2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/smp_lock.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
62 #include <asm/atomic.h>
64 static DEFINE_MUTEX(cgroup_mutex
);
67 * Generate an array of cgroup subsystem pointers. At boot time, this is
68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
69 * registered after that. The mutable section of this array is protected by
72 #define SUBSYS(_x) &_x ## _subsys,
73 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
74 #include <linux/cgroup_subsys.h>
77 #define MAX_CGROUP_ROOT_NAMELEN 64
80 * A cgroupfs_root represents the root of a cgroup hierarchy,
81 * and may be associated with a superblock to form an active
84 struct cgroupfs_root
{
85 struct super_block
*sb
;
88 * The bitmask of subsystems intended to be attached to this
91 unsigned long subsys_bits
;
93 /* Unique id for this hierarchy. */
96 /* The bitmask of subsystems currently attached to this hierarchy */
97 unsigned long actual_subsys_bits
;
99 /* A list running through the attached subsystems */
100 struct list_head subsys_list
;
102 /* The root cgroup for this hierarchy */
103 struct cgroup top_cgroup
;
105 /* Tracks how many cgroups are currently defined in hierarchy.*/
106 int number_of_cgroups
;
108 /* A list running through the active hierarchies */
109 struct list_head root_list
;
111 /* Hierarchy-specific flags */
114 /* The path to use for release notifications. */
115 char release_agent_path
[PATH_MAX
];
117 /* The name for this hierarchy - may be empty */
118 char name
[MAX_CGROUP_ROOT_NAMELEN
];
122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
123 * subsystems that are otherwise unattached - it never has more than a
124 * single cgroup, and all tasks are part of that cgroup.
126 static struct cgroupfs_root rootnode
;
129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
130 * cgroup_subsys->use_id != 0.
132 #define CSS_ID_MAX (65535)
135 * The css to which this ID points. This pointer is set to valid value
136 * after cgroup is populated. If cgroup is removed, this will be NULL.
137 * This pointer is expected to be RCU-safe because destroy()
138 * is called after synchronize_rcu(). But for safe use, css_is_removed()
139 * css_tryget() should be used for avoiding race.
141 struct cgroup_subsys_state
*css
;
147 * Depth in hierarchy which this ID belongs to.
149 unsigned short depth
;
151 * ID is freed by RCU. (and lookup routine is RCU safe.)
153 struct rcu_head rcu_head
;
155 * Hierarchy of CSS ID belongs to.
157 unsigned short stack
[0]; /* Array of Length (depth+1) */
161 * cgroup_event represents events which userspace want to recieve.
163 struct cgroup_event
{
165 * Cgroup which the event belongs to.
169 * Control file which the event associated.
173 * eventfd to signal userspace about the event.
175 struct eventfd_ctx
*eventfd
;
177 * Each of these stored in a list by the cgroup.
179 struct list_head list
;
181 * All fields below needed to unregister event when
182 * userspace closes eventfd.
185 wait_queue_head_t
*wqh
;
187 struct work_struct remove
;
190 /* The list of hierarchy roots */
192 static LIST_HEAD(roots
);
193 static int root_count
;
195 static DEFINE_IDA(hierarchy_ida
);
196 static int next_hierarchy_id
;
197 static DEFINE_SPINLOCK(hierarchy_id_lock
);
199 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200 #define dummytop (&rootnode.top_cgroup)
202 /* This flag indicates whether tasks in the fork and exit paths should
203 * check for fork/exit handlers to call. This avoids us having to do
204 * extra work in the fork/exit path if none of the subsystems need to
207 static int need_forkexit_callback __read_mostly
;
209 #ifdef CONFIG_PROVE_LOCKING
210 int cgroup_lock_is_held(void)
212 return lockdep_is_held(&cgroup_mutex
);
214 #else /* #ifdef CONFIG_PROVE_LOCKING */
215 int cgroup_lock_is_held(void)
217 return mutex_is_locked(&cgroup_mutex
);
219 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
221 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
223 /* convenient tests for these bits */
224 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
226 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
229 /* bits in struct cgroupfs_root flags field */
231 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
234 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
237 (1 << CGRP_RELEASABLE
) |
238 (1 << CGRP_NOTIFY_ON_RELEASE
);
239 return (cgrp
->flags
& bits
) == bits
;
242 static int notify_on_release(const struct cgroup
*cgrp
)
244 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
248 * for_each_subsys() allows you to iterate on each subsystem attached to
249 * an active hierarchy
251 #define for_each_subsys(_root, _ss) \
252 list_for_each_entry(_ss, &_root->subsys_list, sibling)
254 /* for_each_active_root() allows you to iterate across the active hierarchies */
255 #define for_each_active_root(_root) \
256 list_for_each_entry(_root, &roots, root_list)
258 /* the list of cgroups eligible for automatic release. Protected by
259 * release_list_lock */
260 static LIST_HEAD(release_list
);
261 static DEFINE_SPINLOCK(release_list_lock
);
262 static void cgroup_release_agent(struct work_struct
*work
);
263 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
264 static void check_for_release(struct cgroup
*cgrp
);
266 /* Link structure for associating css_set objects with cgroups */
267 struct cg_cgroup_link
{
269 * List running through cg_cgroup_links associated with a
270 * cgroup, anchored on cgroup->css_sets
272 struct list_head cgrp_link_list
;
275 * List running through cg_cgroup_links pointing at a
276 * single css_set object, anchored on css_set->cg_links
278 struct list_head cg_link_list
;
282 /* The default css_set - used by init and its children prior to any
283 * hierarchies being mounted. It contains a pointer to the root state
284 * for each subsystem. Also used to anchor the list of css_sets. Not
285 * reference-counted, to improve performance when child cgroups
286 * haven't been created.
289 static struct css_set init_css_set
;
290 static struct cg_cgroup_link init_css_set_link
;
292 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
293 struct cgroup_subsys_state
*css
);
295 /* css_set_lock protects the list of css_set objects, and the
296 * chain of tasks off each css_set. Nests outside task->alloc_lock
297 * due to cgroup_iter_start() */
298 static DEFINE_RWLOCK(css_set_lock
);
299 static int css_set_count
;
302 * hash table for cgroup groups. This improves the performance to find
303 * an existing css_set. This hash doesn't (currently) take into
304 * account cgroups in empty hierarchies.
306 #define CSS_SET_HASH_BITS 7
307 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
308 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
310 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
314 unsigned long tmp
= 0UL;
316 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
317 tmp
+= (unsigned long)css
[i
];
318 tmp
= (tmp
>> 16) ^ tmp
;
320 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
322 return &css_set_table
[index
];
325 static void free_css_set_rcu(struct rcu_head
*obj
)
327 struct css_set
*cg
= container_of(obj
, struct css_set
, rcu_head
);
331 /* We don't maintain the lists running through each css_set to its
332 * task until after the first call to cgroup_iter_start(). This
333 * reduces the fork()/exit() overhead for people who have cgroups
334 * compiled into their kernel but not actually in use */
335 static int use_task_css_set_links __read_mostly
;
337 static void __put_css_set(struct css_set
*cg
, int taskexit
)
339 struct cg_cgroup_link
*link
;
340 struct cg_cgroup_link
*saved_link
;
342 * Ensure that the refcount doesn't hit zero while any readers
343 * can see it. Similar to atomic_dec_and_lock(), but for an
346 if (atomic_add_unless(&cg
->refcount
, -1, 1))
348 write_lock(&css_set_lock
);
349 if (!atomic_dec_and_test(&cg
->refcount
)) {
350 write_unlock(&css_set_lock
);
354 /* This css_set is dead. unlink it and release cgroup refcounts */
355 hlist_del(&cg
->hlist
);
358 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
360 struct cgroup
*cgrp
= link
->cgrp
;
361 list_del(&link
->cg_link_list
);
362 list_del(&link
->cgrp_link_list
);
363 if (atomic_dec_and_test(&cgrp
->count
) &&
364 notify_on_release(cgrp
)) {
366 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
367 check_for_release(cgrp
);
373 write_unlock(&css_set_lock
);
374 call_rcu(&cg
->rcu_head
, free_css_set_rcu
);
378 * refcounted get/put for css_set objects
380 static inline void get_css_set(struct css_set
*cg
)
382 atomic_inc(&cg
->refcount
);
385 static inline void put_css_set(struct css_set
*cg
)
387 __put_css_set(cg
, 0);
390 static inline void put_css_set_taskexit(struct css_set
*cg
)
392 __put_css_set(cg
, 1);
396 * compare_css_sets - helper function for find_existing_css_set().
397 * @cg: candidate css_set being tested
398 * @old_cg: existing css_set for a task
399 * @new_cgrp: cgroup that's being entered by the task
400 * @template: desired set of css pointers in css_set (pre-calculated)
402 * Returns true if "cg" matches "old_cg" except for the hierarchy
403 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
405 static bool compare_css_sets(struct css_set
*cg
,
406 struct css_set
*old_cg
,
407 struct cgroup
*new_cgrp
,
408 struct cgroup_subsys_state
*template[])
410 struct list_head
*l1
, *l2
;
412 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
413 /* Not all subsystems matched */
418 * Compare cgroup pointers in order to distinguish between
419 * different cgroups in heirarchies with no subsystems. We
420 * could get by with just this check alone (and skip the
421 * memcmp above) but on most setups the memcmp check will
422 * avoid the need for this more expensive check on almost all
427 l2
= &old_cg
->cg_links
;
429 struct cg_cgroup_link
*cgl1
, *cgl2
;
430 struct cgroup
*cg1
, *cg2
;
434 /* See if we reached the end - both lists are equal length. */
435 if (l1
== &cg
->cg_links
) {
436 BUG_ON(l2
!= &old_cg
->cg_links
);
439 BUG_ON(l2
== &old_cg
->cg_links
);
441 /* Locate the cgroups associated with these links. */
442 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
443 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
446 /* Hierarchies should be linked in the same order. */
447 BUG_ON(cg1
->root
!= cg2
->root
);
450 * If this hierarchy is the hierarchy of the cgroup
451 * that's changing, then we need to check that this
452 * css_set points to the new cgroup; if it's any other
453 * hierarchy, then this css_set should point to the
454 * same cgroup as the old css_set.
456 if (cg1
->root
== new_cgrp
->root
) {
468 * find_existing_css_set() is a helper for
469 * find_css_set(), and checks to see whether an existing
470 * css_set is suitable.
472 * oldcg: the cgroup group that we're using before the cgroup
475 * cgrp: the cgroup that we're moving into
477 * template: location in which to build the desired set of subsystem
478 * state objects for the new cgroup group
480 static struct css_set
*find_existing_css_set(
481 struct css_set
*oldcg
,
483 struct cgroup_subsys_state
*template[])
486 struct cgroupfs_root
*root
= cgrp
->root
;
487 struct hlist_head
*hhead
;
488 struct hlist_node
*node
;
492 * Build the set of subsystem state objects that we want to see in the
493 * new css_set. while subsystems can change globally, the entries here
494 * won't change, so no need for locking.
496 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
497 if (root
->subsys_bits
& (1UL << i
)) {
498 /* Subsystem is in this hierarchy. So we want
499 * the subsystem state from the new
501 template[i
] = cgrp
->subsys
[i
];
503 /* Subsystem is not in this hierarchy, so we
504 * don't want to change the subsystem state */
505 template[i
] = oldcg
->subsys
[i
];
509 hhead
= css_set_hash(template);
510 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
511 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
514 /* This css_set matches what we need */
518 /* No existing cgroup group matched */
522 static void free_cg_links(struct list_head
*tmp
)
524 struct cg_cgroup_link
*link
;
525 struct cg_cgroup_link
*saved_link
;
527 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
528 list_del(&link
->cgrp_link_list
);
534 * allocate_cg_links() allocates "count" cg_cgroup_link structures
535 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
536 * success or a negative error
538 static int allocate_cg_links(int count
, struct list_head
*tmp
)
540 struct cg_cgroup_link
*link
;
543 for (i
= 0; i
< count
; i
++) {
544 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
549 list_add(&link
->cgrp_link_list
, tmp
);
555 * link_css_set - a helper function to link a css_set to a cgroup
556 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
557 * @cg: the css_set to be linked
558 * @cgrp: the destination cgroup
560 static void link_css_set(struct list_head
*tmp_cg_links
,
561 struct css_set
*cg
, struct cgroup
*cgrp
)
563 struct cg_cgroup_link
*link
;
565 BUG_ON(list_empty(tmp_cg_links
));
566 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
570 atomic_inc(&cgrp
->count
);
571 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
573 * Always add links to the tail of the list so that the list
574 * is sorted by order of hierarchy creation
576 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
580 * find_css_set() takes an existing cgroup group and a
581 * cgroup object, and returns a css_set object that's
582 * equivalent to the old group, but with the given cgroup
583 * substituted into the appropriate hierarchy. Must be called with
586 static struct css_set
*find_css_set(
587 struct css_set
*oldcg
, struct cgroup
*cgrp
)
590 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
592 struct list_head tmp_cg_links
;
594 struct hlist_head
*hhead
;
595 struct cg_cgroup_link
*link
;
597 /* First see if we already have a cgroup group that matches
599 read_lock(&css_set_lock
);
600 res
= find_existing_css_set(oldcg
, cgrp
, template);
603 read_unlock(&css_set_lock
);
608 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
612 /* Allocate all the cg_cgroup_link objects that we'll need */
613 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
618 atomic_set(&res
->refcount
, 1);
619 INIT_LIST_HEAD(&res
->cg_links
);
620 INIT_LIST_HEAD(&res
->tasks
);
621 INIT_HLIST_NODE(&res
->hlist
);
623 /* Copy the set of subsystem state objects generated in
624 * find_existing_css_set() */
625 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
627 write_lock(&css_set_lock
);
628 /* Add reference counts and links from the new css_set. */
629 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
630 struct cgroup
*c
= link
->cgrp
;
631 if (c
->root
== cgrp
->root
)
633 link_css_set(&tmp_cg_links
, res
, c
);
636 BUG_ON(!list_empty(&tmp_cg_links
));
640 /* Add this cgroup group to the hash table */
641 hhead
= css_set_hash(res
->subsys
);
642 hlist_add_head(&res
->hlist
, hhead
);
644 write_unlock(&css_set_lock
);
650 * Return the cgroup for "task" from the given hierarchy. Must be
651 * called with cgroup_mutex held.
