proc: clear_refs: do not clear reserved pages
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / exit.c
blob303bed2966b6e100afebbdc83c41084cfc9dcc0f
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
60 static void exit_mm(struct task_struct * tsk);
62 static void __unhash_process(struct task_struct *p, bool group_dead)
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
74 list_del_rcu(&p->thread_group);
78 * This function expects the tasklist_lock write-locked.
80 static void __exit_signal(struct task_struct *tsk)
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
87 sighand = rcu_dereference_check(tsk->sighand,
88 rcu_read_lock_held() ||
89 lockdep_tasklist_lock_is_held());
90 spin_lock(&sighand->siglock);
92 posix_cpu_timers_exit(tsk);
93 if (group_dead) {
94 posix_cpu_timers_exit_group(tsk);
95 tty = sig->tty;
96 sig->tty = NULL;
97 } else {
99 * This can only happen if the caller is de_thread().
100 * FIXME: this is the temporary hack, we should teach
101 * posix-cpu-timers to handle this case correctly.
103 if (unlikely(has_group_leader_pid(tsk)))
104 posix_cpu_timers_exit_group(tsk);
107 * If there is any task waiting for the group exit
108 * then notify it:
110 if (sig->notify_count > 0 && !--sig->notify_count)
111 wake_up_process(sig->group_exit_task);
113 if (tsk == sig->curr_target)
114 sig->curr_target = next_thread(tsk);
116 * Accumulate here the counters for all threads but the
117 * group leader as they die, so they can be added into
118 * the process-wide totals when those are taken.
119 * The group leader stays around as a zombie as long
120 * as there are other threads. When it gets reaped,
121 * the exit.c code will add its counts into these totals.
122 * We won't ever get here for the group leader, since it
123 * will have been the last reference on the signal_struct.
125 sig->utime = cputime_add(sig->utime, tsk->utime);
126 sig->stime = cputime_add(sig->stime, tsk->stime);
127 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
128 sig->min_flt += tsk->min_flt;
129 sig->maj_flt += tsk->maj_flt;
130 sig->nvcsw += tsk->nvcsw;
131 sig->nivcsw += tsk->nivcsw;
132 sig->inblock += task_io_get_inblock(tsk);
133 sig->oublock += task_io_get_oublock(tsk);
134 task_io_accounting_add(&sig->ioac, &tsk->ioac);
135 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
138 sig->nr_threads--;
139 __unhash_process(tsk, group_dead);
142 * Do this under ->siglock, we can race with another thread
143 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 flush_sigqueue(&tsk->pending);
146 tsk->sighand = NULL;
147 spin_unlock(&sighand->siglock);
149 __cleanup_sighand(sighand);
150 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
151 if (group_dead) {
152 flush_sigqueue(&sig->shared_pending);
153 tty_kref_put(tty);
157 static void delayed_put_task_struct(struct rcu_head *rhp)
159 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161 perf_event_delayed_put(tsk);
162 trace_sched_process_free(tsk);
163 put_task_struct(tsk);
167 void release_task(struct task_struct * p)
169 struct task_struct *leader;
170 int zap_leader;
171 repeat:
172 tracehook_prepare_release_task(p);
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 rcu_read_lock();
176 atomic_dec(&__task_cred(p)->user->processes);
177 rcu_read_unlock();
179 proc_flush_task(p);
181 write_lock_irq(&tasklist_lock);
182 tracehook_finish_release_task(p);
183 __exit_signal(p);
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 BUG_ON(task_detached(leader));
194 do_notify_parent(leader, leader->exit_signal);
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 * do_notify_parent() will have marked it self-reaping in
201 * that case.
203 zap_leader = task_detached(leader);
206 * This maintains the invariant that release_task()
207 * only runs on a task in EXIT_DEAD, just for sanity.
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
223 * This checks not only the pgrp, but falls back on the pid if no
224 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
225 * without this...
227 * The caller must hold rcu lock or the tasklist lock.
229 struct pid *session_of_pgrp(struct pid *pgrp)
231 struct task_struct *p;
232 struct pid *sid = NULL;
234 p = pid_task(pgrp, PIDTYPE_PGID);
235 if (p == NULL)
236 p = pid_task(pgrp, PIDTYPE_PID);
237 if (p != NULL)
238 sid = task_session(p);
240 return sid;
244 * Determine if a process group is "orphaned", according to the POSIX
245 * definition in 2.2.2.52. Orphaned process groups are not to be affected
246 * by terminal-generated stop signals. Newly orphaned process groups are
247 * to receive a SIGHUP and a SIGCONT.
249 * "I ask you, have you ever known what it is to be an orphan?"
251 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
253 struct task_struct *p;
255 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
256 if ((p == ignored_task) ||
257 (p->exit_state && thread_group_empty(p)) ||
258 is_global_init(p->real_parent))
259 continue;
261 if (task_pgrp(p->real_parent) != pgrp &&
262 task_session(p->real_parent) == task_session(p))
263 return 0;
264 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
266 return 1;
269 int is_current_pgrp_orphaned(void)
271 int retval;
273 read_lock(&tasklist_lock);
274 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
275 read_unlock(&tasklist_lock);
277 return retval;
280 static int has_stopped_jobs(struct pid *pgrp)
282 int retval = 0;
283 struct task_struct *p;
285 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
286 if (!task_is_stopped(p))
287 continue;
288 retval = 1;
289 break;
290 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
291 return retval;
295 * Check to see if any process groups have become orphaned as
296 * a result of our exiting, and if they have any stopped jobs,
297 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
299 static void
300 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
302 struct pid *pgrp = task_pgrp(tsk);
303 struct task_struct *ignored_task = tsk;
305 if (!parent)
306 /* exit: our father is in a different pgrp than
307 * we are and we were the only connection outside.
309 parent = tsk->real_parent;
310 else
311 /* reparent: our child is in a different pgrp than
312 * we are, and it was the only connection outside.
314 ignored_task = NULL;
316 if (task_pgrp(parent) != pgrp &&
317 task_session(parent) == task_session(tsk) &&
318 will_become_orphaned_pgrp(pgrp, ignored_task) &&
319 has_stopped_jobs(pgrp)) {
320 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
321 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
326 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
328 * If a kernel thread is launched as a result of a system call, or if
329 * it ever exits, it should generally reparent itself to kthreadd so it
330 * isn't in the way of other processes and is correctly cleaned up on exit.
