4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed
;
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim
;
61 unsigned long hibernation_mode
;
63 /* This context's GFP mask */
68 /* Can mapped pages be reclaimed? */
71 /* Can pages be swapped as part of reclaim? */
76 int all_unreclaimable
;
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup
*mem_cgroup
;
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 /* Pluggable isolate pages callback */
90 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
91 unsigned long *scanned
, int order
, int mode
,
92 struct zone
*z
, struct mem_cgroup
*mem_cont
,
93 int active
, int file
);
96 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98 #ifdef ARCH_HAS_PREFETCH
99 #define prefetch_prev_lru_page(_page, _base, _field) \
101 if ((_page)->lru.prev != _base) { \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetch(&prev->_field); \
109 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
112 #ifdef ARCH_HAS_PREFETCHW
113 #define prefetchw_prev_lru_page(_page, _base, _field) \
115 if ((_page)->lru.prev != _base) { \
118 prev = lru_to_page(&(_page->lru)); \
119 prefetchw(&prev->_field); \
123 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127 * From 0 .. 100. Higher means more swappy.
129 int vm_swappiness
= 60;
130 long vm_total_pages
; /* The total number of pages which the VM controls */
132 static LIST_HEAD(shrinker_list
);
133 static DECLARE_RWSEM(shrinker_rwsem
);
135 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
136 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
138 #define scanning_global_lru(sc) (1)
141 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
142 struct scan_control
*sc
)
144 if (!scanning_global_lru(sc
))
145 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
147 return &zone
->reclaim_stat
;
150 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
151 struct scan_control
*sc
, enum lru_list lru
)
153 if (!scanning_global_lru(sc
))
154 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
156 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
161 * Add a shrinker callback to be called from the vm
163 void register_shrinker(struct shrinker
*shrinker
)
166 down_write(&shrinker_rwsem
);
167 list_add_tail(&shrinker
->list
, &shrinker_list
);
168 up_write(&shrinker_rwsem
);
170 EXPORT_SYMBOL(register_shrinker
);
175 void unregister_shrinker(struct shrinker
*shrinker
)
177 down_write(&shrinker_rwsem
);
178 list_del(&shrinker
->list
);
179 up_write(&shrinker_rwsem
);
181 EXPORT_SYMBOL(unregister_shrinker
);
183 #define SHRINK_BATCH 128
185 * Call the shrink functions to age shrinkable caches
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object. With this in mind we age equal
189 * percentages of the lru and ageable caches. This should balance the seeks
190 * generated by these structures.
192 * If the vm encountered mapped pages on the LRU it increase the pressure on
193 * slab to avoid swapping.
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt. It is used for balancing
199 * slab reclaim versus page reclaim.
201 * Returns the number of slab objects which we shrunk.
203 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
204 unsigned long lru_pages
)
206 struct shrinker
*shrinker
;
207 unsigned long ret
= 0;
210 scanned
= SWAP_CLUSTER_MAX
;
212 if (!down_read_trylock(&shrinker_rwsem
))
213 return 1; /* Assume we'll be able to shrink next time */
215 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
216 unsigned long long delta
;
217 unsigned long total_scan
;
218 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
220 delta
= (4 * scanned
) / shrinker
->seeks
;
222 do_div(delta
, lru_pages
+ 1);
223 shrinker
->nr
+= delta
;
224 if (shrinker
->nr
< 0) {
225 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
227 shrinker
->shrink
, shrinker
->nr
);
228 shrinker
->nr
= max_pass
;
232 * Avoid risking looping forever due to too large nr value:
233 * never try to free more than twice the estimate number of
236 if (shrinker
->nr
> max_pass
* 2)
237 shrinker
->nr
= max_pass
* 2;
239 total_scan
= shrinker
->nr
;
242 while (total_scan
>= SHRINK_BATCH
) {
243 long this_scan
= SHRINK_BATCH
;
247 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
248 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
249 if (shrink_ret
== -1)
251 if (shrink_ret
< nr_before
)
252 ret
+= nr_before
- shrink_ret
;
253 count_vm_events(SLABS_SCANNED
, this_scan
);
254 total_scan
-= this_scan
;
259 shrinker
->nr
+= total_scan
;
261 up_read(&shrinker_rwsem
);
265 static inline int is_page_cache_freeable(struct page
*page
)
268 * A freeable page cache page is referenced only by the caller
269 * that isolated the page, the page cache radix tree and
270 * optional buffer heads at page->private.
272 return page_count(page
) - page_has_private(page
) == 2;
275 static int may_write_to_queue(struct backing_dev_info
*bdi
)
277 if (current
->flags
& PF_SWAPWRITE
)
279 if (!bdi_write_congested(bdi
))
281 if (bdi
== current
->backing_dev_info
)
287 * We detected a synchronous write error writing a page out. Probably
288 * -ENOSPC. We need to propagate that into the address_space for a subsequent
289 * fsync(), msync() or close().
291 * The tricky part is that after writepage we cannot touch the mapping: nothing
292 * prevents it from being freed up. But we have a ref on the page and once
293 * that page is locked, the mapping is pinned.
295 * We're allowed to run sleeping lock_page() here because we know the caller has
298 static void handle_write_error(struct address_space
*mapping
,
299 struct page
*page
, int error
)
302 if (page_mapping(page
) == mapping
)
303 mapping_set_error(mapping
, error
);
307 /* Request for sync pageout. */
313 /* possible outcome of pageout() */
315 /* failed to write page out, page is locked */
317 /* move page to the active list, page is locked */
319 /* page has been sent to the disk successfully, page is unlocked */
321 /* page is clean and locked */
326 * pageout is called by shrink_page_list() for each dirty page.
327 * Calls ->writepage().
329 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
330 enum pageout_io sync_writeback
)
333 * If the page is dirty, only perform writeback if that write
334 * will be non-blocking. To prevent this allocation from being
335 * stalled by pagecache activity. But note that there may be
336 * stalls if we need to run get_block(). We could test
337 * PagePrivate for that.
339 * If this process is currently in __generic_file_aio_write() against
340 * this page's queue, we can perform writeback even if that
343 * If the page is swapcache, write it back even if that would
344 * block, for some throttling. This happens by accident, because
345 * swap_backing_dev_info is bust: it doesn't reflect the
346 * congestion state of the swapdevs. Easy to fix, if needed.
348 if (!is_page_cache_freeable(page
))
352 * Some data journaling orphaned pages can have
353 * page->mapping == NULL while being dirty with clean buffers.
