[IA64] Use static const char * const in palinfo.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / cfq-iosched.c
blob9eba291eb6fd23854aee14d8a35b5b1108fc0629
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include "cfq.h"
20 * tunables
22 /* max queue in one round of service */
23 static const int cfq_quantum = 8;
24 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max = 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty = 2;
29 static const int cfq_slice_sync = HZ / 10;
30 static int cfq_slice_async = HZ / 25;
31 static const int cfq_slice_async_rq = 2;
32 static int cfq_slice_idle = HZ / 125;
33 static int cfq_group_idle = HZ / 125;
34 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35 static const int cfq_hist_divisor = 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
56 #define RQ_CIC(rq) \
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
61 static struct kmem_cache *cfq_pool;
62 static struct kmem_cache *cfq_ioc_pool;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65 static struct completion *ioc_gone;
66 static DEFINE_SPINLOCK(ioc_gone_lock);
68 static DEFINE_SPINLOCK(cic_index_lock);
69 static DEFINE_IDA(cic_index_ida);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
84 struct cfq_rb_root {
85 struct rb_root rb;
86 struct rb_node *left;
87 unsigned count;
88 unsigned total_weight;
89 u64 min_vdisktime;
90 struct rb_node *active;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
93 .count = 0, .min_vdisktime = 0, }
96 * Per process-grouping structure
98 struct cfq_queue {
99 /* reference count */
100 atomic_t ref;
101 /* various state flags, see below */
102 unsigned int flags;
103 /* parent cfq_data */
104 struct cfq_data *cfqd;
105 /* service_tree member */
106 struct rb_node rb_node;
107 /* service_tree key */
108 unsigned long rb_key;
109 /* prio tree member */
110 struct rb_node p_node;
111 /* prio tree root we belong to, if any */
112 struct rb_root *p_root;
113 /* sorted list of pending requests */
114 struct rb_root sort_list;
115 /* if fifo isn't expired, next request to serve */
116 struct request *next_rq;
117 /* requests queued in sort_list */
118 int queued[2];
119 /* currently allocated requests */
120 int allocated[2];
121 /* fifo list of requests in sort_list */
122 struct list_head fifo;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start;
126 unsigned int allocated_slice;
127 unsigned int slice_dispatch;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start;
130 unsigned long slice_end;
131 long slice_resid;
133 /* pending metadata requests */
134 int meta_pending;
135 /* number of requests that are on the dispatch list or inside driver */
136 int dispatched;
138 /* io prio of this group */
139 unsigned short ioprio, org_ioprio;
140 unsigned short ioprio_class, org_ioprio_class;
142 pid_t pid;
144 u32 seek_history;
145 sector_t last_request_pos;
147 struct cfq_rb_root *service_tree;
148 struct cfq_queue *new_cfqq;
149 struct cfq_group *cfqg;
150 struct cfq_group *orig_cfqg;
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors;
156 * First index in the service_trees.
157 * IDLE is handled separately, so it has negative index
159 enum wl_prio_t {
160 BE_WORKLOAD = 0,
161 RT_WORKLOAD = 1,
162 IDLE_WORKLOAD = 2,
166 * Second index in the service_trees.
168 enum wl_type_t {
169 ASYNC_WORKLOAD = 0,
170 SYNC_NOIDLE_WORKLOAD = 1,
171 SYNC_WORKLOAD = 2
174 /* This is per cgroup per device grouping structure */
175 struct cfq_group {
176 /* group service_tree member */
177 struct rb_node rb_node;
179 /* group service_tree key */
180 u64 vdisktime;
181 unsigned int weight;
182 bool on_st;
184 /* number of cfqq currently on this group */
185 int nr_cfqq;
187 /* Per group busy queus average. Useful for workload slice calc. */
188 unsigned int busy_queues_avg[2];
190 * rr lists of queues with requests, onle rr for each priority class.
191 * Counts are embedded in the cfq_rb_root
193 struct cfq_rb_root service_trees[2][3];
194 struct cfq_rb_root service_tree_idle;
196 unsigned long saved_workload_slice;
197 enum wl_type_t saved_workload;
198 enum wl_prio_t saved_serving_prio;
199 struct blkio_group blkg;
200 #ifdef CONFIG_CFQ_GROUP_IOSCHED
201 struct hlist_node cfqd_node;
202 atomic_t ref;
203 #endif
204 /* number of requests that are on the dispatch list or inside driver */
205 int dispatched;
209 * Per block device queue structure
211 struct cfq_data {
212 struct request_queue *queue;
213 /* Root service tree for cfq_groups */
214 struct cfq_rb_root grp_service_tree;
215 struct cfq_group root_group;
218 * The priority currently being served
220 enum wl_prio_t serving_prio;
221 enum wl_type_t serving_type;
222 unsigned long workload_expires;
223 struct cfq_group *serving_group;
224 bool noidle_tree_requires_idle;
227 * Each priority tree is sorted by next_request position. These
228 * trees are used when determining if two or more queues are
229 * interleaving requests (see cfq_close_cooperator).
231 struct rb_root prio_trees[CFQ_PRIO_LISTS];
233 unsigned int busy_queues;
235 int rq_in_driver;
236 int rq_in_flight[2];
239 * queue-depth detection
241 int rq_queued;
242 int hw_tag;
244 * hw_tag can be
245 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
246 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
247 * 0 => no NCQ
249 int hw_tag_est_depth;
250 unsigned int hw_tag_samples;
253 * idle window management
255 struct timer_list idle_slice_timer;
256 struct work_struct unplug_work;
258 struct cfq_queue *active_queue;
259 struct cfq_io_context *active_cic;
262 * async queue for each priority case
264 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
265 struct cfq_queue *async_idle_cfqq;
267 sector_t last_position;
270 * tunables, see top of file
272 unsigned int cfq_quantum;
273 unsigned int cfq_fifo_expire[2];
274 unsigned int cfq_back_penalty;
275 unsigned int cfq_back_max;
276 unsigned int cfq_slice[2];
277 unsigned int cfq_slice_async_rq;
278 unsigned int cfq_slice_idle;
279 unsigned int cfq_group_idle;
280 unsigned int cfq_latency;
281 unsigned int cfq_group_isolation;
283 unsigned int cic_index;
284 struct list_head cic_list;
287 * Fallback dummy cfqq for extreme OOM conditions
289 struct cfq_queue oom_cfqq;
291 unsigned long last_delayed_sync;
293 /* List of cfq groups being managed on this device*/
294 struct hlist_head cfqg_list;
295 struct rcu_head rcu;
298 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
300 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
301 enum wl_prio_t prio,
302 enum wl_type_t type)
304 if (!cfqg)
305 return NULL;
307 if (prio == IDLE_WORKLOAD)
308 return &cfqg->service_tree_idle;
310 return &cfqg->service_trees[prio][type];
313 enum cfqq_state_flags {
314 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
315 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
316 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
317 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
318 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
319 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
320 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
321 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
322 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
323 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
324 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
325 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
326 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
329 #define CFQ_CFQQ_FNS(name) \
330 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
332 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
334 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
336 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
338 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
340 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
343 CFQ_CFQQ_FNS(on_rr);
344 CFQ_CFQQ_FNS(wait_request);
345 CFQ_CFQQ_FNS(must_dispatch);
346 CFQ_CFQQ_FNS(must_alloc_slice);
347 CFQ_CFQQ_FNS(fifo_expire);
348 CFQ_CFQQ_FNS(idle_window);
349 CFQ_CFQQ_FNS(prio_changed);
350 CFQ_CFQQ_FNS(slice_new);
351 CFQ_CFQQ_FNS(sync);
352 CFQ_CFQQ_FNS(coop);
353 CFQ_CFQQ_FNS(split_coop);
354 CFQ_CFQQ_FNS(deep);
355 CFQ_CFQQ_FNS(wait_busy);
356 #undef CFQ_CFQQ_FNS
358 #ifdef CONFIG_CFQ_GROUP_IOSCHED
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
361 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
362 blkg_path(&(cfqq)->cfqg->blkg), ##args);
364 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
366 blkg_path(&(cfqg)->blkg), ##args); \
368 #else
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
371 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
372 #endif
373 #define cfq_log(cfqd, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
376 /* Traverses through cfq group service trees */
377 #define for_each_cfqg_st(cfqg, i, j, st) \
378 for (i = 0; i <= IDLE_WORKLOAD; i++) \
379 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
380 : &cfqg->service_tree_idle; \
381 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
382 (i == IDLE_WORKLOAD && j == 0); \
383 j++, st = i < IDLE_WORKLOAD ? \
384 &cfqg->service_trees[i][j]: NULL) \
387 static inline bool iops_mode(struct cfq_data *cfqd)
390 * If we are not idling on queues and it is a NCQ drive, parallel
391 * execution of requests is on and measuring time is not possible
392 * in most of the cases until and unless we drive shallower queue
393 * depths and that becomes a performance bottleneck. In such cases
394 * switch to start providing fairness in terms of number of IOs.
396 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
397 return true;
398 else
399 return false;
402 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
404 if (cfq_class_idle(cfqq))
405 return IDLE_WORKLOAD;
406 if (cfq_class_rt(cfqq))
407 return RT_WORKLOAD;
408 return BE_WORKLOAD;
412 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
414 if (!cfq_cfqq_sync(cfqq))
415 return ASYNC_WORKLOAD;
416 if (!cfq_cfqq_idle_window(cfqq))
417 return SYNC_NOIDLE_WORKLOAD;
418 return SYNC_WORKLOAD;
421 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
422 struct cfq_data *cfqd,
423 struct cfq_group *cfqg)
425 if (wl == IDLE_WORKLOAD)
426 return cfqg->service_tree_idle.count;
428 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
429 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
430 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
433 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
434 struct cfq_group *cfqg)
436 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
437 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
440 static void cfq_dispatch_insert(struct request_queue *, struct request *);
441 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
442 struct io_context *, gfp_t);
443 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
444 struct io_context *);
446 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
447 bool is_sync)
449 return cic->cfqq[is_sync];
452 static inline void cic_set_cfqq(struct cfq_io_context *cic,
453 struct cfq_queue *cfqq, bool is_sync)
455 cic->cfqq[is_sync] = cfqq;
458 #define CIC_DEAD_KEY 1ul
459 #define CIC_DEAD_INDEX_SHIFT 1
461 static inline void *cfqd_dead_key(struct cfq_data *cfqd)
463 return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
466 static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
468 struct cfq_data *cfqd = cic->key;
470 if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
471 return NULL;
473 return cfqd;
477 * We regard a request as SYNC, if it's either a read or has the SYNC bit
478 * set (in which case it could also be direct WRITE).
480 static inline bool cfq_bio_sync(struct bio *bio)
482 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
486 * scheduler run of queue, if there are requests pending and no one in the
487 * driver that will restart queueing
489 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
491 if (cfqd->busy_queues) {
492 cfq_log(cfqd, "schedule dispatch");
493 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
497 static int cfq_queue_empty(struct request_queue *q)
499 struct cfq_data *cfqd = q->elevator->elevator_data;
501 return !cfqd->rq_queued;
505 * Scale schedule slice based on io priority. Use the sync time slice only
506 * if a queue is marked sync and has sync io queued. A sync queue with async
507 * io only, should not get full sync slice length.
509 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
510 unsigned short prio)
512 const int base_slice = cfqd->cfq_slice[sync];
514 WARN_ON(prio >= IOPRIO_BE_NR);
516 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
519 static inline int
520 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
522 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
525 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
527 u64 d = delta << CFQ_SERVICE_SHIFT;
529 d = d * BLKIO_WEIGHT_DEFAULT;
530 do_div(d, cfqg->weight);
531 return d;
534 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
536 s64 delta = (s64)(vdisktime - min_vdisktime);
537 if (delta > 0)
538 min_vdisktime = vdisktime;
540 return min_vdisktime;
543 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
545 s64 delta = (s64)(vdisktime - min_vdisktime);
546 if (delta < 0)
547 min_vdisktime = vdisktime;
549 return min_vdisktime;
552 static void update_min_vdisktime(struct cfq_rb_root *st)
554 u64 vdisktime = st->min_vdisktime;
555 struct cfq_group *cfqg;
557 if (st->active) {
558 cfqg = rb_entry_cfqg(st->active);
559 vdisktime = cfqg->vdisktime;
562 if (st->left) {
563 cfqg = rb_entry_cfqg(st->left);
564 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
567 st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
571 * get averaged number of queues of RT/BE priority.
