;
4094 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4095 BTRFS_I(inode)->dummy_inode = 1;
4097 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4098 inode->i_op = &simple_dir_inode_operations;
4099 inode->i_fop = &simple_dir_operations;
4100 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4101 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4103 return inode;
4106 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4108 struct inode *inode;
4109 struct btrfs_root *root = BTRFS_I(dir)->root;
4110 struct btrfs_root *sub_root = root;
4111 struct btrfs_key location;
4112 int index;
4113 int ret;
4115 if (dentry->d_name.len > BTRFS_NAME_LEN)
4116 return ERR_PTR(-ENAMETOOLONG);
4118 ret = btrfs_inode_by_name(dir, dentry, &location);
4120 if (ret < 0)
4121 return ERR_PTR(ret);
4123 if (location.objectid == 0)
4124 return NULL;
4126 if (location.type == BTRFS_INODE_ITEM_KEY) {
4127 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4128 return inode;
4131 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4133 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4134 ret = fixup_tree_root_location(root, dir, dentry,
4135 &location, &sub_root);
4136 if (ret < 0) {
4137 if (ret != -ENOENT)
4138 inode = ERR_PTR(ret);
4139 else
4140 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4141 } else {
4142 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4144 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4146 if (!IS_ERR(inode) && root != sub_root) {
4147 down_read(&root->fs_info->cleanup_work_sem);
4148 if (!(inode->i_sb->s_flags & MS_RDONLY))
4149 ret = btrfs_orphan_cleanup(sub_root);
4150 up_read(&root->fs_info->cleanup_work_sem);
4151 if (ret)
4152 inode = ERR_PTR(ret);
4155 return inode;
4158 static int btrfs_dentry_delete(const struct dentry *dentry)
4160 struct btrfs_root *root;
4162 if (!dentry->d_inode && !IS_ROOT(dentry))
4163 dentry = dentry->d_parent;
4165 if (dentry->d_inode) {
4166 root = BTRFS_I(dentry->d_inode)->root;
4167 if (btrfs_root_refs(&root->root_item) == 0)
4168 return 1;
4170 return 0;
4173 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4174 struct nameidata *nd)
4176 struct inode *inode;
4178 inode = btrfs_lookup_dentry(dir, dentry);
4179 if (IS_ERR(inode))
4180 return ERR_CAST(inode);
4182 return d_splice_alias(inode, dentry);
4185 static unsigned char btrfs_filetype_table[] = {
4186 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4189 static int btrfs_real_readdir(struct file *filp, void *dirent,
4190 filldir_t filldir)
4192 struct inode *inode = filp->f_dentry->d_inode;
4193 struct btrfs_root *root = BTRFS_I(inode)->root;
4194 struct btrfs_item *item;
4195 struct btrfs_dir_item *di;
4196 struct btrfs_key key;
4197 struct btrfs_key found_key;
4198 struct btrfs_path *path;
4199 int ret;
4200 u32 nritems;
4201 struct extent_buffer *leaf;
4202 int slot;
4203 int advance;
4204 unsigned char d_type;
4205 int over = 0;
4206 u32 di_cur;
4207 u32 di_total;
4208 u32 di_len;
4209 int key_type = BTRFS_DIR_INDEX_KEY;
4210 char tmp_name[32];
4211 char *name_ptr;
4212 int name_len;
4214 /* FIXME, use a real flag for deciding about the key type */
4215 if (root->fs_info->tree_root == root)
4216 key_type = BTRFS_DIR_ITEM_KEY;
4218 /* special case for "." */
4219 if (filp->f_pos == 0) {
4220 over = filldir(dirent, ".", 1,
4221 1, inode->i_ino,
4222 DT_DIR);
4223 if (over)
4224 return 0;
4225 filp->f_pos = 1;
4227 /* special case for .., just use the back ref */
4228 if (filp->f_pos == 1) {
4229 u64 pino = parent_ino(filp->f_path.dentry);
4230 over = filldir(dirent, "..", 2,
4231 2, pino, DT_DIR);
4232 if (over)
4233 return 0;
4234 filp->f_pos = 2;
4236 path = btrfs_alloc_path();
4237 path->reada = 2;
4239 btrfs_set_key_type(&key, key_type);
4240 key.offset = filp->f_pos;
4241 key.objectid = inode->i_ino;
4243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4244 if (ret < 0)
4245 goto err;
4246 advance = 0;
4248 while (1) {
4249 leaf = path->nodes[0];
4250 nritems = btrfs_header_nritems(leaf);
4251 slot = path->slots[0];
4252 if (advance || slot >= nritems) {
4253 if (slot >= nritems - 1) {
4254 ret = btrfs_next_leaf(root, path);
4255 if (ret)
4256 break;
4257 leaf = path->nodes[0];
4258 nritems = btrfs_header_nritems(leaf);
4259 slot = path->slots[0];
4260 } else {
4261 slot++;
4262 path->slots[0]++;
4266 advance = 1;
4267 item = btrfs_item_nr(leaf, slot);
4268 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4270 if (found_key.objectid != key.objectid)
4271 break;
4272 if (btrfs_key_type(&found_key) != key_type)
4273 break;
4274 if (found_key.offset < filp->f_pos)
4275 continue;
4277 filp->f_pos = found_key.offset;
4279 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4280 di_cur = 0;
4281 di_total = btrfs_item_size(leaf, item);
4283 while (di_cur < di_total) {
4284 struct btrfs_key location;
4286 if (verify_dir_item(root, leaf, di))
4287 break;
4289 name_len = btrfs_dir_name_len(leaf, di);
4290 if (name_len <= sizeof(tmp_name)) {
4291 name_ptr = tmp_name;
4292 } else {
4293 name_ptr = kmalloc(name_len, GFP_NOFS);
4294 if (!name_ptr) {
4295 ret = -ENOMEM;
4296 goto err;
4299 read_extent_buffer(leaf, name_ptr,
4300 (unsigned long)(di + 1), name_len);
4302 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4303 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4305 /* is this a reference to our own snapshot? If so
4306 * skip it
4308 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4309 location.objectid == root->root_key.objectid) {
4310 over = 0;
4311 goto skip;
4313 over = filldir(dirent, name_ptr, name_len,
4314 found_key.offset, location.objectid,
4315 d_type);
4317 skip:
4318 if (name_ptr != tmp_name)
4319 kfree(name_ptr);
4321 if (over)
4322 goto nopos;
4323 di_len = btrfs_dir_name_len(leaf, di) +
4324 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4325 di_cur += di_len;
4326 di = (struct btrfs_dir_item *)((char *)di + di_len);
4330 /* Reached end of directory/root. Bump pos past the last item. */
4331 if (key_type == BTRFS_DIR_INDEX_KEY)
4333 * 32-bit glibc will use getdents64, but then strtol -
4334 * so the last number we can serve is this.
4336 filp->f_pos = 0x7fffffff;
4337 else
4338 filp->f_pos++;
4339 nopos:
4340 ret = 0;
4341 err:
4342 btrfs_free_path(path);
4343 return ret;
4346 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4348 struct btrfs_root *root = BTRFS_I(inode)->root;
4349 struct btrfs_trans_handle *trans;
4350 int ret = 0;
4351 bool nolock = false;
4353 if (BTRFS_I(inode)->dummy_inode)
4354 return 0;
4356 smp_mb();
4357 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4359 if (wbc->sync_mode == WB_SYNC_ALL) {
4360 if (nolock)
4361 trans = btrfs_join_transaction_nolock(root, 1);
4362 else
4363 trans = btrfs_join_transaction(root, 1);
4364 if (IS_ERR(trans))
4365 return PTR_ERR(trans);
4366 btrfs_set_trans_block_group(trans, inode);
4367 if (nolock)
4368 ret = btrfs_end_transaction_nolock(trans, root);
4369 else
4370 ret = btrfs_commit_transaction(trans, root);
4372 return ret;
4376 * This is somewhat expensive, updating the tree every time the
4377 * inode changes. But, it is most likely to find the inode in cache.
4378 * FIXME, needs more benchmarking...there are no reasons other than performance
4379 * to keep or drop this code.
4381 void btrfs_dirty_inode(struct inode *inode)
4383 struct btrfs_root *root = BTRFS_I(inode)->root;
4384 struct btrfs_trans_handle *trans;
4385 int ret;
4387 if (BTRFS_I(inode)->dummy_inode)
4388 return;
4390 trans = btrfs_join_transaction(root, 1);
4391 BUG_ON(IS_ERR(trans));
4392 btrfs_set_trans_block_group(trans, inode);
4394 ret = btrfs_update_inode(trans, root, inode);
4395 if (ret && ret == -ENOSPC) {
4396 /* whoops, lets try again with the full transaction */
4397 btrfs_end_transaction(trans, root);
4398 trans = btrfs_start_transaction(root, 1);
4399 if (IS_ERR(trans)) {
4400 if (printk_ratelimit()) {
4401 printk(KERN_ERR "btrfs: fail to "
4402 "dirty inode %lu error %ld\n",
4403 inode->i_ino, PTR_ERR(trans));
4405 return;
4407 btrfs_set_trans_block_group(trans, inode);
4409 ret = btrfs_update_inode(trans, root, inode);
4410 if (ret) {
4411 if (printk_ratelimit()) {
4412 printk(KERN_ERR "btrfs: fail to "
4413 "dirty inode %lu error %d\n",
4414 inode->i_ino, ret);
4418 btrfs_end_transaction(trans, root);
4422 * find the highest existing sequence number in a directory
4423 * and then set the in-memory index_cnt variable to reflect
4424 * free sequence numbers
4426 static int btrfs_set_inode_index_count(struct inode *inode)
4428 struct btrfs_root *root = BTRFS_I(inode)->root;
4429 struct btrfs_key key, found_key;
4430 struct btrfs_path *path;
4431 struct extent_buffer *leaf;
4432 int ret;
4434 key.objectid = inode->i_ino;
4435 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4436 key.offset = (u64)-1;
4438 path = btrfs_alloc_path();
4439 if (!path)
4440 return -ENOMEM;
4442 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4443 if (ret < 0)
4444 goto out;
4445 /* FIXME: we should be able to handle this */
4446 if (ret == 0)
4447 goto out;
4448 ret = 0;
4451 * MAGIC NUMBER EXPLANATION:
4452 * since we search a directory based on f_pos we have to start at 2
4453 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4454 * else has to start at 2
4456 if (path->slots[0] == 0) {
4457 BTRFS_I(inode)->index_cnt = 2;
4458 goto out;
4461 path->slots[0]--;
4463 leaf = path->nodes[0];
4464 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4466 if (found_key.objectid != inode->i_ino ||
4467 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4468 BTRFS_I(inode)->index_cnt = 2;
4469 goto out;
4472 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4473 out:
4474 btrfs_free_path(path);
4475 return ret;
4479 * helper to find a free sequence number in a given directory. This current
4480 * code is very simple, later versions will do smarter things in the btree
4482 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4484 int ret = 0;
4486 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4487 ret = btrfs_set_inode_index_count(dir);
4488 if (ret)
4489 return ret;
4492 *index = BTRFS_I(dir)->index_cnt;
4493 BTRFS_I(dir)->index_cnt++;
4495 return ret;
4498 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4499 struct btrfs_root *root,
4500 struct inode *dir,
4501 const char *name, int name_len,
4502 u64 ref_objectid, u64 objectid,
4503 u64 alloc_hint, int mode, u64 *index)
4505 struct inode *inode;
4506 struct btrfs_inode_item *inode_item;
4507 struct btrfs_key *location;
4508 struct btrfs_path *path;
4509 struct btrfs_inode_ref *ref;
4510 struct btrfs_key key[2];
4511 u32 sizes[2];
4512 unsigned long ptr;
4513 int ret;
4514 int owner;
4516 path = btrfs_alloc_path();
4517 BUG_ON(!path);
4519 inode = new_inode(root->fs_info->sb);
4520 if (!inode)
4521 return ERR_PTR(-ENOMEM);
4523 if (dir) {
4524 trace_btrfs_inode_request(dir);
4526 ret = btrfs_set_inode_index(dir, index);
4527 if (ret) {
4528 iput(inode);
4529 return ERR_PTR(ret);
4533 * index_cnt is ignored for everything but a dir,
4534 * btrfs_get_inode_index_count has an explanation for the magic
4535 * number
4537 BTRFS_I(inode)->index_cnt = 2;
4538 BTRFS_I(inode)->root = root;
4539 BTRFS_I(inode)->generation = trans->transid;
4540 inode->i_generation = BTRFS_I(inode)->generation;
4541 btrfs_set_inode_space_info(root, inode);
4543 if (mode & S_IFDIR)
4544 owner = 0;
4545 else
4546 owner = 1;
4547 BTRFS_I(inode)->block_group =
4548 btrfs_find_block_group(root, 0, alloc_hint, owner);
4550 key[0].objectid = objectid;
4551 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4552 key[0].offset = 0;
4554 key[1].objectid = objectid;
4555 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4556 key[1].offset = ref_objectid;
4558 sizes[0] = sizeof(struct btrfs_inode_item);
4559 sizes[1] = name_len + sizeof(*ref);
4561 path->leave_spinning = 1;
4562 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4563 if (ret != 0)
4564 goto fail;
4566 inode_init_owner(inode, dir, mode);
4567 inode->i_ino = objectid;
4568 inode_set_bytes(inode, 0);
4569 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4570 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4571 struct btrfs_inode_item);
4572 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4574 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4575 struct btrfs_inode_ref);
4576 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4577 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4578 ptr = (unsigned long)(ref + 1);
4579 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4581 btrfs_mark_buffer_dirty(path->nodes[0]);
4582 btrfs_free_path(path);
4584 location = &BTRFS_I(inode)->location;
4585 location->objectid = objectid;
4586 location->offset = 0;
4587 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4589 btrfs_inherit_iflags(inode, dir);
4591 if ((mode & S_IFREG)) {
4592 if (btrfs_test_opt(root, NODATASUM))
4593 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4594 if (btrfs_test_opt(root, NODATACOW) ||
4595 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4596 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4599 insert_inode_hash(inode);
4600 inode_tree_add(inode);
4602 trace_btrfs_inode_new(inode);
4604 return inode;
4605 fail:
4606 if (dir)
4607 BTRFS_I(dir)->index_cnt--;
4608 btrfs_free_path(path);
4609 iput(inode);
4610 return ERR_PTR(ret);
4613 static inline u8 btrfs_inode_type(struct inode *inode)
4615 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4619 * utility function to add 'inode' into 'parent_inode' with
4620 * a give name and a given sequence number.