355 if (page_has_private(page
)) {
356 if (try_to_free_buffers(page
)) {
357 ClearPageDirty(page
);
358 printk("%s: orphaned page\n", __func__
);
364 if (mapping
->a_ops
->writepage
== NULL
)
365 return PAGE_ACTIVATE
;
366 if (!may_write_to_queue(mapping
->backing_dev_info
))
369 if (clear_page_dirty_for_io(page
)) {
371 struct writeback_control wbc
= {
372 .sync_mode
= WB_SYNC_NONE
,
373 .nr_to_write
= SWAP_CLUSTER_MAX
,
375 .range_end
= LLONG_MAX
,
380 SetPageReclaim(page
);
381 res
= mapping
->a_ops
->writepage(page
, &wbc
);
383 handle_write_error(mapping
, page
, res
);
384 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
385 ClearPageReclaim(page
);
386 return PAGE_ACTIVATE
;
390 * Wait on writeback if requested to. This happens when
391 * direct reclaiming a large contiguous area and the
392 * first attempt to free a range of pages fails.
394 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
395 wait_on_page_writeback(page
);
397 if (!PageWriteback(page
)) {
398 /* synchronous write or broken a_ops? */
399 ClearPageReclaim(page
);
401 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
409 * Same as remove_mapping, but if the page is removed from the mapping, it
410 * gets returned with a refcount of 0.
412 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
414 BUG_ON(!PageLocked(page
));
415 BUG_ON(mapping
!= page_mapping(page
));
417 spin_lock_irq(&mapping
->tree_lock
);
419 * The non racy check for a busy page.
421 * Must be careful with the order of the tests. When someone has
422 * a ref to the page, it may be possible that they dirty it then
423 * drop the reference. So if PageDirty is tested before page_count
424 * here, then the following race may occur:
426 * get_user_pages(&page);
427 * [user mapping goes away]
429 * !PageDirty(page) [good]
430 * SetPageDirty(page);
432 * !page_count(page) [good, discard it]
434 * [oops, our write_to data is lost]
436 * Reversing the order of the tests ensures such a situation cannot
437 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
438 * load is not satisfied before that of page->_count.
440 * Note that if SetPageDirty is always performed via set_page_dirty,
441 * and thus under tree_lock, then this ordering is not required.
443 if (!page_freeze_refs(page
, 2))
445 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
446 if (unlikely(PageDirty(page
))) {
447 page_unfreeze_refs(page
, 2);
451 if (PageSwapCache(page
)) {
452 swp_entry_t swap
= { .val
= page_private(page
) };
453 __delete_from_swap_cache(page
);
454 spin_unlock_irq(&mapping
->tree_lock
);
455 swapcache_free(swap
, page
);
457 __remove_from_page_cache(page
);
458 spin_unlock_irq(&mapping
->tree_lock
);
459 mem_cgroup_uncharge_cache_page(page
);
465 spin_unlock_irq(&mapping
->tree_lock
);
470 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
471 * someone else has a ref on the page, abort and return 0. If it was
472 * successfully detached, return 1. Assumes the caller has a single ref on
475 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
477 if (__remove_mapping(mapping
, page
)) {
479 * Unfreezing the refcount with 1 rather than 2 effectively
480 * drops the pagecache ref for us without requiring another
483 page_unfreeze_refs(page
, 1);
490 * putback_lru_page - put previously isolated page onto appropriate LRU list
491 * @page: page to be put back to appropriate lru list
493 * Add previously isolated @page to appropriate LRU list.
494 * Page may still be unevictable for other reasons.
496 * lru_lock must not be held, interrupts must be enabled.
498 void putback_lru_page(struct page
*page
)
501 int active
= !!TestClearPageActive(page
);
502 int was_unevictable
= PageUnevictable(page
);
504 VM_BUG_ON(PageLRU(page
));
507 ClearPageUnevictable(page
);
509 if (page_evictable(page
, NULL
)) {
511 * For evictable pages, we can use the cache.
512 * In event of a race, worst case is we end up with an
513 * unevictable page on [in]active list.
514 * We know how to handle that.
516 lru
= active
+ page_lru_base_type(page
);
517 lru_cache_add_lru(page
, lru
);
520 * Put unevictable pages directly on zone's unevictable
523 lru
= LRU_UNEVICTABLE
;
524 add_page_to_unevictable_list(page
);
526 * When racing with an mlock clearing (page is
527 * unlocked), make sure that if the other thread does
528 * not observe our setting of PG_lru and fails
529 * isolation, we see PG_mlocked cleared below and move
530 * the page back to the evictable list.
532 * The other side is TestClearPageMlocked().
538 * page's status can change while we move it among lru. If an evictable
539 * page is on unevictable list, it never be freed. To avoid that,
540 * check after we added it to the list, again.
542 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
543 if (!isolate_lru_page(page
)) {
547 /* This means someone else dropped this page from LRU
548 * So, it will be freed or putback to LRU again. There is
549 * nothing to do here.
553 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
554 count_vm_event(UNEVICTABLE_PGRESCUED
);
555 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
556 count_vm_event(UNEVICTABLE_PGCULLED
);
558 put_page(page
); /* drop ref from isolate */
561 enum page_references
{
563 PAGEREF_RECLAIM_CLEAN
,
568 static enum page_references
page_check_references(struct page
*page
,
569 struct scan_control
*sc
)
571 int referenced_ptes
, referenced_page
;
572 unsigned long vm_flags
;
574 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
575 referenced_page
= TestClearPageReferenced(page
);
577 /* Lumpy reclaim - ignore references */
578 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
579 return PAGEREF_RECLAIM
;
582 * Mlock lost the isolation race with us. Let try_to_unmap()
583 * move the page to the unevictable list.
585 if (vm_flags
& VM_LOCKED
)
586 return PAGEREF_RECLAIM
;
588 if (referenced_ptes
) {
590 return PAGEREF_ACTIVATE
;
592 * All mapped pages start out with page table
593 * references from the instantiating fault, so we need
594 * to look twice if a mapped file page is used more
597 * Mark it and spare it for another trip around the
598 * inactive list. Another page table reference will
599 * lead to its activation.
601 * Note: the mark is set for activated pages as well
602 * so that recently deactivated but used pages are
605 SetPageReferenced(page
);
608 return PAGEREF_ACTIVATE
;
613 /* Reclaim if clean, defer dirty pages to writeback */
615 return PAGEREF_RECLAIM_CLEAN
;
617 return PAGEREF_RECLAIM
;
621 * shrink_page_list() returns the number of reclaimed pages
623 static unsigned long shrink_page_list(struct list_head
*page_list
,
624 struct scan_control
*sc
,
625 enum pageout_io sync_writeback
)
627 LIST_HEAD(ret_pages
);
628 struct pagevec freed_pvec
;
630 unsigned long nr_reclaimed
= 0;
634 pagevec_init(&freed_pvec
, 1);
635 while (!list_empty(page_list
)) {
636 enum page_references references
;
637 struct address_space
*mapping
;
643 page
= lru_to_page(page_list
);
644 list_del(&page
->lru
);
646 if (!trylock_page(page
))
649 VM_BUG_ON(PageActive(page
));
653 if (unlikely(!page_evictable(page
, NULL
)))
656 if (!sc
->may_unmap
&& page_mapped(page
))
659 /* Double the slab pressure for mapped and swapcache pages */
660 if (page_mapped(page
) || PageSwapCache(page
))
663 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
664 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
666 if (PageWriteback(page
)) {
668 * Synchronous reclaim is performed in two passes,
669 * first an asynchronous pass over the list to
670 * start parallel writeback, and a second synchronous
671 * pass to wait for the IO to complete. Wait here
672 * for any page for which writeback has already
675 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
676 wait_on_page_writeback(page
);
681 references
= page_check_references(page
, sc
);
682 switch (references
) {
683 case PAGEREF_ACTIVATE
:
684 goto activate_locked
;
687 case PAGEREF_RECLAIM
:
688 case PAGEREF_RECLAIM_CLEAN
:
689 ; /* try to reclaim the page below */
693 * Anonymous process memory has backing store?