572 * average is updated, with a formula that gives more weight to higher numbers,
573 * to quickly follows sudden increases and decrease slowly
576 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
577 struct cfq_group *cfqg, bool rt)
579 unsigned min_q, max_q;
580 unsigned mult = cfq_hist_divisor - 1;
581 unsigned round = cfq_hist_divisor / 2;
582 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
584 min_q = min(cfqg->busy_queues_avg[rt], busy);
585 max_q = max(cfqg->busy_queues_avg[rt], busy);
586 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
587 cfq_hist_divisor;
588 return cfqg->busy_queues_avg[rt];
591 static inline unsigned
592 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
594 struct cfq_rb_root *st = &cfqd->grp_service_tree;
596 return cfq_target_latency * cfqg->weight / st->total_weight;
599 static inline void
600 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
602 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
603 if (cfqd->cfq_latency) {
605 * interested queues (we consider only the ones with the same
606 * priority class in the cfq group)
608 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
609 cfq_class_rt(cfqq));
610 unsigned sync_slice = cfqd->cfq_slice[1];
611 unsigned expect_latency = sync_slice * iq;
612 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
614 if (expect_latency > group_slice) {
615 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
616 /* scale low_slice according to IO priority
617 * and sync vs async */
618 unsigned low_slice =
619 min(slice, base_low_slice * slice / sync_slice);
620 /* the adapted slice value is scaled to fit all iqs
621 * into the target latency */
622 slice = max(slice * group_slice / expect_latency,
623 low_slice);
626 cfqq->slice_start = jiffies;
627 cfqq->slice_end = jiffies + slice;
628 cfqq->allocated_slice = slice;
629 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
633 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634 * isn't valid until the first request from the dispatch is activated
635 * and the slice time set.
637 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
639 if (cfq_cfqq_slice_new(cfqq))
640 return 0;
641 if (time_before(jiffies, cfqq->slice_end))
642 return 0;
644 return 1;
648 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
649 * We choose the request that is closest to the head right now. Distance
650 * behind the head is penalized and only allowed to a certain extent.
652 static struct request *
653 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
655 sector_t s1, s2, d1 = 0, d2 = 0;
656 unsigned long back_max;
657 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
658 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
659 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
661 if (rq1 == NULL || rq1 == rq2)
662 return rq2;
663 if (rq2 == NULL)
664 return rq1;
666 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
667 return rq1;
668 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
669 return rq2;
670 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
671 return rq1;
672 else if ((rq2->cmd_flags & REQ_META) &&
673 !(rq1->cmd_flags & REQ_META))
674 return rq2;
676 s1 = blk_rq_pos(rq1);
677 s2 = blk_rq_pos(rq2);
680 * by definition, 1KiB is 2 sectors
682 back_max = cfqd->cfq_back_max * 2;
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
689 if (s1 >= last)
690 d1 = s1 - last;
691 else if (s1 + back_max >= last)
692 d1 = (last - s1) * cfqd->cfq_back_penalty;
693 else
694 wrap |= CFQ_RQ1_WRAP;
696 if (s2 >= last)
697 d2 = s2 - last;
698 else if (s2 + back_max >= last)
699 d2 = (last - s2) * cfqd->cfq_back_penalty;
700 else
701 wrap |= CFQ_RQ2_WRAP;
703 /* Found required data */
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
709 switch (wrap) {
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
711 if (d1 < d2)
712 return rq1;
713 else if (d2 < d1)
714 return rq2;
715 else {
716 if (s1 >= s2)
717 return rq1;
718 else
719 return rq2;
722 case CFQ_RQ2_WRAP:
723 return rq1;
724 case CFQ_RQ1_WRAP:
725 return rq2;
726 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
727 default:
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
734 if (s1 <= s2)
735 return rq1;
736 else
737 return rq2;
742 * The below is leftmost cache rbtree addon
744 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
746 /* Service tree is empty */
747 if (!root->count)
748 return NULL;
750 if (!root->left)
751 root->left = rb_first(&root->rb);
753 if (root->left)
754 return rb_entry(root->left, struct cfq_queue, rb_node);
756 return NULL;
759 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
761 if (!root->left)
762 root->left = rb_first(&root->rb);
764 if (root->left)
765 return rb_entry_cfqg(root->left);
767 return NULL;
770 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
772 rb_erase(n, root);
773 RB_CLEAR_NODE(n);
776 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
778 if (root->left == n)
779 root->left = NULL;
780 rb_erase_init(n, &root->rb);
781 --root->count;
785 * would be nice to take fifo expire time into account as well
787 static struct request *
788 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
789 struct request *last)
791 struct rb_node *rbnext = rb_next(&last->rb_node);
792 struct rb_node *rbprev = rb_prev(&last->rb_node);
793 struct request *next = NULL, *prev = NULL;
795 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
797 if (rbprev)
798 prev = rb_entry_rq(rbprev);
800 if (rbnext)
801 next = rb_entry_rq(rbnext);
802 else {
803 rbnext = rb_first(&cfqq->sort_list);
804 if (rbnext && rbnext != &last->rb_node)
805 next = rb_entry_rq(rbnext);
808 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
811 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
812 struct cfq_queue *cfqq)
815 * just an approximation, should be ok.
817 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
818 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
821 static inline s64
822 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
824 return cfqg->vdisktime - st->min_vdisktime;
827 static void
828 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
830 struct rb_node **node = &st->rb.rb_node;
831 struct rb_node *parent = NULL;
832 struct cfq_group *__cfqg;
833 s64 key = cfqg_key(st, cfqg);
834 int left = 1;
836 while (*node != NULL) {
837 parent = *node;
838 __cfqg = rb_entry_cfqg(parent);
840 if (key < cfqg_key(st, __cfqg))
841 node = &parent->rb_left;
842 else {
843 node = &parent->rb_right;
844 left = 0;
848 if (left)
849 st->left = &cfqg->rb_node;
851 rb_link_node(&cfqg->rb_node, parent, node);
852 rb_insert_color(&cfqg->rb_node, &st->rb);
855 static void
856 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
858 struct cfq_rb_root *st = &cfqd->grp_service_tree;
859 struct cfq_group *__cfqg;
860 struct rb_node *n;
862 cfqg->nr_cfqq++;
863 if (cfqg->on_st)
864 return;
867 * Currently put the group at the end. Later implement something
868 * so that groups get lesser vtime based on their weights, so that
869 * if group does not loose all if it was not continously backlogged.
871 n = rb_last(&st->rb);
872 if (n) {
873 __cfqg = rb_entry_cfqg(n);
874 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
875 } else
876 cfqg->vdisktime = st->min_vdisktime;
878 __cfq_group_service_tree_add(st, cfqg);
879 cfqg->on_st = true;
880 st->total_weight += cfqg->weight;
883 static void
884 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
886 struct cfq_rb_root *st = &cfqd->grp_service_tree;
888 if (st->active == &cfqg->rb_node)
889 st->active = NULL;
891 BUG_ON(cfqg->nr_cfqq < 1);
892 cfqg->nr_cfqq--;
894 /* If there are other cfq queues under this group, don't delete it */
895 if (cfqg->nr_cfqq)
896 return;
898 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
899 cfqg->on_st = false;
900 st->total_weight -= cfqg->weight;
901 if (!RB_EMPTY_NODE(&cfqg->rb_node))
902 cfq_rb_erase(&cfqg->rb_node, st);
903 cfqg->saved_workload_slice = 0;
904 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
907 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
909 unsigned int slice_used;
912 * Queue got expired before even a single request completed or
913 * got expired immediately after first request completion.
915 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
917 * Also charge the seek time incurred to the group, otherwise
918 * if there are mutiple queues in the group, each can dispatch
919 * a single request on seeky media and cause lots of seek time
920 * and group will never know it.
922 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
924 } else {
925 slice_used = jiffies - cfqq->slice_start;
926 if (slice_used > cfqq->allocated_slice)
927 slice_used = cfqq->allocated_slice;
930 return slice_used;
933 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
934 struct cfq_queue *cfqq)
936 struct cfq_rb_root *st = &cfqd->grp_service_tree;
937 unsigned int used_sl, charge;
938 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
939 - cfqg->service_tree_idle.count;
941 BUG_ON(nr_sync < 0);
942 used_sl = charge = cfq_cfqq_slice_usage(cfqq);
944 if (iops_mode(cfqd))
945 charge = cfqq->slice_dispatch;
946 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
947 charge = cfqq->allocated_slice;
949 /* Can't update vdisktime while group is on service tree */
950 cfq_rb_erase(&cfqg->rb_node, st);
951 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
952 __cfq_group_service_tree_add(st, cfqg);
954 /* This group is being expired. Save the context */
955 if (time_after(cfqd->workload_expires, jiffies)) {
956 cfqg->saved_workload_slice = cfqd->workload_expires
957 - jiffies;
958 cfqg->saved_workload = cfqd->serving_type;
959 cfqg->saved_serving_prio = cfqd->serving_prio;
960 } else
961 cfqg->saved_workload_slice = 0;
963 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
964 st->min_vdisktime);
965 cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
966 " sect=%u", used_sl, cfqq->slice_dispatch, charge,
967 iops_mode(cfqd), cfqq->nr_sectors);
968 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl);
969 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
972 #ifdef CONFIG_CFQ_GROUP_IOSCHED
973 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
975 if (blkg)
976 return container_of(blkg, struct cfq_group, blkg);
977 return NULL;
980 void
981 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
983 cfqg_of_blkg(blkg)->weight = weight;
986 static struct cfq_group *
987 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
989 struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
990 struct cfq_group *cfqg = NULL;
991 void *key = cfqd;
992 int i, j;
993 struct cfq_rb_root *st;
994 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
995 unsigned int major, minor;
997 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
998 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
999 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1000 cfqg->blkg.dev = MKDEV(major, minor);
1001 goto done;
1003 if (cfqg || !create)
1004 goto done;
1006 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1007 if (!cfqg)
1008 goto done;
1010 for_each_cfqg_st(cfqg, i, j, st)
1011 *st = CFQ_RB_ROOT;
1012 RB_CLEAR_NODE(&cfqg->rb_node);
1015 * Take the initial reference that will be released on destroy
1016 * This can be thought of a joint reference by cgroup and
1017 * elevator which will be dropped by either elevator exit
1018 * or cgroup deletion path depending on who is exiting first.
1020 atomic_set(&cfqg->ref, 1);
1023 * Add group onto cgroup list. It might happen that bdi->dev is
1024 * not initiliazed yet. Initialize this new group without major
1025 * and minor info and this info will be filled in once a new thread
1026 * comes for IO. See code above.
1028 if (bdi->dev) {
1029 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1030 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1031 MKDEV(major, minor));
1032 } else
1033 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
1036 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1038 /* Add group on cfqd list */
1039 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1041 done:
1042 return cfqg;
1046 * Search for the cfq group current task belongs to. If create = 1, then also
1047 * create the cfq group if it does not exist. request_queue lock must be held.
1049 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1051 struct cgroup *cgroup;
1052 struct cfq_group *cfqg = NULL;
1054 rcu_read_lock();
1055 cgroup = task_cgroup(current, blkio_subsys_id);
1056 cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1057 if (!cfqg && create)
1058 cfqg = &cfqd->root_group;
1059 rcu_read_unlock();
1060 return cfqg;
1063 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1065 atomic_inc(&cfqg->ref);
1066 return cfqg;
1069 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1071 /* Currently, all async queues are mapped to root group */
1072 if (!cfq_cfqq_sync(cfqq))
1073 cfqg = &cfqq->cfqd->root_group;
1075 cfqq->cfqg = cfqg;
1076 /* cfqq reference on cfqg */
1077 atomic_inc(&cfqq->cfqg->ref);
1080 static void cfq_put_cfqg(struct cfq_group *cfqg)
1082 struct cfq_rb_root *st;
1083 int i, j;
1085 BUG_ON(atomic_read(&cfqg->ref) <= 0);
1086 if (!atomic_dec_and_test(&cfqg->ref))
1087 return;
1088 for_each_cfqg_st(cfqg, i, j, st)
1089 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1090 kfree(cfqg);
1093 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1095 /* Something wrong if we are trying to remove same group twice */
1096 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1098 hlist_del_init(&cfqg->cfqd_node);
1101 * Put the reference taken at the time of creation so that when all
1102 * queues are gone, group can be destroyed.
1104 cfq_put_cfqg(cfqg);
1107 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1109 struct hlist_node *pos, *n;
1110 struct cfq_group *cfqg;
1112 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1114 * If cgroup removal path got to blk_group first and removed
1115 * it from cgroup list, then it will take care of destroying
1116 * cfqg also.
1118 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1119 cfq_destroy_cfqg(cfqd, cfqg);
1124 * Blk cgroup controller notification saying that blkio_group object is being
1125 * delinked as associated cgroup object is going away. That also means that
1126 * no new IO will come in this group. So get rid of this group as soon as
1127 * any pending IO in the group is finished.
1129 * This function is called under rcu_read_lock(). key is the rcu protected
1130 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1131 * read lock.
1133 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1134 * it should not be NULL as even if elevator was exiting, cgroup deltion
1135 * path got to it first.