653 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
654 struct cgroupfs_root
*root
)
657 struct cgroup
*res
= NULL
;
659 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
660 read_lock(&css_set_lock
);
662 * No need to lock the task - since we hold cgroup_mutex the
663 * task can't change groups, so the only thing that can happen
664 * is that it exits and its css is set back to init_css_set.
667 if (css
== &init_css_set
) {
668 res
= &root
->top_cgroup
;
670 struct cg_cgroup_link
*link
;
671 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
672 struct cgroup
*c
= link
->cgrp
;
673 if (c
->root
== root
) {
679 read_unlock(&css_set_lock
);
685 * There is one global cgroup mutex. We also require taking
686 * task_lock() when dereferencing a task's cgroup subsys pointers.
687 * See "The task_lock() exception", at the end of this comment.
689 * A task must hold cgroup_mutex to modify cgroups.
691 * Any task can increment and decrement the count field without lock.
692 * So in general, code holding cgroup_mutex can't rely on the count
693 * field not changing. However, if the count goes to zero, then only
694 * cgroup_attach_task() can increment it again. Because a count of zero
695 * means that no tasks are currently attached, therefore there is no
696 * way a task attached to that cgroup can fork (the other way to
697 * increment the count). So code holding cgroup_mutex can safely
698 * assume that if the count is zero, it will stay zero. Similarly, if
699 * a task holds cgroup_mutex on a cgroup with zero count, it
700 * knows that the cgroup won't be removed, as cgroup_rmdir()
703 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
704 * (usually) take cgroup_mutex. These are the two most performance
705 * critical pieces of code here. The exception occurs on cgroup_exit(),
706 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
707 * is taken, and if the cgroup count is zero, a usermode call made
708 * to the release agent with the name of the cgroup (path relative to
709 * the root of cgroup file system) as the argument.
711 * A cgroup can only be deleted if both its 'count' of using tasks
712 * is zero, and its list of 'children' cgroups is empty. Since all
713 * tasks in the system use _some_ cgroup, and since there is always at
714 * least one task in the system (init, pid == 1), therefore, top_cgroup
715 * always has either children cgroups and/or using tasks. So we don't
716 * need a special hack to ensure that top_cgroup cannot be deleted.
718 * The task_lock() exception
720 * The need for this exception arises from the action of
721 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
722 * another. It does so using cgroup_mutex, however there are
723 * several performance critical places that need to reference
724 * task->cgroup without the expense of grabbing a system global
725 * mutex. Therefore except as noted below, when dereferencing or, as
726 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
727 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
728 * the task_struct routinely used for such matters.
730 * P.S. One more locking exception. RCU is used to guard the
731 * update of a tasks cgroup pointer by cgroup_attach_task()
735 * cgroup_lock - lock out any changes to cgroup structures
738 void cgroup_lock(void)
740 mutex_lock(&cgroup_mutex
);
742 EXPORT_SYMBOL_GPL(cgroup_lock
);
745 * cgroup_unlock - release lock on cgroup changes
747 * Undo the lock taken in a previous cgroup_lock() call.
749 void cgroup_unlock(void)
751 mutex_unlock(&cgroup_mutex
);
753 EXPORT_SYMBOL_GPL(cgroup_unlock
);
756 * A couple of forward declarations required, due to cyclic reference loop:
757 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
758 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
762 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
763 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
764 static int cgroup_populate_dir(struct cgroup
*cgrp
);
765 static const struct inode_operations cgroup_dir_inode_operations
;
766 static const struct file_operations proc_cgroupstats_operations
;
768 static struct backing_dev_info cgroup_backing_dev_info
= {
770 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
773 static int alloc_css_id(struct cgroup_subsys
*ss
,
774 struct cgroup
*parent
, struct cgroup
*child
);
776 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
778 struct inode
*inode
= new_inode(sb
);
781 inode
->i_mode
= mode
;
782 inode
->i_uid
= current_fsuid();
783 inode
->i_gid
= current_fsgid();
784 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
785 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
794 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
796 struct cgroup_subsys
*ss
;
799 for_each_subsys(cgrp
->root
, ss
)
800 if (ss
->pre_destroy
) {
801 ret
= ss
->pre_destroy(ss
, cgrp
);
809 static void free_cgroup_rcu(struct rcu_head
*obj
)
811 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
816 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
818 /* is dentry a directory ? if so, kfree() associated cgroup */
819 if (S_ISDIR(inode
->i_mode
)) {
820 struct cgroup
*cgrp
= dentry
->d_fsdata
;
821 struct cgroup_subsys
*ss
;
822 BUG_ON(!(cgroup_is_removed(cgrp
)));
823 /* It's possible for external users to be holding css
824 * reference counts on a cgroup; css_put() needs to
825 * be able to access the cgroup after decrementing
826 * the reference count in order to know if it needs to
827 * queue the cgroup to be handled by the release
831 mutex_lock(&cgroup_mutex
);
833 * Release the subsystem state objects.
835 for_each_subsys(cgrp
->root
, ss
)
836 ss
->destroy(ss
, cgrp
);
838 cgrp
->root
->number_of_cgroups
--;
839 mutex_unlock(&cgroup_mutex
);
842 * Drop the active superblock reference that we took when we
845 deactivate_super(cgrp
->root
->sb
);
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
851 BUG_ON(!list_empty(&cgrp
->pidlists
));
853 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
858 static void remove_dir(struct dentry
*d
)
860 struct dentry
*parent
= dget(d
->d_parent
);
863 simple_rmdir(parent
->d_inode
, d
);
867 static void cgroup_clear_directory(struct dentry
*dentry
)
869 struct list_head
*node
;
871 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
872 spin_lock(&dcache_lock
);
873 node
= dentry
->d_subdirs
.next
;
874 while (node
!= &dentry
->d_subdirs
) {
875 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
878 /* This should never be called on a cgroup
879 * directory with child cgroups */
880 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
882 spin_unlock(&dcache_lock
);
884 simple_unlink(dentry
->d_inode
, d
);
886 spin_lock(&dcache_lock
);
888 node
= dentry
->d_subdirs
.next
;
890 spin_unlock(&dcache_lock
);
894 * NOTE : the dentry must have been dget()'ed
896 static void cgroup_d_remove_dir(struct dentry
*dentry
)
898 cgroup_clear_directory(dentry
);
900 spin_lock(&dcache_lock
);
901 list_del_init(&dentry
->d_u
.d_child
);
902 spin_unlock(&dcache_lock
);
907 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
908 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
909 * reference to css->refcnt. In general, this refcnt is expected to goes down
912 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
914 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
916 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
918 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
919 wake_up_all(&cgroup_rmdir_waitq
);
922 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
927 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
929 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
934 * Call with cgroup_mutex held. Drops reference counts on modules, including
935 * any duplicate ones that parse_cgroupfs_options took. If this function
936 * returns an error, no reference counts are touched.
938 static int rebind_subsystems(struct cgroupfs_root
*root
,
939 unsigned long final_bits
)
941 unsigned long added_bits
, removed_bits
;
942 struct cgroup
*cgrp
= &root
->top_cgroup
;
945 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
947 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
948 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
949 /* Check that any added subsystems are currently free */
950 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
951 unsigned long bit
= 1UL << i
;
952 struct cgroup_subsys
*ss
= subsys
[i
];
953 if (!(bit
& added_bits
))
956 * Nobody should tell us to do a subsys that doesn't exist:
957 * parse_cgroupfs_options should catch that case and refcounts
958 * ensure that subsystems won't disappear once selected.
961 if (ss
->root
!= &rootnode
) {
962 /* Subsystem isn't free */
967 /* Currently we don't handle adding/removing subsystems when
968 * any child cgroups exist. This is theoretically supportable
969 * but involves complex error handling, so it's being left until
971 if (root
->number_of_cgroups
> 1)
974 /* Process each subsystem */
975 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
976 struct cgroup_subsys
*ss
= subsys
[i
];
977 unsigned long bit
= 1UL << i
;
978 if (bit
& added_bits
) {
979 /* We're binding this subsystem to this hierarchy */
981 BUG_ON(cgrp
->subsys
[i
]);
982 BUG_ON(!dummytop
->subsys
[i
]);
983 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
984 mutex_lock(&ss
->hierarchy_mutex
);
985 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
986 cgrp
->subsys
[i
]->cgroup
= cgrp
;
987 list_move(&ss
->sibling
, &root
->subsys_list
);
991 mutex_unlock(&ss
->hierarchy_mutex
);
992 /* refcount was already taken, and we're keeping it */
993 } else if (bit
& removed_bits
) {
994 /* We're removing this subsystem */
996 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
997 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
998 mutex_lock(&ss
->hierarchy_mutex
);
1000 ss
->bind(ss
, dummytop
);
1001 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1002 cgrp
->subsys
[i
] = NULL
;
1003 subsys
[i
]->root
= &rootnode
;
1004 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1005 mutex_unlock(&ss
->hierarchy_mutex
);
1006 /* subsystem is now free - drop reference on module */
1007 module_put(ss
->module
);
1008 } else if (bit
& final_bits
) {
1009 /* Subsystem state should already exist */
1011 BUG_ON(!cgrp
->subsys
[i
]);
1013 * a refcount was taken, but we already had one, so
1014 * drop the extra reference.
1016 module_put(ss
->module
);
1017 #ifdef CONFIG_MODULE_UNLOAD
1018 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1021 /* Subsystem state shouldn't exist */
1022 BUG_ON(cgrp
->subsys
[i
]);
1025 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1031 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1033 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1034 struct cgroup_subsys
*ss
;
1036 mutex_lock(&cgroup_mutex
);
1037 for_each_subsys(root
, ss
)
1038 seq_printf(seq
, ",%s", ss
->name
);
1039 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1040 seq_puts(seq
, ",noprefix");
1041 if (strlen(root
->release_agent_path
))
1042 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1043 if (strlen(root
->name
))
1044 seq_printf(seq
, ",name=%s", root
->name
);
1045 mutex_unlock(&cgroup_mutex
);
1049 struct cgroup_sb_opts
{
1050 unsigned long subsys_bits
;
1051 unsigned long flags
;
1052 char *release_agent
;
1054 /* User explicitly requested empty subsystem */
1057 struct cgroupfs_root
*new_root
;
1062 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1063 * with cgroup_mutex held to protect the subsys[] array. This function takes
1064 * refcounts on subsystems to be used, unless it returns error, in which case
1065 * no refcounts are taken.
1067 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1069 char *token
, *o
= data
?: "all";
1070 unsigned long mask
= (unsigned long)-1;
1072 bool module_pin_failed
= false;
1074 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1076 #ifdef CONFIG_CPUSETS
1077 mask
= ~(1UL << cpuset_subsys_id
);
1080 memset(opts
, 0, sizeof(*opts
));
1082 while ((token
= strsep(&o
, ",")) != NULL
) {
1085 if (!strcmp(token
, "all")) {
1086 /* Add all non-disabled subsystems */
1087 opts
->subsys_bits
= 0;
1088 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1089 struct cgroup_subsys
*ss
= subsys
[i
];
1093 opts
->subsys_bits
|= 1ul << i
;
1095 } else if (!strcmp(token
, "none")) {
1096 /* Explicitly have no subsystems */
1098 } else if (!strcmp(token
, "noprefix")) {
1099 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1100 } else if (!strncmp(token
, "release_agent=", 14)) {
1101 /* Specifying two release agents is forbidden */
1102 if (opts
->release_agent
)
1104 opts
->release_agent
=
1105 kstrndup(token
+ 14, PATH_MAX
, GFP_KERNEL
);
1106 if (!opts
->release_agent
)
1108 } else if (!strncmp(token
, "name=", 5)) {
1109 const char *name
= token
+ 5;
1110 /* Can't specify an empty name */
1113 /* Must match [\w.-]+ */
1114 for (i
= 0; i
< strlen(name
); i
++) {
1118 if ((c
== '.') || (c
== '-') || (c
== '_'))
1122 /* Specifying two names is forbidden */
1125 opts
->name
= kstrndup(name
,
1126 MAX_CGROUP_ROOT_NAMELEN
,
1131 struct cgroup_subsys
*ss
;
1132 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1136 if (!strcmp(token
, ss
->name
)) {
1138 set_bit(i
, &opts
->subsys_bits
);
1142 if (i
== CGROUP_SUBSYS_COUNT
)
1147 /* Consistency checks */
1150 * Option noprefix was introduced just for backward compatibility
1151 * with the old cpuset, so we allow noprefix only if mounting just
1152 * the cpuset subsystem.
1154 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1155 (opts
->subsys_bits
& mask
))
1159 /* Can't specify "none" and some subsystems */
1160 if (opts
->subsys_bits
&& opts
->none
)
1164 * We either have to specify by name or by subsystems. (So all
1165 * empty hierarchies must have a name).
1167 if (!opts
->subsys_bits
&& !opts
->name
)
1171 * Grab references on all the modules we'll need, so the subsystems
1172 * don't dance around before rebind_subsystems attaches them. This may
1173 * take duplicate reference counts on a subsystem that's already used,
1174 * but rebind_subsystems handles this case.
1176 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1177 unsigned long bit
= 1UL << i
;
1179 if (!(bit
& opts
->subsys_bits
))
1181 if (!try_module_get(subsys
[i
]->module
)) {
1182 module_pin_failed
= true;
1186 if (module_pin_failed
) {
1188 * oops, one of the modules was going away. this means that we
1189 * raced with a module_delete call, and to the user this is
1190 * essentially a "subsystem doesn't exist" case.