694 * Try to allocate it some swap space here.
696 if (PageAnon(page
) && !PageSwapCache(page
)) {
697 if (!(sc
->gfp_mask
& __GFP_IO
))
699 if (!add_to_swap(page
))
700 goto activate_locked
;
704 mapping
= page_mapping(page
);
707 * The page is mapped into the page tables of one or more
708 * processes. Try to unmap it here.
710 if (page_mapped(page
) && mapping
) {
711 switch (try_to_unmap(page
, TTU_UNMAP
)) {
713 goto activate_locked
;
719 ; /* try to free the page below */
723 if (PageDirty(page
)) {
724 if (references
== PAGEREF_RECLAIM_CLEAN
)
728 if (!sc
->may_writepage
)
731 /* Page is dirty, try to write it out here */
732 switch (pageout(page
, mapping
, sync_writeback
)) {
736 goto activate_locked
;
738 if (PageWriteback(page
) || PageDirty(page
))
741 * A synchronous write - probably a ramdisk. Go
742 * ahead and try to reclaim the page.
744 if (!trylock_page(page
))
746 if (PageDirty(page
) || PageWriteback(page
))
748 mapping
= page_mapping(page
);
750 ; /* try to free the page below */
755 * If the page has buffers, try to free the buffer mappings
756 * associated with this page. If we succeed we try to free
759 * We do this even if the page is PageDirty().
760 * try_to_release_page() does not perform I/O, but it is
761 * possible for a page to have PageDirty set, but it is actually
762 * clean (all its buffers are clean). This happens if the
763 * buffers were written out directly, with submit_bh(). ext3
764 * will do this, as well as the blockdev mapping.
765 * try_to_release_page() will discover that cleanness and will
766 * drop the buffers and mark the page clean - it can be freed.
768 * Rarely, pages can have buffers and no ->mapping. These are
769 * the pages which were not successfully invalidated in
770 * truncate_complete_page(). We try to drop those buffers here
771 * and if that worked, and the page is no longer mapped into
772 * process address space (page_count == 1) it can be freed.
773 * Otherwise, leave the page on the LRU so it is swappable.
775 if (page_has_private(page
)) {
776 if (!try_to_release_page(page
, sc
->gfp_mask
))
777 goto activate_locked
;
778 if (!mapping
&& page_count(page
) == 1) {
780 if (put_page_testzero(page
))
784 * rare race with speculative reference.
785 * the speculative reference will free
786 * this page shortly, so we may
787 * increment nr_reclaimed here (and
788 * leave it off the LRU).
796 if (!mapping
|| !__remove_mapping(mapping
, page
))
800 * At this point, we have no other references and there is
801 * no way to pick any more up (removed from LRU, removed
802 * from pagecache). Can use non-atomic bitops now (and
803 * we obviously don't have to worry about waking up a process
804 * waiting on the page lock, because there are no references.
806 __clear_page_locked(page
);
809 if (!pagevec_add(&freed_pvec
, page
)) {
810 __pagevec_free(&freed_pvec
);
811 pagevec_reinit(&freed_pvec
);
816 if (PageSwapCache(page
))
817 try_to_free_swap(page
);
819 putback_lru_page(page
);
823 /* Not a candidate for swapping, so reclaim swap space. */
824 if (PageSwapCache(page
) && vm_swap_full())
825 try_to_free_swap(page
);
826 VM_BUG_ON(PageActive(page
));
832 list_add(&page
->lru
, &ret_pages
);
833 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
835 list_splice(&ret_pages
, page_list
);
836 if (pagevec_count(&freed_pvec
))
837 __pagevec_free(&freed_pvec
);
838 count_vm_events(PGACTIVATE
, pgactivate
);
843 * Attempt to remove the specified page from its LRU. Only take this page
844 * if it is of the appropriate PageActive status. Pages which are being
845 * freed elsewhere are also ignored.
847 * page: page to consider
848 * mode: one of the LRU isolation modes defined above
850 * returns 0 on success, -ve errno on failure.
852 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
856 /* Only take pages on the LRU. */
861 * When checking the active state, we need to be sure we are
862 * dealing with comparible boolean values. Take the logical not
865 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
868 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
872 * When this function is being called for lumpy reclaim, we
873 * initially look into all LRU pages, active, inactive and
874 * unevictable; only give shrink_page_list evictable pages.
876 if (PageUnevictable(page
))
881 if (likely(get_page_unless_zero(page
))) {
883 * Be careful not to clear PageLRU until after we're
884 * sure the page is not being freed elsewhere -- the
885 * page release code relies on it.
895 * zone->lru_lock is heavily contended. Some of the functions that
896 * shrink the lists perform better by taking out a batch of pages
897 * and working on them outside the LRU lock.
899 * For pagecache intensive workloads, this function is the hottest
900 * spot in the kernel (apart from copy_*_user functions).
902 * Appropriate locks must be held before calling this function.
904 * @nr_to_scan: The number of pages to look through on the list.
905 * @src: The LRU list to pull pages off.
906 * @dst: The temp list to put pages on to.
907 * @scanned: The number of pages that were scanned.
908 * @order: The caller's attempted allocation order
909 * @mode: One of the LRU isolation modes
910 * @file: True [1] if isolating file [!anon] pages
912 * returns how many pages were moved onto *@dst.
914 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
915 struct list_head
*src
, struct list_head
*dst
,
916 unsigned long *scanned
, int order
, int mode
, int file
)
918 unsigned long nr_taken
= 0;
921 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
924 unsigned long end_pfn
;
925 unsigned long page_pfn
;
928 page
= lru_to_page(src
);
929 prefetchw_prev_lru_page(page
, src
, flags
);
931 VM_BUG_ON(!PageLRU(page
));
933 switch (__isolate_lru_page(page
, mode
, file
)) {
935 list_move(&page
->lru
, dst
);
936 mem_cgroup_del_lru(page
);
941 /* else it is being freed elsewhere */
942 list_move(&page
->lru
, src
);
943 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
954 * Attempt to take all pages in the order aligned region
955 * surrounding the tag page. Only take those pages of
956 * the same active state as that tag page. We may safely
957 * round the target page pfn down to the requested order
958 * as the mem_map is guarenteed valid out to MAX_ORDER,
959 * where that page is in a different zone we will detect
960 * it from its zone id and abort this block scan.