1137 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1139 unsigned long flags;
1140 struct cfq_data *cfqd = key;
1142 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1143 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1144 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1147 #else /* GROUP_IOSCHED */
1148 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1150 return &cfqd->root_group;
1153 static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1155 return cfqg;
1158 static inline void
1159 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1160 cfqq->cfqg = cfqg;
1163 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1164 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1166 #endif /* GROUP_IOSCHED */
1169 * The cfqd->service_trees holds all pending cfq_queue's that have
1170 * requests waiting to be processed. It is sorted in the order that
1171 * we will service the queues.
1173 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1174 bool add_front)
1176 struct rb_node **p, *parent;
1177 struct cfq_queue *__cfqq;
1178 unsigned long rb_key;
1179 struct cfq_rb_root *service_tree;
1180 int left;
1181 int new_cfqq = 1;
1182 int group_changed = 0;
1184 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1185 if (!cfqd->cfq_group_isolation
1186 && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1187 && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1188 /* Move this cfq to root group */
1189 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1190 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1191 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1192 cfqq->orig_cfqg = cfqq->cfqg;
1193 cfqq->cfqg = &cfqd->root_group;
1194 atomic_inc(&cfqd->root_group.ref);
1195 group_changed = 1;
1196 } else if (!cfqd->cfq_group_isolation
1197 && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1198 /* cfqq is sequential now needs to go to its original group */
1199 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1200 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1201 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1202 cfq_put_cfqg(cfqq->cfqg);
1203 cfqq->cfqg = cfqq->orig_cfqg;
1204 cfqq->orig_cfqg = NULL;
1205 group_changed = 1;
1206 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1208 #endif
1210 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1211 cfqq_type(cfqq));
1212 if (cfq_class_idle(cfqq)) {
1213 rb_key = CFQ_IDLE_DELAY;
1214 parent = rb_last(&service_tree->rb);
1215 if (parent && parent != &cfqq->rb_node) {
1216 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1217 rb_key += __cfqq->rb_key;
1218 } else
1219 rb_key += jiffies;
1220 } else if (!add_front) {
1222 * Get our rb key offset. Subtract any residual slice
1223 * value carried from last service. A negative resid
1224 * count indicates slice overrun, and this should position
1225 * the next service time further away in the tree.
1227 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1228 rb_key -= cfqq->slice_resid;
1229 cfqq->slice_resid = 0;
1230 } else {
1231 rb_key = -HZ;
1232 __cfqq = cfq_rb_first(service_tree);
1233 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1236 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1237 new_cfqq = 0;
1239 * same position, nothing more to do
1241 if (rb_key == cfqq->rb_key &&
1242 cfqq->service_tree == service_tree)
1243 return;
1245 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1246 cfqq->service_tree = NULL;
1249 left = 1;
1250 parent = NULL;
1251 cfqq->service_tree = service_tree;
1252 p = &service_tree->rb.rb_node;
1253 while (*p) {
1254 struct rb_node **n;
1256 parent = *p;
1257 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1260 * sort by key, that represents service time.
1262 if (time_before(rb_key, __cfqq->rb_key))
1263 n = &(*p)->rb_left;
1264 else {
1265 n = &(*p)->rb_right;
1266 left = 0;
1269 p = n;
1272 if (left)
1273 service_tree->left = &cfqq->rb_node;
1275 cfqq->rb_key = rb_key;
1276 rb_link_node(&cfqq->rb_node, parent, p);
1277 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1278 service_tree->count++;
1279 if ((add_front || !new_cfqq) && !group_changed)
1280 return;
1281 cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1284 static struct cfq_queue *
1285 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1286 sector_t sector, struct rb_node **ret_parent,
1287 struct rb_node ***rb_link)
1289 struct rb_node **p, *parent;
1290 struct cfq_queue *cfqq = NULL;
1292 parent = NULL;
1293 p = &root->rb_node;
1294 while (*p) {
1295 struct rb_node **n;
1297 parent = *p;
1298 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1301 * Sort strictly based on sector. Smallest to the left,
1302 * largest to the right.
1304 if (sector > blk_rq_pos(cfqq->next_rq))
1305 n = &(*p)->rb_right;
1306 else if (sector < blk_rq_pos(cfqq->next_rq))
1307 n = &(*p)->rb_left;
1308 else
1309 break;
1310 p = n;
1311 cfqq = NULL;
1314 *ret_parent = parent;
1315 if (rb_link)
1316 *rb_link = p;
1317 return cfqq;
1320 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1322 struct rb_node **p, *parent;
1323 struct cfq_queue *__cfqq;
1325 if (cfqq->p_root) {
1326 rb_erase(&cfqq->p_node, cfqq->p_root);
1327 cfqq->p_root = NULL;
1330 if (cfq_class_idle(cfqq))
1331 return;
1332 if (!cfqq->next_rq)
1333 return;
1335 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1336 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1337 blk_rq_pos(cfqq->next_rq), &parent, &p);
1338 if (!__cfqq) {
1339 rb_link_node(&cfqq->p_node, parent, p);
1340 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1341 } else
1342 cfqq->p_root = NULL;
1346 * Update cfqq's position in the service tree.
1348 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1351 * Resorting requires the cfqq to be on the RR list already.
1353 if (cfq_cfqq_on_rr(cfqq)) {
1354 cfq_service_tree_add(cfqd, cfqq, 0);
1355 cfq_prio_tree_add(cfqd, cfqq);
1360 * add to busy list of queues for service, trying to be fair in ordering
1361 * the pending list according to last request service
1363 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1365 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1366 BUG_ON(cfq_cfqq_on_rr(cfqq));
1367 cfq_mark_cfqq_on_rr(cfqq);
1368 cfqd->busy_queues++;
1370 cfq_resort_rr_list(cfqd, cfqq);
1374 * Called when the cfqq no longer has requests pending, remove it from
1375 * the service tree.
1377 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1379 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1380 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1381 cfq_clear_cfqq_on_rr(cfqq);
1383 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1384 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1385 cfqq->service_tree = NULL;
1387 if (cfqq->p_root) {
1388 rb_erase(&cfqq->p_node, cfqq->p_root);
1389 cfqq->p_root = NULL;
1392 cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1393 BUG_ON(!cfqd->busy_queues);
1394 cfqd->busy_queues--;
1398 * rb tree support functions
1400 static void cfq_del_rq_rb(struct request *rq)
1402 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1403 const int sync = rq_is_sync(rq);
1405 BUG_ON(!cfqq->queued[sync]);
1406 cfqq->queued[sync]--;
1408 elv_rb_del(&cfqq->sort_list, rq);
1410 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1412 * Queue will be deleted from service tree when we actually
1413 * expire it later. Right now just remove it from prio tree
1414 * as it is empty.
1416 if (cfqq->p_root) {
1417 rb_erase(&cfqq->p_node, cfqq->p_root);
1418 cfqq->p_root = NULL;
1423 static void cfq_add_rq_rb(struct request *rq)
1425 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1426 struct cfq_data *cfqd = cfqq->cfqd;
1427 struct request *__alias, *prev;
1429 cfqq->queued[rq_is_sync(rq)]++;
1432 * looks a little odd, but the first insert might return an alias.
1433 * if that happens, put the alias on the dispatch list
1435 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1436 cfq_dispatch_insert(cfqd->queue, __alias);
1438 if (!cfq_cfqq_on_rr(cfqq))
1439 cfq_add_cfqq_rr(cfqd, cfqq);
1442 * check if this request is a better next-serve candidate
1444 prev = cfqq->next_rq;
1445 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1448 * adjust priority tree position, if ->next_rq changes
1450 if (prev != cfqq->next_rq)
1451 cfq_prio_tree_add(cfqd, cfqq);
1453 BUG_ON(!cfqq->next_rq);
1456 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1458 elv_rb_del(&cfqq->sort_list, rq);
1459 cfqq->queued[rq_is_sync(rq)]--;
1460 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1461 rq_data_dir(rq), rq_is_sync(rq));
1462 cfq_add_rq_rb(rq);
1463 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1464 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1465 rq_is_sync(rq));
1468 static struct request *
1469 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1471 struct task_struct *tsk = current;
1472 struct cfq_io_context *cic;
1473 struct cfq_queue *cfqq;
1475 cic = cfq_cic_lookup(cfqd, tsk->io_context);
1476 if (!cic)
1477 return NULL;
1479 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1480 if (cfqq) {
1481 sector_t sector = bio->bi_sector + bio_sectors(bio);
1483 return elv_rb_find(&cfqq->sort_list, sector);
1486 return NULL;
1489 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1491 struct cfq_data *cfqd = q->elevator->elevator_data;
1493 cfqd->rq_in_driver++;
1494 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1495 cfqd->rq_in_driver);
1497 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1500 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1502 struct cfq_data *cfqd = q->elevator->elevator_data;
1504 WARN_ON(!cfqd->rq_in_driver);
1505 cfqd->rq_in_driver--;
1506 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1507 cfqd->rq_in_driver);
1510 static void cfq_remove_request(struct request *rq)
1512 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1514 if (cfqq->next_rq == rq)
1515 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1517 list_del_init(&rq->queuelist);
1518 cfq_del_rq_rb(rq);
1520 cfqq->cfqd->rq_queued--;
1521 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1522 rq_data_dir(rq), rq_is_sync(rq));
1523 if (rq->cmd_flags & REQ_META) {
1524 WARN_ON(!cfqq->meta_pending);
1525 cfqq->meta_pending--;
1529 static int cfq_merge(struct request_queue *q, struct request **req,
1530 struct bio *bio)
1532 struct cfq_data *cfqd = q->elevator->elevator_data;
1533 struct request *__rq;
1535 __rq = cfq_find_rq_fmerge(cfqd, bio);
1536 if (__rq && elv_rq_merge_ok(__rq, bio)) {
1537 *req = __rq;
1538 return ELEVATOR_FRONT_MERGE;
1541 return ELEVATOR_NO_MERGE;
1544 static void cfq_merged_request(struct request_queue *q, struct request *req,
1545 int type)
1547 if (type == ELEVATOR_FRONT_MERGE) {
1548 struct cfq_queue *cfqq = RQ_CFQQ(req);
1550 cfq_reposition_rq_rb(cfqq, req);
1554 static void cfq_bio_merged(struct request_queue *q, struct request *req,
1555 struct bio *bio)
1557 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1558 bio_data_dir(bio), cfq_bio_sync(bio));
1561 static void
1562 cfq_merged_requests(struct request_queue *q, struct request *rq,
1563 struct request *next)
1565 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1567 * reposition in fifo if next is older than rq
1569 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1570 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1571 list_move(&rq->queuelist, &next->queuelist);
1572 rq_set_fifo_time(rq, rq_fifo_time(next));
1575 if (cfqq->next_rq == next)
1576 cfqq->next_rq = rq;
1577 cfq_remove_request(next);
1578 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1579 rq_data_dir(next), rq_is_sync(next));
1582 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1583 struct bio *bio)
1585 struct cfq_data *cfqd = q->elevator->elevator_data;
1586 struct cfq_io_context *cic;
1587 struct cfq_queue *cfqq;
1590 * Disallow merge of a sync bio into an async request.
1592 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1593 return false;
1596 * Lookup the cfqq that this bio will be queued with. Allow
1597 * merge only if rq is queued there.
1599 cic = cfq_cic_lookup(cfqd, current->io_context);
1600 if (!cic)
1601 return false;
1603 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1604 return cfqq == RQ_CFQQ(rq);
1607 static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1609 del_timer(&cfqd->idle_slice_timer);
1610 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1613 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1614 struct cfq_queue *cfqq)
1616 if (cfqq) {
1617 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1618 cfqd->serving_prio, cfqd->serving_type);
1619 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1620 cfqq->slice_start = 0;
1621 cfqq->dispatch_start = jiffies;
1622 cfqq->allocated_slice = 0;
1623 cfqq->slice_end = 0;
1624 cfqq->slice_dispatch = 0;
1625 cfqq->nr_sectors = 0;
1627 cfq_clear_cfqq_wait_request(cfqq);
1628 cfq_clear_cfqq_must_dispatch(cfqq);
1629 cfq_clear_cfqq_must_alloc_slice(cfqq);
1630 cfq_clear_cfqq_fifo_expire(cfqq);
1631 cfq_mark_cfqq_slice_new(cfqq);
1633 cfq_del_timer(cfqd, cfqq);
1636 cfqd->active_queue = cfqq;
1640 * current cfqq expired its slice (or was too idle), select new one
1642 static void
1643 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1644 bool timed_out)
1646 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1648 if (cfq_cfqq_wait_request(cfqq))
1649 cfq_del_timer(cfqd, cfqq);
1651 cfq_clear_cfqq_wait_request(cfqq);
1652 cfq_clear_cfqq_wait_busy(cfqq);
1655 * If this cfqq is shared between multiple processes, check to
1656 * make sure that those processes are still issuing I/Os within
1657 * the mean seek distance. If not, it may be time to break the
1658 * queues apart again.