4621 * if 'add_backref' is true, also insert a backref from the
4622 * inode to the parent directory.
4624 int btrfs_add_link(struct btrfs_trans_handle *trans,
4625 struct inode *parent_inode, struct inode *inode,
4626 const char *name, int name_len, int add_backref, u64 index)
4628 int ret = 0;
4629 struct btrfs_key key;
4630 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4632 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4633 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4634 } else {
4635 key.objectid = inode->i_ino;
4636 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4637 key.offset = 0;
4640 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4641 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4642 key.objectid, root->root_key.objectid,
4643 parent_inode->i_ino,
4644 index, name, name_len);
4645 } else if (add_backref) {
4646 ret = btrfs_insert_inode_ref(trans, root,
4647 name, name_len, inode->i_ino,
4648 parent_inode->i_ino, index);
4651 if (ret == 0) {
4652 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4653 parent_inode->i_ino, &key,
4654 btrfs_inode_type(inode), index);
4655 BUG_ON(ret);
4657 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4658 name_len * 2);
4659 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4660 ret = btrfs_update_inode(trans, root, parent_inode);
4662 return ret;
4665 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4666 struct inode *dir, struct dentry *dentry,
4667 struct inode *inode, int backref, u64 index)
4669 int err = btrfs_add_link(trans, dir, inode,
4670 dentry->d_name.name, dentry->d_name.len,
4671 backref, index);
4672 if (!err) {
4673 d_instantiate(dentry, inode);
4674 return 0;
4676 if (err > 0)
4677 err = -EEXIST;
4678 return err;
4681 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4682 int mode, dev_t rdev)
4684 struct btrfs_trans_handle *trans;
4685 struct btrfs_root *root = BTRFS_I(dir)->root;
4686 struct inode *inode = NULL;
4687 int err;
4688 int drop_inode = 0;
4689 u64 objectid;
4690 unsigned long nr = 0;
4691 u64 index = 0;
4693 if (!new_valid_dev(rdev))
4694 return -EINVAL;
4696 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4697 if (err)
4698 return err;
4701 * 2 for inode item and ref
4702 * 2 for dir items
4703 * 1 for xattr if selinux is on
4705 trans = btrfs_start_transaction(root, 5);
4706 if (IS_ERR(trans))
4707 return PTR_ERR(trans);
4709 btrfs_set_trans_block_group(trans, dir);
4711 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4712 dentry->d_name.len, dir->i_ino, objectid,
4713 BTRFS_I(dir)->block_group, mode, &index);
4714 err = PTR_ERR(inode);
4715 if (IS_ERR(inode))
4716 goto out_unlock;
4718 err = btrfs_init_inode_security(trans, inode, dir);
4719 if (err) {
4720 drop_inode = 1;
4721 goto out_unlock;
4724 btrfs_set_trans_block_group(trans, inode);
4725 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4726 if (err)
4727 drop_inode = 1;
4728 else {
4729 inode->i_op = &btrfs_special_inode_operations;
4730 init_special_inode(inode, inode->i_mode, rdev);
4731 btrfs_update_inode(trans, root, inode);
4733 btrfs_update_inode_block_group(trans, inode);
4734 btrfs_update_inode_block_group(trans, dir);
4735 out_unlock:
4736 nr = trans->blocks_used;
4737 btrfs_end_transaction_throttle(trans, root);
4738 btrfs_btree_balance_dirty(root, nr);
4739 if (drop_inode) {
4740 inode_dec_link_count(inode);
4741 iput(inode);
4743 return err;
4746 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4747 int mode, struct nameidata *nd)
4749 struct btrfs_trans_handle *trans;
4750 struct btrfs_root *root = BTRFS_I(dir)->root;
4751 struct inode *inode = NULL;
4752 int drop_inode = 0;
4753 int err;
4754 unsigned long nr = 0;
4755 u64 objectid;
4756 u64 index = 0;
4758 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4759 if (err)
4760 return err;
4762 * 2 for inode item and ref
4763 * 2 for dir items
4764 * 1 for xattr if selinux is on
4766 trans = btrfs_start_transaction(root, 5);
4767 if (IS_ERR(trans))
4768 return PTR_ERR(trans);
4770 btrfs_set_trans_block_group(trans, dir);
4772 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4773 dentry->d_name.len, dir->i_ino, objectid,
4774 BTRFS_I(dir)->block_group, mode, &index);
4775 err = PTR_ERR(inode);
4776 if (IS_ERR(inode))
4777 goto out_unlock;
4779 err = btrfs_init_inode_security(trans, inode, dir);
4780 if (err) {
4781 drop_inode = 1;
4782 goto out_unlock;
4785 btrfs_set_trans_block_group(trans, inode);
4786 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4787 if (err)
4788 drop_inode = 1;
4789 else {
4790 inode->i_mapping->a_ops = &btrfs_aops;
4791 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4792 inode->i_fop = &btrfs_file_operations;
4793 inode->i_op = &btrfs_file_inode_operations;
4794 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4796 btrfs_update_inode_block_group(trans, inode);
4797 btrfs_update_inode_block_group(trans, dir);
4798 out_unlock:
4799 nr = trans->blocks_used;
4800 btrfs_end_transaction_throttle(trans, root);
4801 if (drop_inode) {
4802 inode_dec_link_count(inode);
4803 iput(inode);
4805 btrfs_btree_balance_dirty(root, nr);
4806 return err;
4809 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4810 struct dentry *dentry)
4812 struct btrfs_trans_handle *trans;
4813 struct btrfs_root *root = BTRFS_I(dir)->root;
4814 struct inode *inode = old_dentry->d_inode;
4815 u64 index;
4816 unsigned long nr = 0;
4817 int err;
4818 int drop_inode = 0;
4820 if (inode->i_nlink == 0)
4821 return -ENOENT;
4823 /* do not allow sys_link's with other subvols of the same device */
4824 if (root->objectid != BTRFS_I(inode)->root->objectid)
4825 return -EXDEV;
4827 btrfs_inc_nlink(inode);
4828 inode->i_ctime = CURRENT_TIME;
4830 err = btrfs_set_inode_index(dir, &index);
4831 if (err)
4832 goto fail;
4835 * 2 items for inode and inode ref
4836 * 2 items for dir items
4837 * 1 item for parent inode
4839 trans = btrfs_start_transaction(root, 5);
4840 if (IS_ERR(trans)) {
4841 err = PTR_ERR(trans);
4842 goto fail;
4845 btrfs_set_trans_block_group(trans, dir);
4846 ihold(inode);
4848 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4850 if (err) {
4851 drop_inode = 1;
4852 } else {
4853 struct dentry *parent = dget_parent(dentry);
4854 btrfs_update_inode_block_group(trans, dir);
4855 err = btrfs_update_inode(trans, root, inode);
4856 BUG_ON(err);
4857 btrfs_log_new_name(trans, inode, NULL, parent);
4858 dput(parent);
4861 nr = trans->blocks_used;
4862 btrfs_end_transaction_throttle(trans, root);
4863 fail:
4864 if (drop_inode) {
4865 inode_dec_link_count(inode);
4866 iput(inode);
4868 btrfs_btree_balance_dirty(root, nr);
4869 return err;
4872 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4874 struct inode *inode = NULL;
4875 struct btrfs_trans_handle *trans;
4876 struct btrfs_root *root = BTRFS_I(dir)->root;
4877 int err = 0;
4878 int drop_on_err = 0;
4879 u64 objectid = 0;
4880 u64 index = 0;
4881 unsigned long nr = 1;
4883 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4884 if (err)
4885 return err;
4888 * 2 items for inode and ref
4889 * 2 items for dir items
4890 * 1 for xattr if selinux is on
4892 trans = btrfs_start_transaction(root, 5);
4893 if (IS_ERR(trans))
4894 return PTR_ERR(trans);
4895 btrfs_set_trans_block_group(trans, dir);
4897 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4898 dentry->d_name.len, dir->i_ino, objectid,
4899 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4900 &index);
4901 if (IS_ERR(inode)) {
4902 err = PTR_ERR(inode);
4903 goto out_fail;
4906 drop_on_err = 1;
4908 err = btrfs_init_inode_security(trans, inode, dir);
4909 if (err)
4910 goto out_fail;
4912 inode->i_op = &btrfs_dir_inode_operations;
4913 inode->i_fop = &btrfs_dir_file_operations;
4914 btrfs_set_trans_block_group(trans, inode);
4916 btrfs_i_size_write(inode, 0);
4917 err = btrfs_update_inode(trans, root, inode);
4918 if (err)
4919 goto out_fail;
4921 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4922 dentry->d_name.len, 0, index);
4923 if (err)
4924 goto out_fail;
4926 d_instantiate(dentry, inode);
4927 drop_on_err = 0;
4928 btrfs_update_inode_block_group(trans, inode);
4929 btrfs_update_inode_block_group(trans, dir);
4931 out_fail:
4932 nr = trans->blocks_used;
4933 btrfs_end_transaction_throttle(trans, root);
4934 if (drop_on_err)
4935 iput(inode);
4936 btrfs_btree_balance_dirty(root, nr);
4937 return err;
4940 /* helper for btfs_get_extent. Given an existing extent in the tree,
4941 * and an extent that you want to insert, deal with overlap and insert
4942 * the new extent into the tree.