1192 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1193 /* drop refcounts only on the ones we took */
1194 unsigned long bit
= 1UL << i
;
1196 if (!(bit
& opts
->subsys_bits
))
1198 module_put(subsys
[i
]->module
);
1206 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1209 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1210 unsigned long bit
= 1UL << i
;
1212 if (!(bit
& subsys_bits
))
1214 module_put(subsys
[i
]->module
);
1218 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1221 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1222 struct cgroup
*cgrp
= &root
->top_cgroup
;
1223 struct cgroup_sb_opts opts
;
1226 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1227 mutex_lock(&cgroup_mutex
);
1229 /* See what subsystems are wanted */
1230 ret
= parse_cgroupfs_options(data
, &opts
);
1234 /* Don't allow flags or name to change at remount */
1235 if (opts
.flags
!= root
->flags
||
1236 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1238 drop_parsed_module_refcounts(opts
.subsys_bits
);
1242 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1244 drop_parsed_module_refcounts(opts
.subsys_bits
);
1248 /* (re)populate subsystem files */
1249 cgroup_populate_dir(cgrp
);
1251 if (opts
.release_agent
)
1252 strcpy(root
->release_agent_path
, opts
.release_agent
);
1254 kfree(opts
.release_agent
);
1256 mutex_unlock(&cgroup_mutex
);
1257 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1262 static const struct super_operations cgroup_ops
= {
1263 .statfs
= simple_statfs
,
1264 .drop_inode
= generic_delete_inode
,
1265 .show_options
= cgroup_show_options
,
1266 .remount_fs
= cgroup_remount
,
1269 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1271 INIT_LIST_HEAD(&cgrp
->sibling
);
1272 INIT_LIST_HEAD(&cgrp
->children
);
1273 INIT_LIST_HEAD(&cgrp
->css_sets
);
1274 INIT_LIST_HEAD(&cgrp
->release_list
);
1275 INIT_LIST_HEAD(&cgrp
->pidlists
);
1276 mutex_init(&cgrp
->pidlist_mutex
);
1277 INIT_LIST_HEAD(&cgrp
->event_list
);
1278 spin_lock_init(&cgrp
->event_list_lock
);
1281 static void init_cgroup_root(struct cgroupfs_root
*root
)
1283 struct cgroup
*cgrp
= &root
->top_cgroup
;
1284 INIT_LIST_HEAD(&root
->subsys_list
);
1285 INIT_LIST_HEAD(&root
->root_list
);
1286 root
->number_of_cgroups
= 1;
1288 cgrp
->top_cgroup
= cgrp
;
1289 init_cgroup_housekeeping(cgrp
);
1292 static bool init_root_id(struct cgroupfs_root
*root
)
1297 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1299 spin_lock(&hierarchy_id_lock
);
1300 /* Try to allocate the next unused ID */
1301 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1302 &root
->hierarchy_id
);
1304 /* Try again starting from 0 */
1305 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1307 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1308 } else if (ret
!= -EAGAIN
) {
1309 /* Can only get here if the 31-bit IDR is full ... */
1312 spin_unlock(&hierarchy_id_lock
);
1317 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1319 struct cgroup_sb_opts
*opts
= data
;
1320 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1322 /* If we asked for a name then it must match */
1323 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1327 * If we asked for subsystems (or explicitly for no
1328 * subsystems) then they must match
1330 if ((opts
->subsys_bits
|| opts
->none
)
1331 && (opts
->subsys_bits
!= root
->subsys_bits
))
1337 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1339 struct cgroupfs_root
*root
;
1341 if (!opts
->subsys_bits
&& !opts
->none
)
1344 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1346 return ERR_PTR(-ENOMEM
);
1348 if (!init_root_id(root
)) {
1350 return ERR_PTR(-ENOMEM
);
1352 init_cgroup_root(root
);
1354 root
->subsys_bits
= opts
->subsys_bits
;
1355 root
->flags
= opts
->flags
;
1356 if (opts
->release_agent
)
1357 strcpy(root
->release_agent_path
, opts
->release_agent
);
1359 strcpy(root
->name
, opts
->name
);
1363 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1368 BUG_ON(!root
->hierarchy_id
);
1369 spin_lock(&hierarchy_id_lock
);
1370 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1371 spin_unlock(&hierarchy_id_lock
);
1375 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1378 struct cgroup_sb_opts
*opts
= data
;
1380 /* If we don't have a new root, we can't set up a new sb */
1381 if (!opts
->new_root
)
1384 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1386 ret
= set_anon_super(sb
, NULL
);
1390 sb
->s_fs_info
= opts
->new_root
;
1391 opts
->new_root
->sb
= sb
;
1393 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1394 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1395 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1396 sb
->s_op
= &cgroup_ops
;
1401 static int cgroup_get_rootdir(struct super_block
*sb
)
1403 struct inode
*inode
=
1404 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1405 struct dentry
*dentry
;
1410 inode
->i_fop
= &simple_dir_operations
;
1411 inode
->i_op
= &cgroup_dir_inode_operations
;
1412 /* directories start off with i_nlink == 2 (for "." entry) */
1414 dentry
= d_alloc_root(inode
);
1419 sb
->s_root
= dentry
;
1423 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1424 int flags
, const char *unused_dev_name
,
1425 void *data
, struct vfsmount
*mnt
)
1427 struct cgroup_sb_opts opts
;
1428 struct cgroupfs_root
*root
;
1430 struct super_block
*sb
;
1431 struct cgroupfs_root
*new_root
;
1433 /* First find the desired set of subsystems */
1434 mutex_lock(&cgroup_mutex
);
1435 ret
= parse_cgroupfs_options(data
, &opts
);
1436 mutex_unlock(&cgroup_mutex
);
1441 * Allocate a new cgroup root. We may not need it if we're
1442 * reusing an existing hierarchy.
1444 new_root
= cgroup_root_from_opts(&opts
);
1445 if (IS_ERR(new_root
)) {
1446 ret
= PTR_ERR(new_root
);
1449 opts
.new_root
= new_root
;
1451 /* Locate an existing or new sb for this hierarchy */
1452 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1455 cgroup_drop_root(opts
.new_root
);
1459 root
= sb
->s_fs_info
;
1461 if (root
== opts
.new_root
) {
1462 /* We used the new root structure, so this is a new hierarchy */
1463 struct list_head tmp_cg_links
;
1464 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1465 struct inode
*inode
;
1466 struct cgroupfs_root
*existing_root
;
1469 BUG_ON(sb
->s_root
!= NULL
);
1471 ret
= cgroup_get_rootdir(sb
);
1473 goto drop_new_super
;
1474 inode
= sb
->s_root
->d_inode
;
1476 mutex_lock(&inode
->i_mutex
);
1477 mutex_lock(&cgroup_mutex
);
1479 if (strlen(root
->name
)) {
1480 /* Check for name clashes with existing mounts */
1481 for_each_active_root(existing_root
) {
1482 if (!strcmp(existing_root
->name
, root
->name
)) {
1484 mutex_unlock(&cgroup_mutex
);
1485 mutex_unlock(&inode
->i_mutex
);
1486 goto drop_new_super
;
1492 * We're accessing css_set_count without locking
1493 * css_set_lock here, but that's OK - it can only be
1494 * increased by someone holding cgroup_lock, and
1495 * that's us. The worst that can happen is that we
1496 * have some link structures left over
1498 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1500 mutex_unlock(&cgroup_mutex
);
1501 mutex_unlock(&inode
->i_mutex
);
1502 goto drop_new_super
;
1505 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1506 if (ret
== -EBUSY
) {
1507 mutex_unlock(&cgroup_mutex
);
1508 mutex_unlock(&inode
->i_mutex
);
1509 free_cg_links(&tmp_cg_links
);
1510 goto drop_new_super
;
1513 * There must be no failure case after here, since rebinding
1514 * takes care of subsystems' refcounts, which are explicitly
1515 * dropped in the failure exit path.
1518 /* EBUSY should be the only error here */
1521 list_add(&root
->root_list
, &roots
);
1524 sb
->s_root
->d_fsdata
= root_cgrp
;
1525 root
->top_cgroup
.dentry
= sb
->s_root
;
1527 /* Link the top cgroup in this hierarchy into all
1528 * the css_set objects */
1529 write_lock(&css_set_lock
);
1530 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1531 struct hlist_head
*hhead
= &css_set_table
[i
];
1532 struct hlist_node
*node
;
1535 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1536 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1538 write_unlock(&css_set_lock
);
1540 free_cg_links(&tmp_cg_links
);
1542 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1543 BUG_ON(!list_empty(&root_cgrp
->children
));
1544 BUG_ON(root
->number_of_cgroups
!= 1);
1546 cgroup_populate_dir(root_cgrp
);
1547 mutex_unlock(&cgroup_mutex
);
1548 mutex_unlock(&inode
->i_mutex
);
1551 * We re-used an existing hierarchy - the new root (if
1552 * any) is not needed
1554 cgroup_drop_root(opts
.new_root
);
1555 /* no subsys rebinding, so refcounts don't change */
1556 drop_parsed_module_refcounts(opts
.subsys_bits
);
1559 simple_set_mnt(mnt
, sb
);
1560 kfree(opts
.release_agent
);
1565 deactivate_locked_super(sb
);
1567 drop_parsed_module_refcounts(opts
.subsys_bits
);
1569 kfree(opts
.release_agent
);
1575 static void cgroup_kill_sb(struct super_block
*sb
) {
1576 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1577 struct cgroup
*cgrp
= &root
->top_cgroup
;
1579 struct cg_cgroup_link
*link
;
1580 struct cg_cgroup_link
*saved_link
;
1584 BUG_ON(root
->number_of_cgroups
!= 1);
1585 BUG_ON(!list_empty(&cgrp
->children
));
1586 BUG_ON(!list_empty(&cgrp
->sibling
));
1588 mutex_lock(&cgroup_mutex
);
1590 /* Rebind all subsystems back to the default hierarchy */
1591 ret
= rebind_subsystems(root
, 0);
1592 /* Shouldn't be able to fail ... */
1596 * Release all the links from css_sets to this hierarchy's
1599 write_lock(&css_set_lock
);
1601 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1603 list_del(&link
->cg_link_list
);
1604 list_del(&link
->cgrp_link_list
);
1607 write_unlock(&css_set_lock
);
1609 if (!list_empty(&root
->root_list
)) {
1610 list_del(&root
->root_list
);
1614 mutex_unlock(&cgroup_mutex
);
1616 kill_litter_super(sb
);
1617 cgroup_drop_root(root
);
1620 static struct file_system_type cgroup_fs_type
= {
1622 .get_sb
= cgroup_get_sb
,
1623 .kill_sb
= cgroup_kill_sb
,
1626 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1628 return dentry
->d_fsdata
;
1631 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1633 return dentry
->d_fsdata
;
1637 * cgroup_path - generate the path of a cgroup
1638 * @cgrp: the cgroup in question
1639 * @buf: the buffer to write the path into
1640 * @buflen: the length of the buffer
1642 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1643 * reference. Writes path of cgroup into buf. Returns 0 on success,
1646 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1649 struct dentry
*dentry
= rcu_dereference(cgrp
->dentry
);
1651 if (!dentry
|| cgrp
== dummytop
) {
1653 * Inactive subsystems have no dentry for their root
1660 start
= buf
+ buflen
;
1664 int len
= dentry
->d_name
.len
;
1665 if ((start
-= len
) < buf
)
1666 return -ENAMETOOLONG
;
1667 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1668 cgrp
= cgrp
->parent
;
1671 dentry
= rcu_dereference(cgrp
->dentry
);
1675 return -ENAMETOOLONG
;
1678 memmove(buf
, start
, buf
+ buflen
- start
);
1681 EXPORT_SYMBOL_GPL(cgroup_path
);
1684 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1685 * @cgrp: the cgroup the task is attaching to
1686 * @tsk: the task to be attached
1688 * Call holding cgroup_mutex. May take task_lock of
1689 * the task 'tsk' during call.
1691 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1694 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1695 struct cgroup
*oldcgrp
;
1697 struct css_set
*newcg
;
1698 struct cgroupfs_root
*root
= cgrp
->root
;
1700 /* Nothing to do if the task is already in that cgroup */
1701 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1702 if (cgrp
== oldcgrp
)
1705 for_each_subsys(root
, ss
) {
1706 if (ss
->can_attach
) {
1707 retval
= ss
->can_attach(ss
, cgrp
, tsk
, false);
1710 * Remember on which subsystem the can_attach()
1711 * failed, so that we only call cancel_attach()
1712 * against the subsystems whose can_attach()
1713 * succeeded. (See below)
1726 * Locate or allocate a new css_set for this task,
1727 * based on its final set of cgroups
1729 newcg
= find_css_set(cg
, cgrp
);
1737 if (tsk
->flags
& PF_EXITING
) {
1743 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1746 /* Update the css_set linked lists if we're using them */
1747 write_lock(&css_set_lock
);
1748 if (!list_empty(&tsk
->cg_list
)) {
1749 list_del(&tsk
->cg_list
);
1750 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1752 write_unlock(&css_set_lock
);
1754 for_each_subsys(root
, ss
) {
1756 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
, false);
1758 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1763 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1764 * is no longer empty.
1766 cgroup_wakeup_rmdir_waiter(cgrp
);
1769 for_each_subsys(root
, ss
) {
1770 if (ss
== failed_ss
)
1772 * This subsystem was the one that failed the
1773 * can_attach() check earlier, so we don't need
1774 * to call cancel_attach() against it or any
1775 * remaining subsystems.