962 zone_id
= page_zone_id(page
);
963 page_pfn
= page_to_pfn(page
);
964 pfn
= page_pfn
& ~((1 << order
) - 1);
965 end_pfn
= pfn
+ (1 << order
);
966 for (; pfn
< end_pfn
; pfn
++) {
967 struct page
*cursor_page
;
969 /* The target page is in the block, ignore it. */
970 if (unlikely(pfn
== page_pfn
))
973 /* Avoid holes within the zone. */
974 if (unlikely(!pfn_valid_within(pfn
)))
977 cursor_page
= pfn_to_page(pfn
);
979 /* Check that we have not crossed a zone boundary. */
980 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
984 * If we don't have enough swap space, reclaiming of
985 * anon page which don't already have a swap slot is
988 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
989 !PageSwapCache(cursor_page
))
992 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
993 list_move(&cursor_page
->lru
, dst
);
994 mem_cgroup_del_lru(cursor_page
);
1005 static unsigned long isolate_pages_global(unsigned long nr
,
1006 struct list_head
*dst
,
1007 unsigned long *scanned
, int order
,
1008 int mode
, struct zone
*z
,
1009 struct mem_cgroup
*mem_cont
,
1010 int active
, int file
)
1017 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1022 * clear_active_flags() is a helper for shrink_active_list(), clearing
1023 * any active bits from the pages in the list.
1025 static unsigned long clear_active_flags(struct list_head
*page_list
,
1026 unsigned int *count
)
1032 list_for_each_entry(page
, page_list
, lru
) {
1033 lru
= page_lru_base_type(page
);
1034 if (PageActive(page
)) {
1036 ClearPageActive(page
);
1046 * isolate_lru_page - tries to isolate a page from its LRU list
1047 * @page: page to isolate from its LRU list
1049 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1050 * vmstat statistic corresponding to whatever LRU list the page was on.
1052 * Returns 0 if the page was removed from an LRU list.
1053 * Returns -EBUSY if the page was not on an LRU list.
1055 * The returned page will have PageLRU() cleared. If it was found on
1056 * the active list, it will have PageActive set. If it was found on
1057 * the unevictable list, it will have the PageUnevictable bit set. That flag
1058 * may need to be cleared by the caller before letting the page go.
1060 * The vmstat statistic corresponding to the list on which the page was
1061 * found will be decremented.
1064 * (1) Must be called with an elevated refcount on the page. This is a
1065 * fundamentnal difference from isolate_lru_pages (which is called
1066 * without a stable reference).
1067 * (2) the lru_lock must not be held.
1068 * (3) interrupts must be enabled.
1070 int isolate_lru_page(struct page
*page
)
1074 if (PageLRU(page
)) {
1075 struct zone
*zone
= page_zone(page
);
1077 spin_lock_irq(&zone
->lru_lock
);
1078 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1079 int lru
= page_lru(page
);
1083 del_page_from_lru_list(zone
, page
, lru
);
1085 spin_unlock_irq(&zone
->lru_lock
);
1091 * Are there way too many processes in the direct reclaim path already?
1093 static int too_many_isolated(struct zone
*zone
, int file
,
1094 struct scan_control
*sc
)
1096 unsigned long inactive
, isolated
;
1098 if (current_is_kswapd())
1101 if (!scanning_global_lru(sc
))
1105 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1106 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1108 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1109 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1112 return isolated
> inactive
;
1116 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1117 * of reclaimed pages
1119 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1120 struct zone
*zone
, struct scan_control
*sc
,
1121 int priority
, int file
)
1123 LIST_HEAD(page_list
);
1124 struct pagevec pvec
;
1125 unsigned long nr_scanned
= 0;
1126 unsigned long nr_reclaimed
= 0;
1127 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1128 int lumpy_reclaim
= 0;
1130 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1131 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1133 /* We are about to die and free our memory. Return now. */
1134 if (fatal_signal_pending(current
))
1135 return SWAP_CLUSTER_MAX
;
1139 * If we need a large contiguous chunk of memory, or have
1140 * trouble getting a small set of contiguous pages, we
1141 * will reclaim both active and inactive pages.
1143 * We use the same threshold as pageout congestion_wait below.
1145 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1147 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1150 pagevec_init(&pvec
, 1);
1153 spin_lock_irq(&zone
->lru_lock
);
1156 unsigned long nr_taken
;
1157 unsigned long nr_scan
;
1158 unsigned long nr_freed
;
1159 unsigned long nr_active
;
1160 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1161 int mode
= lumpy_reclaim
? ISOLATE_BOTH
: ISOLATE_INACTIVE
;
1162 unsigned long nr_anon
;
1163 unsigned long nr_file
;
1165 nr_taken
= sc
->isolate_pages(SWAP_CLUSTER_MAX
,
1166 &page_list
, &nr_scan
, sc
->order
, mode
,
1167 zone
, sc
->mem_cgroup
, 0, file
);
1169 if (scanning_global_lru(sc
)) {
1170 zone
->pages_scanned
+= nr_scan
;
1171 if (current_is_kswapd())
1172 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1175 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1182 nr_active
= clear_active_flags(&page_list
, count
);
1183 __count_vm_events(PGDEACTIVATE
, nr_active
);
1185 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1186 -count
[LRU_ACTIVE_FILE
]);
1187 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1188 -count
[LRU_INACTIVE_FILE
]);
1189 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1190 -count
[LRU_ACTIVE_ANON
]);
1191 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1192 -count
[LRU_INACTIVE_ANON
]);
1194 nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1195 nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1196 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, nr_anon
);
1197 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, nr_file
);
1199 reclaim_stat
->recent_scanned
[0] += nr_anon
;
1200 reclaim_stat
->recent_scanned
[1] += nr_file
;
1202 spin_unlock_irq(&zone
->lru_lock
);
1204 nr_scanned
+= nr_scan
;
1205 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1208 * If we are direct reclaiming for contiguous pages and we do
1209 * not reclaim everything in the list, try again and wait
1210 * for IO to complete. This will stall high-order allocations
1211 * but that should be acceptable to the caller
1213 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1215 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1218 * The attempt at page out may have made some
1219 * of the pages active, mark them inactive again.
1221 nr_active
= clear_active_flags(&page_list
, count
);
1222 count_vm_events(PGDEACTIVATE
, nr_active
);
1224 nr_freed
+= shrink_page_list(&page_list
, sc
,
1228 nr_reclaimed
+= nr_freed
;
1230 local_irq_disable();
1231 if (current_is_kswapd())
1232 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1233 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1235 spin_lock(&zone
->lru_lock
);
1237 * Put back any unfreeable pages.