4944 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4945 struct extent_map *existing,
4946 struct extent_map *em,
4947 u64 map_start, u64 map_len)
4949 u64 start_diff;
4951 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4952 start_diff = map_start - em->start;
4953 em->start = map_start;
4954 em->len = map_len;
4955 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4956 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4957 em->block_start += start_diff;
4958 em->block_len -= start_diff;
4960 return add_extent_mapping(em_tree, em);
4963 static noinline int uncompress_inline(struct btrfs_path *path,
4964 struct inode *inode, struct page *page,
4965 size_t pg_offset, u64 extent_offset,
4966 struct btrfs_file_extent_item *item)
4968 int ret;
4969 struct extent_buffer *leaf = path->nodes[0];
4970 char *tmp;
4971 size_t max_size;
4972 unsigned long inline_size;
4973 unsigned long ptr;
4974 int compress_type;
4976 WARN_ON(pg_offset != 0);
4977 compress_type = btrfs_file_extent_compression(leaf, item);
4978 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4979 inline_size = btrfs_file_extent_inline_item_len(leaf,
4980 btrfs_item_nr(leaf, path->slots[0]));
4981 tmp = kmalloc(inline_size, GFP_NOFS);
4982 ptr = btrfs_file_extent_inline_start(item);
4984 read_extent_buffer(leaf, tmp, ptr, inline_size);
4986 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4987 ret = btrfs_decompress(compress_type, tmp, page,
4988 extent_offset, inline_size, max_size);
4989 if (ret) {
4990 char *kaddr = kmap_atomic(page, KM_USER0);
4991 unsigned long copy_size = min_t(u64,
4992 PAGE_CACHE_SIZE - pg_offset,
4993 max_size - extent_offset);
4994 memset(kaddr + pg_offset, 0, copy_size);
4995 kunmap_atomic(kaddr, KM_USER0);
4997 kfree(tmp);
4998 return 0;
5002 * a bit scary, this does extent mapping from logical file offset to the disk.
5003 * the ugly parts come from merging extents from the disk with the in-ram
5004 * representation. This gets more complex because of the data=ordered code,
5005 * where the in-ram extents might be locked pending data=ordered completion.
5007 * This also copies inline extents directly into the page.
5010 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5011 size_t pg_offset, u64 start, u64 len,
5012 int create)
5014 int ret;
5015 int err = 0;
5016 u64 bytenr;
5017 u64 extent_start = 0;
5018 u64 extent_end = 0;
5019 u64 objectid = inode->i_ino;
5020 u32 found_type;
5021 struct btrfs_path *path = NULL;
5022 struct btrfs_root *root = BTRFS_I(inode)->root;
5023 struct btrfs_file_extent_item *item;
5024 struct extent_buffer *leaf;
5025 struct btrfs_key found_key;
5026 struct extent_map *em = NULL;
5027 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5028 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5029 struct btrfs_trans_handle *trans = NULL;
5030 int compress_type;
5032 again:
5033 read_lock(&em_tree->lock);
5034 em = lookup_extent_mapping(em_tree, start, len);
5035 if (em)
5036 em->bdev = root->fs_info->fs_devices->latest_bdev;
5037 read_unlock(&em_tree->lock);
5039 if (em) {
5040 if (em->start > start || em->start + em->len <= start)
5041 free_extent_map(em);
5042 else if (em->block_start == EXTENT_MAP_INLINE && page)
5043 free_extent_map(em);
5044 else
5045 goto out;
5047 em = alloc_extent_map(GFP_NOFS);
5048 if (!em) {
5049 err = -ENOMEM;
5050 goto out;
5052 em->bdev = root->fs_info->fs_devices->latest_bdev;
5053 em->start = EXTENT_MAP_HOLE;
5054 em->orig_start = EXTENT_MAP_HOLE;
5055 em->len = (u64)-1;
5056 em->block_len = (u64)-1;
5058 if (!path) {
5059 path = btrfs_alloc_path();
5060 BUG_ON(!path);
5063 ret = btrfs_lookup_file_extent(trans, root, path,
5064 objectid, start, trans != NULL);
5065 if (ret < 0) {
5066 err = ret;
5067 goto out;
5070 if (ret != 0) {
5071 if (path->slots[0] == 0)
5072 goto not_found;
5073 path->slots[0]--;
5076 leaf = path->nodes[0];
5077 item = btrfs_item_ptr(leaf, path->slots[0],
5078 struct btrfs_file_extent_item);
5079 /* are we inside the extent that was found? */
5080 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5081 found_type = btrfs_key_type(&found_key);
5082 if (found_key.objectid != objectid ||
5083 found_type != BTRFS_EXTENT_DATA_KEY) {
5084 goto not_found;
5087 found_type = btrfs_file_extent_type(leaf, item);
5088 extent_start = found_key.offset;
5089 compress_type = btrfs_file_extent_compression(leaf, item);
5090 if (found_type == BTRFS_FILE_EXTENT_REG ||
5091 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5092 extent_end = extent_start +
5093 btrfs_file_extent_num_bytes(leaf, item);
5094 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5095 size_t size;
5096 size = btrfs_file_extent_inline_len(leaf, item);
5097 extent_end = (extent_start + size + root->sectorsize - 1) &
5098 ~((u64)root->sectorsize - 1);
5101 if (start >= extent_end) {
5102 path->slots[0]++;
5103 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5104 ret = btrfs_next_leaf(root, path);
5105 if (ret < 0) {
5106 err = ret;
5107 goto out;
5109 if (ret > 0)
5110 goto not_found;
5111 leaf = path->nodes[0];
5113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5114 if (found_key.objectid != objectid ||
5115 found_key.type != BTRFS_EXTENT_DATA_KEY)
5116 goto not_found;
5117 if (start + len <= found_key.offset)
5118 goto not_found;
5119 em->start = start;
5120 em->len = found_key.offset - start;
5121 goto not_found_em;
5124 if (found_type == BTRFS_FILE_EXTENT_REG ||
5125 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5126 em->start = extent_start;
5127 em->len = extent_end - extent_start;
5128 em->orig_start = extent_start -
5129 btrfs_file_extent_offset(leaf, item);
5130 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5131 if (bytenr == 0) {
5132 em->block_start = EXTENT_MAP_HOLE;
5133 goto insert;
5135 if (compress_type != BTRFS_COMPRESS_NONE) {
5136 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5137 em->compress_type = compress_type;
5138 em->block_start = bytenr;
5139 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5140 item);
5141 } else {
5142 bytenr += btrfs_file_extent_offset(leaf, item);
5143 em->block_start = bytenr;
5144 em->block_len = em->len;
5145 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5146 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5148 goto insert;
5149 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5150 unsigned long ptr;
5151 char *map;
5152 size_t size;
5153 size_t extent_offset;
5154 size_t copy_size;
5156 em->block_start = EXTENT_MAP_INLINE;
5157 if (!page || create) {
5158 em->start = extent_start;
5159 em->len = extent_end - extent_start;
5160 goto out;
5163 size = btrfs_file_extent_inline_len(leaf, item);
5164 extent_offset = page_offset(page) + pg_offset - extent_start;
5165 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5166 size - extent_offset);
5167 em->start = extent_start + extent_offset;
5168 em->len = (copy_size + root->sectorsize - 1) &
5169 ~((u64)root->sectorsize - 1);
5170 em->orig_start = EXTENT_MAP_INLINE;
5171 if (compress_type) {
5172 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5173 em->compress_type = compress_type;
5175 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5176 if (create == 0 && !PageUptodate(page)) {
5177 if (btrfs_file_extent_compression(leaf, item) !=
5178 BTRFS_COMPRESS_NONE) {
5179 ret = uncompress_inline(path, inode, page,
5180 pg_offset,
5181 extent_offset, item);
5182 BUG_ON(ret);
5183 } else {
5184 map = kmap(page);
5185 read_extent_buffer(leaf, map + pg_offset, ptr,
5186 copy_size);
5187 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5188 memset(map + pg_offset + copy_size, 0,
5189 PAGE_CACHE_SIZE - pg_offset -
5190 copy_size);
5192 kunmap(page);
5194 flush_dcache_page(page);
5195 } else if (create && PageUptodate(page)) {
5196 WARN_ON(1);
5197 if (!trans) {
5198 kunmap(page);
5199 free_extent_map(em);
5200 em = NULL;
5201 btrfs_release_path(root, path);
5202 trans = btrfs_join_transaction(root, 1);
5203 if (IS_ERR(trans))
5204 return ERR_CAST(trans);
5205 goto again;
5207 map = kmap(page);
5208 write_extent_buffer(leaf, map + pg_offset, ptr,
5209 copy_size);
5210 kunmap(page);
5211 btrfs_mark_buffer_dirty(leaf);
5213 set_extent_uptodate(io_tree, em->start,
5214 extent_map_end(em) - 1, GFP_NOFS);
5215 goto insert;
5216 } else {
5217 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5218 WARN_ON(1);
5220 not_found:
5221 em->start = start;
5222 em->len = len;
5223 not_found_em:
5224 em->block_start = EXTENT_MAP_HOLE;
5225 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5226 insert:
5227 btrfs_release_path(root, path);
5228 if (em->start > start || extent_map_end(em) <= start) {
5229 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5230 "[%llu %llu]\n", (unsigned long long)em->start,
5231 (unsigned long long)em->len,
5232 (unsigned long long)start,
5233 (unsigned long long)len);
5234 err = -EIO;
5235 goto out;
5238 err = 0;
5239 write_lock(&em_tree->lock);
5240 ret = add_extent_mapping(em_tree, em);
5241 /* it is possible that someone inserted the extent into the tree
5242 * while we had the lock dropped. It is also possible that
5243 * an overlapping map exists in the tree
5245 if (ret == -EEXIST) {
5246 struct extent_map *existing;
5248 ret = 0;
5250 existing = lookup_extent_mapping(em_tree, start, len);
5251 if (existing && (existing->start > start ||
5252 existing->start + existing->len <= start)) {
5253 free_extent_map(existing);
5254 existing = NULL;
5256 if (!existing) {
5257 existing = lookup_extent_mapping(em_tree, em->start,
5258 em->len);
5259 if (existing) {
5260 err = merge_extent_mapping(em_tree, existing,
5261 em, start,
5262 root->sectorsize);
5263 free_extent_map(existing);
5264 if (err) {
5265 free_extent_map(em);
5266 em = NULL;
5268 } else {
5269 err = -EIO;
5270 free_extent_map(em);
5271 em = NULL;
5273 } else {
5274 free_extent_map(em);
5275 em = existing;
5276 err = 0;
5279 write_unlock(&em_tree->lock);
5280 out:
5282 trace_btrfs_get_extent(root, em);
5284 if (path)
5285 btrfs_free_path(path);
5286 if (trans) {
5287 ret = btrfs_end_transaction(trans, root);
5288 if (!err)
5289 err = ret;
5291 if (err) {
5292 free_extent_map(em);
5293 return ERR_PTR(err);
5295 return em;
5298 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5299 size_t pg_offset, u64 start, u64 len,
5300 int create)
5302 struct extent_map *em;
5303 struct extent_map *hole_em = NULL;
5304 u64 range_start = start;
5305 u64 end;
5306 u64 found;
5307 u64 found_end;
5308 int err = 0;
5310 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5311 if (IS_ERR(em))
5312 return em;
5313 if (em) {
5315 * if our em maps to a hole, there might
5316 * actually be delalloc bytes behind it
5318 if (em->block_start != EXTENT_MAP_HOLE)
5319 return em;
5320 else
5321 hole_em = em;
5324 /* check to see if we've wrapped (len == -1 or similar) */
5325 end = start + len;
5326 if (end < start)
5327 end = (u64)-1;
5328 else
5329 end -= 1;
5331 em = NULL;
5333 /* ok, we didn't find anything, lets look for delalloc */
5334 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5335 end, len, EXTENT_DELALLOC, 1);
5336 found_end = range_start + found;
5337 if (found_end < range_start)
5338 found_end = (u64)-1;
5341 * we didn't find anything useful, return
5342 * the original results from get_extent()
5344 if (range_start > end || found_end <= start) {
5345 em = hole_em;
5346 hole_em = NULL;
5347 goto out;
5350 /* adjust the range_start to make sure it doesn't
5351 * go backwards from the start they passed in
5353 range_start = max(start,range_start);
5354 found = found_end - range_start;
5356 if (found > 0) {
5357 u64 hole_start = start;
5358 u64 hole_len = len;
5360 em = alloc_extent_map(GFP_NOFS);
5361 if (!em) {
5362 err = -ENOMEM;
5363 goto out;
5366 * when btrfs_get_extent can't find anything it
5367 * returns one huge hole
5369 * make sure what it found really fits our range, and
5370 * adjust to make sure it is based on the start from
5371 * the caller
5373 if (hole_em) {
5374 u64 calc_end = extent_map_end(hole_em);
5376 if (calc_end <= start || (hole_em->start > end)) {
5377 free_extent_map(hole_em);
5378 hole_em = NULL;
5379 } else {
5380 hole_start = max(hole_em->start, start);
5381 hole_len = calc_end - hole_start;
5384 em->bdev = NULL;
5385 if (hole_em && range_start > hole_start) {
5386 /* our hole starts before our delalloc, so we
5387 * have to return just the parts of the hole
5388 * that go until the delalloc starts
5390 em->len = min(hole_len,
5391 range_start - hole_start);
5392 em->start = hole_start;
5393 em->orig_start = hole_start;
5395 * don't adjust block start at all,
5396 * it is fixed at EXTENT_MAP_HOLE
5398 em->block_start = hole_em->block_start;
5399 em->block_len = hole_len;
5400 } else {
5401 em->start = range_start;
5402 em->len = found;
5403 em->orig_start = range_start;
5404 em->block_start = EXTENT_MAP_DELALLOC;
5405 em->block_len = found;
5407 } else if (hole_em) {
5408 return hole_em;
5410 out:
5412 free_extent_map(hole_em);
5413 if (err) {
5414 free_extent_map(em);
5415 return ERR_PTR(err);
5417 return em;
5420 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5421 u64 start, u64 len)
5423 struct btrfs_root *root = BTRFS_I(inode)->root;