1778 if (ss
->cancel_attach
)
1779 ss
->cancel_attach(ss
, cgrp
, tsk
, false);
1786 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1787 * held. May take task_lock of task
1789 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1791 struct task_struct
*tsk
;
1792 const struct cred
*cred
= current_cred(), *tcred
;
1797 tsk
= find_task_by_vpid(pid
);
1798 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1803 tcred
= __task_cred(tsk
);
1805 cred
->euid
!= tcred
->uid
&&
1806 cred
->euid
!= tcred
->suid
) {
1810 get_task_struct(tsk
);
1814 get_task_struct(tsk
);
1817 ret
= cgroup_attach_task(cgrp
, tsk
);
1818 put_task_struct(tsk
);
1822 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1825 if (!cgroup_lock_live_group(cgrp
))
1827 ret
= attach_task_by_pid(cgrp
, pid
);
1833 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1834 * @cgrp: the cgroup to be checked for liveness
1836 * On success, returns true; the lock should be later released with
1837 * cgroup_unlock(). On failure returns false with no lock held.
1839 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1841 mutex_lock(&cgroup_mutex
);
1842 if (cgroup_is_removed(cgrp
)) {
1843 mutex_unlock(&cgroup_mutex
);
1848 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
1850 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1853 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1854 if (!cgroup_lock_live_group(cgrp
))
1856 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1861 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1862 struct seq_file
*seq
)
1864 if (!cgroup_lock_live_group(cgrp
))
1866 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1867 seq_putc(seq
, '\n');
1872 /* A buffer size big enough for numbers or short strings */
1873 #define CGROUP_LOCAL_BUFFER_SIZE 64
1875 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1877 const char __user
*userbuf
,
1878 size_t nbytes
, loff_t
*unused_ppos
)
1880 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1886 if (nbytes
>= sizeof(buffer
))
1888 if (copy_from_user(buffer
, userbuf
, nbytes
))
1891 buffer
[nbytes
] = 0; /* nul-terminate */
1892 if (cft
->write_u64
) {
1893 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
1896 retval
= cft
->write_u64(cgrp
, cft
, val
);
1898 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
1901 retval
= cft
->write_s64(cgrp
, cft
, val
);
1908 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1910 const char __user
*userbuf
,
1911 size_t nbytes
, loff_t
*unused_ppos
)
1913 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1915 size_t max_bytes
= cft
->max_write_len
;
1916 char *buffer
= local_buffer
;
1919 max_bytes
= sizeof(local_buffer
) - 1;
1920 if (nbytes
>= max_bytes
)
1922 /* Allocate a dynamic buffer if we need one */
1923 if (nbytes
>= sizeof(local_buffer
)) {
1924 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1928 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1933 buffer
[nbytes
] = 0; /* nul-terminate */
1934 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
1938 if (buffer
!= local_buffer
)
1943 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1944 size_t nbytes
, loff_t
*ppos
)
1946 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1947 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1949 if (cgroup_is_removed(cgrp
))
1952 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1953 if (cft
->write_u64
|| cft
->write_s64
)
1954 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1955 if (cft
->write_string
)
1956 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1958 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1959 return ret
? ret
: nbytes
;
1964 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1966 char __user
*buf
, size_t nbytes
,
1969 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1970 u64 val
= cft
->read_u64(cgrp
, cft
);
1971 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1973 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1976 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1978 char __user
*buf
, size_t nbytes
,
1981 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1982 s64 val
= cft
->read_s64(cgrp
, cft
);
1983 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1985 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1988 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1989 size_t nbytes
, loff_t
*ppos
)
1991 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1992 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1994 if (cgroup_is_removed(cgrp
))
1998 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2000 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2002 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2007 * seqfile ops/methods for returning structured data. Currently just
2008 * supports string->u64 maps, but can be extended in future.
2011 struct cgroup_seqfile_state
{
2013 struct cgroup
*cgroup
;
2016 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2018 struct seq_file
*sf
= cb
->state
;
2019 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2022 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2024 struct cgroup_seqfile_state
*state
= m
->private;
2025 struct cftype
*cft
= state
->cft
;
2026 if (cft
->read_map
) {
2027 struct cgroup_map_cb cb
= {
2028 .fill
= cgroup_map_add
,
2031 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2033 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2036 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2038 struct seq_file
*seq
= file
->private_data
;
2039 kfree(seq
->private);
2040 return single_release(inode
, file
);
2043 static const struct file_operations cgroup_seqfile_operations
= {
2045 .write
= cgroup_file_write
,
2046 .llseek
= seq_lseek
,
2047 .release
= cgroup_seqfile_release
,
2050 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2055 err
= generic_file_open(inode
, file
);
2058 cft
= __d_cft(file
->f_dentry
);
2060 if (cft
->read_map
|| cft
->read_seq_string
) {
2061 struct cgroup_seqfile_state
*state
=
2062 kzalloc(sizeof(*state
), GFP_USER
);
2066 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2067 file
->f_op
= &cgroup_seqfile_operations
;
2068 err
= single_open(file
, cgroup_seqfile_show
, state
);
2071 } else if (cft
->open
)
2072 err
= cft
->open(inode
, file
);
2079 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2081 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2083 return cft
->release(inode
, file
);
2088 * cgroup_rename - Only allow simple rename of directories in place.
2090 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2091 struct inode
*new_dir
, struct dentry
*new_dentry
)
2093 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2095 if (new_dentry
->d_inode
)
2097 if (old_dir
!= new_dir
)
2099 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2102 static const struct file_operations cgroup_file_operations
= {
2103 .read
= cgroup_file_read
,
2104 .write
= cgroup_file_write
,
2105 .llseek
= generic_file_llseek
,
2106 .open
= cgroup_file_open
,
2107 .release
= cgroup_file_release
,
2110 static const struct inode_operations cgroup_dir_inode_operations
= {
2111 .lookup
= simple_lookup
,
2112 .mkdir
= cgroup_mkdir
,
2113 .rmdir
= cgroup_rmdir
,
2114 .rename
= cgroup_rename
,
2118 * Check if a file is a control file
2120 static inline struct cftype
*__file_cft(struct file
*file
)
2122 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2123 return ERR_PTR(-EINVAL
);
2124 return __d_cft(file
->f_dentry
);
2127 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2128 struct super_block
*sb
)
2130 static const struct dentry_operations cgroup_dops
= {
2131 .d_iput
= cgroup_diput
,
2134 struct inode
*inode
;
2138 if (dentry
->d_inode
)
2141 inode
= cgroup_new_inode(mode
, sb
);
2145 if (S_ISDIR(mode
)) {
2146 inode
->i_op
= &cgroup_dir_inode_operations
;
2147 inode
->i_fop
= &simple_dir_operations
;
2149 /* start off with i_nlink == 2 (for "." entry) */
2152 /* start with the directory inode held, so that we can
2153 * populate it without racing with another mkdir */
2154 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2155 } else if (S_ISREG(mode
)) {
2157 inode
->i_fop
= &cgroup_file_operations
;
2159 dentry
->d_op
= &cgroup_dops
;
2160 d_instantiate(dentry
, inode
);
2161 dget(dentry
); /* Extra count - pin the dentry in core */
2166 * cgroup_create_dir - create a directory for an object.
2167 * @cgrp: the cgroup we create the directory for. It must have a valid
2168 * ->parent field. And we are going to fill its ->dentry field.
2169 * @dentry: dentry of the new cgroup
2170 * @mode: mode to set on new directory.
2172 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2175 struct dentry
*parent
;
2178 parent
= cgrp
->parent
->dentry
;
2179 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2181 dentry
->d_fsdata
= cgrp
;
2182 inc_nlink(parent
->d_inode
);
2183 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2192 * cgroup_file_mode - deduce file mode of a control file
2193 * @cft: the control file in question
2195 * returns cft->mode if ->mode is not 0
2196 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2197 * returns S_IRUGO if it has only a read handler
2198 * returns S_IWUSR if it has only a write hander
2200 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2207 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2208 cft
->read_map
|| cft
->read_seq_string
)
2211 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2212 cft
->write_string
|| cft
->trigger
)
2218 int cgroup_add_file(struct cgroup
*cgrp
,
2219 struct cgroup_subsys
*subsys
,
2220 const struct cftype
*cft
)
2222 struct dentry
*dir
= cgrp
->dentry
;
2223 struct dentry
*dentry
;
2227 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2228 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2229 strcpy(name
, subsys
->name
);
2232 strcat(name
, cft
->name
);
2233 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2234 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2235 if (!IS_ERR(dentry
)) {
2236 mode
= cgroup_file_mode(cft
);
2237 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2240 dentry
->d_fsdata
= (void *)cft
;
2243 error
= PTR_ERR(dentry
);
2246 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2248 int cgroup_add_files(struct cgroup
*cgrp
,
2249 struct cgroup_subsys
*subsys
,
2250 const struct cftype cft
[],
2254 for (i
= 0; i
< count
; i
++) {
2255 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2261 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2264 * cgroup_task_count - count the number of tasks in a cgroup.
2265 * @cgrp: the cgroup in question
2267 * Return the number of tasks in the cgroup.
2269 int cgroup_task_count(const struct cgroup
*cgrp
)
2272 struct cg_cgroup_link
*link
;
2274 read_lock(&css_set_lock
);
2275 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2276 count
+= atomic_read(&link
->cg
->refcount
);
2278 read_unlock(&css_set_lock
);
2283 * Advance a list_head iterator. The iterator should be positioned at
2284 * the start of a css_set
2286 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2287 struct cgroup_iter
*it
)
2289 struct list_head
*l
= it
->cg_link
;
2290 struct cg_cgroup_link
*link
;
2293 /* Advance to the next non-empty css_set */
2296 if (l
== &cgrp
->css_sets
) {
2300 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2302 } while (list_empty(&cg
->tasks
));
2304 it
->task
= cg
->tasks
.next
;
2308 * To reduce the fork() overhead for systems that are not actually
2309 * using their cgroups capability, we don't maintain the lists running
2310 * through each css_set to its tasks until we see the list actually
2311 * used - in other words after the first call to cgroup_iter_start().
2313 * The tasklist_lock is not held here, as do_each_thread() and
2314 * while_each_thread() are protected by RCU.
2316 static void cgroup_enable_task_cg_lists(void)
2318 struct task_struct
*p
, *g
;
2319 write_lock(&css_set_lock
);
2320 use_task_css_set_links
= 1;
2321 do_each_thread(g
, p
) {
2324 * We should check if the process is exiting, otherwise
2325 * it will race with cgroup_exit() in that the list
2326 * entry won't be deleted though the process has exited.
2328 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2329 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2331 } while_each_thread(g
, p
);
2332 write_unlock(&css_set_lock
);
2335 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2338 * The first time anyone tries to iterate across a cgroup,
2339 * we need to enable the list linking each css_set to its
2340 * tasks, and fix up all existing tasks.
2342 if (!use_task_css_set_links
)
2343 cgroup_enable_task_cg_lists();
2345 read_lock(&css_set_lock
);
2346 it
->cg_link
= &cgrp
->css_sets
;
2347 cgroup_advance_iter(cgrp
, it
);
2350 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2351 struct cgroup_iter
*it
)
2353 struct task_struct
*res
;
2354 struct list_head
*l
= it
->task
;
2355 struct cg_cgroup_link
*link
;
2357 /* If the iterator cg is NULL, we have no tasks */
2360 res
= list_entry(l
, struct task_struct
, cg_list
);
2361 /* Advance iterator to find next entry */
2363 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2364 if (l
== &link
->cg
->tasks
) {
2365 /* We reached the end of this task list - move on to
2366 * the next cg_cgroup_link */
2367 cgroup_advance_iter(cgrp
, it
);
2374 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2376 read_unlock(&css_set_lock
);
2379 static inline int started_after_time(struct task_struct
*t1
,
2380 struct timespec
*time
,
2381 struct task_struct
*t2
)
2383 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2384 if (start_diff
> 0) {
2386 } else if (start_diff
< 0) {
2390 * Arbitrarily, if two processes started at the same
2391 * time, we'll say that the lower pointer value
2392 * started first. Note that t2 may have exited by now
2393 * so this may not be a valid pointer any longer, but
2394 * that's fine - it still serves to distinguish
2395 * between two tasks started (effectively) simultaneously.
2402 * This function is a callback from heap_insert() and is used to order
2404 * In this case we order the heap in descending task start time.
2406 static inline int started_after(void *p1
, void *p2
)
2408 struct task_struct
*t1
= p1
;
2409 struct task_struct
*t2
= p2
;
2410 return started_after_time(t1
, &t2
->start_time
, t2
);
2414 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2415 * @scan: struct cgroup_scanner containing arguments for the scan
2417 * Arguments include pointers to callback functions test_task() and
2419 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2420 * and if it returns true, call process_task() for it also.
2421 * The test_task pointer may be NULL, meaning always true (select all tasks).
2422 * Effectively duplicates cgroup_iter_{start,next,end}()
2423 * but does not lock css_set_lock for the call to process_task().
2424 * The struct cgroup_scanner may be embedded in any structure of the caller's
2426 * It is guaranteed that process_task() will act on every task that
2427 * is a member of the cgroup for the duration of this call. This
2428 * function may or may not call process_task() for tasks that exit
2429 * or move to a different cgroup during the call, or are forked or
2430 * move into the cgroup during the call.
2432 * Note that test_task() may be called with locks held, and may in some
2433 * situations be called multiple times for the same task, so it should
2435 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2436 * pre-allocated and will be used for heap operations (and its "gt" member will
2437 * be overwritten), else a temporary heap will be used (allocation of which
2438 * may cause this function to fail).
2440 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2443 struct cgroup_iter it
;
2444 struct task_struct
*p
, *dropped
;
2445 /* Never dereference latest_task, since it's not refcounted */
2446 struct task_struct
*latest_task
= NULL
;
2447 struct ptr_heap tmp_heap
;
2448 struct ptr_heap
*heap
;
2449 struct timespec latest_time
= { 0, 0 };
2452 /* The caller supplied our heap and pre-allocated its memory */
2454 heap
->gt
= &started_after
;
2456 /* We need to allocate our own heap memory */
2458 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2460 /* cannot allocate the heap */
2466 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2467 * to determine which are of interest, and using the scanner's
2468 * "process_task" callback to process any of them that need an update.
2469 * Since we don't want to hold any locks during the task updates,
2470 * gather tasks to be processed in a heap structure.