332 * The various task state such as scheduling policy and priority may have
333 * been inherited from a user process, so we reset them to sane values here.
335 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
337 static void reparent_to_kthreadd(void)
339 write_lock_irq(&tasklist_lock);
341 ptrace_unlink(current);
342 /* Reparent to init */
343 current->real_parent = current->parent = kthreadd_task;
344 list_move_tail(&current->sibling, &current->real_parent->children);
346 /* Set the exit signal to SIGCHLD so we signal init on exit */
347 current->exit_signal = SIGCHLD;
349 if (task_nice(current) < 0)
350 set_user_nice(current, 0);
351 /* cpus_allowed? */
352 /* rt_priority? */
353 /* signals? */
354 memcpy(current->signal->rlim, init_task.signal->rlim,
355 sizeof(current->signal->rlim));
357 atomic_inc(&init_cred.usage);
358 commit_creds(&init_cred);
359 write_unlock_irq(&tasklist_lock);
362 void __set_special_pids(struct pid *pid)
364 struct task_struct *curr = current->group_leader;
366 if (task_session(curr) != pid)
367 change_pid(curr, PIDTYPE_SID, pid);
369 if (task_pgrp(curr) != pid)
370 change_pid(curr, PIDTYPE_PGID, pid);
373 static void set_special_pids(struct pid *pid)
375 write_lock_irq(&tasklist_lock);
376 __set_special_pids(pid);
377 write_unlock_irq(&tasklist_lock);
381 * Let kernel threads use this to say that they allow a certain signal.
382 * Must not be used if kthread was cloned with CLONE_SIGHAND.
384 int allow_signal(int sig)
386 if (!valid_signal(sig) || sig < 1)
387 return -EINVAL;
389 spin_lock_irq(&current->sighand->siglock);
390 /* This is only needed for daemonize()'ed kthreads */
391 sigdelset(&current->blocked, sig);
393 * Kernel threads handle their own signals. Let the signal code
394 * know it'll be handled, so that they don't get converted to
395 * SIGKILL or just silently dropped.
397 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
403 EXPORT_SYMBOL(allow_signal);
405 int disallow_signal(int sig)
407 if (!valid_signal(sig) || sig < 1)
408 return -EINVAL;
410 spin_lock_irq(&current->sighand->siglock);
411 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
412 recalc_sigpending();
413 spin_unlock_irq(&current->sighand->siglock);
414 return 0;
417 EXPORT_SYMBOL(disallow_signal);
420 * Put all the gunge required to become a kernel thread without
421 * attached user resources in one place where it belongs.
424 void daemonize(const char *name, ...)
426 va_list args;
427 sigset_t blocked;
429 va_start(args, name);
430 vsnprintf(current->comm, sizeof(current->comm), name, args);
431 va_end(args);
434 * If we were started as result of loading a module, close all of the
435 * user space pages. We don't need them, and if we didn't close them
436 * they would be locked into memory.
438 exit_mm(current);
440 * We don't want to have TIF_FREEZE set if the system-wide hibernation
441 * or suspend transition begins right now.
443 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
445 if (current->nsproxy != &init_nsproxy) {
446 get_nsproxy(&init_nsproxy);
447 switch_task_namespaces(current, &init_nsproxy);
449 set_special_pids(&init_struct_pid);
450 proc_clear_tty(current);
452 /* Block and flush all signals */
453 sigfillset(&blocked);
454 sigprocmask(SIG_BLOCK, &blocked, NULL);
455 flush_signals(current);
457 /* Become as one with the init task */
459 daemonize_fs_struct();
460 exit_files(current);
461 current->files = init_task.files;
462 atomic_inc(&current->files->count);
464 reparent_to_kthreadd();
467 EXPORT_SYMBOL(daemonize);
469 static void close_files(struct files_struct * files)
471 int i, j;
472 struct fdtable *fdt;
474 j = 0;
477 * It is safe to dereference the fd table without RCU or
478 * ->file_lock because this is the last reference to the
479 * files structure. But use RCU to shut RCU-lockdep up.
481 rcu_read_lock();
482 fdt = files_fdtable(files);
483 rcu_read_unlock();
484 for (;;) {
485 unsigned long set;
486 i = j * __NFDBITS;
487 if (i >= fdt->max_fds)
488 break;
489 set = fdt->open_fds->fds_bits[j++];
490 while (set) {
491 if (set & 1) {
492 struct file * file = xchg(&fdt->fd[i], NULL);
493 if (file) {
494 filp_close(file, files);
495 cond_resched();
498 i++;
499 set >>= 1;
504 struct files_struct *get_files_struct(struct task_struct *task)
506 struct files_struct *files;
508 task_lock(task);
509 files = task->files;
510 if (files)
511 atomic_inc(&files->count);
512 task_unlock(task);
514 return files;
517 void put_files_struct(struct files_struct *files)
519 struct fdtable *fdt;
521 if (atomic_dec_and_test(&files->count)) {
522 close_files(files);
524 * Free the fd and fdset arrays if we expanded them.
525 * If the fdtable was embedded, pass files for freeing
526 * at the end of the RCU grace period. Otherwise,
527 * you can free files immediately.
529 rcu_read_lock();
530 fdt = files_fdtable(files);
531 if (fdt != &files->fdtab)
532 kmem_cache_free(files_cachep, files);
533 free_fdtable(fdt);
534 rcu_read_unlock();
538 void reset_files_struct(struct files_struct *files)
540 struct task_struct *tsk = current;
541 struct files_struct *old;
543 old = tsk->files;
544 task_lock(tsk);
545 tsk->files = files;
546 task_unlock(tsk);
547 put_files_struct(old);
550 void exit_files(struct task_struct *tsk)
552 struct files_struct * files = tsk->files;
554 if (files) {
555 task_lock(tsk);
556 tsk->files = NULL;
557 task_unlock(tsk);
558 put_files_struct(files);
562 #ifdef CONFIG_MM_OWNER
564 * A task is exiting. If it owned this mm, find a new owner for the mm.