1660 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1661 cfq_mark_cfqq_split_coop(cfqq);
1664 * store what was left of this slice, if the queue idled/timed out
1666 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1667 cfqq->slice_resid = cfqq->slice_end - jiffies;
1668 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1671 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1673 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1674 cfq_del_cfqq_rr(cfqd, cfqq);
1676 cfq_resort_rr_list(cfqd, cfqq);
1678 if (cfqq == cfqd->active_queue)
1679 cfqd->active_queue = NULL;
1681 if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1682 cfqd->grp_service_tree.active = NULL;
1684 if (cfqd->active_cic) {
1685 put_io_context(cfqd->active_cic->ioc);
1686 cfqd->active_cic = NULL;
1690 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1692 struct cfq_queue *cfqq = cfqd->active_queue;
1694 if (cfqq)
1695 __cfq_slice_expired(cfqd, cfqq, timed_out);
1699 * Get next queue for service. Unless we have a queue preemption,
1700 * we'll simply select the first cfqq in the service tree.
1702 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1704 struct cfq_rb_root *service_tree =
1705 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1706 cfqd->serving_type);
1708 if (!cfqd->rq_queued)
1709 return NULL;
1711 /* There is nothing to dispatch */
1712 if (!service_tree)
1713 return NULL;
1714 if (RB_EMPTY_ROOT(&service_tree->rb))
1715 return NULL;
1716 return cfq_rb_first(service_tree);
1719 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1721 struct cfq_group *cfqg;
1722 struct cfq_queue *cfqq;
1723 int i, j;
1724 struct cfq_rb_root *st;
1726 if (!cfqd->rq_queued)
1727 return NULL;
1729 cfqg = cfq_get_next_cfqg(cfqd);
1730 if (!cfqg)
1731 return NULL;
1733 for_each_cfqg_st(cfqg, i, j, st)
1734 if ((cfqq = cfq_rb_first(st)) != NULL)
1735 return cfqq;
1736 return NULL;
1740 * Get and set a new active queue for service.
1742 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1743 struct cfq_queue *cfqq)
1745 if (!cfqq)
1746 cfqq = cfq_get_next_queue(cfqd);
1748 __cfq_set_active_queue(cfqd, cfqq);
1749 return cfqq;
1752 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1753 struct request *rq)
1755 if (blk_rq_pos(rq) >= cfqd->last_position)
1756 return blk_rq_pos(rq) - cfqd->last_position;
1757 else
1758 return cfqd->last_position - blk_rq_pos(rq);
1761 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1762 struct request *rq)
1764 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1767 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1768 struct cfq_queue *cur_cfqq)
1770 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1771 struct rb_node *parent, *node;
1772 struct cfq_queue *__cfqq;
1773 sector_t sector = cfqd->last_position;
1775 if (RB_EMPTY_ROOT(root))
1776 return NULL;
1779 * First, if we find a request starting at the end of the last
1780 * request, choose it.
1782 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1783 if (__cfqq)
1784 return __cfqq;
1787 * If the exact sector wasn't found, the parent of the NULL leaf
1788 * will contain the closest sector.
1790 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1791 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1792 return __cfqq;
1794 if (blk_rq_pos(__cfqq->next_rq) < sector)
1795 node = rb_next(&__cfqq->p_node);
1796 else
1797 node = rb_prev(&__cfqq->p_node);
1798 if (!node)
1799 return NULL;
1801 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1802 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1803 return __cfqq;
1805 return NULL;
1809 * cfqd - obvious
1810 * cur_cfqq - passed in so that we don't decide that the current queue is
1811 * closely cooperating with itself.
1813 * So, basically we're assuming that that cur_cfqq has dispatched at least
1814 * one request, and that cfqd->last_position reflects a position on the disk
1815 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1816 * assumption.
1818 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1819 struct cfq_queue *cur_cfqq)
1821 struct cfq_queue *cfqq;
1823 if (cfq_class_idle(cur_cfqq))
1824 return NULL;
1825 if (!cfq_cfqq_sync(cur_cfqq))
1826 return NULL;
1827 if (CFQQ_SEEKY(cur_cfqq))
1828 return NULL;
1831 * Don't search priority tree if it's the only queue in the group.
1833 if (cur_cfqq->cfqg->nr_cfqq == 1)
1834 return NULL;
1837 * We should notice if some of the queues are cooperating, eg
1838 * working closely on the same area of the disk. In that case,
1839 * we can group them together and don't waste time idling.
1841 cfqq = cfqq_close(cfqd, cur_cfqq);
1842 if (!cfqq)
1843 return NULL;
1845 /* If new queue belongs to different cfq_group, don't choose it */
1846 if (cur_cfqq->cfqg != cfqq->cfqg)
1847 return NULL;
1850 * It only makes sense to merge sync queues.
1852 if (!cfq_cfqq_sync(cfqq))
1853 return NULL;
1854 if (CFQQ_SEEKY(cfqq))
1855 return NULL;
1858 * Do not merge queues of different priority classes
1860 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1861 return NULL;
1863 return cfqq;
1867 * Determine whether we should enforce idle window for this queue.
1870 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1872 enum wl_prio_t prio = cfqq_prio(cfqq);
1873 struct cfq_rb_root *service_tree = cfqq->service_tree;
1875 BUG_ON(!service_tree);
1876 BUG_ON(!service_tree->count);
1878 if (!cfqd->cfq_slice_idle)
1879 return false;
1881 /* We never do for idle class queues. */
1882 if (prio == IDLE_WORKLOAD)
1883 return false;
1885 /* We do for queues that were marked with idle window flag. */
1886 if (cfq_cfqq_idle_window(cfqq) &&
1887 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1888 return true;
1891 * Otherwise, we do only if they are the last ones
1892 * in their service tree.
1894 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1895 return 1;
1896 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1897 service_tree->count);
1898 return 0;
1901 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1903 struct cfq_queue *cfqq = cfqd->active_queue;
1904 struct cfq_io_context *cic;
1905 unsigned long sl, group_idle = 0;
1908 * SSD device without seek penalty, disable idling. But only do so
1909 * for devices that support queuing, otherwise we still have a problem
1910 * with sync vs async workloads.
1912 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1913 return;
1915 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1916 WARN_ON(cfq_cfqq_slice_new(cfqq));
1919 * idle is disabled, either manually or by past process history
1921 if (!cfq_should_idle(cfqd, cfqq)) {
1922 /* no queue idling. Check for group idling */
1923 if (cfqd->cfq_group_idle)
1924 group_idle = cfqd->cfq_group_idle;
1925 else
1926 return;
1930 * still active requests from this queue, don't idle
1932 if (cfqq->dispatched)
1933 return;
1936 * task has exited, don't wait
1938 cic = cfqd->active_cic;
1939 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1940 return;
1943 * If our average think time is larger than the remaining time
1944 * slice, then don't idle. This avoids overrunning the allotted
1945 * time slice.
1947 if (sample_valid(cic->ttime_samples) &&
1948 (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1949 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1950 cic->ttime_mean);
1951 return;
1954 /* There are other queues in the group, don't do group idle */
1955 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
1956 return;
1958 cfq_mark_cfqq_wait_request(cfqq);
1960 if (group_idle)
1961 sl = cfqd->cfq_group_idle;
1962 else
1963 sl = cfqd->cfq_slice_idle;
1965 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1966 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
1967 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
1968 group_idle ? 1 : 0);
1972 * Move request from internal lists to the request queue dispatch list.
1974 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1976 struct cfq_data *cfqd = q->elevator->elevator_data;
1977 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1979 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1981 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1982 cfq_remove_request(rq);
1983 cfqq->dispatched++;
1984 (RQ_CFQG(rq))->dispatched++;
1985 elv_dispatch_sort(q, rq);
1987 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1988 cfqq->nr_sectors += blk_rq_sectors(rq);
1989 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
1990 rq_data_dir(rq), rq_is_sync(rq));
1994 * return expired entry, or NULL to just start from scratch in rbtree
1996 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1998 struct request *rq = NULL;
2000 if (cfq_cfqq_fifo_expire(cfqq))
2001 return NULL;
2003 cfq_mark_cfqq_fifo_expire(cfqq);
2005 if (list_empty(&cfqq->fifo))
2006 return NULL;
2008 rq = rq_entry_fifo(cfqq->fifo.next);
2009 if (time_before(jiffies, rq_fifo_time(rq)))
2010 rq = NULL;
2012 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2013 return rq;
2016 static inline int
2017 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2019 const int base_rq = cfqd->cfq_slice_async_rq;
2021 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2023 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2027 * Must be called with the queue_lock held.
2029 static int cfqq_process_refs(struct cfq_queue *cfqq)
2031 int process_refs, io_refs;
2033 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2034 process_refs = atomic_read(&cfqq->ref) - io_refs;
2035 BUG_ON(process_refs < 0);
2036 return process_refs;
2039 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2041 int process_refs, new_process_refs;
2042 struct cfq_queue *__cfqq;
2045 * If there are no process references on the new_cfqq, then it is
2046 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2047 * chain may have dropped their last reference (not just their
2048 * last process reference).
2050 if (!cfqq_process_refs(new_cfqq))
2051 return;
2053 /* Avoid a circular list and skip interim queue merges */
2054 while ((__cfqq = new_cfqq->new_cfqq)) {
2055 if (__cfqq == cfqq)
2056 return;
2057 new_cfqq = __cfqq;
2060 process_refs = cfqq_process_refs(cfqq);
2061 new_process_refs = cfqq_process_refs(new_cfqq);
2063 * If the process for the cfqq has gone away, there is no
2064 * sense in merging the queues.
2066 if (process_refs == 0 || new_process_refs == 0)
2067 return;
2070 * Merge in the direction of the lesser amount of work.
2072 if (new_process_refs >= process_refs) {
2073 cfqq->new_cfqq = new_cfqq;
2074 atomic_add(process_refs, &new_cfqq->ref);
2075 } else {
2076 new_cfqq->new_cfqq = cfqq;
2077 atomic_add(new_process_refs, &cfqq->ref);
2081 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2082 struct cfq_group *cfqg, enum wl_prio_t prio)
2084 struct cfq_queue *queue;
2085 int i;
2086 bool key_valid = false;
2087 unsigned long lowest_key = 0;
2088 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2090 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2091 /* select the one with lowest rb_key */
2092 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2093 if (queue &&
2094 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2095 lowest_key = queue->rb_key;
2096 cur_best = i;
2097 key_valid = true;
2101 return cur_best;
2104 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2106 unsigned slice;
2107 unsigned count;
2108 struct cfq_rb_root *st;
2109 unsigned group_slice;
2111 if (!cfqg) {
2112 cfqd->serving_prio = IDLE_WORKLOAD;
2113 cfqd->workload_expires = jiffies + 1;
2114 return;
2117 /* Choose next priority. RT > BE > IDLE */
2118 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2119 cfqd->serving_prio = RT_WORKLOAD;
2120 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2121 cfqd->serving_prio = BE_WORKLOAD;
2122 else {
2123 cfqd->serving_prio = IDLE_WORKLOAD;
2124 cfqd->workload_expires = jiffies + 1;
2125 return;
2129 * For RT and BE, we have to choose also the type
2130 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2131 * expiration time
2133 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2134 count = st->count;
2137 * check workload expiration, and that we still have other queues ready
2139 if (count && !time_after(jiffies, cfqd->workload_expires))
2140 return;
2142 /* otherwise select new workload type */
2143 cfqd->serving_type =
2144 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2145 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2146 count = st->count;
2149 * the workload slice is computed as a fraction of target latency
2150 * proportional to the number of queues in that workload, over
2151 * all the queues in the same priority class
2153 group_slice = cfq_group_slice(cfqd, cfqg);
2155 slice = group_slice * count /
2156 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2157 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2159 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2160 unsigned int tmp;
2163 * Async queues are currently system wide. Just taking
2164 * proportion of queues with-in same group will lead to higher
2165 * async ratio system wide as generally root group is going
2166 * to have higher weight. A more accurate thing would be to
2167 * calculate system wide asnc/sync ratio.
2169 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2170 tmp = tmp/cfqd->busy_queues;
2171 slice = min_t(unsigned, slice, tmp);
2173 /* async workload slice is scaled down according to
2174 * the sync/async slice ratio. */
2175 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2176 } else
2177 /* sync workload slice is at least 2 * cfq_slice_idle */
2178 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2180 slice = max_t(unsigned, slice, CFQ_MIN_TT);
2181 cfq_log(cfqd, "workload slice:%d", slice);
2182 cfqd->workload_expires = jiffies + slice;
2183 cfqd->noidle_tree_requires_idle = false;
2186 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2188 struct cfq_rb_root *st = &cfqd->grp_service_tree;
2189 struct cfq_group *cfqg;
2191 if (RB_EMPTY_ROOT(&st->rb))
2192 return NULL;
2193 cfqg = cfq_rb_first_group(st);
2194 st->active = &cfqg->rb_node;
2195 update_min_vdisktime(st);
2196 return cfqg;
2199 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2201 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2203 cfqd->serving_group = cfqg;
2205 /* Restore the workload type data */
2206 if (cfqg->saved_workload_slice) {
2207 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2208 cfqd->serving_type = cfqg->saved_workload;
2209 cfqd->serving_prio = cfqg->saved_serving_prio;
2210 } else
2211 cfqd->workload_expires = jiffies - 1;
2213 choose_service_tree(cfqd, cfqg);
2217 * Select a queue for service. If we have a current active queue,
2218 * check whether to continue servicing it, or retrieve and set a new one.