2471 * The heap is sorted by descending task start time.
2472 * If the statically-sized heap fills up, we overflow tasks that
2473 * started later, and in future iterations only consider tasks that
2474 * started after the latest task in the previous pass. This
2475 * guarantees forward progress and that we don't miss any tasks.
2478 cgroup_iter_start(scan
->cg
, &it
);
2479 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2481 * Only affect tasks that qualify per the caller's callback,
2482 * if he provided one
2484 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2487 * Only process tasks that started after the last task
2490 if (!started_after_time(p
, &latest_time
, latest_task
))
2492 dropped
= heap_insert(heap
, p
);
2493 if (dropped
== NULL
) {
2495 * The new task was inserted; the heap wasn't
2499 } else if (dropped
!= p
) {
2501 * The new task was inserted, and pushed out a
2505 put_task_struct(dropped
);
2508 * Else the new task was newer than anything already in
2509 * the heap and wasn't inserted
2512 cgroup_iter_end(scan
->cg
, &it
);
2515 for (i
= 0; i
< heap
->size
; i
++) {
2516 struct task_struct
*q
= heap
->ptrs
[i
];
2518 latest_time
= q
->start_time
;
2521 /* Process the task per the caller's callback */
2522 scan
->process_task(q
, scan
);
2526 * If we had to process any tasks at all, scan again
2527 * in case some of them were in the middle of forking
2528 * children that didn't get processed.
2529 * Not the most efficient way to do it, but it avoids
2530 * having to take callback_mutex in the fork path
2534 if (heap
== &tmp_heap
)
2535 heap_free(&tmp_heap
);
2540 * Stuff for reading the 'tasks'/'procs' files.
2542 * Reading this file can return large amounts of data if a cgroup has
2543 * *lots* of attached tasks. So it may need several calls to read(),
2544 * but we cannot guarantee that the information we produce is correct
2545 * unless we produce it entirely atomically.
2550 * The following two functions "fix" the issue where there are more pids
2551 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2552 * TODO: replace with a kernel-wide solution to this problem
2554 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2555 static void *pidlist_allocate(int count
)
2557 if (PIDLIST_TOO_LARGE(count
))
2558 return vmalloc(count
* sizeof(pid_t
));
2560 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
2562 static void pidlist_free(void *p
)
2564 if (is_vmalloc_addr(p
))
2569 static void *pidlist_resize(void *p
, int newcount
)
2572 /* note: if new alloc fails, old p will still be valid either way */
2573 if (is_vmalloc_addr(p
)) {
2574 newlist
= vmalloc(newcount
* sizeof(pid_t
));
2577 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
2580 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
2586 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2587 * If the new stripped list is sufficiently smaller and there's enough memory
2588 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2589 * number of unique elements.
2591 /* is the size difference enough that we should re-allocate the array? */
2592 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2593 static int pidlist_uniq(pid_t
**p
, int length
)
2600 * we presume the 0th element is unique, so i starts at 1. trivial
2601 * edge cases first; no work needs to be done for either
2603 if (length
== 0 || length
== 1)
2605 /* src and dest walk down the list; dest counts unique elements */
2606 for (src
= 1; src
< length
; src
++) {
2607 /* find next unique element */
2608 while (list
[src
] == list
[src
-1]) {
2613 /* dest always points to where the next unique element goes */
2614 list
[dest
] = list
[src
];
2619 * if the length difference is large enough, we want to allocate a
2620 * smaller buffer to save memory. if this fails due to out of memory,
2621 * we'll just stay with what we've got.
2623 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
2624 newlist
= pidlist_resize(list
, dest
);
2631 static int cmppid(const void *a
, const void *b
)
2633 return *(pid_t
*)a
- *(pid_t
*)b
;
2637 * find the appropriate pidlist for our purpose (given procs vs tasks)
2638 * returns with the lock on that pidlist already held, and takes care
2639 * of the use count, or returns NULL with no locks held if we're out of
2642 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
2643 enum cgroup_filetype type
)
2645 struct cgroup_pidlist
*l
;
2646 /* don't need task_nsproxy() if we're looking at ourself */
2647 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2650 * We can't drop the pidlist_mutex before taking the l->mutex in case
2651 * the last ref-holder is trying to remove l from the list at the same
2652 * time. Holding the pidlist_mutex precludes somebody taking whichever
2653 * list we find out from under us - compare release_pid_array().
2655 mutex_lock(&cgrp
->pidlist_mutex
);
2656 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
2657 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
2658 /* make sure l doesn't vanish out from under us */
2659 down_write(&l
->mutex
);
2660 mutex_unlock(&cgrp
->pidlist_mutex
);
2664 /* entry not found; create a new one */
2665 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
2667 mutex_unlock(&cgrp
->pidlist_mutex
);
2670 init_rwsem(&l
->mutex
);
2671 down_write(&l
->mutex
);
2673 l
->key
.ns
= get_pid_ns(ns
);
2674 l
->use_count
= 0; /* don't increment here */
2677 list_add(&l
->links
, &cgrp
->pidlists
);
2678 mutex_unlock(&cgrp
->pidlist_mutex
);
2683 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2685 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
2686 struct cgroup_pidlist
**lp
)
2690 int pid
, n
= 0; /* used for populating the array */
2691 struct cgroup_iter it
;
2692 struct task_struct
*tsk
;
2693 struct cgroup_pidlist
*l
;
2696 * If cgroup gets more users after we read count, we won't have
2697 * enough space - tough. This race is indistinguishable to the
2698 * caller from the case that the additional cgroup users didn't
2699 * show up until sometime later on.
2701 length
= cgroup_task_count(cgrp
);
2702 array
= pidlist_allocate(length
);
2705 /* now, populate the array */
2706 cgroup_iter_start(cgrp
, &it
);
2707 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2708 if (unlikely(n
== length
))
2710 /* get tgid or pid for procs or tasks file respectively */
2711 if (type
== CGROUP_FILE_PROCS
)
2712 pid
= task_tgid_vnr(tsk
);
2714 pid
= task_pid_vnr(tsk
);
2715 if (pid
> 0) /* make sure to only use valid results */
2718 cgroup_iter_end(cgrp
, &it
);
2720 /* now sort & (if procs) strip out duplicates */
2721 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
2722 if (type
== CGROUP_FILE_PROCS
)
2723 length
= pidlist_uniq(&array
, length
);
2724 l
= cgroup_pidlist_find(cgrp
, type
);
2726 pidlist_free(array
);
2729 /* store array, freeing old if necessary - lock already held */
2730 pidlist_free(l
->list
);
2734 up_write(&l
->mutex
);
2740 * cgroupstats_build - build and fill cgroupstats
2741 * @stats: cgroupstats to fill information into
2742 * @dentry: A dentry entry belonging to the cgroup for which stats have
2745 * Build and fill cgroupstats so that taskstats can export it to user
2748 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2751 struct cgroup
*cgrp
;
2752 struct cgroup_iter it
;
2753 struct task_struct
*tsk
;
2756 * Validate dentry by checking the superblock operations,
2757 * and make sure it's a directory.
2759 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2760 !S_ISDIR(dentry
->d_inode
->i_mode
))
2764 cgrp
= dentry
->d_fsdata
;
2766 cgroup_iter_start(cgrp
, &it
);
2767 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2768 switch (tsk
->state
) {
2770 stats
->nr_running
++;
2772 case TASK_INTERRUPTIBLE
:
2773 stats
->nr_sleeping
++;
2775 case TASK_UNINTERRUPTIBLE
:
2776 stats
->nr_uninterruptible
++;
2779 stats
->nr_stopped
++;
2782 if (delayacct_is_task_waiting_on_io(tsk
))
2783 stats
->nr_io_wait
++;
2787 cgroup_iter_end(cgrp
, &it
);
2795 * seq_file methods for the tasks/procs files. The seq_file position is the
2796 * next pid to display; the seq_file iterator is a pointer to the pid
2797 * in the cgroup->l->list array.
2800 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
2803 * Initially we receive a position value that corresponds to
2804 * one more than the last pid shown (or 0 on the first call or
2805 * after a seek to the start). Use a binary-search to find the
2806 * next pid to display, if any
2808 struct cgroup_pidlist
*l
= s
->private;
2809 int index
= 0, pid
= *pos
;
2812 down_read(&l
->mutex
);
2814 int end
= l
->length
;
2816 while (index
< end
) {
2817 int mid
= (index
+ end
) / 2;
2818 if (l
->list
[mid
] == pid
) {
2821 } else if (l
->list
[mid
] <= pid
)
2827 /* If we're off the end of the array, we're done */
2828 if (index
>= l
->length
)
2830 /* Update the abstract position to be the actual pid that we found */
2831 iter
= l
->list
+ index
;
2836 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
2838 struct cgroup_pidlist
*l
= s
->private;
2842 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2844 struct cgroup_pidlist
*l
= s
->private;
2846 pid_t
*end
= l
->list
+ l
->length
;
2848 * Advance to the next pid in the array. If this goes off the
2860 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
2862 return seq_printf(s
, "%d\n", *(int *)v
);
2866 * seq_operations functions for iterating on pidlists through seq_file -
2867 * independent of whether it's tasks or procs
2869 static const struct seq_operations cgroup_pidlist_seq_operations
= {
2870 .start
= cgroup_pidlist_start
,
2871 .stop
= cgroup_pidlist_stop
,
2872 .next
= cgroup_pidlist_next
,
2873 .show
= cgroup_pidlist_show
,
2876 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
2879 * the case where we're the last user of this particular pidlist will
2880 * have us remove it from the cgroup's list, which entails taking the
2881 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2882 * pidlist_mutex, we have to take pidlist_mutex first.
2884 mutex_lock(&l
->owner
->pidlist_mutex
);
2885 down_write(&l
->mutex
);
2886 BUG_ON(!l
->use_count
);
2887 if (!--l
->use_count
) {
2888 /* we're the last user if refcount is 0; remove and free */
2889 list_del(&l
->links
);
2890 mutex_unlock(&l
->owner
->pidlist_mutex
);
2891 pidlist_free(l
->list
);
2892 put_pid_ns(l
->key
.ns
);
2893 up_write(&l
->mutex
);
2897 mutex_unlock(&l
->owner
->pidlist_mutex
);
2898 up_write(&l
->mutex
);
2901 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
2903 struct cgroup_pidlist
*l
;
2904 if (!(file
->f_mode
& FMODE_READ
))
2907 * the seq_file will only be initialized if the file was opened for
2908 * reading; hence we check if it's not null only in that case.
2910 l
= ((struct seq_file
*)file
->private_data
)->private;
2911 cgroup_release_pid_array(l
);
2912 return seq_release(inode
, file
);
2915 static const struct file_operations cgroup_pidlist_operations
= {
2917 .llseek
= seq_lseek
,
2918 .write
= cgroup_file_write
,
2919 .release
= cgroup_pidlist_release
,
2923 * The following functions handle opens on a file that displays a pidlist
2924 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2927 /* helper function for the two below it */
2928 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
2930 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2931 struct cgroup_pidlist
*l
;
2934 /* Nothing to do for write-only files */
2935 if (!(file
->f_mode
& FMODE_READ
))
2938 /* have the array populated */
2939 retval
= pidlist_array_load(cgrp
, type
, &l
);
2942 /* configure file information */
2943 file
->f_op
= &cgroup_pidlist_operations
;
2945 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
2947 cgroup_release_pid_array(l
);
2950 ((struct seq_file
*)file
->private_data
)->private = l
;
2953 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2955 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
2957 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
2959 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
2962 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2965 return notify_on_release(cgrp
);
2968 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2972 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2974 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2976 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2981 * Unregister event and free resources.
2983 * Gets called from workqueue.
2985 static void cgroup_event_remove(struct work_struct
*work
)
2987 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
2989 struct cgroup
*cgrp
= event
->cgrp
;
2991 /* TODO: check return code */
2992 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
2994 eventfd_ctx_put(event
->eventfd
);
3000 * Gets called on POLLHUP on eventfd when user closes it.
3002 * Called with wqh->lock held and interrupts disabled.
3004 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3005 int sync
, void *key
)
3007 struct cgroup_event
*event
= container_of(wait
,
3008 struct cgroup_event
, wait
);
3009 struct cgroup
*cgrp
= event
->cgrp
;
3010 unsigned long flags
= (unsigned long)key
;
3012 if (flags
& POLLHUP
) {
3013 remove_wait_queue_locked(event
->wqh
, &event
->wait
);
3014 spin_lock(&cgrp
->event_list_lock
);
3015 list_del(&event
->list
);
3016 spin_unlock(&cgrp
->event_list_lock
);
3018 * We are in atomic context, but cgroup_event_remove() may
3019 * sleep, so we have to call it in workqueue.
3021 schedule_work(&event
->remove
);
3027 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3028 wait_queue_head_t
*wqh
, poll_table
*pt
)
3030 struct cgroup_event
*event
= container_of(pt
,
3031 struct cgroup_event
, pt
);
3034 add_wait_queue(wqh
, &event
->wait
);
3038 * Parse input and register new cgroup event handler.
3040 * Input must be in format '<event_fd> <control_fd> <args>'.
3041 * Interpretation of args is defined by control file implementation.
3043 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3046 struct cgroup_event
*event
= NULL
;
3047 unsigned int efd
, cfd
;
3048 struct file
*efile
= NULL
;
3049 struct file
*cfile
= NULL
;
3053 efd
= simple_strtoul(buffer
, &endp
, 10);
3058 cfd
= simple_strtoul(buffer
, &endp
, 10);
3059 if ((*endp
!= ' ') && (*endp
!= '\0'))
3063 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3067 INIT_LIST_HEAD(&event
->list
);
3068 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3069 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3070 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3072 efile
= eventfd_fget(efd
);
3073 if (IS_ERR(efile
)) {
3074 ret
= PTR_ERR(efile
);
3078 event
->eventfd
= eventfd_ctx_fileget(efile
);
3079 if (IS_ERR(event
->eventfd
)) {
3080 ret
= PTR_ERR(event
->eventfd
);
3090 /* the process need read permission on control file */
3091 ret
= file_permission(cfile
, MAY_READ
);
3095 event
->cft
= __file_cft(cfile
);
3096 if (IS_ERR(event
->cft
)) {
3097 ret
= PTR_ERR(event
->cft
);
3101 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3106 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3107 event
->eventfd
, buffer
);
3111 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3112 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3118 * Events should be removed after rmdir of cgroup directory, but before
3119 * destroying subsystem state objects. Let's take reference to cgroup
3120 * directory dentry to do that.