566 void mm_update_next_owner(struct mm_struct *mm)
568 struct task_struct *c, *g, *p = current;
570 retry:
572 * If the exiting or execing task is not the owner, it's
573 * someone else's problem.
575 if (mm->owner != p)
576 return;
578 * The current owner is exiting/execing and there are no other
579 * candidates. Do not leave the mm pointing to a possibly
580 * freed task structure.
582 if (atomic_read(&mm->mm_users) <= 1) {
583 mm->owner = NULL;
584 return;
587 read_lock(&tasklist_lock);
589 * Search in the children
591 list_for_each_entry(c, &p->children, sibling) {
592 if (c->mm == mm)
593 goto assign_new_owner;
597 * Search in the siblings
599 list_for_each_entry(c, &p->real_parent->children, sibling) {
600 if (c->mm == mm)
601 goto assign_new_owner;
605 * Search through everything else. We should not get
606 * here often
608 do_each_thread(g, c) {
609 if (c->mm == mm)
610 goto assign_new_owner;
611 } while_each_thread(g, c);
613 read_unlock(&tasklist_lock);
615 * We found no owner yet mm_users > 1: this implies that we are
616 * most likely racing with swapoff (try_to_unuse()) or /proc or
617 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
619 mm->owner = NULL;
620 return;
622 assign_new_owner:
623 BUG_ON(c == p);
624 get_task_struct(c);
626 * The task_lock protects c->mm from changing.
627 * We always want mm->owner->mm == mm
629 task_lock(c);
631 * Delay read_unlock() till we have the task_lock()
632 * to ensure that c does not slip away underneath us
634 read_unlock(&tasklist_lock);
635 if (c->mm != mm) {
636 task_unlock(c);
637 put_task_struct(c);
638 goto retry;
640 mm->owner = c;
641 task_unlock(c);
642 put_task_struct(c);
644 #endif /* CONFIG_MM_OWNER */
647 * Turn us into a lazy TLB process if we
648 * aren't already..
650 static void exit_mm(struct task_struct * tsk)
652 struct mm_struct *mm = tsk->mm;
653 struct core_state *core_state;
655 mm_release(tsk, mm);
656 if (!mm)
657 return;
659 * Serialize with any possible pending coredump.
660 * We must hold mmap_sem around checking core_state
661 * and clearing tsk->mm. The core-inducing thread
662 * will increment ->nr_threads for each thread in the
663 * group with ->mm != NULL.
665 down_read(&mm->mmap_sem);
666 core_state = mm->core_state;
667 if (core_state) {
668 struct core_thread self;
669 up_read(&mm->mmap_sem);
671 self.task = tsk;
672 self.next = xchg(&core_state->dumper.next, &self);
674 * Implies mb(), the result of xchg() must be visible
675 * to core_state->dumper.
677 if (atomic_dec_and_test(&core_state->nr_threads))
678 complete(&core_state->startup);
680 for (;;) {
681 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
682 if (!self.task) /* see coredump_finish() */
683 break;
684 schedule();
686 __set_task_state(tsk, TASK_RUNNING);
687 down_read(&mm->mmap_sem);
689 atomic_inc(&mm->mm_count);
690 BUG_ON(mm != tsk->active_mm);
691 /* more a memory barrier than a real lock */
692 task_lock(tsk);
693 tsk->mm = NULL;
694 up_read(&mm->mmap_sem);
695 enter_lazy_tlb(mm, current);
696 /* We don't want this task to be frozen prematurely */
697 clear_freeze_flag(tsk);
698 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
699 atomic_dec(&mm->oom_disable_count);
700 task_unlock(tsk);
701 mm_update_next_owner(mm);
702 mmput(mm);
706 * When we die, we re-parent all our children.
707 * Try to give them to another thread in our thread
708 * group, and if no such member exists, give it to
709 * the child reaper process (ie "init") in our pid
710 * space.
712 static struct task_struct *find_new_reaper(struct task_struct *father)
713 __releases(&tasklist_lock)
714 __acquires(&tasklist_lock)
716 struct pid_namespace *pid_ns = task_active_pid_ns(father);
717 struct task_struct *thread;
719 thread = father;
720 while_each_thread(father, thread) {
721 if (thread->flags & PF_EXITING)
722 continue;
723 if (unlikely(pid_ns->child_reaper == father))
724 pid_ns->child_reaper = thread;
725 return thread;
728 if (unlikely(pid_ns->child_reaper == father)) {
729 write_unlock_irq(&tasklist_lock);
730 if (unlikely(pid_ns == &init_pid_ns))
731 panic("Attempted to kill init!");
733 zap_pid_ns_processes(pid_ns);
734 write_lock_irq(&tasklist_lock);
736 * We can not clear ->child_reaper or leave it alone.
737 * There may by stealth EXIT_DEAD tasks on ->children,
738 * forget_original_parent() must move them somewhere.
740 pid_ns->child_reaper = init_pid_ns.child_reaper;
743 return pid_ns->child_reaper;
747 * Any that need to be release_task'd are put on the @dead list.
749 static void reparent_leader(struct task_struct *father, struct task_struct *p,
750 struct list_head *dead)
752 list_move_tail(&p->sibling, &p->real_parent->children);
754 if (task_detached(p))
755 return;
757 * If this is a threaded reparent there is no need to
758 * notify anyone anything has happened.
760 if (same_thread_group(p->real_parent, father))
761 return;
763 /* We don't want people slaying init. */
764 p->exit_signal = SIGCHLD;
766 /* If it has exited notify the new parent about this child's death. */
767 if (!task_ptrace(p) &&
768 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
769 do_notify_parent(p, p->exit_signal);
770 if (task_detached(p)) {
771 p->exit_state = EXIT_DEAD;
772 list_move_tail(&p->sibling, dead);
776 kill_orphaned_pgrp(p, father);
779 static void forget_original_parent(struct task_struct *father)
781 struct task_struct *p, *n, *reaper;
782 LIST_HEAD(dead_children);
784 write_lock_irq(&tasklist_lock);
786 * Note that exit_ptrace() and find_new_reaper() might
787 * drop tasklist_lock and reacquire it.