2220 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2222 struct cfq_queue *cfqq, *new_cfqq = NULL;
2224 cfqq = cfqd->active_queue;
2225 if (!cfqq)
2226 goto new_queue;
2228 if (!cfqd->rq_queued)
2229 return NULL;
2232 * We were waiting for group to get backlogged. Expire the queue
2234 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2235 goto expire;
2238 * The active queue has run out of time, expire it and select new.
2240 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2242 * If slice had not expired at the completion of last request
2243 * we might not have turned on wait_busy flag. Don't expire
2244 * the queue yet. Allow the group to get backlogged.
2246 * The very fact that we have used the slice, that means we
2247 * have been idling all along on this queue and it should be
2248 * ok to wait for this request to complete.
2250 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2251 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2252 cfqq = NULL;
2253 goto keep_queue;
2254 } else
2255 goto check_group_idle;
2259 * The active queue has requests and isn't expired, allow it to
2260 * dispatch.
2262 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2263 goto keep_queue;
2266 * If another queue has a request waiting within our mean seek
2267 * distance, let it run. The expire code will check for close
2268 * cooperators and put the close queue at the front of the service
2269 * tree. If possible, merge the expiring queue with the new cfqq.
2271 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2272 if (new_cfqq) {
2273 if (!cfqq->new_cfqq)
2274 cfq_setup_merge(cfqq, new_cfqq);
2275 goto expire;
2279 * No requests pending. If the active queue still has requests in
2280 * flight or is idling for a new request, allow either of these
2281 * conditions to happen (or time out) before selecting a new queue.
2283 if (timer_pending(&cfqd->idle_slice_timer)) {
2284 cfqq = NULL;
2285 goto keep_queue;
2288 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2289 cfqq = NULL;
2290 goto keep_queue;
2294 * If group idle is enabled and there are requests dispatched from
2295 * this group, wait for requests to complete.
2297 check_group_idle:
2298 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2299 && cfqq->cfqg->dispatched) {
2300 cfqq = NULL;
2301 goto keep_queue;
2304 expire:
2305 cfq_slice_expired(cfqd, 0);
2306 new_queue:
2308 * Current queue expired. Check if we have to switch to a new
2309 * service tree
2311 if (!new_cfqq)
2312 cfq_choose_cfqg(cfqd);
2314 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2315 keep_queue:
2316 return cfqq;
2319 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2321 int dispatched = 0;
2323 while (cfqq->next_rq) {
2324 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2325 dispatched++;
2328 BUG_ON(!list_empty(&cfqq->fifo));
2330 /* By default cfqq is not expired if it is empty. Do it explicitly */
2331 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2332 return dispatched;
2336 * Drain our current requests. Used for barriers and when switching
2337 * io schedulers on-the-fly.
2339 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2341 struct cfq_queue *cfqq;
2342 int dispatched = 0;
2344 /* Expire the timeslice of the current active queue first */
2345 cfq_slice_expired(cfqd, 0);
2346 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2347 __cfq_set_active_queue(cfqd, cfqq);
2348 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2351 BUG_ON(cfqd->busy_queues);
2353 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2354 return dispatched;
2357 static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2358 struct cfq_queue *cfqq)
2360 /* the queue hasn't finished any request, can't estimate */
2361 if (cfq_cfqq_slice_new(cfqq))
2362 return 1;
2363 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2364 cfqq->slice_end))
2365 return 1;
2367 return 0;
2370 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2372 unsigned int max_dispatch;
2375 * Drain async requests before we start sync IO
2377 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2378 return false;
2381 * If this is an async queue and we have sync IO in flight, let it wait
2383 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2384 return false;
2386 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2387 if (cfq_class_idle(cfqq))
2388 max_dispatch = 1;
2391 * Does this cfqq already have too much IO in flight?
2393 if (cfqq->dispatched >= max_dispatch) {
2395 * idle queue must always only have a single IO in flight
2397 if (cfq_class_idle(cfqq))
2398 return false;
2401 * We have other queues, don't allow more IO from this one
2403 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2404 return false;
2407 * Sole queue user, no limit
2409 if (cfqd->busy_queues == 1)
2410 max_dispatch = -1;
2411 else
2413 * Normally we start throttling cfqq when cfq_quantum/2
2414 * requests have been dispatched. But we can drive
2415 * deeper queue depths at the beginning of slice
2416 * subjected to upper limit of cfq_quantum.
2417 * */
2418 max_dispatch = cfqd->cfq_quantum;
2422 * Async queues must wait a bit before being allowed dispatch.
2423 * We also ramp up the dispatch depth gradually for async IO,
2424 * based on the last sync IO we serviced
2426 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2427 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2428 unsigned int depth;
2430 depth = last_sync / cfqd->cfq_slice[1];
2431 if (!depth && !cfqq->dispatched)
2432 depth = 1;
2433 if (depth < max_dispatch)
2434 max_dispatch = depth;
2438 * If we're below the current max, allow a dispatch
2440 return cfqq->dispatched < max_dispatch;
2444 * Dispatch a request from cfqq, moving them to the request queue
2445 * dispatch list.
2447 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2449 struct request *rq;
2451 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2453 if (!cfq_may_dispatch(cfqd, cfqq))
2454 return false;
2457 * follow expired path, else get first next available
2459 rq = cfq_check_fifo(cfqq);
2460 if (!rq)
2461 rq = cfqq->next_rq;
2464 * insert request into driver dispatch list
2466 cfq_dispatch_insert(cfqd->queue, rq);
2468 if (!cfqd->active_cic) {
2469 struct cfq_io_context *cic = RQ_CIC(rq);
2471 atomic_long_inc(&cic->ioc->refcount);
2472 cfqd->active_cic = cic;
2475 return true;
2479 * Find the cfqq that we need to service and move a request from that to the
2480 * dispatch list
2482 static int cfq_dispatch_requests(struct request_queue *q, int force)
2484 struct cfq_data *cfqd = q->elevator->elevator_data;
2485 struct cfq_queue *cfqq;
2487 if (!cfqd->busy_queues)
2488 return 0;
2490 if (unlikely(force))
2491 return cfq_forced_dispatch(cfqd);
2493 cfqq = cfq_select_queue(cfqd);
2494 if (!cfqq)
2495 return 0;
2498 * Dispatch a request from this cfqq, if it is allowed
2500 if (!cfq_dispatch_request(cfqd, cfqq))
2501 return 0;
2503 cfqq->slice_dispatch++;
2504 cfq_clear_cfqq_must_dispatch(cfqq);
2507 * expire an async queue immediately if it has used up its slice. idle
2508 * queue always expire after 1 dispatch round.
2510 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2511 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2512 cfq_class_idle(cfqq))) {
2513 cfqq->slice_end = jiffies + 1;
2514 cfq_slice_expired(cfqd, 0);
2517 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2518 return 1;
2522 * task holds one reference to the queue, dropped when task exits. each rq
2523 * in-flight on this queue also holds a reference, dropped when rq is freed.
2525 * Each cfq queue took a reference on the parent group. Drop it now.
2526 * queue lock must be held here.
2528 static void cfq_put_queue(struct cfq_queue *cfqq)
2530 struct cfq_data *cfqd = cfqq->cfqd;
2531 struct cfq_group *cfqg, *orig_cfqg;
2533 BUG_ON(atomic_read(&cfqq->ref) <= 0);
2535 if (!atomic_dec_and_test(&cfqq->ref))
2536 return;
2538 cfq_log_cfqq(cfqd, cfqq, "put_queue");
2539 BUG_ON(rb_first(&cfqq->sort_list));
2540 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2541 cfqg = cfqq->cfqg;
2542 orig_cfqg = cfqq->orig_cfqg;
2544 if (unlikely(cfqd->active_queue == cfqq)) {
2545 __cfq_slice_expired(cfqd, cfqq, 0);
2546 cfq_schedule_dispatch(cfqd);
2549 BUG_ON(cfq_cfqq_on_rr(cfqq));
2550 kmem_cache_free(cfq_pool, cfqq);
2551 cfq_put_cfqg(cfqg);
2552 if (orig_cfqg)
2553 cfq_put_cfqg(orig_cfqg);
2557 * Must always be called with the rcu_read_lock() held
2559 static void
2560 __call_for_each_cic(struct io_context *ioc,
2561 void (*func)(struct io_context *, struct cfq_io_context *))
2563 struct cfq_io_context *cic;
2564 struct hlist_node *n;
2566 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2567 func(ioc, cic);
2571 * Call func for each cic attached to this ioc.
2573 static void
2574 call_for_each_cic(struct io_context *ioc,
2575 void (*func)(struct io_context *, struct cfq_io_context *))
2577 rcu_read_lock();
2578 __call_for_each_cic(ioc, func);
2579 rcu_read_unlock();
2582 static void cfq_cic_free_rcu(struct rcu_head *head)
2584 struct cfq_io_context *cic;
2586 cic = container_of(head, struct cfq_io_context, rcu_head);
2588 kmem_cache_free(cfq_ioc_pool, cic);
2589 elv_ioc_count_dec(cfq_ioc_count);
2591 if (ioc_gone) {
2593 * CFQ scheduler is exiting, grab exit lock and check
2594 * the pending io context count. If it hits zero,
2595 * complete ioc_gone and set it back to NULL
2597 spin_lock(&ioc_gone_lock);
2598 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2599 complete(ioc_gone);
2600 ioc_gone = NULL;
2602 spin_unlock(&ioc_gone_lock);
2606 static void cfq_cic_free(struct cfq_io_context *cic)
2608 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2611 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2613 unsigned long flags;
2614 unsigned long dead_key = (unsigned long) cic->key;
2616 BUG_ON(!(dead_key & CIC_DEAD_KEY));
2618 spin_lock_irqsave(&ioc->lock, flags);
2619 radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2620 hlist_del_rcu(&cic->cic_list);
2621 spin_unlock_irqrestore(&ioc->lock, flags);
2623 cfq_cic_free(cic);
2627 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2628 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2629 * and ->trim() which is called with the task lock held
2631 static void cfq_free_io_context(struct io_context *ioc)
2634 * ioc->refcount is zero here, or we are called from elv_unregister(),
2635 * so no more cic's are allowed to be linked into this ioc. So it
2636 * should be ok to iterate over the known list, we will see all cic's
2637 * since no new ones are added.
2639 __call_for_each_cic(ioc, cic_free_func);
2642 static void cfq_put_cooperator(struct cfq_queue *cfqq)
2644 struct cfq_queue *__cfqq, *next;
2647 * If this queue was scheduled to merge with another queue, be
2648 * sure to drop the reference taken on that queue (and others in
2649 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2651 __cfqq = cfqq->new_cfqq;
2652 while (__cfqq) {
2653 if (__cfqq == cfqq) {
2654 WARN(1, "cfqq->new_cfqq loop detected\n");
2655 break;
2657 next = __cfqq->new_cfqq;
2658 cfq_put_queue(__cfqq);
2659 __cfqq = next;
2663 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2665 if (unlikely(cfqq == cfqd->active_queue)) {
2666 __cfq_slice_expired(cfqd, cfqq, 0);
2667 cfq_schedule_dispatch(cfqd);
2670 cfq_put_cooperator(cfqq);
2672 cfq_put_queue(cfqq);
2675 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2676 struct cfq_io_context *cic)
2678 struct io_context *ioc = cic->ioc;
2680 list_del_init(&cic->queue_list);
2683 * Make sure dead mark is seen for dead queues
2685 smp_wmb();
2686 cic->key = cfqd_dead_key(cfqd);
2688 if (ioc->ioc_data == cic)
2689 rcu_assign_pointer(ioc->ioc_data, NULL);
2691 if (cic->cfqq[BLK_RW_ASYNC]) {
2692 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2693 cic->cfqq[BLK_RW_ASYNC] = NULL;
2696 if (cic->cfqq[BLK_RW_SYNC]) {
2697 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2698 cic->cfqq[BLK_RW_SYNC] = NULL;
2702 static void cfq_exit_single_io_context(struct io_context *ioc,
2703 struct cfq_io_context *cic)
2705 struct cfq_data *cfqd = cic_to_cfqd(cic);
2707 if (cfqd) {
2708 struct request_queue *q = cfqd->queue;
2709 unsigned long flags;
2711 spin_lock_irqsave(q->queue_lock, flags);
2714 * Ensure we get a fresh copy of the ->key to prevent
2715 * race between exiting task and queue
2717 smp_read_barrier_depends();
2718 if (cic->key == cfqd)
2719 __cfq_exit_single_io_context(cfqd, cic);
2721 spin_unlock_irqrestore(q->queue_lock, flags);
2726 * The process that ioc belongs to has exited, we need to clean up
2727 * and put the internal structures we have that belongs to that process.