3124 spin_lock(&cgrp
->event_list_lock
);
3125 list_add(&event
->list
, &cgrp
->event_list
);
3126 spin_unlock(&cgrp
->event_list_lock
);
3137 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3138 eventfd_ctx_put(event
->eventfd
);
3140 if (!IS_ERR_OR_NULL(efile
))
3149 * for the common functions, 'private' gives the type of file
3151 /* for hysterical raisins, we can't put this on the older files */
3152 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3153 static struct cftype files
[] = {
3156 .open
= cgroup_tasks_open
,
3157 .write_u64
= cgroup_tasks_write
,
3158 .release
= cgroup_pidlist_release
,
3159 .mode
= S_IRUGO
| S_IWUSR
,
3162 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3163 .open
= cgroup_procs_open
,
3164 /* .write_u64 = cgroup_procs_write, TODO */
3165 .release
= cgroup_pidlist_release
,
3169 .name
= "notify_on_release",
3170 .read_u64
= cgroup_read_notify_on_release
,
3171 .write_u64
= cgroup_write_notify_on_release
,
3174 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3175 .write_string
= cgroup_write_event_control
,
3180 static struct cftype cft_release_agent
= {
3181 .name
= "release_agent",
3182 .read_seq_string
= cgroup_release_agent_show
,
3183 .write_string
= cgroup_release_agent_write
,
3184 .max_write_len
= PATH_MAX
,
3187 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3190 struct cgroup_subsys
*ss
;
3192 /* First clear out any existing files */
3193 cgroup_clear_directory(cgrp
->dentry
);
3195 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3199 if (cgrp
== cgrp
->top_cgroup
) {
3200 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3204 for_each_subsys(cgrp
->root
, ss
) {
3205 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3208 /* This cgroup is ready now */
3209 for_each_subsys(cgrp
->root
, ss
) {
3210 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3212 * Update id->css pointer and make this css visible from
3213 * CSS ID functions. This pointer will be dereferened
3214 * from RCU-read-side without locks.
3217 rcu_assign_pointer(css
->id
->css
, css
);
3223 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3224 struct cgroup_subsys
*ss
,
3225 struct cgroup
*cgrp
)
3228 atomic_set(&css
->refcnt
, 1);
3231 if (cgrp
== dummytop
)
3232 set_bit(CSS_ROOT
, &css
->flags
);
3233 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3234 cgrp
->subsys
[ss
->subsys_id
] = css
;
3237 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3239 /* We need to take each hierarchy_mutex in a consistent order */
3243 * No worry about a race with rebind_subsystems that might mess up the
3244 * locking order, since both parties are under cgroup_mutex.
3246 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3247 struct cgroup_subsys
*ss
= subsys
[i
];
3250 if (ss
->root
== root
)
3251 mutex_lock(&ss
->hierarchy_mutex
);
3255 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3259 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3260 struct cgroup_subsys
*ss
= subsys
[i
];
3263 if (ss
->root
== root
)
3264 mutex_unlock(&ss
->hierarchy_mutex
);
3269 * cgroup_create - create a cgroup
3270 * @parent: cgroup that will be parent of the new cgroup
3271 * @dentry: dentry of the new cgroup
3272 * @mode: mode to set on new inode
3274 * Must be called with the mutex on the parent inode held
3276 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3279 struct cgroup
*cgrp
;
3280 struct cgroupfs_root
*root
= parent
->root
;
3282 struct cgroup_subsys
*ss
;
3283 struct super_block
*sb
= root
->sb
;
3285 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3289 /* Grab a reference on the superblock so the hierarchy doesn't
3290 * get deleted on unmount if there are child cgroups. This
3291 * can be done outside cgroup_mutex, since the sb can't
3292 * disappear while someone has an open control file on the
3294 atomic_inc(&sb
->s_active
);
3296 mutex_lock(&cgroup_mutex
);
3298 init_cgroup_housekeeping(cgrp
);
3300 cgrp
->parent
= parent
;
3301 cgrp
->root
= parent
->root
;
3302 cgrp
->top_cgroup
= parent
->top_cgroup
;
3304 if (notify_on_release(parent
))
3305 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3307 for_each_subsys(root
, ss
) {
3308 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3314 init_cgroup_css(css
, ss
, cgrp
);
3316 err
= alloc_css_id(ss
, parent
, cgrp
);
3320 /* At error, ->destroy() callback has to free assigned ID. */
3323 cgroup_lock_hierarchy(root
);
3324 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3325 cgroup_unlock_hierarchy(root
);
3326 root
->number_of_cgroups
++;
3328 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3332 /* The cgroup directory was pre-locked for us */
3333 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3335 err
= cgroup_populate_dir(cgrp
);
3336 /* If err < 0, we have a half-filled directory - oh well ;) */
3338 mutex_unlock(&cgroup_mutex
);
3339 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3345 cgroup_lock_hierarchy(root
);
3346 list_del(&cgrp
->sibling
);
3347 cgroup_unlock_hierarchy(root
);
3348 root
->number_of_cgroups
--;
3352 for_each_subsys(root
, ss
) {
3353 if (cgrp
->subsys
[ss
->subsys_id
])
3354 ss
->destroy(ss
, cgrp
);
3357 mutex_unlock(&cgroup_mutex
);
3359 /* Release the reference count that we took on the superblock */
3360 deactivate_super(sb
);
3366 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3368 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3370 /* the vfs holds inode->i_mutex already */
3371 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3374 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3376 /* Check the reference count on each subsystem. Since we
3377 * already established that there are no tasks in the
3378 * cgroup, if the css refcount is also 1, then there should
3379 * be no outstanding references, so the subsystem is safe to
3380 * destroy. We scan across all subsystems rather than using
3381 * the per-hierarchy linked list of mounted subsystems since
3382 * we can be called via check_for_release() with no
3383 * synchronization other than RCU, and the subsystem linked
3384 * list isn't RCU-safe */
3387 * We won't need to lock the subsys array, because the subsystems
3388 * we're concerned about aren't going anywhere since our cgroup root
3389 * has a reference on them.
3391 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3392 struct cgroup_subsys
*ss
= subsys
[i
];
3393 struct cgroup_subsys_state
*css
;
3394 /* Skip subsystems not present or not in this hierarchy */
3395 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3397 css
= cgrp
->subsys
[ss
->subsys_id
];
3398 /* When called from check_for_release() it's possible
3399 * that by this point the cgroup has been removed
3400 * and the css deleted. But a false-positive doesn't
3401 * matter, since it can only happen if the cgroup
3402 * has been deleted and hence no longer needs the
3403 * release agent to be called anyway. */
3404 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3411 * Atomically mark all (or else none) of the cgroup's CSS objects as
3412 * CSS_REMOVED. Return true on success, or false if the cgroup has
3413 * busy subsystems. Call with cgroup_mutex held
3416 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3418 struct cgroup_subsys
*ss
;
3419 unsigned long flags
;
3420 bool failed
= false;
3421 local_irq_save(flags
);
3422 for_each_subsys(cgrp
->root
, ss
) {
3423 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3426 /* We can only remove a CSS with a refcnt==1 */
3427 refcnt
= atomic_read(&css
->refcnt
);
3434 * Drop the refcnt to 0 while we check other
3435 * subsystems. This will cause any racing
3436 * css_tryget() to spin until we set the
3437 * CSS_REMOVED bits or abort
3439 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3445 for_each_subsys(cgrp
->root
, ss
) {
3446 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3449 * Restore old refcnt if we previously managed
3450 * to clear it from 1 to 0
3452 if (!atomic_read(&css
->refcnt
))
3453 atomic_set(&css
->refcnt
, 1);
3455 /* Commit the fact that the CSS is removed */
3456 set_bit(CSS_REMOVED
, &css
->flags
);
3459 local_irq_restore(flags
);
3463 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3465 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3467 struct cgroup
*parent
;
3469 struct cgroup_event
*event
, *tmp
;
3472 /* the vfs holds both inode->i_mutex already */
3474 mutex_lock(&cgroup_mutex
);
3475 if (atomic_read(&cgrp
->count
) != 0) {
3476 mutex_unlock(&cgroup_mutex
);
3479 if (!list_empty(&cgrp
->children
)) {
3480 mutex_unlock(&cgroup_mutex
);
3483 mutex_unlock(&cgroup_mutex
);
3486 * In general, subsystem has no css->refcnt after pre_destroy(). But
3487 * in racy cases, subsystem may have to get css->refcnt after
3488 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3489 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3490 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3491 * and subsystem's reference count handling. Please see css_get/put
3492 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3494 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3497 * Call pre_destroy handlers of subsys. Notify subsystems
3498 * that rmdir() request comes.
3500 ret
= cgroup_call_pre_destroy(cgrp
);
3502 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3506 mutex_lock(&cgroup_mutex
);
3507 parent
= cgrp
->parent
;
3508 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
3509 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3510 mutex_unlock(&cgroup_mutex
);
3513 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
3514 if (!cgroup_clear_css_refs(cgrp
)) {
3515 mutex_unlock(&cgroup_mutex
);
3517 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3518 * prepare_to_wait(), we need to check this flag.
3520 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
3522 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3523 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3524 if (signal_pending(current
))
3528 /* NO css_tryget() can success after here. */
3529 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3530 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3532 spin_lock(&release_list_lock
);
3533 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
3534 if (!list_empty(&cgrp
->release_list
))
3535 list_del(&cgrp
->release_list
);
3536 spin_unlock(&release_list_lock
);
3538 cgroup_lock_hierarchy(cgrp
->root
);
3539 /* delete this cgroup from parent->children */
3540 list_del(&cgrp
->sibling
);
3541 cgroup_unlock_hierarchy(cgrp
->root
);
3543 spin_lock(&cgrp
->dentry
->d_lock
);
3544 d
= dget(cgrp
->dentry
);
3545 spin_unlock(&d
->d_lock
);
3547 cgroup_d_remove_dir(d
);
3550 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
3551 check_for_release(parent
);
3554 * Unregister events and notify userspace.
3555 * Notify userspace about cgroup removing only after rmdir of cgroup
3556 * directory to avoid race between userspace and kernelspace
3558 spin_lock(&cgrp
->event_list_lock
);
3559 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
3560 list_del(&event
->list
);
3561 remove_wait_queue(event
->wqh
, &event
->wait
);
3562 eventfd_signal(event
->eventfd
, 1);
3563 schedule_work(&event
->remove
);
3565 spin_unlock(&cgrp
->event_list_lock
);
3567 mutex_unlock(&cgroup_mutex
);
3571 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
3573 struct cgroup_subsys_state
*css
;
3575 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
3577 /* Create the top cgroup state for this subsystem */
3578 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3579 ss
->root
= &rootnode
;
3580 css
= ss
->create(ss
, dummytop
);
3581 /* We don't handle early failures gracefully */
3582 BUG_ON(IS_ERR(css
));
3583 init_cgroup_css(css
, ss
, dummytop
);
3585 /* Update the init_css_set to contain a subsys
3586 * pointer to this state - since the subsystem is
3587 * newly registered, all tasks and hence the
3588 * init_css_set is in the subsystem's top cgroup. */
3589 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
3591 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
3593 /* At system boot, before all subsystems have been
3594 * registered, no tasks have been forked, so we don't
3595 * need to invoke fork callbacks here. */
3596 BUG_ON(!list_empty(&init_task
.tasks
));
3598 mutex_init(&ss
->hierarchy_mutex
);
3599 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3602 /* this function shouldn't be used with modular subsystems, since they
3603 * need to register a subsys_id, among other things */
3608 * cgroup_load_subsys: load and register a modular subsystem at runtime
3609 * @ss: the subsystem to load
3611 * This function should be called in a modular subsystem's initcall. If the
3612 * subsytem is built as a module, it will be assigned a new subsys_id and set
3613 * up for use. If the subsystem is built-in anyway, work is delegated to the
3614 * simpler cgroup_init_subsys.
3616 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
3619 struct cgroup_subsys_state
*css
;
3621 /* check name and function validity */
3622 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
3623 ss
->create
== NULL
|| ss
->destroy
== NULL
)
3627 * we don't support callbacks in modular subsystems. this check is
3628 * before the ss->module check for consistency; a subsystem that could
3629 * be a module should still have no callbacks even if the user isn't
3630 * compiling it as one.
3632 if (ss
->fork
|| ss
->exit
)
3636 * an optionally modular subsystem is built-in: we want to do nothing,
3637 * since cgroup_init_subsys will have already taken care of it.
3639 if (ss
->module
== NULL
) {
3640 /* a few sanity checks */
3641 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
3642 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
3647 * need to register a subsys id before anything else - for example,
3648 * init_cgroup_css needs it.
3650 mutex_lock(&cgroup_mutex
);
3651 /* find the first empty slot in the array */
3652 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3653 if (subsys
[i
] == NULL
)
3656 if (i
== CGROUP_SUBSYS_COUNT
) {
3657 /* maximum number of subsystems already registered! */
3658 mutex_unlock(&cgroup_mutex
);
3661 /* assign ourselves the subsys_id */
3666 * no ss->create seems to need anything important in the ss struct, so
3667 * this can happen first (i.e. before the rootnode attachment).