789 exit_ptrace(father);
790 reaper = find_new_reaper(father);
792 list_for_each_entry_safe(p, n, &father->children, sibling) {
793 struct task_struct *t = p;
794 do {
795 t->real_parent = reaper;
796 if (t->parent == father) {
797 BUG_ON(task_ptrace(t));
798 t->parent = t->real_parent;
800 if (t->pdeath_signal)
801 group_send_sig_info(t->pdeath_signal,
802 SEND_SIG_NOINFO, t);
803 } while_each_thread(p, t);
804 reparent_leader(father, p, &dead_children);
806 write_unlock_irq(&tasklist_lock);
808 BUG_ON(!list_empty(&father->children));
810 list_for_each_entry_safe(p, n, &dead_children, sibling) {
811 list_del_init(&p->sibling);
812 release_task(p);
817 * Send signals to all our closest relatives so that they know
818 * to properly mourn us..
820 static void exit_notify(struct task_struct *tsk, int group_dead)
822 int signal;
823 void *cookie;
826 * This does two things:
828 * A. Make init inherit all the child processes
829 * B. Check to see if any process groups have become orphaned
830 * as a result of our exiting, and if they have any stopped
831 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
833 forget_original_parent(tsk);
834 exit_task_namespaces(tsk);
836 write_lock_irq(&tasklist_lock);
837 if (group_dead)
838 kill_orphaned_pgrp(tsk->group_leader, NULL);
840 /* Let father know we died
842 * Thread signals are configurable, but you aren't going to use
843 * that to send signals to arbitrary processes.
844 * That stops right now.
846 * If the parent exec id doesn't match the exec id we saved
847 * when we started then we know the parent has changed security
848 * domain.
850 * If our self_exec id doesn't match our parent_exec_id then
851 * we have changed execution domain as these two values started
852 * the same after a fork.
854 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
855 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
856 tsk->self_exec_id != tsk->parent_exec_id))
857 tsk->exit_signal = SIGCHLD;
859 signal = tracehook_notify_death(tsk, &cookie, group_dead);
860 if (signal >= 0)
861 signal = do_notify_parent(tsk, signal);
863 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
865 /* mt-exec, de_thread() is waiting for group leader */
866 if (unlikely(tsk->signal->notify_count < 0))
867 wake_up_process(tsk->signal->group_exit_task);
868 write_unlock_irq(&tasklist_lock);
870 tracehook_report_death(tsk, signal, cookie, group_dead);
872 /* If the process is dead, release it - nobody will wait for it */
873 if (signal == DEATH_REAP)
874 release_task(tsk);
877 #ifdef CONFIG_DEBUG_STACK_USAGE
878 static void check_stack_usage(void)
880 static DEFINE_SPINLOCK(low_water_lock);
881 static int lowest_to_date = THREAD_SIZE;
882 unsigned long free;
884 free = stack_not_used(current);
886 if (free >= lowest_to_date)
887 return;
889 spin_lock(&low_water_lock);
890 if (free < lowest_to_date) {
891 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
892 "left\n",
893 current->comm, free);
894 lowest_to_date = free;
896 spin_unlock(&low_water_lock);
898 #else
899 static inline void check_stack_usage(void) {}
900 #endif
902 NORET_TYPE void do_exit(long code)
904 struct task_struct *tsk = current;
905 int group_dead;
907 profile_task_exit(tsk);
909 WARN_ON(atomic_read(&tsk->fs_excl));
910 WARN_ON(blk_needs_flush_plug(tsk));
912 if (unlikely(in_interrupt()))
913 panic("Aiee, killing interrupt handler!");
914 if (unlikely(!tsk->pid))
915 panic("Attempted to kill the idle task!");
918 * If do_exit is called because this processes oopsed, it's possible
919 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
920 * continuing. Amongst other possible reasons, this is to prevent
921 * mm_release()->clear_child_tid() from writing to a user-controlled
922 * kernel address.
924 set_fs(USER_DS);
926 tracehook_report_exit(&code);
928 validate_creds_for_do_exit(tsk);
931 * We're taking recursive faults here in do_exit. Safest is to just
932 * leave this task alone and wait for reboot.
934 if (unlikely(tsk->flags & PF_EXITING)) {
935 printk(KERN_ALERT
936 "Fixing recursive fault but reboot is needed!\n");
938 * We can do this unlocked here. The futex code uses
939 * this flag just to verify whether the pi state
940 * cleanup has been done or not. In the worst case it
941 * loops once more. We pretend that the cleanup was
942 * done as there is no way to return. Either the
943 * OWNER_DIED bit is set by now or we push the blocked
944 * task into the wait for ever nirwana as well.
946 tsk->flags |= PF_EXITPIDONE;
947 set_current_state(TASK_UNINTERRUPTIBLE);
948 schedule();
951 exit_irq_thread();
953 exit_signals(tsk); /* sets PF_EXITING */
955 * tsk->flags are checked in the futex code to protect against
956 * an exiting task cleaning up the robust pi futexes.
958 smp_mb();
959 raw_spin_unlock_wait(&tsk->pi_lock);
961 if (unlikely(in_atomic()))
962 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
963 current->comm, task_pid_nr(current),
964 preempt_count());
966 acct_update_integrals(tsk);
967 /* sync mm's RSS info before statistics gathering */
968 if (tsk->mm)
969 sync_mm_rss(tsk, tsk->mm);
970 group_dead = atomic_dec_and_test(&tsk->signal->live);
971 if (group_dead) {
972 hrtimer_cancel(&tsk->signal->real_timer);
973 exit_itimers(tsk->signal);
974 if (tsk->mm)
975 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
977 acct_collect(code, group_dead);
978 if (group_dead)
979 tty_audit_exit();
980 if (unlikely(tsk->audit_context))
981 audit_free(tsk);
983 tsk->exit_code = code;
984 taskstats_exit(tsk, group_dead);
986 exit_mm(tsk);
988 if (group_dead)
989 acct_process();
990 trace_sched_process_exit(tsk);
992 exit_sem(tsk);
993 exit_files(tsk);
994 exit_fs(tsk);
995 check_stack_usage();
996 exit_thread();
999 * Flush inherited counters to the parent - before the parent
1000 * gets woken up by child-exit notifications.