2729 static void cfq_exit_io_context(struct io_context *ioc)
2731 call_for_each_cic(ioc, cfq_exit_single_io_context);
2734 static struct cfq_io_context *
2735 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2737 struct cfq_io_context *cic;
2739 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2740 cfqd->queue->node);
2741 if (cic) {
2742 cic->last_end_request = jiffies;
2743 INIT_LIST_HEAD(&cic->queue_list);
2744 INIT_HLIST_NODE(&cic->cic_list);
2745 cic->dtor = cfq_free_io_context;
2746 cic->exit = cfq_exit_io_context;
2747 elv_ioc_count_inc(cfq_ioc_count);
2750 return cic;
2753 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2755 struct task_struct *tsk = current;
2756 int ioprio_class;
2758 if (!cfq_cfqq_prio_changed(cfqq))
2759 return;
2761 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2762 switch (ioprio_class) {
2763 default:
2764 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2765 case IOPRIO_CLASS_NONE:
2767 * no prio set, inherit CPU scheduling settings
2769 cfqq->ioprio = task_nice_ioprio(tsk);
2770 cfqq->ioprio_class = task_nice_ioclass(tsk);
2771 break;
2772 case IOPRIO_CLASS_RT:
2773 cfqq->ioprio = task_ioprio(ioc);
2774 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2775 break;
2776 case IOPRIO_CLASS_BE:
2777 cfqq->ioprio = task_ioprio(ioc);
2778 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2779 break;
2780 case IOPRIO_CLASS_IDLE:
2781 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2782 cfqq->ioprio = 7;
2783 cfq_clear_cfqq_idle_window(cfqq);
2784 break;
2788 * keep track of original prio settings in case we have to temporarily
2789 * elevate the priority of this queue
2791 cfqq->org_ioprio = cfqq->ioprio;
2792 cfqq->org_ioprio_class = cfqq->ioprio_class;
2793 cfq_clear_cfqq_prio_changed(cfqq);
2796 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2798 struct cfq_data *cfqd = cic_to_cfqd(cic);
2799 struct cfq_queue *cfqq;
2800 unsigned long flags;
2802 if (unlikely(!cfqd))
2803 return;
2805 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2807 cfqq = cic->cfqq[BLK_RW_ASYNC];
2808 if (cfqq) {
2809 struct cfq_queue *new_cfqq;
2810 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2811 GFP_ATOMIC);
2812 if (new_cfqq) {
2813 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2814 cfq_put_queue(cfqq);
2818 cfqq = cic->cfqq[BLK_RW_SYNC];
2819 if (cfqq)
2820 cfq_mark_cfqq_prio_changed(cfqq);
2822 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2825 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2827 call_for_each_cic(ioc, changed_ioprio);
2828 ioc->ioprio_changed = 0;
2831 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2832 pid_t pid, bool is_sync)
2834 RB_CLEAR_NODE(&cfqq->rb_node);
2835 RB_CLEAR_NODE(&cfqq->p_node);
2836 INIT_LIST_HEAD(&cfqq->fifo);
2838 atomic_set(&cfqq->ref, 0);
2839 cfqq->cfqd = cfqd;
2841 cfq_mark_cfqq_prio_changed(cfqq);
2843 if (is_sync) {
2844 if (!cfq_class_idle(cfqq))
2845 cfq_mark_cfqq_idle_window(cfqq);
2846 cfq_mark_cfqq_sync(cfqq);
2848 cfqq->pid = pid;
2851 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2852 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2854 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2855 struct cfq_data *cfqd = cic_to_cfqd(cic);
2856 unsigned long flags;
2857 struct request_queue *q;
2859 if (unlikely(!cfqd))
2860 return;
2862 q = cfqd->queue;
2864 spin_lock_irqsave(q->queue_lock, flags);
2866 if (sync_cfqq) {
2868 * Drop reference to sync queue. A new sync queue will be
2869 * assigned in new group upon arrival of a fresh request.
2871 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2872 cic_set_cfqq(cic, NULL, 1);
2873 cfq_put_queue(sync_cfqq);
2876 spin_unlock_irqrestore(q->queue_lock, flags);
2879 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2881 call_for_each_cic(ioc, changed_cgroup);
2882 ioc->cgroup_changed = 0;
2884 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2886 static struct cfq_queue *
2887 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2888 struct io_context *ioc, gfp_t gfp_mask)
2890 struct cfq_queue *cfqq, *new_cfqq = NULL;
2891 struct cfq_io_context *cic;
2892 struct cfq_group *cfqg;
2894 retry:
2895 cfqg = cfq_get_cfqg(cfqd, 1);
2896 cic = cfq_cic_lookup(cfqd, ioc);
2897 /* cic always exists here */
2898 cfqq = cic_to_cfqq(cic, is_sync);
2901 * Always try a new alloc if we fell back to the OOM cfqq
2902 * originally, since it should just be a temporary situation.
2904 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2905 cfqq = NULL;
2906 if (new_cfqq) {
2907 cfqq = new_cfqq;
2908 new_cfqq = NULL;
2909 } else if (gfp_mask & __GFP_WAIT) {
2910 spin_unlock_irq(cfqd->queue->queue_lock);
2911 new_cfqq = kmem_cache_alloc_node(cfq_pool,
2912 gfp_mask | __GFP_ZERO,
2913 cfqd->queue->node);
2914 spin_lock_irq(cfqd->queue->queue_lock);
2915 if (new_cfqq)
2916 goto retry;
2917 } else {
2918 cfqq = kmem_cache_alloc_node(cfq_pool,
2919 gfp_mask | __GFP_ZERO,
2920 cfqd->queue->node);
2923 if (cfqq) {
2924 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2925 cfq_init_prio_data(cfqq, ioc);
2926 cfq_link_cfqq_cfqg(cfqq, cfqg);
2927 cfq_log_cfqq(cfqd, cfqq, "alloced");
2928 } else
2929 cfqq = &cfqd->oom_cfqq;
2932 if (new_cfqq)
2933 kmem_cache_free(cfq_pool, new_cfqq);
2935 return cfqq;
2938 static struct cfq_queue **
2939 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2941 switch (ioprio_class) {
2942 case IOPRIO_CLASS_RT:
2943 return &cfqd->async_cfqq[0][ioprio];
2944 case IOPRIO_CLASS_BE:
2945 return &cfqd->async_cfqq[1][ioprio];
2946 case IOPRIO_CLASS_IDLE:
2947 return &cfqd->async_idle_cfqq;
2948 default:
2949 BUG();
2953 static struct cfq_queue *
2954 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2955 gfp_t gfp_mask)
2957 const int ioprio = task_ioprio(ioc);
2958 const int ioprio_class = task_ioprio_class(ioc);
2959 struct cfq_queue **async_cfqq = NULL;
2960 struct cfq_queue *cfqq = NULL;
2962 if (!is_sync) {
2963 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2964 cfqq = *async_cfqq;
2967 if (!cfqq)
2968 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2971 * pin the queue now that it's allocated, scheduler exit will prune it
2973 if (!is_sync && !(*async_cfqq)) {
2974 atomic_inc(&cfqq->ref);
2975 *async_cfqq = cfqq;
2978 atomic_inc(&cfqq->ref);
2979 return cfqq;
2983 * We drop cfq io contexts lazily, so we may find a dead one.
2985 static void
2986 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2987 struct cfq_io_context *cic)
2989 unsigned long flags;
2991 WARN_ON(!list_empty(&cic->queue_list));
2992 BUG_ON(cic->key != cfqd_dead_key(cfqd));
2994 spin_lock_irqsave(&ioc->lock, flags);
2996 BUG_ON(ioc->ioc_data == cic);
2998 radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
2999 hlist_del_rcu(&cic->cic_list);
3000 spin_unlock_irqrestore(&ioc->lock, flags);
3002 cfq_cic_free(cic);
3005 static struct cfq_io_context *
3006 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3008 struct cfq_io_context *cic;
3009 unsigned long flags;
3011 if (unlikely(!ioc))
3012 return NULL;
3014 rcu_read_lock();
3017 * we maintain a last-hit cache, to avoid browsing over the tree
3019 cic = rcu_dereference(ioc->ioc_data);
3020 if (cic && cic->key == cfqd) {
3021 rcu_read_unlock();
3022 return cic;
3025 do {
3026 cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3027 rcu_read_unlock();
3028 if (!cic)
3029 break;
3030 if (unlikely(cic->key != cfqd)) {
3031 cfq_drop_dead_cic(cfqd, ioc, cic);
3032 rcu_read_lock();
3033 continue;
3036 spin_lock_irqsave(&ioc->lock, flags);
3037 rcu_assign_pointer(ioc->ioc_data, cic);
3038 spin_unlock_irqrestore(&ioc->lock, flags);
3039 break;
3040 } while (1);
3042 return cic;
3046 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3047 * the process specific cfq io context when entered from the block layer.
3048 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3050 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3051 struct cfq_io_context *cic, gfp_t gfp_mask)
3053 unsigned long flags;
3054 int ret;
3056 ret = radix_tree_preload(gfp_mask);
3057 if (!ret) {
3058 cic->ioc = ioc;
3059 cic->key = cfqd;
3061 spin_lock_irqsave(&ioc->lock, flags);
3062 ret = radix_tree_insert(&ioc->radix_root,
3063 cfqd->cic_index, cic);
3064 if (!ret)
3065 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3066 spin_unlock_irqrestore(&ioc->lock, flags);
3068 radix_tree_preload_end();
3070 if (!ret) {
3071 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3072 list_add(&cic->queue_list, &cfqd->cic_list);
3073 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3077 if (ret)
3078 printk(KERN_ERR "cfq: cic link failed!\n");
3080 return ret;
3084 * Setup general io context and cfq io context. There can be several cfq
3085 * io contexts per general io context, if this process is doing io to more
3086 * than one device managed by cfq.
3088 static struct cfq_io_context *
3089 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3091 struct io_context *ioc = NULL;
3092 struct cfq_io_context *cic;
3094 might_sleep_if(gfp_mask & __GFP_WAIT);
3096 ioc = get_io_context(gfp_mask, cfqd->queue->node);
3097 if (!ioc)
3098 return NULL;
3100 cic = cfq_cic_lookup(cfqd, ioc);
3101 if (cic)
3102 goto out;
3104 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3105 if (cic == NULL)
3106 goto err;
3108 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3109 goto err_free;
3111 out:
3112 smp_read_barrier_depends();
3113 if (unlikely(ioc->ioprio_changed))
3114 cfq_ioc_set_ioprio(ioc);
3116 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3117 if (unlikely(ioc->cgroup_changed))
3118 cfq_ioc_set_cgroup(ioc);
3119 #endif
3120 return cic;
3121 err_free:
3122 cfq_cic_free(cic);
3123 err:
3124 put_io_context(ioc);
3125 return NULL;
3128 static void
3129 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3131 unsigned long elapsed = jiffies - cic->last_end_request;
3132 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3134 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3135 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3136 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3139 static void
3140 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3141 struct request *rq)
3143 sector_t sdist = 0;
3144 sector_t n_sec = blk_rq_sectors(rq);
3145 if (cfqq->last_request_pos) {
3146 if (cfqq->last_request_pos < blk_rq_pos(rq))
3147 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3148 else
3149 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3152 cfqq->seek_history <<= 1;
3153 if (blk_queue_nonrot(cfqd->queue))
3154 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3155 else
3156 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3160 * Disable idle window if the process thinks too long or seeks so much that
3161 * it doesn't matter
3163 static void
3164 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3165 struct cfq_io_context *cic)
3167 int old_idle, enable_idle;
3170 * Don't idle for async or idle io prio class
3172 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3173 return;
3175 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3177 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3178 cfq_mark_cfqq_deep(cfqq);
3180 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3181 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3182 enable_idle = 0;
3183 else if (sample_valid(cic->ttime_samples)) {
3184 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3185 enable_idle = 0;
3186 else
3187 enable_idle = 1;
3190 if (old_idle != enable_idle) {
3191 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3192 if (enable_idle)
3193 cfq_mark_cfqq_idle_window(cfqq);
3194 else
3195 cfq_clear_cfqq_idle_window(cfqq);
3200 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3201 * no or if we aren't sure, a 1 will cause a preempt.
3203 static bool
3204 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3205 struct request *rq)
3207 struct cfq_queue *cfqq;
3209 cfqq = cfqd->active_queue;
3210 if (!cfqq)
3211 return false;
3213 if (cfq_class_idle(new_cfqq))
3214 return false;
3216 if (cfq_class_idle(cfqq))
3217 return true;
3220 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3222 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3223 return false;
3226 * if the new request is sync, but the currently running queue is
3227 * not, let the sync request have priority.