1239 while (!list_empty(&page_list
)) {
1241 page
= lru_to_page(&page_list
);
1242 VM_BUG_ON(PageLRU(page
));
1243 list_del(&page
->lru
);
1244 if (unlikely(!page_evictable(page
, NULL
))) {
1245 spin_unlock_irq(&zone
->lru_lock
);
1246 putback_lru_page(page
);
1247 spin_lock_irq(&zone
->lru_lock
);
1251 lru
= page_lru(page
);
1252 add_page_to_lru_list(zone
, page
, lru
);
1253 if (is_active_lru(lru
)) {
1254 int file
= is_file_lru(lru
);
1255 reclaim_stat
->recent_rotated
[file
]++;
1257 if (!pagevec_add(&pvec
, page
)) {
1258 spin_unlock_irq(&zone
->lru_lock
);
1259 __pagevec_release(&pvec
);
1260 spin_lock_irq(&zone
->lru_lock
);
1263 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1264 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1266 } while (nr_scanned
< max_scan
);
1269 spin_unlock_irq(&zone
->lru_lock
);
1270 pagevec_release(&pvec
);
1271 return nr_reclaimed
;
1275 * We are about to scan this zone at a certain priority level. If that priority
1276 * level is smaller (ie: more urgent) than the previous priority, then note
1277 * that priority level within the zone. This is done so that when the next
1278 * process comes in to scan this zone, it will immediately start out at this
1279 * priority level rather than having to build up its own scanning priority.
1280 * Here, this priority affects only the reclaim-mapped threshold.
1282 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1284 if (priority
< zone
->prev_priority
)
1285 zone
->prev_priority
= priority
;
1289 * This moves pages from the active list to the inactive list.
1291 * We move them the other way if the page is referenced by one or more
1292 * processes, from rmap.
1294 * If the pages are mostly unmapped, the processing is fast and it is
1295 * appropriate to hold zone->lru_lock across the whole operation. But if
1296 * the pages are mapped, the processing is slow (page_referenced()) so we
1297 * should drop zone->lru_lock around each page. It's impossible to balance
1298 * this, so instead we remove the pages from the LRU while processing them.
1299 * It is safe to rely on PG_active against the non-LRU pages in here because
1300 * nobody will play with that bit on a non-LRU page.
1302 * The downside is that we have to touch page->_count against each page.
1303 * But we had to alter page->flags anyway.
1306 static void move_active_pages_to_lru(struct zone
*zone
,
1307 struct list_head
*list
,
1310 unsigned long pgmoved
= 0;
1311 struct pagevec pvec
;
1314 pagevec_init(&pvec
, 1);
1316 while (!list_empty(list
)) {
1317 page
= lru_to_page(list
);
1319 VM_BUG_ON(PageLRU(page
));
1322 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1323 mem_cgroup_add_lru_list(page
, lru
);
1326 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1327 spin_unlock_irq(&zone
->lru_lock
);
1328 if (buffer_heads_over_limit
)
1329 pagevec_strip(&pvec
);
1330 __pagevec_release(&pvec
);
1331 spin_lock_irq(&zone
->lru_lock
);
1334 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1335 if (!is_active_lru(lru
))
1336 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1339 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1340 struct scan_control
*sc
, int priority
, int file
)
1342 unsigned long nr_taken
;
1343 unsigned long pgscanned
;
1344 unsigned long vm_flags
;
1345 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1346 LIST_HEAD(l_active
);
1347 LIST_HEAD(l_inactive
);
1349 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1350 unsigned long nr_rotated
= 0;
1353 spin_lock_irq(&zone
->lru_lock
);
1354 nr_taken
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1355 ISOLATE_ACTIVE
, zone
,
1356 sc
->mem_cgroup
, 1, file
);
1358 * zone->pages_scanned is used for detect zone's oom
1359 * mem_cgroup remembers nr_scan by itself.
1361 if (scanning_global_lru(sc
)) {
1362 zone
->pages_scanned
+= pgscanned
;
1364 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1366 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1368 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1370 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1371 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1372 spin_unlock_irq(&zone
->lru_lock
);
1374 while (!list_empty(&l_hold
)) {
1376 page
= lru_to_page(&l_hold
);
1377 list_del(&page
->lru
);
1379 if (unlikely(!page_evictable(page
, NULL
))) {
1380 putback_lru_page(page
);
1384 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1387 * Identify referenced, file-backed active pages and
1388 * give them one more trip around the active list. So
1389 * that executable code get better chances to stay in
1390 * memory under moderate memory pressure. Anon pages
1391 * are not likely to be evicted by use-once streaming
1392 * IO, plus JVM can create lots of anon VM_EXEC pages,
1393 * so we ignore them here.
1395 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1396 list_add(&page
->lru
, &l_active
);
1401 ClearPageActive(page
); /* we are de-activating */
1402 list_add(&page
->lru
, &l_inactive
);
1406 * Move pages back to the lru list.
1408 spin_lock_irq(&zone
->lru_lock
);
1410 * Count referenced pages from currently used mappings as rotated,
1411 * even though only some of them are actually re-activated. This
1412 * helps balance scan pressure between file and anonymous pages in
1415 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1417 move_active_pages_to_lru(zone
, &l_active
,
1418 LRU_ACTIVE
+ file
* LRU_FILE
);
1419 move_active_pages_to_lru(zone
, &l_inactive
,
1420 LRU_BASE
+ file
* LRU_FILE
);
1421 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1422 spin_unlock_irq(&zone
->lru_lock
);
1425 static int inactive_anon_is_low_global(struct zone
*zone
)
1427 unsigned long active
, inactive
;
1429 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1430 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1432 if (inactive
* zone
->inactive_ratio
< active
)
1439 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1440 * @zone: zone to check
1441 * @sc: scan control of this context
1443 * Returns true if the zone does not have enough inactive anon pages,
1444 * meaning some active anon pages need to be deactivated.
1446 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1450 if (scanning_global_lru(sc
))
1451 low
= inactive_anon_is_low_global(zone
);
1453 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1457 static int inactive_file_is_low_global(struct zone
*zone
)
1459 unsigned long active
, inactive
;
1461 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1462 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1464 return (active
> inactive
);
1468 * inactive_file_is_low - check if file pages need to be deactivated
1469 * @zone: zone to check
1470 * @sc: scan control of this context
1472 * When the system is doing streaming IO, memory pressure here
1473 * ensures that active file pages get deactivated, until more
1474 * than half of the file pages are on the inactive list.
1476 * Once we get to that situation, protect the system's working
1477 * set from being evicted by disabling active file page aging.
1479 * This uses a different ratio than the anonymous pages, because
1480 * the page cache uses a use-once replacement algorithm.