1002 * because of cgroup mode, must be called before cgroup_exit()
1004 perf_event_exit_task(tsk);
1006 cgroup_exit(tsk, 1);
1008 if (group_dead)
1009 disassociate_ctty(1);
1011 module_put(task_thread_info(tsk)->exec_domain->module);
1013 proc_exit_connector(tsk);
1016 * FIXME: do that only when needed, using sched_exit tracepoint
1018 ptrace_put_breakpoints(tsk);
1020 exit_notify(tsk, group_dead);
1021 #ifdef CONFIG_NUMA
1022 task_lock(tsk);
1023 mpol_put(tsk->mempolicy);
1024 tsk->mempolicy = NULL;
1025 task_unlock(tsk);
1026 #endif
1027 #ifdef CONFIG_FUTEX
1028 if (unlikely(current->pi_state_cache))
1029 kfree(current->pi_state_cache);
1030 #endif
1032 * Make sure we are holding no locks:
1034 debug_check_no_locks_held(tsk);
1036 * We can do this unlocked here. The futex code uses this flag
1037 * just to verify whether the pi state cleanup has been done
1038 * or not. In the worst case it loops once more.
1040 tsk->flags |= PF_EXITPIDONE;
1042 if (tsk->io_context)
1043 exit_io_context(tsk);
1045 if (tsk->splice_pipe)
1046 __free_pipe_info(tsk->splice_pipe);
1048 validate_creds_for_do_exit(tsk);
1050 preempt_disable();
1051 exit_rcu();
1052 /* causes final put_task_struct in finish_task_switch(). */
1053 tsk->state = TASK_DEAD;
1054 schedule();
1055 BUG();
1056 /* Avoid "noreturn function does return". */
1057 for (;;)
1058 cpu_relax(); /* For when BUG is null */
1061 EXPORT_SYMBOL_GPL(do_exit);
1063 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1065 if (comp)
1066 complete(comp);
1068 do_exit(code);
1071 EXPORT_SYMBOL(complete_and_exit);
1073 SYSCALL_DEFINE1(exit, int, error_code)
1075 do_exit((error_code&0xff)<<8);
1079 * Take down every thread in the group. This is called by fatal signals
1080 * as well as by sys_exit_group (below).
1082 NORET_TYPE void
1083 do_group_exit(int exit_code)
1085 struct signal_struct *sig = current->signal;
1087 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1089 if (signal_group_exit(sig))
1090 exit_code = sig->group_exit_code;
1091 else if (!thread_group_empty(current)) {
1092 struct sighand_struct *const sighand = current->sighand;
1093 spin_lock_irq(&sighand->siglock);
1094 if (signal_group_exit(sig))
1095 /* Another thread got here before we took the lock. */
1096 exit_code = sig->group_exit_code;
1097 else {
1098 sig->group_exit_code = exit_code;
1099 sig->flags = SIGNAL_GROUP_EXIT;
1100 zap_other_threads(current);
1102 spin_unlock_irq(&sighand->siglock);
1105 do_exit(exit_code);
1106 /* NOTREACHED */
1110 * this kills every thread in the thread group. Note that any externally
1111 * wait4()-ing process will get the correct exit code - even if this
1112 * thread is not the thread group leader.
1114 SYSCALL_DEFINE1(exit_group, int, error_code)
1116 do_group_exit((error_code & 0xff) << 8);
1117 /* NOTREACHED */
1118 return 0;
1121 struct wait_opts {
1122 enum pid_type wo_type;
1123 int wo_flags;
1124 struct pid *wo_pid;
1126 struct siginfo __user *wo_info;
1127 int __user *wo_stat;
1128 struct rusage __user *wo_rusage;
1130 wait_queue_t child_wait;
1131 int notask_error;
1134 static inline
1135 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1137 if (type != PIDTYPE_PID)
1138 task = task->group_leader;
1139 return task->pids[type].pid;
1142 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1144 return wo->wo_type == PIDTYPE_MAX ||
1145 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1148 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1150 if (!eligible_pid(wo, p))
1151 return 0;
1152 /* Wait for all children (clone and not) if __WALL is set;
1153 * otherwise, wait for clone children *only* if __WCLONE is
1154 * set; otherwise, wait for non-clone children *only*. (Note:
1155 * A "clone" child here is one that reports to its parent
1156 * using a signal other than SIGCHLD.) */
1157 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1158 && !(wo->wo_flags & __WALL))
1159 return 0;
1161 return 1;
1164 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1165 pid_t pid, uid_t uid, int why, int status)
1167 struct siginfo __user *infop;
1168 int retval = wo->wo_rusage
1169 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1171 put_task_struct(p);
1172 infop = wo->wo_info;
1173 if (infop) {
1174 if (!retval)
1175 retval = put_user(SIGCHLD, &infop->si_signo);
1176 if (!retval)
1177 retval = put_user(0, &infop->si_errno);
1178 if (!retval)
1179 retval = put_user((short)why, &infop->si_code);
1180 if (!retval)
1181 retval = put_user(pid, &infop->si_pid);
1182 if (!retval)
1183 retval = put_user(uid, &infop->si_uid);
1184 if (!retval)
1185 retval = put_user(status, &infop->si_status);
1187 if (!retval)
1188 retval = pid;
1189 return retval;
1193 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1194 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1195 * the lock and this task is uninteresting. If we return nonzero, we have
1196 * released the lock and the system call should return.
1198 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1200 unsigned long state;
1201 int retval, status, traced;
1202 pid_t pid = task_pid_vnr(p);
1203 uid_t uid = __task_cred(p)->uid;
1204 struct siginfo __user *infop;
1206 if (!likely(wo->wo_flags & WEXITED))
1207 return 0;
1209 if (unlikely(wo->wo_flags & WNOWAIT)) {
1210 int exit_code = p->exit_code;
1211 int why;
1213 get_task_struct(p);
1214 read_unlock(&tasklist_lock);
1215 if ((exit_code & 0x7f) == 0) {
1216 why = CLD_EXITED;
1217 status = exit_code >> 8;
1218 } else {
1219 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1220 status = exit_code & 0x7f;
1222 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1226 * Try to move the task's state to DEAD
1227 * only one thread is allowed to do this:
1229 state = xchg(&p->exit_state, EXIT_DEAD);
1230 if (state != EXIT_ZOMBIE) {
1231 BUG_ON(state != EXIT_DEAD);
1232 return 0;
1235 traced = ptrace_reparented(p);
1237 * It can be ptraced but not reparented, check
1238 * !task_detached() to filter out sub-threads.