5424 struct btrfs_trans_handle *trans;
5425 struct extent_map *em;
5426 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5427 struct btrfs_key ins;
5428 u64 alloc_hint;
5429 int ret;
5431 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5433 trans = btrfs_join_transaction(root, 0);
5434 if (IS_ERR(trans))
5435 return ERR_CAST(trans);
5437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5439 alloc_hint = get_extent_allocation_hint(inode, start, len);
5440 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5441 alloc_hint, (u64)-1, &ins, 1);
5442 if (ret) {
5443 em = ERR_PTR(ret);
5444 goto out;
5447 em = alloc_extent_map(GFP_NOFS);
5448 if (!em) {
5449 em = ERR_PTR(-ENOMEM);
5450 goto out;
5453 em->start = start;
5454 em->orig_start = em->start;
5455 em->len = ins.offset;
5457 em->block_start = ins.objectid;
5458 em->block_len = ins.offset;
5459 em->bdev = root->fs_info->fs_devices->latest_bdev;
5460 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5462 while (1) {
5463 write_lock(&em_tree->lock);
5464 ret = add_extent_mapping(em_tree, em);
5465 write_unlock(&em_tree->lock);
5466 if (ret != -EEXIST)
5467 break;
5468 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5471 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5472 ins.offset, ins.offset, 0);
5473 if (ret) {
5474 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5475 em = ERR_PTR(ret);
5477 out:
5478 btrfs_end_transaction(trans, root);
5479 return em;
5483 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5484 * block must be cow'd
5486 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5487 struct inode *inode, u64 offset, u64 len)
5489 struct btrfs_path *path;
5490 int ret;
5491 struct extent_buffer *leaf;
5492 struct btrfs_root *root = BTRFS_I(inode)->root;
5493 struct btrfs_file_extent_item *fi;
5494 struct btrfs_key key;
5495 u64 disk_bytenr;
5496 u64 backref_offset;
5497 u64 extent_end;
5498 u64 num_bytes;
5499 int slot;
5500 int found_type;
5502 path = btrfs_alloc_path();
5503 if (!path)
5504 return -ENOMEM;
5506 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5507 offset, 0);
5508 if (ret < 0)
5509 goto out;
5511 slot = path->slots[0];
5512 if (ret == 1) {
5513 if (slot == 0) {
5514 /* can't find the item, must cow */
5515 ret = 0;
5516 goto out;
5518 slot--;
5520 ret = 0;
5521 leaf = path->nodes[0];
5522 btrfs_item_key_to_cpu(leaf, &key, slot);
5523 if (key.objectid != inode->i_ino ||
5524 key.type != BTRFS_EXTENT_DATA_KEY) {
5525 /* not our file or wrong item type, must cow */
5526 goto out;
5529 if (key.offset > offset) {
5530 /* Wrong offset, must cow */
5531 goto out;
5534 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5535 found_type = btrfs_file_extent_type(leaf, fi);
5536 if (found_type != BTRFS_FILE_EXTENT_REG &&
5537 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5538 /* not a regular extent, must cow */
5539 goto out;
5541 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5542 backref_offset = btrfs_file_extent_offset(leaf, fi);
5544 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5545 if (extent_end < offset + len) {
5546 /* extent doesn't include our full range, must cow */
5547 goto out;
5550 if (btrfs_extent_readonly(root, disk_bytenr))
5551 goto out;
5554 * look for other files referencing this extent, if we
5555 * find any we must cow
5557 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5558 key.offset - backref_offset, disk_bytenr))
5559 goto out;
5562 * adjust disk_bytenr and num_bytes to cover just the bytes
5563 * in this extent we are about to write. If there
5564 * are any csums in that range we have to cow in order
5565 * to keep the csums correct
5567 disk_bytenr += backref_offset;
5568 disk_bytenr += offset - key.offset;
5569 num_bytes = min(offset + len, extent_end) - offset;
5570 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5571 goto out;
5573 * all of the above have passed, it is safe to overwrite this extent
5574 * without cow
5576 ret = 1;
5577 out:
5578 btrfs_free_path(path);
5579 return ret;
5582 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5583 struct buffer_head *bh_result, int create)
5585 struct extent_map *em;
5586 struct btrfs_root *root = BTRFS_I(inode)->root;
5587 u64 start = iblock << inode->i_blkbits;
5588 u64 len = bh_result->b_size;
5589 struct btrfs_trans_handle *trans;
5591 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5592 if (IS_ERR(em))
5593 return PTR_ERR(em);
5596 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5597 * io. INLINE is special, and we could probably kludge it in here, but
5598 * it's still buffered so for safety lets just fall back to the generic
5599 * buffered path.
5601 * For COMPRESSED we _have_ to read the entire extent in so we can
5602 * decompress it, so there will be buffering required no matter what we
5603 * do, so go ahead and fallback to buffered.
5605 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5606 * to buffered IO. Don't blame me, this is the price we pay for using
5607 * the generic code.
5609 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5610 em->block_start == EXTENT_MAP_INLINE) {
5611 free_extent_map(em);
5612 return -ENOTBLK;
5615 /* Just a good old fashioned hole, return */
5616 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5617 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5618 free_extent_map(em);
5619 /* DIO will do one hole at a time, so just unlock a sector */
5620 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5621 start + root->sectorsize - 1, GFP_NOFS);
5622 return 0;
5626 * We don't allocate a new extent in the following cases
5628 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5629 * existing extent.
5630 * 2) The extent is marked as PREALLOC. We're good to go here and can
5631 * just use the extent.
5634 if (!create) {
5635 len = em->len - (start - em->start);
5636 goto map;
5639 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5640 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5641 em->block_start != EXTENT_MAP_HOLE)) {
5642 int type;
5643 int ret;
5644 u64 block_start;
5646 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5647 type = BTRFS_ORDERED_PREALLOC;
5648 else
5649 type = BTRFS_ORDERED_NOCOW;
5650 len = min(len, em->len - (start - em->start));
5651 block_start = em->block_start + (start - em->start);
5654 * we're not going to log anything, but we do need
5655 * to make sure the current transaction stays open
5656 * while we look for nocow cross refs
5658 trans = btrfs_join_transaction(root, 0);
5659 if (IS_ERR(trans))
5660 goto must_cow;
5662 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5663 ret = btrfs_add_ordered_extent_dio(inode, start,
5664 block_start, len, len, type);
5665 btrfs_end_transaction(trans, root);
5666 if (ret) {
5667 free_extent_map(em);
5668 return ret;
5670 goto unlock;
5672 btrfs_end_transaction(trans, root);
5674 must_cow:
5676 * this will cow the extent, reset the len in case we changed
5677 * it above
5679 len = bh_result->b_size;
5680 free_extent_map(em);
5681 em = btrfs_new_extent_direct(inode, start, len);
5682 if (IS_ERR(em))
5683 return PTR_ERR(em);
5684 len = min(len, em->len - (start - em->start));
5685 unlock:
5686 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5687 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5688 0, NULL, GFP_NOFS);
5689 map:
5690 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5691 inode->i_blkbits;
5692 bh_result->b_size = len;
5693 bh_result->b_bdev = em->bdev;
5694 set_buffer_mapped(bh_result);
5695 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5696 set_buffer_new(bh_result);
5698 free_extent_map(em);
5700 return 0;
5703 struct btrfs_dio_private {
5704 struct inode *inode;
5705 u64 logical_offset;
5706 u64 disk_bytenr;
5707 u64 bytes;
5708 u32 *csums;
5709 void *private;
5711 /* number of bios pending for this dio */
5712 atomic_t pending_bios;
5714 /* IO errors */
5715 int errors;
5717 struct bio *orig_bio;
5720 static void btrfs_endio_direct_read(struct bio *bio, int err)
5722 struct btrfs_dio_private *dip = bio->bi_private;
5723 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5724 struct bio_vec *bvec = bio->bi_io_vec;
5725 struct inode *inode = dip->inode;
5726 struct btrfs_root *root = BTRFS_I(inode)->root;
5727 u64 start;
5728 u32 *private = dip->csums;
5730 start = dip->logical_offset;
5731 do {
5732 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5733 struct page *page = bvec->bv_page;
5734 char *kaddr;
5735 u32 csum = ~(u32)0;
5736 unsigned long flags;
5738 local_irq_save(flags);
5739 kaddr = kmap_atomic(page, KM_IRQ0);
5740 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5741 csum, bvec->bv_len);
5742 btrfs_csum_final(csum, (char *)&csum);
5743 kunmap_atomic(kaddr, KM_IRQ0);
5744 local_irq_restore(flags);
5746 flush_dcache_page(bvec->bv_page);
5747 if (csum != *private) {
5748 printk(KERN_ERR "btrfs csum failed ino %lu off"
5749 " %llu csum %u private %u\n",
5750 inode->i_ino, (unsigned long long)start,
5751 csum, *private);
5752 err = -EIO;
5756 start += bvec->bv_len;
5757 private++;
5758 bvec++;
5759 } while (bvec <= bvec_end);
5761 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5762 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5763 bio->bi_private = dip->private;
5765 kfree(dip->csums);
5766 kfree(dip);
5768 /* If we had a csum failure make sure to clear the uptodate flag */
5769 if (err)
5770 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5771 dio_end_io(bio, err);
5774 static void btrfs_endio_direct_write(struct bio *bio, int err)
5776 struct btrfs_dio_private *dip = bio->bi_private;
5777 struct inode *inode = dip->inode;
5778 struct btrfs_root *root = BTRFS_I(inode)->root;
5779 struct btrfs_trans_handle *trans;
5780 struct btrfs_ordered_extent *ordered = NULL;
5781 struct extent_state *cached_state = NULL;
5782 u64 ordered_offset = dip->logical_offset;
5783 u64 ordered_bytes = dip->bytes;
5784 int ret;
5786 if (err)
5787 goto out_done;
5788 again:
5789 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5790 &ordered_offset,
5791 ordered_bytes);
5792 if (!ret)
5793 goto out_test;
5795 BUG_ON(!ordered);
5797 trans = btrfs_join_transaction(root, 1);
5798 if (IS_ERR(trans)) {
5799 err = -ENOMEM;
5800 goto out;
5802 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5804 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5805 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5806 if (!ret)
5807 ret = btrfs_update_inode(trans, root, inode);
5808 err = ret;
5809 goto out;
5812 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5813 ordered->file_offset + ordered->len - 1, 0,
5814 &cached_state, GFP_NOFS);
5816 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5817 ret = btrfs_mark_extent_written(trans, inode,
5818 ordered->file_offset,
5819 ordered->file_offset +
5820 ordered->len);
5821 if (ret) {
5822 err = ret;
5823 goto out_unlock;
5825 } else {
5826 ret = insert_reserved_file_extent(trans, inode,
5827 ordered->file_offset,
5828 ordered->start,
5829 ordered->disk_len,
5830 ordered->len,
5831 ordered->len,
5832 0, 0, 0,
5833 BTRFS_FILE_EXTENT_REG);
5834 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5835 ordered->file_offset, ordered->len);
5836 if (ret) {
5837 err = ret;
5838 WARN_ON(1);
5839 goto out_unlock;
5843 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5844 btrfs_ordered_update_i_size(inode, 0, ordered);
5845 btrfs_update_inode(trans, root, inode);
5846 out_unlock:
5847 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5848 ordered->file_offset + ordered->len - 1,
5849 &cached_state, GFP_NOFS);
5850 out:
5851 btrfs_delalloc_release_metadata(inode, ordered->len);
5852 btrfs_end_transaction(trans, root);
5853 ordered_offset = ordered->file_offset + ordered->len;
5854 btrfs_put_ordered_extent(ordered);
5855 btrfs_put_ordered_extent(ordered);
5857 out_test:
5859 * our bio might span multiple ordered extents. If we haven't
5860 * completed the accounting for the whole dio, go back and try again
5862 if (ordered_offset < dip->logical_offset + dip->bytes) {
5863 ordered_bytes = dip->logical_offset + dip->bytes -
5864 ordered_offset;
5865 goto again;
5867 out_done:
5868 bio->bi_private = dip->private;
5870 kfree(dip->csums);
5871 kfree(dip);
5873 /* If we had an error make sure to clear the uptodate flag */
5874 if (err)
5875 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5876 dio_end_io(bio, err);
5879 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5880 struct bio *bio, int mirror_num,
5881 unsigned long bio_flags, u64 offset)
5883 int ret;
5884 struct btrfs_root *root = BTRFS_I(inode)->root;
5885 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5886 BUG_ON(ret);
5887 return 0;
5890 static void btrfs_end_dio_bio(struct bio *bio, int err)
5892 struct btrfs_dio_private *dip = bio->bi_private;
5894 if (err) {
5895 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5896 "sector %#Lx len %u err no %d\n",
5897 dip->inode->i_ino, bio->bi_rw,
5898 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5899 dip->errors = 1;
5902 * before atomic variable goto zero, we must make sure
5903 * dip->errors is perceived to be set.