3229 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3230 return true;
3232 if (new_cfqq->cfqg != cfqq->cfqg)
3233 return false;
3235 if (cfq_slice_used(cfqq))
3236 return true;
3238 /* Allow preemption only if we are idling on sync-noidle tree */
3239 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3240 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3241 new_cfqq->service_tree->count == 2 &&
3242 RB_EMPTY_ROOT(&cfqq->sort_list))
3243 return true;
3246 * So both queues are sync. Let the new request get disk time if
3247 * it's a metadata request and the current queue is doing regular IO.
3249 if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3250 return true;
3253 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3255 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3256 return true;
3258 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3259 return false;
3262 * if this request is as-good as one we would expect from the
3263 * current cfqq, let it preempt
3265 if (cfq_rq_close(cfqd, cfqq, rq))
3266 return true;
3268 return false;
3272 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3273 * let it have half of its nominal slice.
3275 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3277 cfq_log_cfqq(cfqd, cfqq, "preempt");
3278 cfq_slice_expired(cfqd, 1);
3281 * Put the new queue at the front of the of the current list,
3282 * so we know that it will be selected next.
3284 BUG_ON(!cfq_cfqq_on_rr(cfqq));
3286 cfq_service_tree_add(cfqd, cfqq, 1);
3288 cfqq->slice_end = 0;
3289 cfq_mark_cfqq_slice_new(cfqq);
3293 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3294 * something we should do about it
3296 static void
3297 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3298 struct request *rq)
3300 struct cfq_io_context *cic = RQ_CIC(rq);
3302 cfqd->rq_queued++;
3303 if (rq->cmd_flags & REQ_META)
3304 cfqq->meta_pending++;
3306 cfq_update_io_thinktime(cfqd, cic);
3307 cfq_update_io_seektime(cfqd, cfqq, rq);
3308 cfq_update_idle_window(cfqd, cfqq, cic);
3310 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3312 if (cfqq == cfqd->active_queue) {
3314 * Remember that we saw a request from this process, but
3315 * don't start queuing just yet. Otherwise we risk seeing lots
3316 * of tiny requests, because we disrupt the normal plugging
3317 * and merging. If the request is already larger than a single
3318 * page, let it rip immediately. For that case we assume that
3319 * merging is already done. Ditto for a busy system that
3320 * has other work pending, don't risk delaying until the
3321 * idle timer unplug to continue working.
3323 if (cfq_cfqq_wait_request(cfqq)) {
3324 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3325 cfqd->busy_queues > 1) {
3326 cfq_del_timer(cfqd, cfqq);
3327 cfq_clear_cfqq_wait_request(cfqq);
3328 __blk_run_queue(cfqd->queue);
3329 } else {
3330 cfq_blkiocg_update_idle_time_stats(
3331 &cfqq->cfqg->blkg);
3332 cfq_mark_cfqq_must_dispatch(cfqq);
3335 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3337 * not the active queue - expire current slice if it is
3338 * idle and has expired it's mean thinktime or this new queue
3339 * has some old slice time left and is of higher priority or
3340 * this new queue is RT and the current one is BE
3342 cfq_preempt_queue(cfqd, cfqq);
3343 __blk_run_queue(cfqd->queue);
3347 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3349 struct cfq_data *cfqd = q->elevator->elevator_data;
3350 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3352 cfq_log_cfqq(cfqd, cfqq, "insert_request");
3353 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3355 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3356 list_add_tail(&rq->queuelist, &cfqq->fifo);
3357 cfq_add_rq_rb(rq);
3358 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3359 &cfqd->serving_group->blkg, rq_data_dir(rq),
3360 rq_is_sync(rq));
3361 cfq_rq_enqueued(cfqd, cfqq, rq);
3365 * Update hw_tag based on peak queue depth over 50 samples under
3366 * sufficient load.
3368 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3370 struct cfq_queue *cfqq = cfqd->active_queue;
3372 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3373 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3375 if (cfqd->hw_tag == 1)
3376 return;
3378 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3379 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3380 return;
3383 * If active queue hasn't enough requests and can idle, cfq might not
3384 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3385 * case
3387 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3388 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3389 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3390 return;
3392 if (cfqd->hw_tag_samples++ < 50)
3393 return;
3395 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3396 cfqd->hw_tag = 1;
3397 else
3398 cfqd->hw_tag = 0;
3401 static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3403 struct cfq_io_context *cic = cfqd->active_cic;
3405 /* If there are other queues in the group, don't wait */
3406 if (cfqq->cfqg->nr_cfqq > 1)
3407 return false;
3409 if (cfq_slice_used(cfqq))
3410 return true;
3412 /* if slice left is less than think time, wait busy */
3413 if (cic && sample_valid(cic->ttime_samples)
3414 && (cfqq->slice_end - jiffies < cic->ttime_mean))
3415 return true;
3418 * If think times is less than a jiffy than ttime_mean=0 and above
3419 * will not be true. It might happen that slice has not expired yet
3420 * but will expire soon (4-5 ns) during select_queue(). To cover the
3421 * case where think time is less than a jiffy, mark the queue wait
3422 * busy if only 1 jiffy is left in the slice.
3424 if (cfqq->slice_end - jiffies == 1)
3425 return true;
3427 return false;
3430 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3432 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3433 struct cfq_data *cfqd = cfqq->cfqd;
3434 const int sync = rq_is_sync(rq);
3435 unsigned long now;
3437 now = jiffies;
3438 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3439 !!(rq->cmd_flags & REQ_NOIDLE));
3441 cfq_update_hw_tag(cfqd);
3443 WARN_ON(!cfqd->rq_in_driver);
3444 WARN_ON(!cfqq->dispatched);
3445 cfqd->rq_in_driver--;
3446 cfqq->dispatched--;
3447 (RQ_CFQG(rq))->dispatched--;
3448 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3449 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3450 rq_data_dir(rq), rq_is_sync(rq));
3452 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3454 if (sync) {
3455 RQ_CIC(rq)->last_end_request = now;
3456 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3457 cfqd->last_delayed_sync = now;
3461 * If this is the active queue, check if it needs to be expired,
3462 * or if we want to idle in case it has no pending requests.
3464 if (cfqd->active_queue == cfqq) {
3465 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3467 if (cfq_cfqq_slice_new(cfqq)) {
3468 cfq_set_prio_slice(cfqd, cfqq);
3469 cfq_clear_cfqq_slice_new(cfqq);
3473 * Should we wait for next request to come in before we expire
3474 * the queue.
3476 if (cfq_should_wait_busy(cfqd, cfqq)) {
3477 unsigned long extend_sl = cfqd->cfq_slice_idle;
3478 if (!cfqd->cfq_slice_idle)
3479 extend_sl = cfqd->cfq_group_idle;
3480 cfqq->slice_end = jiffies + extend_sl;
3481 cfq_mark_cfqq_wait_busy(cfqq);
3482 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3486 * Idling is not enabled on:
3487 * - expired queues
3488 * - idle-priority queues
3489 * - async queues
3490 * - queues with still some requests queued
3491 * - when there is a close cooperator
3493 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3494 cfq_slice_expired(cfqd, 1);
3495 else if (sync && cfqq_empty &&
3496 !cfq_close_cooperator(cfqd, cfqq)) {
3497 cfqd->noidle_tree_requires_idle |=
3498 !(rq->cmd_flags & REQ_NOIDLE);
3500 * Idling is enabled for SYNC_WORKLOAD.
3501 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3502 * only if we processed at least one !REQ_NOIDLE request
3504 if (cfqd->serving_type == SYNC_WORKLOAD
3505 || cfqd->noidle_tree_requires_idle
3506 || cfqq->cfqg->nr_cfqq == 1)
3507 cfq_arm_slice_timer(cfqd);
3511 if (!cfqd->rq_in_driver)
3512 cfq_schedule_dispatch(cfqd);
3516 * we temporarily boost lower priority queues if they are holding fs exclusive
3517 * resources. they are boosted to normal prio (CLASS_BE/4)
3519 static void cfq_prio_boost(struct cfq_queue *cfqq)
3521 if (has_fs_excl()) {
3523 * boost idle prio on transactions that would lock out other
3524 * users of the filesystem
3526 if (cfq_class_idle(cfqq))
3527 cfqq->ioprio_class = IOPRIO_CLASS_BE;
3528 if (cfqq->ioprio > IOPRIO_NORM)
3529 cfqq->ioprio = IOPRIO_NORM;
3530 } else {
3532 * unboost the queue (if needed)
3534 cfqq->ioprio_class = cfqq->org_ioprio_class;
3535 cfqq->ioprio = cfqq->org_ioprio;
3539 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3541 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3542 cfq_mark_cfqq_must_alloc_slice(cfqq);
3543 return ELV_MQUEUE_MUST;
3546 return ELV_MQUEUE_MAY;
3549 static int cfq_may_queue(struct request_queue *q, int rw)
3551 struct cfq_data *cfqd = q->elevator->elevator_data;
3552 struct task_struct *tsk = current;
3553 struct cfq_io_context *cic;
3554 struct cfq_queue *cfqq;
3557 * don't force setup of a queue from here, as a call to may_queue
3558 * does not necessarily imply that a request actually will be queued.
3559 * so just lookup a possibly existing queue, or return 'may queue'
3560 * if that fails
3562 cic = cfq_cic_lookup(cfqd, tsk->io_context);
3563 if (!cic)
3564 return ELV_MQUEUE_MAY;
3566 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3567 if (cfqq) {
3568 cfq_init_prio_data(cfqq, cic->ioc);
3569 cfq_prio_boost(cfqq);
3571 return __cfq_may_queue(cfqq);
3574 return ELV_MQUEUE_MAY;
3578 * queue lock held here
3580 static void cfq_put_request(struct request *rq)
3582 struct cfq_queue *cfqq = RQ_CFQQ(rq);
3584 if (cfqq) {
3585 const int rw = rq_data_dir(rq);
3587 BUG_ON(!cfqq->allocated[rw]);
3588 cfqq->allocated[rw]--;
3590 put_io_context(RQ_CIC(rq)->ioc);
3592 rq->elevator_private = NULL;
3593 rq->elevator_private2 = NULL;
3595 /* Put down rq reference on cfqg */
3596 cfq_put_cfqg(RQ_CFQG(rq));
3597 rq->elevator_private3 = NULL;
3599 cfq_put_queue(cfqq);
3603 static struct cfq_queue *
3604 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3605 struct cfq_queue *cfqq)
3607 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3608 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3609 cfq_mark_cfqq_coop(cfqq->new_cfqq);
3610 cfq_put_queue(cfqq);
3611 return cic_to_cfqq(cic, 1);
3615 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3616 * was the last process referring to said cfqq.
3618 static struct cfq_queue *
3619 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3621 if (cfqq_process_refs(cfqq) == 1) {
3622 cfqq->pid = current->pid;
3623 cfq_clear_cfqq_coop(cfqq);
3624 cfq_clear_cfqq_split_coop(cfqq);
3625 return cfqq;
3628 cic_set_cfqq(cic, NULL, 1);
3630 cfq_put_cooperator(cfqq);
3632 cfq_put_queue(cfqq);
3633 return NULL;
3636 * Allocate cfq data structures associated with this request.
3638 static int
3639 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3641 struct cfq_data *cfqd = q->elevator->elevator_data;
3642 struct cfq_io_context *cic;
3643 const int rw = rq_data_dir(rq);
3644 const bool is_sync = rq_is_sync(rq);
3645 struct cfq_queue *cfqq;
3646 unsigned long flags;
3648 might_sleep_if(gfp_mask & __GFP_WAIT);
3650 cic = cfq_get_io_context(cfqd, gfp_mask);
3652 spin_lock_irqsave(q->queue_lock, flags);
3654 if (!cic)
3655 goto queue_fail;
3657 new_queue:
3658 cfqq = cic_to_cfqq(cic, is_sync);
3659 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3660 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3661 cic_set_cfqq(cic, cfqq, is_sync);
3662 } else {
3664 * If the queue was seeky for too long, break it apart.
3666 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3667 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3668 cfqq = split_cfqq(cic, cfqq);
3669 if (!cfqq)
3670 goto new_queue;
3674 * Check to see if this queue is scheduled to merge with
3675 * another, closely cooperating queue. The merging of
3676 * queues happens here as it must be done in process context.
3677 * The reference on new_cfqq was taken in merge_cfqqs.