1482 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1486 if (scanning_global_lru(sc
))
1487 low
= inactive_file_is_low_global(zone
);
1489 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1493 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1497 return inactive_file_is_low(zone
, sc
);
1499 return inactive_anon_is_low(zone
, sc
);
1502 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1503 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1505 int file
= is_file_lru(lru
);
1507 if (is_active_lru(lru
)) {
1508 if (inactive_list_is_low(zone
, sc
, file
))
1509 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1513 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1517 * Determine how aggressively the anon and file LRU lists should be
1518 * scanned. The relative value of each set of LRU lists is determined
1519 * by looking at the fraction of the pages scanned we did rotate back
1520 * onto the active list instead of evict.
1522 * percent[0] specifies how much pressure to put on ram/swap backed
1523 * memory, while percent[1] determines pressure on the file LRUs.
1525 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1526 unsigned long *percent
)
1528 unsigned long anon
, file
, free
;
1529 unsigned long anon_prio
, file_prio
;
1530 unsigned long ap
, fp
;
1531 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1533 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1534 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1535 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1536 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1538 if (scanning_global_lru(sc
)) {
1539 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1540 /* If we have very few page cache pages,
1541 force-scan anon pages. */
1542 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1550 * OK, so we have swap space and a fair amount of page cache
1551 * pages. We use the recently rotated / recently scanned
1552 * ratios to determine how valuable each cache is.
1554 * Because workloads change over time (and to avoid overflow)
1555 * we keep these statistics as a floating average, which ends
1556 * up weighing recent references more than old ones.
1558 * anon in [0], file in [1]
1560 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1561 spin_lock_irq(&zone
->lru_lock
);
1562 reclaim_stat
->recent_scanned
[0] /= 2;
1563 reclaim_stat
->recent_rotated
[0] /= 2;
1564 spin_unlock_irq(&zone
->lru_lock
);
1567 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1568 spin_lock_irq(&zone
->lru_lock
);
1569 reclaim_stat
->recent_scanned
[1] /= 2;
1570 reclaim_stat
->recent_rotated
[1] /= 2;
1571 spin_unlock_irq(&zone
->lru_lock
);
1575 * With swappiness at 100, anonymous and file have the same priority.
1576 * This scanning priority is essentially the inverse of IO cost.
1578 anon_prio
= sc
->swappiness
;
1579 file_prio
= 200 - sc
->swappiness
;
1582 * The amount of pressure on anon vs file pages is inversely
1583 * proportional to the fraction of recently scanned pages on
1584 * each list that were recently referenced and in active use.
1586 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1587 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1589 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1590 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1592 /* Normalize to percentages */
1593 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1594 percent
[1] = 100 - percent
[0];
1598 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1599 * until we collected @swap_cluster_max pages to scan.
1601 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1602 unsigned long *nr_saved_scan
)
1606 *nr_saved_scan
+= nr_to_scan
;
1607 nr
= *nr_saved_scan
;
1609 if (nr
>= SWAP_CLUSTER_MAX
)
1618 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1620 static void shrink_zone(int priority
, struct zone
*zone
,
1621 struct scan_control
*sc
)
1623 unsigned long nr
[NR_LRU_LISTS
];
1624 unsigned long nr_to_scan
;
1625 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1627 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1628 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1629 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1632 /* If we have no swap space, do not bother scanning anon pages. */
1633 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1638 get_scan_ratio(zone
, sc
, percent
);
1640 for_each_evictable_lru(l
) {
1641 int file
= is_file_lru(l
);
1644 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1645 if (priority
|| noswap
) {
1647 scan
= (scan
* percent
[file
]) / 100;
1649 nr
[l
] = nr_scan_try_batch(scan
,
1650 &reclaim_stat
->nr_saved_scan
[l
]);
1653 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1654 nr
[LRU_INACTIVE_FILE
]) {
1655 for_each_evictable_lru(l
) {
1657 nr_to_scan
= min_t(unsigned long,
1658 nr
[l
], SWAP_CLUSTER_MAX
);
1659 nr
[l
] -= nr_to_scan
;
1661 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1662 zone
, sc
, priority
);
1666 * On large memory systems, scan >> priority can become
1667 * really large. This is fine for the starting priority;
1668 * we want to put equal scanning pressure on each zone.
1669 * However, if the VM has a harder time of freeing pages,
1670 * with multiple processes reclaiming pages, the total
1671 * freeing target can get unreasonably large.
1673 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1677 sc
->nr_reclaimed
= nr_reclaimed
;
1680 * Even if we did not try to evict anon pages at all, we want to
1681 * rebalance the anon lru active/inactive ratio.
1683 if (inactive_anon_is_low(zone
, sc
) && nr_swap_pages
> 0)
1684 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1686 throttle_vm_writeout(sc
->gfp_mask
);
1690 * This is the direct reclaim path, for page-allocating processes. We only
1691 * try to reclaim pages from zones which will satisfy the caller's allocation
1694 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1696 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1698 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1699 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1700 * zone defense algorithm.
1702 * If a zone is deemed to be full of pinned pages then just give it a light
1703 * scan then give up on it.
1705 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1706 struct scan_control
*sc
)
1708 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1712 sc
->all_unreclaimable
= 1;
1713 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1715 if (!populated_zone(zone
))
1718 * Take care memory controller reclaiming has small influence
1721 if (scanning_global_lru(sc
)) {
1722 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1724 note_zone_scanning_priority(zone
, priority
);
1726 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1727 continue; /* Let kswapd poll it */
1728 sc
->all_unreclaimable
= 0;
1731 * Ignore cpuset limitation here. We just want to reduce
1732 * # of used pages by us regardless of memory shortage.
1734 sc
->all_unreclaimable
= 0;
1735 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1739 shrink_zone(priority
, zone
, sc
);
1744 * This is the main entry point to direct page reclaim.
1746 * If a full scan of the inactive list fails to free enough memory then we
1747 * are "out of memory" and something needs to be killed.
1749 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1750 * high - the zone may be full of dirty or under-writeback pages, which this
1751 * caller can't do much about. We kick the writeback threads and take explicit
1752 * naps in the hope that some of these pages can be written. But if the
1753 * allocating task holds filesystem locks which prevent writeout this might not
1754 * work, and the allocation attempt will fail.
1756 * returns: 0, if no pages reclaimed
1757 * else, the number of pages reclaimed
1759 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1760 struct scan_control
*sc
)
1763 unsigned long ret
= 0;
1764 unsigned long total_scanned
= 0;
1765 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1766 unsigned long lru_pages
= 0;
1769 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1770 unsigned long writeback_threshold
;
1773 delayacct_freepages_start();
1775 if (scanning_global_lru(sc
))
1776 count_vm_event(ALLOCSTALL
);
1778 * mem_cgroup will not do shrink_slab.