5905 smp_mb__before_atomic_dec();
5908 /* if there are more bios still pending for this dio, just exit */
5909 if (!atomic_dec_and_test(&dip->pending_bios))
5910 goto out;
5912 if (dip->errors)
5913 bio_io_error(dip->orig_bio);
5914 else {
5915 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5916 bio_endio(dip->orig_bio, 0);
5918 out:
5919 bio_put(bio);
5922 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5923 u64 first_sector, gfp_t gfp_flags)
5925 int nr_vecs = bio_get_nr_vecs(bdev);
5926 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5929 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5930 int rw, u64 file_offset, int skip_sum,
5931 u32 *csums)
5933 int write = rw & REQ_WRITE;
5934 struct btrfs_root *root = BTRFS_I(inode)->root;
5935 int ret;
5937 bio_get(bio);
5938 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5939 if (ret)
5940 goto err;
5942 if (write && !skip_sum) {
5943 ret = btrfs_wq_submit_bio(root->fs_info,
5944 inode, rw, bio, 0, 0,
5945 file_offset,
5946 __btrfs_submit_bio_start_direct_io,
5947 __btrfs_submit_bio_done);
5948 goto err;
5949 } else if (!skip_sum) {
5950 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5951 file_offset, csums);
5952 if (ret)
5953 goto err;
5956 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5957 err:
5958 bio_put(bio);
5959 return ret;
5962 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5963 int skip_sum)
5965 struct inode *inode = dip->inode;
5966 struct btrfs_root *root = BTRFS_I(inode)->root;
5967 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5968 struct bio *bio;
5969 struct bio *orig_bio = dip->orig_bio;
5970 struct bio_vec *bvec = orig_bio->bi_io_vec;
5971 u64 start_sector = orig_bio->bi_sector;
5972 u64 file_offset = dip->logical_offset;
5973 u64 submit_len = 0;
5974 u64 map_length;
5975 int nr_pages = 0;
5976 u32 *csums = dip->csums;
5977 int ret = 0;
5978 int write = rw & REQ_WRITE;
5980 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5981 if (!bio)
5982 return -ENOMEM;
5983 bio->bi_private = dip;
5984 bio->bi_end_io = btrfs_end_dio_bio;
5985 atomic_inc(&dip->pending_bios);
5987 map_length = orig_bio->bi_size;
5988 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5989 &map_length, NULL, 0);
5990 if (ret) {
5991 bio_put(bio);
5992 return -EIO;
5995 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5996 if (unlikely(map_length < submit_len + bvec->bv_len ||
5997 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5998 bvec->bv_offset) < bvec->bv_len)) {
6000 * inc the count before we submit the bio so
6001 * we know the end IO handler won't happen before
6002 * we inc the count. Otherwise, the dip might get freed
6003 * before we're done setting it up
6005 atomic_inc(&dip->pending_bios);
6006 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6007 file_offset, skip_sum,
6008 csums);
6009 if (ret) {
6010 bio_put(bio);
6011 atomic_dec(&dip->pending_bios);
6012 goto out_err;
6015 /* Write's use the ordered csums */
6016 if (!write && !skip_sum)
6017 csums = csums + nr_pages;
6018 start_sector += submit_len >> 9;
6019 file_offset += submit_len;
6021 submit_len = 0;
6022 nr_pages = 0;
6024 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6025 start_sector, GFP_NOFS);
6026 if (!bio)
6027 goto out_err;
6028 bio->bi_private = dip;
6029 bio->bi_end_io = btrfs_end_dio_bio;
6031 map_length = orig_bio->bi_size;
6032 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6033 &map_length, NULL, 0);
6034 if (ret) {
6035 bio_put(bio);
6036 goto out_err;
6038 } else {
6039 submit_len += bvec->bv_len;
6040 nr_pages ++;
6041 bvec++;
6045 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6046 csums);
6047 if (!ret)
6048 return 0;
6050 bio_put(bio);
6051 out_err:
6052 dip->errors = 1;
6054 * before atomic variable goto zero, we must
6055 * make sure dip->errors is perceived to be set.
6057 smp_mb__before_atomic_dec();
6058 if (atomic_dec_and_test(&dip->pending_bios))
6059 bio_io_error(dip->orig_bio);
6061 /* bio_end_io() will handle error, so we needn't return it */
6062 return 0;
6065 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6066 loff_t file_offset)
6068 struct btrfs_root *root = BTRFS_I(inode)->root;
6069 struct btrfs_dio_private *dip;
6070 struct bio_vec *bvec = bio->bi_io_vec;
6071 int skip_sum;
6072 int write = rw & REQ_WRITE;
6073 int ret = 0;
6075 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6077 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6078 if (!dip) {
6079 ret = -ENOMEM;
6080 goto free_ordered;
6082 dip->csums = NULL;
6084 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6085 if (!write && !skip_sum) {
6086 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6087 if (!dip->csums) {
6088 kfree(dip);
6089 ret = -ENOMEM;
6090 goto free_ordered;
6094 dip->private = bio->bi_private;
6095 dip->inode = inode;
6096 dip->logical_offset = file_offset;
6098 dip->bytes = 0;
6099 do {
6100 dip->bytes += bvec->bv_len;
6101 bvec++;
6102 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6104 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6105 bio->bi_private = dip;
6106 dip->errors = 0;
6107 dip->orig_bio = bio;
6108 atomic_set(&dip->pending_bios, 0);
6110 if (write)
6111 bio->bi_end_io = btrfs_endio_direct_write;
6112 else
6113 bio->bi_end_io = btrfs_endio_direct_read;
6115 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6116 if (!ret)
6117 return;
6118 free_ordered:
6120 * If this is a write, we need to clean up the reserved space and kill
6121 * the ordered extent.
6123 if (write) {
6124 struct btrfs_ordered_extent *ordered;
6125 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6126 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6127 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6128 btrfs_free_reserved_extent(root, ordered->start,
6129 ordered->disk_len);
6130 btrfs_put_ordered_extent(ordered);
6131 btrfs_put_ordered_extent(ordered);
6133 bio_endio(bio, ret);
6136 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6137 const struct iovec *iov, loff_t offset,
6138 unsigned long nr_segs)
6140 int seg;
6141 size_t size;
6142 unsigned long addr;
6143 unsigned blocksize_mask = root->sectorsize - 1;
6144 ssize_t retval = -EINVAL;
6145 loff_t end = offset;
6147 if (offset & blocksize_mask)
6148 goto out;
6150 /* Check the memory alignment. Blocks cannot straddle pages */
6151 for (seg = 0; seg < nr_segs; seg++) {
6152 addr = (unsigned long)iov[seg].iov_base;
6153 size = iov[seg].iov_len;
6154 end += size;
6155 if ((addr & blocksize_mask) || (size & blocksize_mask))
6156 goto out;
6158 retval = 0;
6159 out:
6160 return retval;
6162 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6163 const struct iovec *iov, loff_t offset,
6164 unsigned long nr_segs)
6166 struct file *file = iocb->ki_filp;
6167 struct inode *inode = file->f_mapping->host;
6168 struct btrfs_ordered_extent *ordered;
6169 struct extent_state *cached_state = NULL;
6170 u64 lockstart, lockend;
6171 ssize_t ret;
6172 int writing = rw & WRITE;
6173 int write_bits = 0;
6174 size_t count = iov_length(iov, nr_segs);
6176 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6177 offset, nr_segs)) {
6178 return 0;
6181 lockstart = offset;
6182 lockend = offset + count - 1;
6184 if (writing) {
6185 ret = btrfs_delalloc_reserve_space(inode, count);
6186 if (ret)
6187 goto out;
6190 while (1) {
6191 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6192 0, &cached_state, GFP_NOFS);
6194 * We're concerned with the entire range that we're going to be
6195 * doing DIO to, so we need to make sure theres no ordered
6196 * extents in this range.
6198 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6199 lockend - lockstart + 1);
6200 if (!ordered)
6201 break;
6202 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6203 &cached_state, GFP_NOFS);
6204 btrfs_start_ordered_extent(inode, ordered, 1);
6205 btrfs_put_ordered_extent(ordered);
6206 cond_resched();
6210 * we don't use btrfs_set_extent_delalloc because we don't want
6211 * the dirty or uptodate bits
6213 if (writing) {
6214 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6215 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6216 EXTENT_DELALLOC, 0, NULL, &cached_state,
6217 GFP_NOFS);
6218 if (ret) {
6219 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6220 lockend, EXTENT_LOCKED | write_bits,
6221 1, 0, &cached_state, GFP_NOFS);
6222 goto out;
6226 free_extent_state(cached_state);
6227 cached_state = NULL;
6229 ret = __blockdev_direct_IO(rw, iocb, inode,
6230 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6231 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6232 btrfs_submit_direct, 0);
6234 if (ret < 0 && ret != -EIOCBQUEUED) {
6235 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6236 offset + iov_length(iov, nr_segs) - 1,
6237 EXTENT_LOCKED | write_bits, 1, 0,
6238 &cached_state, GFP_NOFS);
6239 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6241 * We're falling back to buffered, unlock the section we didn't
6242 * do IO on.
6244 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6245 offset + iov_length(iov, nr_segs) - 1,
6246 EXTENT_LOCKED | write_bits, 1, 0,
6247 &cached_state, GFP_NOFS);
6249 out:
6250 free_extent_state(cached_state);
6251 return ret;
6254 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6255 __u64 start, __u64 len)
6257 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6260 int btrfs_readpage(struct file *file, struct page *page)
6262 struct extent_io_tree *tree;
6263 tree = &BTRFS_I(page->mapping->host)->io_tree;
6264 return extent_read_full_page(tree, page, btrfs_get_extent);
6267 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6269 struct extent_io_tree *tree;
6272 if (current->flags & PF_MEMALLOC) {
6273 redirty_page_for_writepage(wbc, page);
6274 unlock_page(page);
6275 return 0;
6277 tree = &BTRFS_I(page->mapping->host)->io_tree;
6278 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6281 int btrfs_writepages(struct address_space *mapping,
6282 struct writeback_control *wbc)
6284 struct extent_io_tree *tree;
6286 tree = &BTRFS_I(mapping->host)->io_tree;
6287 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6290 static int
6291 btrfs_readpages(struct file *file, struct address_space *mapping,
6292 struct list_head *pages, unsigned nr_pages)
6294 struct extent_io_tree *tree;
6295 tree = &BTRFS_I(mapping->host)->io_tree;
6296 return extent_readpages(tree, mapping, pages, nr_pages,
6297 btrfs_get_extent);
6299 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6301 struct extent_io_tree *tree;
6302 struct extent_map_tree *map;
6303 int ret;
6305 tree = &BTRFS_I(page->mapping->host)->io_tree;
6306 map = &BTRFS_I(page->mapping->host)->extent_tree;
6307 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6308 if (ret == 1) {
6309 ClearPagePrivate(page);
6310 set_page_private(page, 0);
6311 page_cache_release(page);
6313 return ret;
6316 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6318 if (PageWriteback(page) || PageDirty(page))
6319 return 0;
6320 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6323 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6325 struct extent_io_tree *tree;
6326 struct btrfs_ordered_extent *ordered;
6327 struct extent_state *cached_state = NULL;
6328 u64 page_start = page_offset(page);
6329 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6333 * we have the page locked, so new writeback can't start,
6334 * and the dirty bit won't be cleared while we are here.