1240 if (likely(!traced) && likely(!task_detached(p))) {
1241 struct signal_struct *psig;
1242 struct signal_struct *sig;
1243 unsigned long maxrss;
1244 cputime_t tgutime, tgstime;
1247 * The resource counters for the group leader are in its
1248 * own task_struct. Those for dead threads in the group
1249 * are in its signal_struct, as are those for the child
1250 * processes it has previously reaped. All these
1251 * accumulate in the parent's signal_struct c* fields.
1253 * We don't bother to take a lock here to protect these
1254 * p->signal fields, because they are only touched by
1255 * __exit_signal, which runs with tasklist_lock
1256 * write-locked anyway, and so is excluded here. We do
1257 * need to protect the access to parent->signal fields,
1258 * as other threads in the parent group can be right
1259 * here reaping other children at the same time.
1261 * We use thread_group_times() to get times for the thread
1262 * group, which consolidates times for all threads in the
1263 * group including the group leader.
1265 thread_group_times(p, &tgutime, &tgstime);
1266 spin_lock_irq(&p->real_parent->sighand->siglock);
1267 psig = p->real_parent->signal;
1268 sig = p->signal;
1269 psig->cutime =
1270 cputime_add(psig->cutime,
1271 cputime_add(tgutime,
1272 sig->cutime));
1273 psig->cstime =
1274 cputime_add(psig->cstime,
1275 cputime_add(tgstime,
1276 sig->cstime));
1277 psig->cgtime =
1278 cputime_add(psig->cgtime,
1279 cputime_add(p->gtime,
1280 cputime_add(sig->gtime,
1281 sig->cgtime)));
1282 psig->cmin_flt +=
1283 p->min_flt + sig->min_flt + sig->cmin_flt;
1284 psig->cmaj_flt +=
1285 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1286 psig->cnvcsw +=
1287 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1288 psig->cnivcsw +=
1289 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1290 psig->cinblock +=
1291 task_io_get_inblock(p) +
1292 sig->inblock + sig->cinblock;
1293 psig->coublock +=
1294 task_io_get_oublock(p) +
1295 sig->oublock + sig->coublock;
1296 maxrss = max(sig->maxrss, sig->cmaxrss);
1297 if (psig->cmaxrss < maxrss)
1298 psig->cmaxrss = maxrss;
1299 task_io_accounting_add(&psig->ioac, &p->ioac);
1300 task_io_accounting_add(&psig->ioac, &sig->ioac);
1301 spin_unlock_irq(&p->real_parent->sighand->siglock);
1305 * Now we are sure this task is interesting, and no other
1306 * thread can reap it because we set its state to EXIT_DEAD.
1308 read_unlock(&tasklist_lock);
1310 retval = wo->wo_rusage
1311 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1312 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1313 ? p->signal->group_exit_code : p->exit_code;
1314 if (!retval && wo->wo_stat)
1315 retval = put_user(status, wo->wo_stat);
1317 infop = wo->wo_info;
1318 if (!retval && infop)
1319 retval = put_user(SIGCHLD, &infop->si_signo);
1320 if (!retval && infop)
1321 retval = put_user(0, &infop->si_errno);
1322 if (!retval && infop) {
1323 int why;
1325 if ((status & 0x7f) == 0) {
1326 why = CLD_EXITED;
1327 status >>= 8;
1328 } else {
1329 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1330 status &= 0x7f;
1332 retval = put_user((short)why, &infop->si_code);
1333 if (!retval)
1334 retval = put_user(status, &infop->si_status);
1336 if (!retval && infop)
1337 retval = put_user(pid, &infop->si_pid);
1338 if (!retval && infop)
1339 retval = put_user(uid, &infop->si_uid);
1340 if (!retval)
1341 retval = pid;
1343 if (traced) {
1344 write_lock_irq(&tasklist_lock);
1345 /* We dropped tasklist, ptracer could die and untrace */
1346 ptrace_unlink(p);
1348 * If this is not a detached task, notify the parent.
1349 * If it's still not detached after that, don't release
1350 * it now.
1352 if (!task_detached(p)) {
1353 do_notify_parent(p, p->exit_signal);
1354 if (!task_detached(p)) {
1355 p->exit_state = EXIT_ZOMBIE;
1356 p = NULL;
1359 write_unlock_irq(&tasklist_lock);
1361 if (p != NULL)
1362 release_task(p);
1364 return retval;
1367 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1369 if (ptrace) {
1370 if (task_is_stopped_or_traced(p))
1371 return &p->exit_code;
1372 } else {
1373 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1374 return &p->signal->group_exit_code;
1376 return NULL;
1380 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1381 * @wo: wait options
1382 * @ptrace: is the wait for ptrace
1383 * @p: task to wait for
1385 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1387 * CONTEXT:
1388 * read_lock(&tasklist_lock), which is released if return value is
1389 * non-zero. Also, grabs and releases @p->sighand->siglock.
1391 * RETURNS:
1392 * 0 if wait condition didn't exist and search for other wait conditions
1393 * should continue. Non-zero return, -errno on failure and @p's pid on
1394 * success, implies that tasklist_lock is released and wait condition
1395 * search should terminate.
1397 static int wait_task_stopped(struct wait_opts *wo,
1398 int ptrace, struct task_struct *p)
1400 struct siginfo __user *infop;
1401 int retval, exit_code, *p_code, why;
1402 uid_t uid = 0; /* unneeded, required by compiler */
1403 pid_t pid;
1406 * Traditionally we see ptrace'd stopped tasks regardless of options.
1408 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1409 return 0;
1411 if (!task_stopped_code(p, ptrace))
1412 return 0;
1414 exit_code = 0;
1415 spin_lock_irq(&p->sighand->siglock);
1417 p_code = task_stopped_code(p, ptrace);
1418 if (unlikely(!p_code))
1419 goto unlock_sig;
1421 exit_code = *p_code;
1422 if (!exit_code)
1423 goto unlock_sig;
1425 if (!unlikely(wo->wo_flags & WNOWAIT))
1426 *p_code = 0;
1428 uid = task_uid(p);
1429 unlock_sig:
1430 spin_unlock_irq(&p->sighand->siglock);
1431 if (!exit_code)
1432 return 0;
1435 * Now we are pretty sure this task is interesting.