1780 if (scanning_global_lru(sc
)) {
1781 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1783 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1786 lru_pages
+= zone_reclaimable_pages(zone
);
1790 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1793 disable_swap_token();
1794 shrink_zones(priority
, zonelist
, sc
);
1796 * Don't shrink slabs when reclaiming memory from
1797 * over limit cgroups
1799 if (scanning_global_lru(sc
)) {
1800 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1801 if (reclaim_state
) {
1802 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1803 reclaim_state
->reclaimed_slab
= 0;
1806 total_scanned
+= sc
->nr_scanned
;
1807 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
1808 ret
= sc
->nr_reclaimed
;
1813 * Try to write back as many pages as we just scanned. This
1814 * tends to cause slow streaming writers to write data to the
1815 * disk smoothly, at the dirtying rate, which is nice. But
1816 * that's undesirable in laptop mode, where we *want* lumpy
1817 * writeout. So in laptop mode, write out the whole world.
1819 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
1820 if (total_scanned
> writeback_threshold
) {
1821 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
1822 sc
->may_writepage
= 1;
1825 /* Take a nap, wait for some writeback to complete */
1826 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
1827 priority
< DEF_PRIORITY
- 2)
1828 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1830 /* top priority shrink_zones still had more to do? don't OOM, then */
1831 if (!sc
->all_unreclaimable
&& scanning_global_lru(sc
))
1832 ret
= sc
->nr_reclaimed
;
1835 * Now that we've scanned all the zones at this priority level, note
1836 * that level within the zone so that the next thread which performs
1837 * scanning of this zone will immediately start out at this priority
1838 * level. This affects only the decision whether or not to bring
1839 * mapped pages onto the inactive list.
1844 if (scanning_global_lru(sc
)) {
1845 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1847 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1850 zone
->prev_priority
= priority
;
1853 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1855 delayacct_freepages_end();
1861 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1862 gfp_t gfp_mask
, nodemask_t
*nodemask
)
1864 struct scan_control sc
= {
1865 .gfp_mask
= gfp_mask
,
1866 .may_writepage
= !laptop_mode
,
1867 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
1870 .swappiness
= vm_swappiness
,
1873 .isolate_pages
= isolate_pages_global
,
1874 .nodemask
= nodemask
,
1877 return do_try_to_free_pages(zonelist
, &sc
);
1880 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1882 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
1883 gfp_t gfp_mask
, bool noswap
,
1884 unsigned int swappiness
,
1885 struct zone
*zone
, int nid
)
1887 struct scan_control sc
= {
1888 .may_writepage
= !laptop_mode
,
1890 .may_swap
= !noswap
,
1891 .swappiness
= swappiness
,
1894 .isolate_pages
= mem_cgroup_isolate_pages
,
1896 nodemask_t nm
= nodemask_of_node(nid
);
1898 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1899 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1901 sc
.nr_reclaimed
= 0;
1904 * NOTE: Although we can get the priority field, using it
1905 * here is not a good idea, since it limits the pages we can scan.
1906 * if we don't reclaim here, the shrink_zone from balance_pgdat
1907 * will pick up pages from other mem cgroup's as well. We hack
1908 * the priority and make it zero.
1910 shrink_zone(0, zone
, &sc
);
1911 return sc
.nr_reclaimed
;
1914 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1917 unsigned int swappiness
)
1919 struct zonelist
*zonelist
;
1920 struct scan_control sc
= {
1921 .may_writepage
= !laptop_mode
,
1923 .may_swap
= !noswap
,
1924 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
1925 .swappiness
= swappiness
,
1927 .mem_cgroup
= mem_cont
,
1928 .isolate_pages
= mem_cgroup_isolate_pages
,
1929 .nodemask
= NULL
, /* we don't care the placement */
1932 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1933 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1934 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1935 return do_try_to_free_pages(zonelist
, &sc
);
1939 /* is kswapd sleeping prematurely? */
1940 static int sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
)
1944 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1948 /* If after HZ/10, a zone is below the high mark, it's premature */
1949 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1950 struct zone
*zone
= pgdat
->node_zones
+ i
;
1952 if (!populated_zone(zone
))
1955 if (zone
->all_unreclaimable
)
1958 if (!zone_watermark_ok(zone
, order
, high_wmark_pages(zone
),
1967 * For kswapd, balance_pgdat() will work across all this node's zones until
1968 * they are all at high_wmark_pages(zone).
1970 * Returns the number of pages which were actually freed.
1972 * There is special handling here for zones which are full of pinned pages.
1973 * This can happen if the pages are all mlocked, or if they are all used by
1974 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1975 * What we do is to detect the case where all pages in the zone have been
1976 * scanned twice and there has been zero successful reclaim. Mark the zone as
1977 * dead and from now on, only perform a short scan. Basically we're polling
1978 * the zone for when the problem goes away.
1980 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1981 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1982 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1983 * lower zones regardless of the number of free pages in the lower zones. This
1984 * interoperates with the page allocator fallback scheme to ensure that aging
1985 * of pages is balanced across the zones.
1987 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1992 unsigned long total_scanned
;
1993 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1994 struct scan_control sc
= {
1995 .gfp_mask
= GFP_KERNEL
,
1999 * kswapd doesn't want to be bailed out while reclaim. because
2000 * we want to put equal scanning pressure on each zone.
2002 .nr_to_reclaim
= ULONG_MAX
,
2003 .swappiness
= vm_swappiness
,
2006 .isolate_pages
= isolate_pages_global
,
2009 * temp_priority is used to remember the scanning priority at which
2010 * this zone was successfully refilled to
2011 * free_pages == high_wmark_pages(zone).
2013 int temp_priority
[MAX_NR_ZONES
];
2017 sc
.nr_reclaimed
= 0;
2018 sc
.may_writepage
= !laptop_mode
;
2019 count_vm_event(PAGEOUTRUN
);
2021 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
2022 temp_priority
[i
] = DEF_PRIORITY
;
2024 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2025 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2026 unsigned long lru_pages
= 0;
2027 int has_under_min_watermark_zone
= 0;
2029 /* The swap token gets in the way of swapout... */
2031 disable_swap_token();
2036 * Scan in the highmem->dma direction for the highest
2037 * zone which needs scanning
2039 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2040 struct zone
*zone
= pgdat
->node_zones
+ i
;
2042 if (!populated_zone(zone
))
2045 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2049 * Do some background aging of the anon list, to give
2050 * pages a chance to be referenced before reclaiming.
2052 if (inactive_anon_is_low(zone
, &sc
))
2053 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2056 if (!zone_watermark_ok(zone
, order
,
2057 high_wmark_pages(zone
), 0, 0)) {
2065 for (i
= 0; i
<= end_zone
; i
++) {
2066 struct zone
*zone
= pgdat
->node_zones
+ i
;
2068 lru_pages
+= zone_reclaimable_pages(zone
);
2072 * Now scan the zone in the dma->highmem direction, stopping
2073 * at the last zone which needs scanning.
2075 * We do this because the page allocator works in the opposite
2076 * direction. This prevents the page allocator from allocating
2077 * pages behind kswapd's direction of progress, which would
2078 * cause too much scanning of the lower zones.