6336 * Wait for IO on this page so that we can safely clear
6337 * the PagePrivate2 bit and do ordered accounting
6339 wait_on_page_writeback(page);
6341 tree = &BTRFS_I(page->mapping->host)->io_tree;
6342 if (offset) {
6343 btrfs_releasepage(page, GFP_NOFS);
6344 return;
6346 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6347 GFP_NOFS);
6348 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6349 page_offset(page));
6350 if (ordered) {
6352 * IO on this page will never be started, so we need
6353 * to account for any ordered extents now
6355 clear_extent_bit(tree, page_start, page_end,
6356 EXTENT_DIRTY | EXTENT_DELALLOC |
6357 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6358 &cached_state, GFP_NOFS);
6360 * whoever cleared the private bit is responsible
6361 * for the finish_ordered_io
6363 if (TestClearPagePrivate2(page)) {
6364 btrfs_finish_ordered_io(page->mapping->host,
6365 page_start, page_end);
6367 btrfs_put_ordered_extent(ordered);
6368 cached_state = NULL;
6369 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6370 GFP_NOFS);
6372 clear_extent_bit(tree, page_start, page_end,
6373 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6374 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6375 __btrfs_releasepage(page, GFP_NOFS);
6377 ClearPageChecked(page);
6378 if (PagePrivate(page)) {
6379 ClearPagePrivate(page);
6380 set_page_private(page, 0);
6381 page_cache_release(page);
6386 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6387 * called from a page fault handler when a page is first dirtied. Hence we must
6388 * be careful to check for EOF conditions here. We set the page up correctly
6389 * for a written page which means we get ENOSPC checking when writing into
6390 * holes and correct delalloc and unwritten extent mapping on filesystems that
6391 * support these features.
6393 * We are not allowed to take the i_mutex here so we have to play games to
6394 * protect against truncate races as the page could now be beyond EOF. Because
6395 * vmtruncate() writes the inode size before removing pages, once we have the
6396 * page lock we can determine safely if the page is beyond EOF. If it is not
6397 * beyond EOF, then the page is guaranteed safe against truncation until we
6398 * unlock the page.
6400 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6402 struct page *page = vmf->page;
6403 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6404 struct btrfs_root *root = BTRFS_I(inode)->root;
6405 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6406 struct btrfs_ordered_extent *ordered;
6407 struct extent_state *cached_state = NULL;
6408 char *kaddr;
6409 unsigned long zero_start;
6410 loff_t size;
6411 int ret;
6412 u64 page_start;
6413 u64 page_end;
6415 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6416 if (ret) {
6417 if (ret == -ENOMEM)
6418 ret = VM_FAULT_OOM;
6419 else /* -ENOSPC, -EIO, etc */
6420 ret = VM_FAULT_SIGBUS;
6421 goto out;
6424 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6425 again:
6426 lock_page(page);
6427 size = i_size_read(inode);
6428 page_start = page_offset(page);
6429 page_end = page_start + PAGE_CACHE_SIZE - 1;
6431 if ((page->mapping != inode->i_mapping) ||
6432 (page_start >= size)) {
6433 /* page got truncated out from underneath us */
6434 goto out_unlock;
6436 wait_on_page_writeback(page);
6438 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6439 GFP_NOFS);
6440 set_page_extent_mapped(page);
6443 * we can't set the delalloc bits if there are pending ordered
6444 * extents. Drop our locks and wait for them to finish
6446 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6447 if (ordered) {
6448 unlock_extent_cached(io_tree, page_start, page_end,
6449 &cached_state, GFP_NOFS);
6450 unlock_page(page);
6451 btrfs_start_ordered_extent(inode, ordered, 1);
6452 btrfs_put_ordered_extent(ordered);
6453 goto again;
6457 * XXX - page_mkwrite gets called every time the page is dirtied, even
6458 * if it was already dirty, so for space accounting reasons we need to
6459 * clear any delalloc bits for the range we are fixing to save. There
6460 * is probably a better way to do this, but for now keep consistent with
6461 * prepare_pages in the normal write path.
6463 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6464 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6465 0, 0, &cached_state, GFP_NOFS);
6467 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6468 &cached_state);
6469 if (ret) {
6470 unlock_extent_cached(io_tree, page_start, page_end,
6471 &cached_state, GFP_NOFS);
6472 ret = VM_FAULT_SIGBUS;
6473 goto out_unlock;
6475 ret = 0;
6477 /* page is wholly or partially inside EOF */
6478 if (page_start + PAGE_CACHE_SIZE > size)
6479 zero_start = size & ~PAGE_CACHE_MASK;
6480 else
6481 zero_start = PAGE_CACHE_SIZE;
6483 if (zero_start != PAGE_CACHE_SIZE) {
6484 kaddr = kmap(page);
6485 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6486 flush_dcache_page(page);
6487 kunmap(page);
6489 ClearPageChecked(page);
6490 set_page_dirty(page);
6491 SetPageUptodate(page);
6493 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6494 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6496 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6498 out_unlock:
6499 if (!ret)
6500 return VM_FAULT_LOCKED;
6501 unlock_page(page);
6502 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6503 out:
6504 return ret;
6507 static int btrfs_truncate(struct inode *inode)
6509 struct btrfs_root *root = BTRFS_I(inode)->root;
6510 int ret;
6511 int err = 0;
6512 struct btrfs_trans_handle *trans;
6513 unsigned long nr;
6514 u64 mask = root->sectorsize - 1;
6516 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6517 if (ret)
6518 return ret;
6520 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6521 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6523 trans = btrfs_start_transaction(root, 5);
6524 if (IS_ERR(trans))
6525 return PTR_ERR(trans);
6527 btrfs_set_trans_block_group(trans, inode);
6529 ret = btrfs_orphan_add(trans, inode);
6530 if (ret) {
6531 btrfs_end_transaction(trans, root);
6532 return ret;
6535 nr = trans->blocks_used;
6536 btrfs_end_transaction(trans, root);
6537 btrfs_btree_balance_dirty(root, nr);
6539 /* Now start a transaction for the truncate */
6540 trans = btrfs_start_transaction(root, 0);
6541 if (IS_ERR(trans))
6542 return PTR_ERR(trans);
6543 btrfs_set_trans_block_group(trans, inode);
6544 trans->block_rsv = root->orphan_block_rsv;
6547 * setattr is responsible for setting the ordered_data_close flag,
6548 * but that is only tested during the last file release. That
6549 * could happen well after the next commit, leaving a great big
6550 * window where new writes may get lost if someone chooses to write
6551 * to this file after truncating to zero
6553 * The inode doesn't have any dirty data here, and so if we commit
6554 * this is a noop. If someone immediately starts writing to the inode
6555 * it is very likely we'll catch some of their writes in this
6556 * transaction, and the commit will find this file on the ordered
6557 * data list with good things to send down.
6559 * This is a best effort solution, there is still a window where
6560 * using truncate to replace the contents of the file will
6561 * end up with a zero length file after a crash.
6563 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6564 btrfs_add_ordered_operation(trans, root, inode);
6566 while (1) {
6567 if (!trans) {
6568 trans = btrfs_start_transaction(root, 0);
6569 if (IS_ERR(trans))
6570 return PTR_ERR(trans);
6571 btrfs_set_trans_block_group(trans, inode);
6572 trans->block_rsv = root->orphan_block_rsv;
6575 ret = btrfs_block_rsv_check(trans, root,
6576 root->orphan_block_rsv, 0, 5);
6577 if (ret == -EAGAIN) {
6578 ret = btrfs_commit_transaction(trans, root);
6579 if (ret)
6580 return ret;
6581 trans = NULL;
6582 continue;
6583 } else if (ret) {
6584 err = ret;
6585 break;
6588 ret = btrfs_truncate_inode_items(trans, root, inode,
6589 inode->i_size,
6590 BTRFS_EXTENT_DATA_KEY);
6591 if (ret != -EAGAIN) {
6592 err = ret;
6593 break;
6596 ret = btrfs_update_inode(trans, root, inode);
6597 if (ret) {
6598 err = ret;
6599 break;
6602 nr = trans->blocks_used;
6603 btrfs_end_transaction(trans, root);
6604 trans = NULL;
6605 btrfs_btree_balance_dirty(root, nr);
6608 if (ret == 0 && inode->i_nlink > 0) {
6609 ret = btrfs_orphan_del(trans, inode);
6610 if (ret)
6611 err = ret;
6612 } else if (ret && inode->i_nlink > 0) {
6614 * Failed to do the truncate, remove us from the in memory
6615 * orphan list.
6617 ret = btrfs_orphan_del(NULL, inode);
6620 ret = btrfs_update_inode(trans, root, inode);
6621 if (ret && !err)
6622 err = ret;
6624 nr = trans->blocks_used;
6625 ret = btrfs_end_transaction_throttle(trans, root);
6626 if (ret && !err)
6627 err = ret;
6628 btrfs_btree_balance_dirty(root, nr);
6630 return err;
6634 * create a new subvolume directory/inode (helper for the ioctl).
6636 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6637 struct btrfs_root *new_root,
6638 u64 new_dirid, u64 alloc_hint)
6640 struct inode *inode;
6641 int err;
6642 u64 index = 0;
6644 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6645 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6646 if (IS_ERR(inode))
6647 return PTR_ERR(inode);
6648 inode->i_op = &btrfs_dir_inode_operations;
6649 inode->i_fop = &btrfs_dir_file_operations;
6651 inode->i_nlink = 1;
6652 btrfs_i_size_write(inode, 0);
6654 err = btrfs_update_inode(trans, new_root, inode);
6655 BUG_ON(err);
6657 iput(inode);
6658 return 0;
6661 /* helper function for file defrag and space balancing. This
6662 * forces readahead on a given range of bytes in an inode
6664 unsigned long btrfs_force_ra(struct address_space *mapping,
6665 struct file_ra_state *ra, struct file *file,
6666 pgoff_t offset, pgoff_t last_index)
6668 pgoff_t req_size = last_index - offset + 1;
6670 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6671 return offset + req_size;
6674 struct inode *btrfs_alloc_inode(struct super_block *sb)
6676 struct btrfs_inode *ei;
6677 struct inode *inode;
6679 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6680 if (!ei)
6681 return NULL;
6683 ei->root = NULL;
6684 ei->space_info = NULL;
6685 ei->generation = 0;
6686 ei->sequence = 0;
6687 ei->last_trans = 0;
6688 ei->last_sub_trans = 0;
6689 ei->logged_trans = 0;
6690 ei->delalloc_bytes = 0;
6691 ei->reserved_bytes = 0;
6692 ei->disk_i_size = 0;
6693 ei->flags = 0;
6694 ei->index_cnt = (u64)-1;
6695 ei->last_unlink_trans = 0;
6697 atomic_set(&ei->outstanding_extents, 0);
6698 atomic_set(&ei->reserved_extents, 0);
6700 ei->ordered_data_close = 0;
6701 ei->orphan_meta_reserved = 0;
6702 ei->dummy_inode = 0;
6703 ei->force_compress = BTRFS_COMPRESS_NONE;
6705 inode = &ei->vfs_inode;
6706 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6707 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6708 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6709 mutex_init(&ei->log_mutex);
6710 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6711 INIT_LIST_HEAD(&ei->i_orphan);
6712 INIT_LIST_HEAD(&ei->delalloc_inodes);
6713 INIT_LIST_HEAD(&ei->ordered_operations);
6714 RB_CLEAR_NODE(&ei->rb_node);
6716 return inode;
6719 static void btrfs_i_callback(struct rcu_head *head)
6721 struct inode *inode = container_of(head, struct inode, i_rcu);
6722 INIT_LIST_HEAD(&inode->i_dentry);
6723 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6726 void btrfs_destroy_inode(struct inode *inode)
6728 struct btrfs_ordered_extent *ordered;
6729 struct btrfs_root *root = BTRFS_I(inode)->root;
6731 WARN_ON(!list_empty(&inode->i_dentry));
6732 WARN_ON(inode->i_data.nrpages);
6733 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6734 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6737 * This can happen where we create an inode, but somebody else also
6738 * created the same inode and we need to destroy the one we already
6739 * created.