3679 if (cfqq->new_cfqq)
3680 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3683 cfqq->allocated[rw]++;
3684 atomic_inc(&cfqq->ref);
3686 spin_unlock_irqrestore(q->queue_lock, flags);
3688 rq->elevator_private = cic;
3689 rq->elevator_private2 = cfqq;
3690 rq->elevator_private3 = cfq_ref_get_cfqg(cfqq->cfqg);
3691 return 0;
3693 queue_fail:
3694 if (cic)
3695 put_io_context(cic->ioc);
3697 cfq_schedule_dispatch(cfqd);
3698 spin_unlock_irqrestore(q->queue_lock, flags);
3699 cfq_log(cfqd, "set_request fail");
3700 return 1;
3703 static void cfq_kick_queue(struct work_struct *work)
3705 struct cfq_data *cfqd =
3706 container_of(work, struct cfq_data, unplug_work);
3707 struct request_queue *q = cfqd->queue;
3709 spin_lock_irq(q->queue_lock);
3710 __blk_run_queue(cfqd->queue);
3711 spin_unlock_irq(q->queue_lock);
3715 * Timer running if the active_queue is currently idling inside its time slice
3717 static void cfq_idle_slice_timer(unsigned long data)
3719 struct cfq_data *cfqd = (struct cfq_data *) data;
3720 struct cfq_queue *cfqq;
3721 unsigned long flags;
3722 int timed_out = 1;
3724 cfq_log(cfqd, "idle timer fired");
3726 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3728 cfqq = cfqd->active_queue;
3729 if (cfqq) {
3730 timed_out = 0;
3733 * We saw a request before the queue expired, let it through
3735 if (cfq_cfqq_must_dispatch(cfqq))
3736 goto out_kick;
3739 * expired
3741 if (cfq_slice_used(cfqq))
3742 goto expire;
3745 * only expire and reinvoke request handler, if there are
3746 * other queues with pending requests
3748 if (!cfqd->busy_queues)
3749 goto out_cont;
3752 * not expired and it has a request pending, let it dispatch
3754 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3755 goto out_kick;
3758 * Queue depth flag is reset only when the idle didn't succeed
3760 cfq_clear_cfqq_deep(cfqq);
3762 expire:
3763 cfq_slice_expired(cfqd, timed_out);
3764 out_kick:
3765 cfq_schedule_dispatch(cfqd);
3766 out_cont:
3767 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3770 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3772 del_timer_sync(&cfqd->idle_slice_timer);
3773 cancel_work_sync(&cfqd->unplug_work);
3776 static void cfq_put_async_queues(struct cfq_data *cfqd)
3778 int i;
3780 for (i = 0; i < IOPRIO_BE_NR; i++) {
3781 if (cfqd->async_cfqq[0][i])
3782 cfq_put_queue(cfqd->async_cfqq[0][i]);
3783 if (cfqd->async_cfqq[1][i])
3784 cfq_put_queue(cfqd->async_cfqq[1][i]);
3787 if (cfqd->async_idle_cfqq)
3788 cfq_put_queue(cfqd->async_idle_cfqq);
3791 static void cfq_cfqd_free(struct rcu_head *head)
3793 kfree(container_of(head, struct cfq_data, rcu));
3796 static void cfq_exit_queue(struct elevator_queue *e)
3798 struct cfq_data *cfqd = e->elevator_data;
3799 struct request_queue *q = cfqd->queue;
3801 cfq_shutdown_timer_wq(cfqd);
3803 spin_lock_irq(q->queue_lock);
3805 if (cfqd->active_queue)
3806 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3808 while (!list_empty(&cfqd->cic_list)) {
3809 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3810 struct cfq_io_context,
3811 queue_list);
3813 __cfq_exit_single_io_context(cfqd, cic);
3816 cfq_put_async_queues(cfqd);
3817 cfq_release_cfq_groups(cfqd);
3818 cfq_blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3820 spin_unlock_irq(q->queue_lock);
3822 cfq_shutdown_timer_wq(cfqd);
3824 spin_lock(&cic_index_lock);
3825 ida_remove(&cic_index_ida, cfqd->cic_index);
3826 spin_unlock(&cic_index_lock);
3828 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3829 call_rcu(&cfqd->rcu, cfq_cfqd_free);
3832 static int cfq_alloc_cic_index(void)
3834 int index, error;
3836 do {
3837 if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3838 return -ENOMEM;
3840 spin_lock(&cic_index_lock);
3841 error = ida_get_new(&cic_index_ida, &index);
3842 spin_unlock(&cic_index_lock);
3843 if (error && error != -EAGAIN)
3844 return error;
3845 } while (error);
3847 return index;
3850 static void *cfq_init_queue(struct request_queue *q)
3852 struct cfq_data *cfqd;
3853 int i, j;
3854 struct cfq_group *cfqg;
3855 struct cfq_rb_root *st;
3857 i = cfq_alloc_cic_index();
3858 if (i < 0)
3859 return NULL;
3861 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3862 if (!cfqd)
3863 return NULL;
3865 cfqd->cic_index = i;
3867 /* Init root service tree */
3868 cfqd->grp_service_tree = CFQ_RB_ROOT;
3870 /* Init root group */
3871 cfqg = &cfqd->root_group;
3872 for_each_cfqg_st(cfqg, i, j, st)
3873 *st = CFQ_RB_ROOT;
3874 RB_CLEAR_NODE(&cfqg->rb_node);
3876 /* Give preference to root group over other groups */
3877 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3879 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3881 * Take a reference to root group which we never drop. This is just
3882 * to make sure that cfq_put_cfqg() does not try to kfree root group
3884 atomic_set(&cfqg->ref, 1);
3885 rcu_read_lock();
3886 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3887 (void *)cfqd, 0);
3888 rcu_read_unlock();
3889 #endif
3891 * Not strictly needed (since RB_ROOT just clears the node and we
3892 * zeroed cfqd on alloc), but better be safe in case someone decides
3893 * to add magic to the rb code
3895 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3896 cfqd->prio_trees[i] = RB_ROOT;
3899 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3900 * Grab a permanent reference to it, so that the normal code flow
3901 * will not attempt to free it.
3903 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3904 atomic_inc(&cfqd->oom_cfqq.ref);
3905 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3907 INIT_LIST_HEAD(&cfqd->cic_list);
3909 cfqd->queue = q;
3911 init_timer(&cfqd->idle_slice_timer);
3912 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3913 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3915 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3917 cfqd->cfq_quantum = cfq_quantum;
3918 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3919 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3920 cfqd->cfq_back_max = cfq_back_max;
3921 cfqd->cfq_back_penalty = cfq_back_penalty;
3922 cfqd->cfq_slice[0] = cfq_slice_async;
3923 cfqd->cfq_slice[1] = cfq_slice_sync;
3924 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3925 cfqd->cfq_slice_idle = cfq_slice_idle;
3926 cfqd->cfq_group_idle = cfq_group_idle;
3927 cfqd->cfq_latency = 1;
3928 cfqd->cfq_group_isolation = 0;
3929 cfqd->hw_tag = -1;
3931 * we optimistically start assuming sync ops weren't delayed in last
3932 * second, in order to have larger depth for async operations.
3934 cfqd->last_delayed_sync = jiffies - HZ;
3935 return cfqd;
3938 static void cfq_slab_kill(void)
3941 * Caller already ensured that pending RCU callbacks are completed,
3942 * so we should have no busy allocations at this point.
3944 if (cfq_pool)
3945 kmem_cache_destroy(cfq_pool);
3946 if (cfq_ioc_pool)
3947 kmem_cache_destroy(cfq_ioc_pool);
3950 static int __init cfq_slab_setup(void)
3952 cfq_pool = KMEM_CACHE(cfq_queue, 0);
3953 if (!cfq_pool)
3954 goto fail;
3956 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3957 if (!cfq_ioc_pool)
3958 goto fail;
3960 return 0;
3961 fail:
3962 cfq_slab_kill();
3963 return -ENOMEM;
3967 * sysfs parts below -->
3969 static ssize_t
3970 cfq_var_show(unsigned int var, char *page)
3972 return sprintf(page, "%d\n", var);
3975 static ssize_t
3976 cfq_var_store(unsigned int *var, const char *page, size_t count)
3978 char *p = (char *) page;
3980 *var = simple_strtoul(p, &p, 10);
3981 return count;
3984 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3985 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3987 struct cfq_data *cfqd = e->elevator_data; \
3988 unsigned int __data = __VAR; \
3989 if (__CONV) \
3990 __data = jiffies_to_msecs(__data); \
3991 return cfq_var_show(__data, (page)); \
3993 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3994 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3995 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3996 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3997 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3998 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3999 SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4000 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4001 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4002 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4003 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4004 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
4005 #undef SHOW_FUNCTION
4007 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4008 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4010 struct cfq_data *cfqd = e->elevator_data; \
4011 unsigned int __data; \
4012 int ret = cfq_var_store(&__data, (page), count); \
4013 if (__data < (MIN)) \
4014 __data = (MIN); \
4015 else if (__data > (MAX)) \
4016 __data = (MAX); \
4017 if (__CONV) \
4018 *(__PTR) = msecs_to_jiffies(__data); \
4019 else \
4020 *(__PTR) = __data; \
4021 return ret; \
4023 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4024 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4025 UINT_MAX, 1);
4026 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4027 UINT_MAX, 1);
4028 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4029 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4030 UINT_MAX, 0);
4031 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4032 STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4033 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4034 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4035 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4036 UINT_MAX, 0);
4037 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4038 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
4039 #undef STORE_FUNCTION
4041 #define CFQ_ATTR(name) \
4042 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4044 static struct elv_fs_entry cfq_attrs[] = {
4045 CFQ_ATTR(quantum),
4046 CFQ_ATTR(fifo_expire_sync),
4047 CFQ_ATTR(fifo_expire_async),
4048 CFQ_ATTR(back_seek_max),
4049 CFQ_ATTR(back_seek_penalty),
4050 CFQ_ATTR(slice_sync),
4051 CFQ_ATTR(slice_async),
4052 CFQ_ATTR(slice_async_rq),
4053 CFQ_ATTR(slice_idle),
4054 CFQ_ATTR(group_idle),
4055 CFQ_ATTR(low_latency),
4056 CFQ_ATTR(group_isolation),
4057 __ATTR_NULL
4060 static struct elevator_type iosched_cfq = {
4061 .ops = {
4062 .elevator_merge_fn = cfq_merge,
4063 .elevator_merged_fn = cfq_merged_request,
4064 .elevator_merge_req_fn = cfq_merged_requests,
4065 .elevator_allow_merge_fn = cfq_allow_merge,
4066 .elevator_bio_merged_fn = cfq_bio_merged,
4067 .elevator_dispatch_fn = cfq_dispatch_requests,
4068 .elevator_add_req_fn = cfq_insert_request,
4069 .elevator_activate_req_fn = cfq_activate_request,
4070 .elevator_deactivate_req_fn = cfq_deactivate_request,
4071 .elevator_queue_empty_fn = cfq_queue_empty,
4072 .elevator_completed_req_fn = cfq_completed_request,
4073 .elevator_former_req_fn = elv_rb_former_request,
4074 .elevator_latter_req_fn = elv_rb_latter_request,
4075 .elevator_set_req_fn = cfq_set_request,
4076 .elevator_put_req_fn = cfq_put_request,
4077 .elevator_may_queue_fn = cfq_may_queue,
4078 .elevator_init_fn = cfq_init_queue,
4079 .elevator_exit_fn = cfq_exit_queue,
4080 .trim = cfq_free_io_context,
4082 .elevator_attrs = cfq_attrs,
4083 .elevator_name = "cfq",
4084 .elevator_owner = THIS_MODULE,
4087 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4088 static struct blkio_policy_type blkio_policy_cfq = {
4089 .ops = {
4090 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4091 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4094 #else
4095 static struct blkio_policy_type blkio_policy_cfq;
4096 #endif
4098 static int __init cfq_init(void)
4101 * could be 0 on HZ < 1000 setups
4103 if (!cfq_slice_async)
4104 cfq_slice_async = 1;
4105 if (!cfq_slice_idle)
4106 cfq_slice_idle = 1;
4108 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4109 if (!cfq_group_idle)
4110 cfq_group_idle = 1;
4111 #else
4112 cfq_group_idle = 0;
4113 #endif
4114 if (cfq_slab_setup())
4115 return -ENOMEM;
4117 elv_register(&iosched_cfq);
4118 blkio_policy_register(&blkio_policy_cfq);
4120 return 0;
4123 static void __exit cfq_exit(void)
4125 DECLARE_COMPLETION_ONSTACK(all_gone);
4126 blkio_policy_unregister(&blkio_policy_cfq);
4127 elv_unregister(&iosched_cfq);
4128 ioc_gone = &all_gone;
4129 /* ioc_gone's update must be visible before reading ioc_count */
4130 smp_wmb();
4133 * this also protects us from entering cfq_slab_kill() with
4134 * pending RCU callbacks
4136 if (elv_ioc_count_read(cfq_ioc_count))
4137 wait_for_completion(&all_gone);
4138 ida_destroy(&cic_index_ida);
4139 cfq_slab_kill();
4142 module_init(cfq_init);
4143 module_exit(cfq_exit);
4145 MODULE_AUTHOR("Jens Axboe");
4146 MODULE_LICENSE("GPL");
4147 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");