1436 * Make sure it doesn't get reaped out from under us while we
1437 * give up the lock and then examine it below. We don't want to
1438 * keep holding onto the tasklist_lock while we call getrusage and
1439 * possibly take page faults for user memory.
1441 get_task_struct(p);
1442 pid = task_pid_vnr(p);
1443 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1444 read_unlock(&tasklist_lock);
1446 if (unlikely(wo->wo_flags & WNOWAIT))
1447 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1449 retval = wo->wo_rusage
1450 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1451 if (!retval && wo->wo_stat)
1452 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1454 infop = wo->wo_info;
1455 if (!retval && infop)
1456 retval = put_user(SIGCHLD, &infop->si_signo);
1457 if (!retval && infop)
1458 retval = put_user(0, &infop->si_errno);
1459 if (!retval && infop)
1460 retval = put_user((short)why, &infop->si_code);
1461 if (!retval && infop)
1462 retval = put_user(exit_code, &infop->si_status);
1463 if (!retval && infop)
1464 retval = put_user(pid, &infop->si_pid);
1465 if (!retval && infop)
1466 retval = put_user(uid, &infop->si_uid);
1467 if (!retval)
1468 retval = pid;
1469 put_task_struct(p);
1471 BUG_ON(!retval);
1472 return retval;
1476 * Handle do_wait work for one task in a live, non-stopped state.
1477 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1478 * the lock and this task is uninteresting. If we return nonzero, we have
1479 * released the lock and the system call should return.
1481 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1483 int retval;
1484 pid_t pid;
1485 uid_t uid;
1487 if (!unlikely(wo->wo_flags & WCONTINUED))
1488 return 0;
1490 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1491 return 0;
1493 spin_lock_irq(&p->sighand->siglock);
1494 /* Re-check with the lock held. */
1495 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1496 spin_unlock_irq(&p->sighand->siglock);
1497 return 0;
1499 if (!unlikely(wo->wo_flags & WNOWAIT))
1500 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1501 uid = task_uid(p);
1502 spin_unlock_irq(&p->sighand->siglock);
1504 pid = task_pid_vnr(p);
1505 get_task_struct(p);
1506 read_unlock(&tasklist_lock);
1508 if (!wo->wo_info) {
1509 retval = wo->wo_rusage
1510 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1511 put_task_struct(p);
1512 if (!retval && wo->wo_stat)
1513 retval = put_user(0xffff, wo->wo_stat);
1514 if (!retval)
1515 retval = pid;
1516 } else {
1517 retval = wait_noreap_copyout(wo, p, pid, uid,
1518 CLD_CONTINUED, SIGCONT);
1519 BUG_ON(retval == 0);
1522 return retval;
1526 * Consider @p for a wait by @parent.
1528 * -ECHILD should be in ->notask_error before the first call.
1529 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1530 * Returns zero if the search for a child should continue;
1531 * then ->notask_error is 0 if @p is an eligible child,
1532 * or another error from security_task_wait(), or still -ECHILD.
1534 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1535 struct task_struct *p)
1537 int ret = eligible_child(wo, p);
1538 if (!ret)
1539 return ret;
1541 ret = security_task_wait(p);
1542 if (unlikely(ret < 0)) {
1544 * If we have not yet seen any eligible child,
1545 * then let this error code replace -ECHILD.
1546 * A permission error will give the user a clue
1547 * to look for security policy problems, rather
1548 * than for mysterious wait bugs.
1550 if (wo->notask_error)
1551 wo->notask_error = ret;
1552 return 0;
1555 /* dead body doesn't have much to contribute */
1556 if (unlikely(p->exit_state == EXIT_DEAD)) {
1558 * But do not ignore this task until the tracer does
1559 * wait_task_zombie()->do_notify_parent().
1561 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1562 wo->notask_error = 0;
1563 return 0;
1566 /* slay zombie? */
1567 if (p->exit_state == EXIT_ZOMBIE) {
1569 * A zombie ptracee is only visible to its ptracer.
1570 * Notification and reaping will be cascaded to the real
1571 * parent when the ptracer detaches.
1573 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1574 /* it will become visible, clear notask_error */
1575 wo->notask_error = 0;
1576 return 0;
1579 /* we don't reap group leaders with subthreads */
1580 if (!delay_group_leader(p))
1581 return wait_task_zombie(wo, p);
1584 * Allow access to stopped/continued state via zombie by
1585 * falling through. Clearing of notask_error is complex.
1587 * When !@ptrace:
1589 * If WEXITED is set, notask_error should naturally be
1590 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1591 * so, if there are live subthreads, there are events to
1592 * wait for. If all subthreads are dead, it's still safe
1593 * to clear - this function will be called again in finite
1594 * amount time once all the subthreads are released and
1595 * will then return without clearing.
1597 * When @ptrace:
1599 * Stopped state is per-task and thus can't change once the
1600 * target task dies. Only continued and exited can happen.
1601 * Clear notask_error if WCONTINUED | WEXITED.
1603 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1604 wo->notask_error = 0;
1605 } else {
1607 * If @p is ptraced by a task in its real parent's group,
1608 * hide group stop/continued state when looking at @p as
1609 * the real parent; otherwise, a single stop can be
1610 * reported twice as group and ptrace stops.
1612 * If a ptracer wants to distinguish the two events for its
1613 * own children, it should create a separate process which
1614 * takes the role of real parent.
1616 if (likely(!ptrace) && task_ptrace(p) &&
1617 same_thread_group(p->parent, p->real_parent))
1618 return 0;
1621 * @p is alive and it's gonna stop, continue or exit, so
1622 * there always is something to wait for.
1624 wo->notask_error = 0;
1628 * Wait for stopped. Depending on @ptrace, different stopped state
1629 * is used and the two don't interact with each other.
1631 ret = wait_task_stopped(wo, ptrace, p);
1632 if (ret)
1633 return ret;
1636 * Wait for continued. There's only one continued state and the
1637 * ptracer can consume it which can confuse the real parent. Don't
1638 * use WCONTINUED from ptracer. You don't need or want it.