6741 if (!root)
6742 goto free;
6745 * Make sure we're properly removed from the ordered operation
6746 * lists.
6748 smp_mb();
6749 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6750 spin_lock(&root->fs_info->ordered_extent_lock);
6751 list_del_init(&BTRFS_I(inode)->ordered_operations);
6752 spin_unlock(&root->fs_info->ordered_extent_lock);
6755 if (root == root->fs_info->tree_root) {
6756 struct btrfs_block_group_cache *block_group;
6758 block_group = btrfs_lookup_block_group(root->fs_info,
6759 BTRFS_I(inode)->block_group);
6760 if (block_group && block_group->inode == inode) {
6761 spin_lock(&block_group->lock);
6762 block_group->inode = NULL;
6763 spin_unlock(&block_group->lock);
6764 btrfs_put_block_group(block_group);
6765 } else if (block_group) {
6766 btrfs_put_block_group(block_group);
6770 spin_lock(&root->orphan_lock);
6771 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6772 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6773 inode->i_ino);
6774 list_del_init(&BTRFS_I(inode)->i_orphan);
6776 spin_unlock(&root->orphan_lock);
6778 while (1) {
6779 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6780 if (!ordered)
6781 break;
6782 else {
6783 printk(KERN_ERR "btrfs found ordered "
6784 "extent %llu %llu on inode cleanup\n",
6785 (unsigned long long)ordered->file_offset,
6786 (unsigned long long)ordered->len);
6787 btrfs_remove_ordered_extent(inode, ordered);
6788 btrfs_put_ordered_extent(ordered);
6789 btrfs_put_ordered_extent(ordered);
6792 inode_tree_del(inode);
6793 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6794 free:
6795 call_rcu(&inode->i_rcu, btrfs_i_callback);
6798 int btrfs_drop_inode(struct inode *inode)
6800 struct btrfs_root *root = BTRFS_I(inode)->root;
6802 if (btrfs_root_refs(&root->root_item) == 0 &&
6803 root != root->fs_info->tree_root)
6804 return 1;
6805 else
6806 return generic_drop_inode(inode);
6809 static void init_once(void *foo)
6811 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6813 inode_init_once(&ei->vfs_inode);
6816 void btrfs_destroy_cachep(void)
6818 if (btrfs_inode_cachep)
6819 kmem_cache_destroy(btrfs_inode_cachep);
6820 if (btrfs_trans_handle_cachep)
6821 kmem_cache_destroy(btrfs_trans_handle_cachep);
6822 if (btrfs_transaction_cachep)
6823 kmem_cache_destroy(btrfs_transaction_cachep);
6824 if (btrfs_path_cachep)
6825 kmem_cache_destroy(btrfs_path_cachep);
6826 if (btrfs_free_space_cachep)
6827 kmem_cache_destroy(btrfs_free_space_cachep);
6830 int btrfs_init_cachep(void)
6832 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6833 sizeof(struct btrfs_inode), 0,
6834 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6835 if (!btrfs_inode_cachep)
6836 goto fail;
6838 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6839 sizeof(struct btrfs_trans_handle), 0,
6840 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6841 if (!btrfs_trans_handle_cachep)
6842 goto fail;
6844 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6845 sizeof(struct btrfs_transaction), 0,
6846 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6847 if (!btrfs_transaction_cachep)
6848 goto fail;
6850 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6851 sizeof(struct btrfs_path), 0,
6852 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6853 if (!btrfs_path_cachep)
6854 goto fail;
6856 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6857 sizeof(struct btrfs_free_space), 0,
6858 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6859 if (!btrfs_free_space_cachep)
6860 goto fail;
6862 return 0;
6863 fail:
6864 btrfs_destroy_cachep();
6865 return -ENOMEM;
6868 static int btrfs_getattr(struct vfsmount *mnt,
6869 struct dentry *dentry, struct kstat *stat)
6871 struct inode *inode = dentry->d_inode;
6872 generic_fillattr(inode, stat);
6873 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6874 stat->blksize = PAGE_CACHE_SIZE;
6875 stat->blocks = (inode_get_bytes(inode) +
6876 BTRFS_I(inode)->delalloc_bytes) >> 9;
6877 return 0;
6881 * If a file is moved, it will inherit the cow and compression flags of the new
6882 * directory.
6884 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6886 struct btrfs_inode *b_dir = BTRFS_I(dir);
6887 struct btrfs_inode *b_inode = BTRFS_I(inode);
6889 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6890 b_inode->flags |= BTRFS_INODE_NODATACOW;
6891 else
6892 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6894 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6895 b_inode->flags |= BTRFS_INODE_COMPRESS;
6896 else
6897 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6900 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6901 struct inode *new_dir, struct dentry *new_dentry)
6903 struct btrfs_trans_handle *trans;
6904 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6905 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6906 struct inode *new_inode = new_dentry->d_inode;
6907 struct inode *old_inode = old_dentry->d_inode;
6908 struct timespec ctime = CURRENT_TIME;
6909 u64 index = 0;
6910 u64 root_objectid;
6911 int ret;
6913 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6914 return -EPERM;
6916 /* we only allow rename subvolume link between subvolumes */
6917 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6918 return -EXDEV;
6920 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6921 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6922 return -ENOTEMPTY;
6924 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6925 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6926 return -ENOTEMPTY;
6928 * we're using rename to replace one file with another.
6929 * and the replacement file is large. Start IO on it now so
6930 * we don't add too much work to the end of the transaction
6932 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6933 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6934 filemap_flush(old_inode->i_mapping);
6936 /* close the racy window with snapshot create/destroy ioctl */
6937 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6938 down_read(&root->fs_info->subvol_sem);
6940 * We want to reserve the absolute worst case amount of items. So if
6941 * both inodes are subvols and we need to unlink them then that would
6942 * require 4 item modifications, but if they are both normal inodes it
6943 * would require 5 item modifications, so we'll assume their normal
6944 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6945 * should cover the worst case number of items we'll modify.
6947 trans = btrfs_start_transaction(root, 20);
6948 if (IS_ERR(trans))
6949 return PTR_ERR(trans);
6951 btrfs_set_trans_block_group(trans, new_dir);
6953 if (dest != root)
6954 btrfs_record_root_in_trans(trans, dest);
6956 ret = btrfs_set_inode_index(new_dir, &index);
6957 if (ret)
6958 goto out_fail;
6960 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6961 /* force full log commit if subvolume involved. */
6962 root->fs_info->last_trans_log_full_commit = trans->transid;
6963 } else {
6964 ret = btrfs_insert_inode_ref(trans, dest,
6965 new_dentry->d_name.name,
6966 new_dentry->d_name.len,
6967 old_inode->i_ino,
6968 new_dir->i_ino, index);
6969 if (ret)
6970 goto out_fail;
6972 * this is an ugly little race, but the rename is required
6973 * to make sure that if we crash, the inode is either at the
6974 * old name or the new one. pinning the log transaction lets
6975 * us make sure we don't allow a log commit to come in after
6976 * we unlink the name but before we add the new name back in.
6978 btrfs_pin_log_trans(root);
6981 * make sure the inode gets flushed if it is replacing
6982 * something.
6984 if (new_inode && new_inode->i_size &&
6985 old_inode && S_ISREG(old_inode->i_mode)) {
6986 btrfs_add_ordered_operation(trans, root, old_inode);
6989 old_dir->i_ctime = old_dir->i_mtime = ctime;
6990 new_dir->i_ctime = new_dir->i_mtime = ctime;
6991 old_inode->i_ctime = ctime;
6993 if (old_dentry->d_parent != new_dentry->d_parent)
6994 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6996 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6997 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6998 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6999 old_dentry->d_name.name,
7000 old_dentry->d_name.len);
7001 } else {
7002 btrfs_inc_nlink(old_dentry->d_inode);
7003 ret = btrfs_unlink_inode(trans, root, old_dir,
7004 old_dentry->d_inode,
7005 old_dentry->d_name.name,
7006 old_dentry->d_name.len);
7008 BUG_ON(ret);
7010 if (new_inode) {
7011 new_inode->i_ctime = CURRENT_TIME;
7012 if (unlikely(new_inode->i_ino ==
7013 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7014 root_objectid = BTRFS_I(new_inode)->location.objectid;
7015 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7016 root_objectid,
7017 new_dentry->d_name.name,
7018 new_dentry->d_name.len);
7019 BUG_ON(new_inode->i_nlink == 0);
7020 } else {
7021 ret = btrfs_unlink_inode(trans, dest, new_dir,
7022 new_dentry->d_inode,
7023 new_dentry->d_name.name,
7024 new_dentry->d_name.len);
7026 BUG_ON(ret);
7027 if (new_inode->i_nlink == 0) {
7028 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7029 BUG_ON(ret);
7033 fixup_inode_flags(new_dir, old_inode);
7035 ret = btrfs_add_link(trans, new_dir, old_inode,
7036 new_dentry->d_name.name,
7037 new_dentry->d_name.len, 0, index);
7038 BUG_ON(ret);
7040 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7041 struct dentry *parent = dget_parent(new_dentry);
7042 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7043 dput(parent);
7044 btrfs_end_log_trans(root);
7046 out_fail:
7047 btrfs_end_transaction_throttle(trans, root);
7049 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7050 up_read(&root->fs_info->subvol_sem);
7052 return ret;
7056 * some fairly slow code that needs optimization. This walks the list
7057 * of all the inodes with pending delalloc and forces them to disk.
7059 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7061 struct list_head *head = &root->fs_info->delalloc_inodes;
7062 struct btrfs_inode *binode;
7063 struct inode *inode;
7065 if (root->fs_info->sb->s_flags & MS_RDONLY)
7066 return -EROFS;
7068 spin_lock(&root->fs_info->delalloc_lock);
7069 while (!list_empty(head)) {
7070 binode = list_entry(head->next, struct btrfs_inode,
7071 delalloc_inodes);
7072 inode = igrab(&binode->vfs_inode);
7073 if (!inode)
7074 list_del_init(&binode->delalloc_inodes);
7075 spin_unlock(&root->fs_info->delalloc_lock);
7076 if (inode) {
7077 filemap_flush(inode->i_mapping);
7078 if (delay_iput)
7079 btrfs_add_delayed_iput(inode);
7080 else
7081 iput(inode);
7083 cond_resched();
7084 spin_lock(&root->fs_info->delalloc_lock);
7086 spin_unlock(&root->fs_info->delalloc_lock);
7088 /* the filemap_flush will queue IO into the worker threads, but
7089 * we have to make sure the IO is actually started and that
7090 * ordered extents get created before we return
7092 atomic_inc(&root->fs_info->async_submit_draining);
7093 while (atomic_read(&root->fs_info->nr_async_submits) ||
7094 atomic_read(&root->fs_info->async_delalloc_pages)) {
7095 wait_event(root->fs_info->async_submit_wait,
7096 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7097 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7099 atomic_dec(&root->fs_info->async_submit_draining);
7100 return 0;
7103 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7104 int sync)
7106 struct btrfs_inode *binode;
7107 struct inode *inode = NULL;
7109 spin_lock(&root->fs_info->delalloc_lock);
7110 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7111 binode = list_entry(root->fs_info->delalloc_inodes.next,
7112 struct btrfs_inode, delalloc_inodes);
7113 inode = igrab(&binode->vfs_inode);
7114 if (inode) {
7115 list_move_tail(&binode->delalloc_inodes,
7116 &root->fs_info->delalloc_inodes);
7117 break;
7120 list_del_init(&binode->delalloc_inodes);
7121 cond_resched_lock(&root->fs_info->delalloc_lock);
7123 spin_unlock(&root->fs_info->delalloc_lock);
7125 if (inode) {
7126 if (sync) {
7127 filemap_write_and_wait(inode->i_mapping);
7129 * We have to do this because compression doesn't
7130 * actually set PG_writeback until it submits the pages
7131 * for IO, which happens in an async thread, so we could
7132 * race and not actually wait for any writeback pages
7133 * because they've not been submitted yet. Technically
7134 * this could still be the case for the ordered stuff
7135 * since the async thread may not have started to do its
7136 * work yet. If this becomes the case then we need to
7137 * figure out a way to make sure that in writepage we
7138 * wait for any async pages to be submitted before
7139 * returning so that fdatawait does what its supposed to
7140 * do.