3669 css
= ss
->create(ss
, dummytop
);
3671 /* failure case - need to deassign the subsys[] slot. */
3673 mutex_unlock(&cgroup_mutex
);
3674 return PTR_ERR(css
);
3677 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3678 ss
->root
= &rootnode
;
3680 /* our new subsystem will be attached to the dummy hierarchy. */
3681 init_cgroup_css(css
, ss
, dummytop
);
3682 /* init_idr must be after init_cgroup_css because it sets css->id. */
3684 int ret
= cgroup_init_idr(ss
, css
);
3686 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3687 ss
->destroy(ss
, dummytop
);
3689 mutex_unlock(&cgroup_mutex
);
3695 * Now we need to entangle the css into the existing css_sets. unlike
3696 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3697 * will need a new pointer to it; done by iterating the css_set_table.
3698 * furthermore, modifying the existing css_sets will corrupt the hash
3699 * table state, so each changed css_set will need its hash recomputed.
3700 * this is all done under the css_set_lock.
3702 write_lock(&css_set_lock
);
3703 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
3705 struct hlist_node
*node
, *tmp
;
3706 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
3708 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
3709 /* skip entries that we already rehashed */
3710 if (cg
->subsys
[ss
->subsys_id
])
3712 /* remove existing entry */
3713 hlist_del(&cg
->hlist
);
3715 cg
->subsys
[ss
->subsys_id
] = css
;
3716 /* recompute hash and restore entry */
3717 new_bucket
= css_set_hash(cg
->subsys
);
3718 hlist_add_head(&cg
->hlist
, new_bucket
);
3721 write_unlock(&css_set_lock
);
3723 mutex_init(&ss
->hierarchy_mutex
);
3724 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3728 mutex_unlock(&cgroup_mutex
);
3731 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
3734 * cgroup_unload_subsys: unload a modular subsystem
3735 * @ss: the subsystem to unload
3737 * This function should be called in a modular subsystem's exitcall. When this
3738 * function is invoked, the refcount on the subsystem's module will be 0, so
3739 * the subsystem will not be attached to any hierarchy.
3741 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
3743 struct cg_cgroup_link
*link
;
3744 struct hlist_head
*hhead
;
3746 BUG_ON(ss
->module
== NULL
);
3749 * we shouldn't be called if the subsystem is in use, and the use of
3750 * try_module_get in parse_cgroupfs_options should ensure that it
3751 * doesn't start being used while we're killing it off.
3753 BUG_ON(ss
->root
!= &rootnode
);
3755 mutex_lock(&cgroup_mutex
);
3756 /* deassign the subsys_id */
3757 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
3758 subsys
[ss
->subsys_id
] = NULL
;
3760 /* remove subsystem from rootnode's list of subsystems */
3761 list_del(&ss
->sibling
);
3764 * disentangle the css from all css_sets attached to the dummytop. as
3765 * in loading, we need to pay our respects to the hashtable gods.
3767 write_lock(&css_set_lock
);
3768 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
3769 struct css_set
*cg
= link
->cg
;
3771 hlist_del(&cg
->hlist
);
3772 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
3773 cg
->subsys
[ss
->subsys_id
] = NULL
;
3774 hhead
= css_set_hash(cg
->subsys
);
3775 hlist_add_head(&cg
->hlist
, hhead
);
3777 write_unlock(&css_set_lock
);
3780 * remove subsystem's css from the dummytop and free it - need to free
3781 * before marking as null because ss->destroy needs the cgrp->subsys
3782 * pointer to find their state. note that this also takes care of
3783 * freeing the css_id.
3785 ss
->destroy(ss
, dummytop
);
3786 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3788 mutex_unlock(&cgroup_mutex
);
3790 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
3793 * cgroup_init_early - cgroup initialization at system boot
3795 * Initialize cgroups at system boot, and initialize any
3796 * subsystems that request early init.
3798 int __init
cgroup_init_early(void)
3801 atomic_set(&init_css_set
.refcount
, 1);
3802 INIT_LIST_HEAD(&init_css_set
.cg_links
);
3803 INIT_LIST_HEAD(&init_css_set
.tasks
);
3804 INIT_HLIST_NODE(&init_css_set
.hlist
);
3806 init_cgroup_root(&rootnode
);
3808 init_task
.cgroups
= &init_css_set
;
3810 init_css_set_link
.cg
= &init_css_set
;
3811 init_css_set_link
.cgrp
= dummytop
;
3812 list_add(&init_css_set_link
.cgrp_link_list
,
3813 &rootnode
.top_cgroup
.css_sets
);
3814 list_add(&init_css_set_link
.cg_link_list
,
3815 &init_css_set
.cg_links
);
3817 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
3818 INIT_HLIST_HEAD(&css_set_table
[i
]);
3820 /* at bootup time, we don't worry about modular subsystems */
3821 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3822 struct cgroup_subsys
*ss
= subsys
[i
];
3825 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
3826 BUG_ON(!ss
->create
);
3827 BUG_ON(!ss
->destroy
);
3828 if (ss
->subsys_id
!= i
) {
3829 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
3830 ss
->name
, ss
->subsys_id
);
3835 cgroup_init_subsys(ss
);
3841 * cgroup_init - cgroup initialization
3843 * Register cgroup filesystem and /proc file, and initialize
3844 * any subsystems that didn't request early init.
3846 int __init
cgroup_init(void)
3850 struct hlist_head
*hhead
;
3852 err
= bdi_init(&cgroup_backing_dev_info
);
3856 /* at bootup time, we don't worry about modular subsystems */
3857 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3858 struct cgroup_subsys
*ss
= subsys
[i
];
3859 if (!ss
->early_init
)
3860 cgroup_init_subsys(ss
);
3862 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
3865 /* Add init_css_set to the hash table */
3866 hhead
= css_set_hash(init_css_set
.subsys
);
3867 hlist_add_head(&init_css_set
.hlist
, hhead
);
3868 BUG_ON(!init_root_id(&rootnode
));
3869 err
= register_filesystem(&cgroup_fs_type
);
3873 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
3877 bdi_destroy(&cgroup_backing_dev_info
);
3883 * proc_cgroup_show()
3884 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3885 * - Used for /proc/<pid>/cgroup.
3886 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3887 * doesn't really matter if tsk->cgroup changes after we read it,
3888 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3889 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3890 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3891 * cgroup to top_cgroup.
3894 /* TODO: Use a proper seq_file iterator */
3895 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
3898 struct task_struct
*tsk
;
3901 struct cgroupfs_root
*root
;
3904 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3910 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
3916 mutex_lock(&cgroup_mutex
);
3918 for_each_active_root(root
) {
3919 struct cgroup_subsys
*ss
;
3920 struct cgroup
*cgrp
;
3923 seq_printf(m
, "%d:", root
->hierarchy_id
);
3924 for_each_subsys(root
, ss
)
3925 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
3926 if (strlen(root
->name
))
3927 seq_printf(m
, "%sname=%s", count
? "," : "",
3930 cgrp
= task_cgroup_from_root(tsk
, root
);
3931 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
3939 mutex_unlock(&cgroup_mutex
);
3940 put_task_struct(tsk
);
3947 static int cgroup_open(struct inode
*inode
, struct file
*file
)
3949 struct pid
*pid
= PROC_I(inode
)->pid
;
3950 return single_open(file
, proc_cgroup_show
, pid
);
3953 const struct file_operations proc_cgroup_operations
= {
3954 .open
= cgroup_open
,
3956 .llseek
= seq_lseek
,
3957 .release
= single_release
,
3960 /* Display information about each subsystem and each hierarchy */
3961 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
3965 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3967 * ideally we don't want subsystems moving around while we do this.
3968 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
3969 * subsys/hierarchy state.
3971 mutex_lock(&cgroup_mutex
);
3972 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3973 struct cgroup_subsys
*ss
= subsys
[i
];
3976 seq_printf(m
, "%s\t%d\t%d\t%d\n",
3977 ss
->name
, ss
->root
->hierarchy_id
,
3978 ss
->root
->number_of_cgroups
, !ss
->disabled
);
3980 mutex_unlock(&cgroup_mutex
);
3984 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
3986 return single_open(file
, proc_cgroupstats_show
, NULL
);
3989 static const struct file_operations proc_cgroupstats_operations
= {
3990 .open
= cgroupstats_open
,
3992 .llseek
= seq_lseek
,
3993 .release
= single_release
,
3997 * cgroup_fork - attach newly forked task to its parents cgroup.
3998 * @child: pointer to task_struct of forking parent process.
4000 * Description: A task inherits its parent's cgroup at fork().
4002 * A pointer to the shared css_set was automatically copied in
4003 * fork.c by dup_task_struct(). However, we ignore that copy, since
4004 * it was not made under the protection of RCU or cgroup_mutex, so
4005 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4006 * have already changed current->cgroups, allowing the previously
4007 * referenced cgroup group to be removed and freed.
4009 * At the point that cgroup_fork() is called, 'current' is the parent
4010 * task, and the passed argument 'child' points to the child task.
4012 void cgroup_fork(struct task_struct
*child
)
4015 child
->cgroups
= current
->cgroups
;
4016 get_css_set(child
->cgroups
);
4017 task_unlock(current
);
4018 INIT_LIST_HEAD(&child
->cg_list
);
4022 * cgroup_fork_callbacks - run fork callbacks
4023 * @child: the new task
4025 * Called on a new task very soon before adding it to the
4026 * tasklist. No need to take any locks since no-one can
4027 * be operating on this task.
4029 void cgroup_fork_callbacks(struct task_struct
*child
)
4031 if (need_forkexit_callback
) {
4034 * forkexit callbacks are only supported for builtin
4035 * subsystems, and the builtin section of the subsys array is
4036 * immutable, so we don't need to lock the subsys array here.
4038 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4039 struct cgroup_subsys
*ss
= subsys
[i
];
4041 ss
->fork(ss
, child
);
4047 * cgroup_post_fork - called on a new task after adding it to the task list
4048 * @child: the task in question
4050 * Adds the task to the list running through its css_set if necessary.
4051 * Has to be after the task is visible on the task list in case we race
4052 * with the first call to cgroup_iter_start() - to guarantee that the
4053 * new task ends up on its list.
4055 void cgroup_post_fork(struct task_struct
*child
)
4057 if (use_task_css_set_links
) {
4058 write_lock(&css_set_lock
);
4060 if (list_empty(&child
->cg_list
))
4061 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4063 write_unlock(&css_set_lock
);
4067 * cgroup_exit - detach cgroup from exiting task
4068 * @tsk: pointer to task_struct of exiting process
4069 * @run_callback: run exit callbacks?
4071 * Description: Detach cgroup from @tsk and release it.
4073 * Note that cgroups marked notify_on_release force every task in
4074 * them to take the global cgroup_mutex mutex when exiting.
4075 * This could impact scaling on very large systems. Be reluctant to
4076 * use notify_on_release cgroups where very high task exit scaling
4077 * is required on large systems.
4079 * the_top_cgroup_hack:
4081 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4083 * We call cgroup_exit() while the task is still competent to
4084 * handle notify_on_release(), then leave the task attached to the
4085 * root cgroup in each hierarchy for the remainder of its exit.
4087 * To do this properly, we would increment the reference count on
4088 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4089 * code we would add a second cgroup function call, to drop that
4090 * reference. This would just create an unnecessary hot spot on
4091 * the top_cgroup reference count, to no avail.
4093 * Normally, holding a reference to a cgroup without bumping its
4094 * count is unsafe. The cgroup could go away, or someone could
4095 * attach us to a different cgroup, decrementing the count on
4096 * the first cgroup that we never incremented. But in this case,
4097 * top_cgroup isn't going away, and either task has PF_EXITING set,
4098 * which wards off any cgroup_attach_task() attempts, or task is a failed
4099 * fork, never visible to cgroup_attach_task.
4101 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4106 if (run_callbacks
&& need_forkexit_callback
) {
4108 * modular subsystems can't use callbacks, so no need to lock
4111 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4112 struct cgroup_subsys
*ss
= subsys
[i
];
4119 * Unlink from the css_set task list if necessary.
4120 * Optimistically check cg_list before taking
4123 if (!list_empty(&tsk
->cg_list
)) {
4124 write_lock(&css_set_lock
);
4125 if (!list_empty(&tsk
->cg_list
))
4126 list_del(&tsk
->cg_list
);
4127 write_unlock(&css_set_lock
);
4130 /* Reassign the task to the init_css_set. */
4133 tsk
->cgroups
= &init_css_set
;
4136 put_css_set_taskexit(cg
);
4140 * cgroup_clone - clone the cgroup the given subsystem is attached to
4141 * @tsk: the task to be moved
4142 * @subsys: the given subsystem
4143 * @nodename: the name for the new cgroup
4145 * Duplicate the current cgroup in the hierarchy that the given
4146 * subsystem is attached to, and move this task into the new
4149 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
4152 struct dentry
*dentry
;
4154 struct cgroup
*parent
, *child
;
4155 struct inode
*inode
;
4157 struct cgroupfs_root
*root
;
4158 struct cgroup_subsys
*ss
;
4160 /* We shouldn't be called by an unregistered subsystem */
4161 BUG_ON(!subsys
->active
);
4163 /* First figure out what hierarchy and cgroup we're dealing
4164 * with, and pin them so we can drop cgroup_mutex */
4165 mutex_lock(&cgroup_mutex
);
4167 root
= subsys
->root
;
4168 if (root
== &rootnode
) {
4169 mutex_unlock(&cgroup_mutex
);
4173 /* Pin the hierarchy */
4174 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
4175 /* We race with the final deactivate_super() */
4176 mutex_unlock(&cgroup_mutex
);
4180 /* Keep the cgroup alive */
4182 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
4187 mutex_unlock(&cgroup_mutex
);
4189 /* Now do the VFS work to create a cgroup */
4190 inode
= parent
->dentry
->d_inode
;
4192 /* Hold the parent directory mutex across this operation to
4193 * stop anyone else deleting the new cgroup */
4194 mutex_lock(&inode
->i_mutex
);
4195 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
4196 if (IS_ERR(dentry
)) {
4198 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
4200 ret
= PTR_ERR(dentry
);
4204 /* Create the cgroup directory, which also creates the cgroup */
4205 ret
= vfs_mkdir(inode
, dentry
, 0755);
4206 child
= __d_cgrp(dentry
);
4210 "Failed to create cgroup %s: %d\n", nodename
,
4215 /* The cgroup now exists. Retake cgroup_mutex and check
4216 * that we're still in the same state that we thought we
4218 mutex_lock(&cgroup_mutex
);
4219 if ((root
!= subsys
->root
) ||
4220 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
4221 /* Aargh, we raced ... */
4222 mutex_unlock(&inode
->i_mutex
);
4225 deactivate_super(root
->sb
);
4226 /* The cgroup is still accessible in the VFS, but
4227 * we're not going to try to rmdir() it at this
4230 "Race in cgroup_clone() - leaking cgroup %s\n",
4235 /* do any required auto-setup */
4236 for_each_subsys(root
, ss
) {
4238 ss
->post_clone(ss
, child
);
4241 /* All seems fine. Finish by moving the task into the new cgroup */
4242 ret
= cgroup_attach_task(child
, tsk
);
4243 mutex_unlock(&cgroup_mutex
);
4246 mutex_unlock(&inode
->i_mutex
);
4248 mutex_lock(&cgroup_mutex
);
4250 mutex_unlock(&cgroup_mutex
);
4251 deactivate_super(root
->sb
);
4256 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4257 * @cgrp: the cgroup in question
4258 * @task: the task in question
4260 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4263 * If we are sending in dummytop, then presumably we are creating
4264 * the top cgroup in the subsystem.