1640 return wait_task_continued(wo, p);
1644 * Do the work of do_wait() for one thread in the group, @tsk.
1646 * -ECHILD should be in ->notask_error before the first call.
1647 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1648 * Returns zero if the search for a child should continue; then
1649 * ->notask_error is 0 if there were any eligible children,
1650 * or another error from security_task_wait(), or still -ECHILD.
1652 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1654 struct task_struct *p;
1656 list_for_each_entry(p, &tsk->children, sibling) {
1657 int ret = wait_consider_task(wo, 0, p);
1658 if (ret)
1659 return ret;
1662 return 0;
1665 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1667 struct task_struct *p;
1669 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1670 int ret = wait_consider_task(wo, 1, p);
1671 if (ret)
1672 return ret;
1675 return 0;
1678 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1679 int sync, void *key)
1681 struct wait_opts *wo = container_of(wait, struct wait_opts,
1682 child_wait);
1683 struct task_struct *p = key;
1685 if (!eligible_pid(wo, p))
1686 return 0;
1688 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1689 return 0;
1691 return default_wake_function(wait, mode, sync, key);
1694 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1696 __wake_up_sync_key(&parent->signal->wait_chldexit,
1697 TASK_INTERRUPTIBLE, 1, p);
1700 static long do_wait(struct wait_opts *wo)
1702 struct task_struct *tsk;
1703 int retval;
1705 trace_sched_process_wait(wo->wo_pid);
1707 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1708 wo->child_wait.private = current;
1709 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1710 repeat:
1712 * If there is nothing that can match our critiera just get out.
1713 * We will clear ->notask_error to zero if we see any child that
1714 * might later match our criteria, even if we are not able to reap
1715 * it yet.
1717 wo->notask_error = -ECHILD;
1718 if ((wo->wo_type < PIDTYPE_MAX) &&
1719 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1720 goto notask;
1722 set_current_state(TASK_INTERRUPTIBLE);
1723 read_lock(&tasklist_lock);
1724 tsk = current;
1725 do {
1726 retval = do_wait_thread(wo, tsk);
1727 if (retval)
1728 goto end;
1730 retval = ptrace_do_wait(wo, tsk);
1731 if (retval)
1732 goto end;
1734 if (wo->wo_flags & __WNOTHREAD)
1735 break;
1736 } while_each_thread(current, tsk);
1737 read_unlock(&tasklist_lock);
1739 notask:
1740 retval = wo->notask_error;
1741 if (!retval && !(wo->wo_flags & WNOHANG)) {
1742 retval = -ERESTARTSYS;
1743 if (!signal_pending(current)) {
1744 schedule();
1745 goto repeat;
1748 end:
1749 __set_current_state(TASK_RUNNING);
1750 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1751 return retval;
1754 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1755 infop, int, options, struct rusage __user *, ru)
1757 struct wait_opts wo;
1758 struct pid *pid = NULL;
1759 enum pid_type type;
1760 long ret;
1762 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1763 return -EINVAL;
1764 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1765 return -EINVAL;
1767 switch (which) {
1768 case P_ALL:
1769 type = PIDTYPE_MAX;
1770 break;
1771 case P_PID:
1772 type = PIDTYPE_PID;
1773 if (upid <= 0)
1774 return -EINVAL;
1775 break;
1776 case P_PGID:
1777 type = PIDTYPE_PGID;
1778 if (upid <= 0)
1779 return -EINVAL;
1780 break;
1781 default:
1782 return -EINVAL;
1785 if (type < PIDTYPE_MAX)
1786 pid = find_get_pid(upid);
1788 wo.wo_type = type;
1789 wo.wo_pid = pid;
1790 wo.wo_flags = options;
1791 wo.wo_info = infop;
1792 wo.wo_stat = NULL;
1793 wo.wo_rusage = ru;
1794 ret = do_wait(&wo);
1796 if (ret > 0) {
1797 ret = 0;
1798 } else if (infop) {
1800 * For a WNOHANG return, clear out all the fields
1801 * we would set so the user can easily tell the
1802 * difference.
1804 if (!ret)
1805 ret = put_user(0, &infop->si_signo);
1806 if (!ret)
1807 ret = put_user(0, &infop->si_errno);
1808 if (!ret)
1809 ret = put_user(0, &infop->si_code);
1810 if (!ret)
1811 ret = put_user(0, &infop->si_pid);
1812 if (!ret)
1813 ret = put_user(0, &infop->si_uid);
1814 if (!ret)
1815 ret = put_user(0, &infop->si_status);
1818 put_pid(pid);
1820 /* avoid REGPARM breakage on x86: */
1821 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1822 return ret;
1825 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1826 int, options, struct rusage __user *, ru)
1828 struct wait_opts wo;
1829 struct pid *pid = NULL;
1830 enum pid_type type;
1831 long ret;
1833 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1834 __WNOTHREAD|__WCLONE|__WALL))
1835 return -EINVAL;
1837 if (upid == -1)
1838 type = PIDTYPE_MAX;
1839 else if (upid < 0) {
1840 type = PIDTYPE_PGID;
1841 pid = find_get_pid(-upid);
1842 } else if (upid == 0) {
1843 type = PIDTYPE_PGID;
1844 pid = get_task_pid(current, PIDTYPE_PGID);
1845 } else /* upid > 0 */ {
1846 type = PIDTYPE_PID;
1847 pid = find_get_pid(upid);
1850 wo.wo_type = type;
1851 wo.wo_pid = pid;
1852 wo.wo_flags = options | WEXITED;
1853 wo.wo_info = NULL;
1854 wo.wo_stat = stat_addr;
1855 wo.wo_rusage = ru;
1856 ret = do_wait(&wo);
1857 put_pid(pid);
1859 /* avoid REGPARM breakage on x86: */
1860 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1861 return ret;
1864 #ifdef __ARCH_WANT_SYS_WAITPID
1867 * sys_waitpid() remains for compatibility. waitpid() should be
1868 * implemented by calling sys_wait4() from libc.a.
1870 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1872 return sys_wait4(pid, stat_addr, options, NULL);
1875 #endif