7142 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7143 } else {
7144 filemap_flush(inode->i_mapping);
7146 if (delay_iput)
7147 btrfs_add_delayed_iput(inode);
7148 else
7149 iput(inode);
7150 return 1;
7152 return 0;
7155 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7156 const char *symname)
7158 struct btrfs_trans_handle *trans;
7159 struct btrfs_root *root = BTRFS_I(dir)->root;
7160 struct btrfs_path *path;
7161 struct btrfs_key key;
7162 struct inode *inode = NULL;
7163 int err;
7164 int drop_inode = 0;
7165 u64 objectid;
7166 u64 index = 0 ;
7167 int name_len;
7168 int datasize;
7169 unsigned long ptr;
7170 struct btrfs_file_extent_item *ei;
7171 struct extent_buffer *leaf;
7172 unsigned long nr = 0;
7174 name_len = strlen(symname) + 1;
7175 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7176 return -ENAMETOOLONG;
7178 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7179 if (err)
7180 return err;
7182 * 2 items for inode item and ref
7183 * 2 items for dir items
7184 * 1 item for xattr if selinux is on
7186 trans = btrfs_start_transaction(root, 5);
7187 if (IS_ERR(trans))
7188 return PTR_ERR(trans);
7190 btrfs_set_trans_block_group(trans, dir);
7192 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7193 dentry->d_name.len, dir->i_ino, objectid,
7194 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7195 &index);
7196 err = PTR_ERR(inode);
7197 if (IS_ERR(inode))
7198 goto out_unlock;
7200 err = btrfs_init_inode_security(trans, inode, dir);
7201 if (err) {
7202 drop_inode = 1;
7203 goto out_unlock;
7206 btrfs_set_trans_block_group(trans, inode);
7207 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7208 if (err)
7209 drop_inode = 1;
7210 else {
7211 inode->i_mapping->a_ops = &btrfs_aops;
7212 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7213 inode->i_fop = &btrfs_file_operations;
7214 inode->i_op = &btrfs_file_inode_operations;
7215 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7217 btrfs_update_inode_block_group(trans, inode);
7218 btrfs_update_inode_block_group(trans, dir);
7219 if (drop_inode)
7220 goto out_unlock;
7222 path = btrfs_alloc_path();
7223 BUG_ON(!path);
7224 key.objectid = inode->i_ino;
7225 key.offset = 0;
7226 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7227 datasize = btrfs_file_extent_calc_inline_size(name_len);
7228 err = btrfs_insert_empty_item(trans, root, path, &key,
7229 datasize);
7230 if (err) {
7231 drop_inode = 1;
7232 goto out_unlock;
7234 leaf = path->nodes[0];
7235 ei = btrfs_item_ptr(leaf, path->slots[0],
7236 struct btrfs_file_extent_item);
7237 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7238 btrfs_set_file_extent_type(leaf, ei,
7239 BTRFS_FILE_EXTENT_INLINE);
7240 btrfs_set_file_extent_encryption(leaf, ei, 0);
7241 btrfs_set_file_extent_compression(leaf, ei, 0);
7242 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7243 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7245 ptr = btrfs_file_extent_inline_start(ei);
7246 write_extent_buffer(leaf, symname, ptr, name_len);
7247 btrfs_mark_buffer_dirty(leaf);
7248 btrfs_free_path(path);
7250 inode->i_op = &btrfs_symlink_inode_operations;
7251 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7252 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7253 inode_set_bytes(inode, name_len);
7254 btrfs_i_size_write(inode, name_len - 1);
7255 err = btrfs_update_inode(trans, root, inode);
7256 if (err)
7257 drop_inode = 1;
7259 out_unlock:
7260 nr = trans->blocks_used;
7261 btrfs_end_transaction_throttle(trans, root);
7262 if (drop_inode) {
7263 inode_dec_link_count(inode);
7264 iput(inode);
7266 btrfs_btree_balance_dirty(root, nr);
7267 return err;
7270 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7271 u64 start, u64 num_bytes, u64 min_size,
7272 loff_t actual_len, u64 *alloc_hint,
7273 struct btrfs_trans_handle *trans)
7275 struct btrfs_root *root = BTRFS_I(inode)->root;
7276 struct btrfs_key ins;
7277 u64 cur_offset = start;
7278 u64 i_size;
7279 int ret = 0;
7280 bool own_trans = true;
7282 if (trans)
7283 own_trans = false;
7284 while (num_bytes > 0) {
7285 if (own_trans) {
7286 trans = btrfs_start_transaction(root, 3);
7287 if (IS_ERR(trans)) {
7288 ret = PTR_ERR(trans);
7289 break;
7293 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7294 0, *alloc_hint, (u64)-1, &ins, 1);
7295 if (ret) {
7296 if (own_trans)
7297 btrfs_end_transaction(trans, root);
7298 break;
7301 ret = insert_reserved_file_extent(trans, inode,
7302 cur_offset, ins.objectid,
7303 ins.offset, ins.offset,
7304 ins.offset, 0, 0, 0,
7305 BTRFS_FILE_EXTENT_PREALLOC);
7306 BUG_ON(ret);
7307 btrfs_drop_extent_cache(inode, cur_offset,
7308 cur_offset + ins.offset -1, 0);
7310 num_bytes -= ins.offset;
7311 cur_offset += ins.offset;
7312 *alloc_hint = ins.objectid + ins.offset;
7314 inode->i_ctime = CURRENT_TIME;
7315 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7316 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7317 (actual_len > inode->i_size) &&
7318 (cur_offset > inode->i_size)) {
7319 if (cur_offset > actual_len)
7320 i_size = actual_len;
7321 else
7322 i_size = cur_offset;
7323 i_size_write(inode, i_size);
7324 btrfs_ordered_update_i_size(inode, i_size, NULL);
7327 ret = btrfs_update_inode(trans, root, inode);
7328 BUG_ON(ret);
7330 if (own_trans)
7331 btrfs_end_transaction(trans, root);
7333 return ret;
7336 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7337 u64 start, u64 num_bytes, u64 min_size,
7338 loff_t actual_len, u64 *alloc_hint)
7340 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7341 min_size, actual_len, alloc_hint,
7342 NULL);
7345 int btrfs_prealloc_file_range_trans(struct inode *inode,
7346 struct btrfs_trans_handle *trans, int mode,
7347 u64 start, u64 num_bytes, u64 min_size,
7348 loff_t actual_len, u64 *alloc_hint)
7350 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7351 min_size, actual_len, alloc_hint, trans);
7354 static int btrfs_set_page_dirty(struct page *page)
7356 return __set_page_dirty_nobuffers(page);
7359 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7361 struct btrfs_root *root = BTRFS_I(inode)->root;
7363 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7364 return -EROFS;
7365 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7366 return -EACCES;
7367 return generic_permission(inode, mask, flags, btrfs_check_acl);
7370 static const struct inode_operations btrfs_dir_inode_operations = {
7371 .getattr = btrfs_getattr,
7372 .lookup = btrfs_lookup,
7373 .create = btrfs_create,
7374 .unlink = btrfs_unlink,
7375 .link = btrfs_link,
7376 .mkdir = btrfs_mkdir,
7377 .rmdir = btrfs_rmdir,
7378 .rename = btrfs_rename,
7379 .symlink = btrfs_symlink,
7380 .setattr = btrfs_setattr,
7381 .mknod = btrfs_mknod,
7382 .setxattr = btrfs_setxattr,
7383 .getxattr = btrfs_getxattr,
7384 .listxattr = btrfs_listxattr,
7385 .removexattr = btrfs_removexattr,
7386 .permission = btrfs_permission,
7388 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7389 .lookup = btrfs_lookup,
7390 .permission = btrfs_permission,
7393 static const struct file_operations btrfs_dir_file_operations = {
7394 .llseek = generic_file_llseek,
7395 .read = generic_read_dir,
7396 .readdir = btrfs_real_readdir,
7397 .unlocked_ioctl = btrfs_ioctl,
7398 #ifdef CONFIG_COMPAT
7399 .compat_ioctl = btrfs_ioctl,
7400 #endif
7401 .release = btrfs_release_file,
7402 .fsync = btrfs_sync_file,
7405 static struct extent_io_ops btrfs_extent_io_ops = {
7406 .fill_delalloc = run_delalloc_range,
7407 .submit_bio_hook = btrfs_submit_bio_hook,
7408 .merge_bio_hook = btrfs_merge_bio_hook,
7409 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7410 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7411 .writepage_start_hook = btrfs_writepage_start_hook,
7412 .readpage_io_failed_hook = btrfs_io_failed_hook,
7413 .set_bit_hook = btrfs_set_bit_hook,
7414 .clear_bit_hook = btrfs_clear_bit_hook,
7415 .merge_extent_hook = btrfs_merge_extent_hook,
7416 .split_extent_hook = btrfs_split_extent_hook,
7420 * btrfs doesn't support the bmap operation because swapfiles
7421 * use bmap to make a mapping of extents in the file. They assume
7422 * these extents won't change over the life of the file and they
7423 * use the bmap result to do IO directly to the drive.
7425 * the btrfs bmap call would return logical addresses that aren't
7426 * suitable for IO and they also will change frequently as COW
7427 * operations happen. So, swapfile + btrfs == corruption.
7429 * For now we're avoiding this by dropping bmap.
7431 static const struct address_space_operations btrfs_aops = {
7432 .readpage = btrfs_readpage,
7433 .writepage = btrfs_writepage,
7434 .writepages = btrfs_writepages,
7435 .readpages = btrfs_readpages,
7436 .sync_page = block_sync_page,
7437 .direct_IO = btrfs_direct_IO,
7438 .invalidatepage = btrfs_invalidatepage,
7439 .releasepage = btrfs_releasepage,
7440 .set_page_dirty = btrfs_set_page_dirty,
7441 .error_remove_page = generic_error_remove_page,
7444 static const struct address_space_operations btrfs_symlink_aops = {
7445 .readpage = btrfs_readpage,
7446 .writepage = btrfs_writepage,
7447 .invalidatepage = btrfs_invalidatepage,
7448 .releasepage = btrfs_releasepage,
7451 static const struct inode_operations btrfs_file_inode_operations = {
7452 .getattr = btrfs_getattr,
7453 .setattr = btrfs_setattr,
7454 .setxattr = btrfs_setxattr,
7455 .getxattr = btrfs_getxattr,
7456 .listxattr = btrfs_listxattr,
7457 .removexattr = btrfs_removexattr,
7458 .permission = btrfs_permission,
7459 .fiemap = btrfs_fiemap,
7461 static const struct inode_operations btrfs_special_inode_operations = {
7462 .getattr = btrfs_getattr,
7463 .setattr = btrfs_setattr,
7464 .permission = btrfs_permission,
7465 .setxattr = btrfs_setxattr,
7466 .getxattr = btrfs_getxattr,
7467 .listxattr = btrfs_listxattr,
7468 .removexattr = btrfs_removexattr,
7470 static const struct inode_operations btrfs_symlink_inode_operations = {
7471 .readlink = generic_readlink,
7472 .follow_link = page_follow_link_light,
7473 .put_link = page_put_link,
7474 .getattr = btrfs_getattr,
7475 .permission = btrfs_permission,
7476 .setxattr = btrfs_setxattr,
7477 .getxattr = btrfs_getxattr,
7478 .listxattr = btrfs_listxattr,
7479 .removexattr = btrfs_removexattr,
7482 const struct dentry_operations btrfs_dentry_operations = {
7483 .d_delete = btrfs_dentry_delete,