4266 * Called only by the ns (nsproxy) cgroup.
4268 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4271 struct cgroup
*target
;
4273 if (cgrp
== dummytop
)
4276 target
= task_cgroup_from_root(task
, cgrp
->root
);
4277 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4278 cgrp
= cgrp
->parent
;
4279 ret
= (cgrp
== target
);
4283 static void check_for_release(struct cgroup
*cgrp
)
4285 /* All of these checks rely on RCU to keep the cgroup
4286 * structure alive */
4287 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4288 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4289 /* Control Group is currently removeable. If it's not
4290 * already queued for a userspace notification, queue
4292 int need_schedule_work
= 0;
4293 spin_lock(&release_list_lock
);
4294 if (!cgroup_is_removed(cgrp
) &&
4295 list_empty(&cgrp
->release_list
)) {
4296 list_add(&cgrp
->release_list
, &release_list
);
4297 need_schedule_work
= 1;
4299 spin_unlock(&release_list_lock
);
4300 if (need_schedule_work
)
4301 schedule_work(&release_agent_work
);
4305 /* Caller must verify that the css is not for root cgroup */
4306 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4308 struct cgroup
*cgrp
= css
->cgroup
;
4311 val
= atomic_sub_return(count
, &css
->refcnt
);
4313 if (notify_on_release(cgrp
)) {
4314 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4315 check_for_release(cgrp
);
4317 cgroup_wakeup_rmdir_waiter(cgrp
);
4320 WARN_ON_ONCE(val
< 1);
4322 EXPORT_SYMBOL_GPL(__css_put
);
4325 * Notify userspace when a cgroup is released, by running the
4326 * configured release agent with the name of the cgroup (path
4327 * relative to the root of cgroup file system) as the argument.
4329 * Most likely, this user command will try to rmdir this cgroup.
4331 * This races with the possibility that some other task will be
4332 * attached to this cgroup before it is removed, or that some other
4333 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4334 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4335 * unused, and this cgroup will be reprieved from its death sentence,
4336 * to continue to serve a useful existence. Next time it's released,
4337 * we will get notified again, if it still has 'notify_on_release' set.
4339 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4340 * means only wait until the task is successfully execve()'d. The
4341 * separate release agent task is forked by call_usermodehelper(),
4342 * then control in this thread returns here, without waiting for the
4343 * release agent task. We don't bother to wait because the caller of
4344 * this routine has no use for the exit status of the release agent
4345 * task, so no sense holding our caller up for that.
4347 static void cgroup_release_agent(struct work_struct
*work
)
4349 BUG_ON(work
!= &release_agent_work
);
4350 mutex_lock(&cgroup_mutex
);
4351 spin_lock(&release_list_lock
);
4352 while (!list_empty(&release_list
)) {
4353 char *argv
[3], *envp
[3];
4355 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4356 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4359 list_del_init(&cgrp
->release_list
);
4360 spin_unlock(&release_list_lock
);
4361 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4364 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4366 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4371 argv
[i
++] = agentbuf
;
4372 argv
[i
++] = pathbuf
;
4376 /* minimal command environment */
4377 envp
[i
++] = "HOME=/";
4378 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4381 /* Drop the lock while we invoke the usermode helper,
4382 * since the exec could involve hitting disk and hence
4383 * be a slow process */
4384 mutex_unlock(&cgroup_mutex
);
4385 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4386 mutex_lock(&cgroup_mutex
);
4390 spin_lock(&release_list_lock
);
4392 spin_unlock(&release_list_lock
);
4393 mutex_unlock(&cgroup_mutex
);
4396 static int __init
cgroup_disable(char *str
)
4401 while ((token
= strsep(&str
, ",")) != NULL
) {
4405 * cgroup_disable, being at boot time, can't know about module
4406 * subsystems, so we don't worry about them.
4408 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4409 struct cgroup_subsys
*ss
= subsys
[i
];
4411 if (!strcmp(token
, ss
->name
)) {
4413 printk(KERN_INFO
"Disabling %s control group"
4414 " subsystem\n", ss
->name
);
4421 __setup("cgroup_disable=", cgroup_disable
);
4424 * Functons for CSS ID.
4428 *To get ID other than 0, this should be called when !cgroup_is_removed().
4430 unsigned short css_id(struct cgroup_subsys_state
*css
)
4432 struct css_id
*cssid
= rcu_dereference(css
->id
);
4438 EXPORT_SYMBOL_GPL(css_id
);
4440 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4442 struct css_id
*cssid
= rcu_dereference(css
->id
);
4445 return cssid
->depth
;
4448 EXPORT_SYMBOL_GPL(css_depth
);
4450 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4451 const struct cgroup_subsys_state
*root
)
4453 struct css_id
*child_id
= rcu_dereference(child
->id
);
4454 struct css_id
*root_id
= rcu_dereference(root
->id
);
4456 if (!child_id
|| !root_id
|| (child_id
->depth
< root_id
->depth
))
4458 return child_id
->stack
[root_id
->depth
] == root_id
->id
;
4461 static void __free_css_id_cb(struct rcu_head
*head
)
4465 id
= container_of(head
, struct css_id
, rcu_head
);
4469 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4471 struct css_id
*id
= css
->id
;
4472 /* When this is called before css_id initialization, id can be NULL */
4476 BUG_ON(!ss
->use_id
);
4478 rcu_assign_pointer(id
->css
, NULL
);
4479 rcu_assign_pointer(css
->id
, NULL
);
4480 spin_lock(&ss
->id_lock
);
4481 idr_remove(&ss
->idr
, id
->id
);
4482 spin_unlock(&ss
->id_lock
);
4483 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
4485 EXPORT_SYMBOL_GPL(free_css_id
);
4488 * This is called by init or create(). Then, calls to this function are
4489 * always serialized (By cgroup_mutex() at create()).
4492 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4494 struct css_id
*newid
;
4495 int myid
, error
, size
;
4497 BUG_ON(!ss
->use_id
);
4499 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4500 newid
= kzalloc(size
, GFP_KERNEL
);
4502 return ERR_PTR(-ENOMEM
);
4504 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4508 spin_lock(&ss
->id_lock
);
4509 /* Don't use 0. allocates an ID of 1-65535 */
4510 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4511 spin_unlock(&ss
->id_lock
);
4513 /* Returns error when there are no free spaces for new ID.*/
4518 if (myid
> CSS_ID_MAX
)
4522 newid
->depth
= depth
;
4526 spin_lock(&ss
->id_lock
);
4527 idr_remove(&ss
->idr
, myid
);
4528 spin_unlock(&ss
->id_lock
);
4531 return ERR_PTR(error
);
4535 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4536 struct cgroup_subsys_state
*rootcss
)
4538 struct css_id
*newid
;
4540 spin_lock_init(&ss
->id_lock
);
4543 newid
= get_new_cssid(ss
, 0);
4545 return PTR_ERR(newid
);
4547 newid
->stack
[0] = newid
->id
;
4548 newid
->css
= rootcss
;
4549 rootcss
->id
= newid
;
4553 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4554 struct cgroup
*child
)
4556 int subsys_id
, i
, depth
= 0;
4557 struct cgroup_subsys_state
*parent_css
, *child_css
;
4558 struct css_id
*child_id
, *parent_id
= NULL
;
4560 subsys_id
= ss
->subsys_id
;
4561 parent_css
= parent
->subsys
[subsys_id
];
4562 child_css
= child
->subsys
[subsys_id
];
4563 depth
= css_depth(parent_css
) + 1;
4564 parent_id
= parent_css
->id
;
4566 child_id
= get_new_cssid(ss
, depth
);
4567 if (IS_ERR(child_id
))
4568 return PTR_ERR(child_id
);
4570 for (i
= 0; i
< depth
; i
++)
4571 child_id
->stack
[i
] = parent_id
->stack
[i
];
4572 child_id
->stack
[depth
] = child_id
->id
;
4574 * child_id->css pointer will be set after this cgroup is available
4575 * see cgroup_populate_dir()
4577 rcu_assign_pointer(child_css
->id
, child_id
);
4583 * css_lookup - lookup css by id
4584 * @ss: cgroup subsys to be looked into.
4587 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4588 * NULL if not. Should be called under rcu_read_lock()
4590 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
4592 struct css_id
*cssid
= NULL
;
4594 BUG_ON(!ss
->use_id
);
4595 cssid
= idr_find(&ss
->idr
, id
);
4597 if (unlikely(!cssid
))
4600 return rcu_dereference(cssid
->css
);
4602 EXPORT_SYMBOL_GPL(css_lookup
);
4605 * css_get_next - lookup next cgroup under specified hierarchy.
4606 * @ss: pointer to subsystem
4607 * @id: current position of iteration.
4608 * @root: pointer to css. search tree under this.
4609 * @foundid: position of found object.
4611 * Search next css under the specified hierarchy of rootid. Calling under
4612 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4614 struct cgroup_subsys_state
*
4615 css_get_next(struct cgroup_subsys
*ss
, int id
,
4616 struct cgroup_subsys_state
*root
, int *foundid
)
4618 struct cgroup_subsys_state
*ret
= NULL
;
4621 int rootid
= css_id(root
);
4622 int depth
= css_depth(root
);
4627 BUG_ON(!ss
->use_id
);
4628 /* fill start point for scan */
4632 * scan next entry from bitmap(tree), tmpid is updated after
4635 spin_lock(&ss
->id_lock
);
4636 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
4637 spin_unlock(&ss
->id_lock
);
4641 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
4642 ret
= rcu_dereference(tmp
->css
);
4648 /* continue to scan from next id */
4654 #ifdef CONFIG_CGROUP_DEBUG
4655 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
4656 struct cgroup
*cont
)
4658 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
4661 return ERR_PTR(-ENOMEM
);
4666 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4668 kfree(cont
->subsys
[debug_subsys_id
]);
4671 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4673 return atomic_read(&cont
->count
);
4676 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4678 return cgroup_task_count(cont
);
4681 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
4683 return (u64
)(unsigned long)current
->cgroups
;
4686 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
4692 count
= atomic_read(¤t
->cgroups
->refcount
);
4697 static int current_css_set_cg_links_read(struct cgroup
*cont
,
4699 struct seq_file
*seq
)
4701 struct cg_cgroup_link
*link
;
4704 read_lock(&css_set_lock
);
4706 cg
= rcu_dereference(current
->cgroups
);
4707 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
4708 struct cgroup
*c
= link
->cgrp
;
4712 name
= c
->dentry
->d_name
.name
;
4715 seq_printf(seq
, "Root %d group %s\n",
4716 c
->root
->hierarchy_id
, name
);
4719 read_unlock(&css_set_lock
);
4723 #define MAX_TASKS_SHOWN_PER_CSS 25
4724 static int cgroup_css_links_read(struct cgroup
*cont
,
4726 struct seq_file
*seq
)
4728 struct cg_cgroup_link
*link
;
4730 read_lock(&css_set_lock
);
4731 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
4732 struct css_set
*cg
= link
->cg
;
4733 struct task_struct
*task
;
4735 seq_printf(seq
, "css_set %p\n", cg
);
4736 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
4737 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
4738 seq_puts(seq
, " ...\n");
4741 seq_printf(seq
, " task %d\n",
4742 task_pid_vnr(task
));
4746 read_unlock(&css_set_lock
);
4750 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4752 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4755 static struct cftype debug_files
[] = {
4757 .name
= "cgroup_refcount",
4758 .read_u64
= cgroup_refcount_read
,
4761 .name
= "taskcount",
4762 .read_u64
= debug_taskcount_read
,
4766 .name
= "current_css_set",
4767 .read_u64
= current_css_set_read
,
4771 .name
= "current_css_set_refcount",
4772 .read_u64
= current_css_set_refcount_read
,
4776 .name
= "current_css_set_cg_links",
4777 .read_seq_string
= current_css_set_cg_links_read
,
4781 .name
= "cgroup_css_links",
4782 .read_seq_string
= cgroup_css_links_read
,
4786 .name
= "releasable",
4787 .read_u64
= releasable_read
,
4791 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4793 return cgroup_add_files(cont
, ss
, debug_files
,
4794 ARRAY_SIZE(debug_files
));
4797 struct cgroup_subsys debug_subsys
= {
4799 .create
= debug_create
,
4800 .destroy
= debug_destroy
,
4801 .populate
= debug_populate
,
4802 .subsys_id
= debug_subsys_id
,
4804 #endif /* CONFIG_CGROUP_DEBUG */