2080 for (i
= 0; i
<= end_zone
; i
++) {
2081 struct zone
*zone
= pgdat
->node_zones
+ i
;
2085 if (!populated_zone(zone
))
2088 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2091 temp_priority
[i
] = priority
;
2093 note_zone_scanning_priority(zone
, priority
);
2095 nid
= pgdat
->node_id
;
2096 zid
= zone_idx(zone
);
2098 * Call soft limit reclaim before calling shrink_zone.
2099 * For now we ignore the return value
2101 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
,
2104 * We put equal pressure on every zone, unless one
2105 * zone has way too many pages free already.
2107 if (!zone_watermark_ok(zone
, order
,
2108 8*high_wmark_pages(zone
), end_zone
, 0))
2109 shrink_zone(priority
, zone
, &sc
);
2110 reclaim_state
->reclaimed_slab
= 0;
2111 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2113 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2114 total_scanned
+= sc
.nr_scanned
;
2115 if (zone
->all_unreclaimable
)
2118 zone
->pages_scanned
>= (zone_reclaimable_pages(zone
) * 6))
2119 zone
->all_unreclaimable
= 1;
2121 * If we've done a decent amount of scanning and
2122 * the reclaim ratio is low, start doing writepage
2123 * even in laptop mode
2125 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2126 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2127 sc
.may_writepage
= 1;
2129 if (!zone_watermark_ok(zone
, order
,
2130 high_wmark_pages(zone
), end_zone
, 0)) {
2133 * We are still under min water mark. This
2134 * means that we have a GFP_ATOMIC allocation
2135 * failure risk. Hurry up!
2137 if (!zone_watermark_ok(zone
, order
,
2138 min_wmark_pages(zone
), end_zone
, 0))
2139 has_under_min_watermark_zone
= 1;
2144 break; /* kswapd: all done */
2146 * OK, kswapd is getting into trouble. Take a nap, then take
2147 * another pass across the zones.
2149 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2150 if (has_under_min_watermark_zone
)
2151 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2153 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2157 * We do this so kswapd doesn't build up large priorities for
2158 * example when it is freeing in parallel with allocators. It
2159 * matches the direct reclaim path behaviour in terms of impact
2160 * on zone->*_priority.
2162 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2167 * Note within each zone the priority level at which this zone was
2168 * brought into a happy state. So that the next thread which scans this
2169 * zone will start out at that priority level.
2171 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2172 struct zone
*zone
= pgdat
->node_zones
+ i
;
2174 zone
->prev_priority
= temp_priority
[i
];
2176 if (!all_zones_ok
) {
2182 * Fragmentation may mean that the system cannot be
2183 * rebalanced for high-order allocations in all zones.
2184 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2185 * it means the zones have been fully scanned and are still
2186 * not balanced. For high-order allocations, there is
2187 * little point trying all over again as kswapd may
2190 * Instead, recheck all watermarks at order-0 as they
2191 * are the most important. If watermarks are ok, kswapd will go
2192 * back to sleep. High-order users can still perform direct
2193 * reclaim if they wish.
2195 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2196 order
= sc
.order
= 0;
2201 return sc
.nr_reclaimed
;
2205 * The background pageout daemon, started as a kernel thread
2206 * from the init process.
2208 * This basically trickles out pages so that we have _some_
2209 * free memory available even if there is no other activity
2210 * that frees anything up. This is needed for things like routing
2211 * etc, where we otherwise might have all activity going on in
2212 * asynchronous contexts that cannot page things out.
2214 * If there are applications that are active memory-allocators
2215 * (most normal use), this basically shouldn't matter.
2217 static int kswapd(void *p
)
2219 unsigned long order
;
2220 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2221 struct task_struct
*tsk
= current
;
2223 struct reclaim_state reclaim_state
= {
2224 .reclaimed_slab
= 0,
2226 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2228 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2230 if (!cpumask_empty(cpumask
))
2231 set_cpus_allowed_ptr(tsk
, cpumask
);
2232 current
->reclaim_state
= &reclaim_state
;
2235 * Tell the memory management that we're a "memory allocator",
2236 * and that if we need more memory we should get access to it
2237 * regardless (see "__alloc_pages()"). "kswapd" should
2238 * never get caught in the normal page freeing logic.
2240 * (Kswapd normally doesn't need memory anyway, but sometimes
2241 * you need a small amount of memory in order to be able to
2242 * page out something else, and this flag essentially protects
2243 * us from recursively trying to free more memory as we're
2244 * trying to free the first piece of memory in the first place).
2246 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2251 unsigned long new_order
;
2254 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2255 new_order
= pgdat
->kswapd_max_order
;
2256 pgdat
->kswapd_max_order
= 0;
2257 if (order
< new_order
) {
2259 * Don't sleep if someone wants a larger 'order'
2264 if (!freezing(current
) && !kthread_should_stop()) {
2267 /* Try to sleep for a short interval */
2268 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2269 remaining
= schedule_timeout(HZ
/10);
2270 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2271 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2275 * After a short sleep, check if it was a
2276 * premature sleep. If not, then go fully
2277 * to sleep until explicitly woken up
2279 if (!sleeping_prematurely(pgdat
, order
, remaining
))
2283 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2285 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2289 order
= pgdat
->kswapd_max_order
;
2291 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2293 ret
= try_to_freeze();
2294 if (kthread_should_stop())
2298 * We can speed up thawing tasks if we don't call balance_pgdat
2299 * after returning from the refrigerator
2302 balance_pgdat(pgdat
, order
);
2308 * A zone is low on free memory, so wake its kswapd task to service it.
2310 void wakeup_kswapd(struct zone
*zone
, int order
)
2314 if (!populated_zone(zone
))
2317 pgdat
= zone
->zone_pgdat
;
2318 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
2320 if (pgdat
->kswapd_max_order
< order
)
2321 pgdat
->kswapd_max_order
= order
;
2322 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2324 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2326 wake_up_interruptible(&pgdat
->kswapd_wait
);
2330 * The reclaimable count would be mostly accurate.
2331 * The less reclaimable pages may be
2332 * - mlocked pages, which will be moved to unevictable list when encountered
2333 * - mapped pages, which may require several travels to be reclaimed
2334 * - dirty pages, which is not "instantly" reclaimable
2336 unsigned long global_reclaimable_pages(void)
2340 nr
= global_page_state(NR_ACTIVE_FILE
) +
2341 global_page_state(NR_INACTIVE_FILE
);
2343 if (nr_swap_pages
> 0)
2344 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2345 global_page_state(NR_INACTIVE_ANON
);
2350 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2354 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2355 zone_page_state(zone
, NR_INACTIVE_FILE
);
2357 if (nr_swap_pages
> 0)
2358 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2359 zone_page_state(zone
, NR_INACTIVE_ANON
);
2364 #ifdef CONFIG_HIBERNATION
2366 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2369 * Rather than trying to age LRUs the aim is to preserve the overall
2370 * LRU order by reclaiming preferentially
2371 * inactive > active > active referenced > active mapped
2373 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2375 struct reclaim_state reclaim_state
;
2376 struct scan_control sc
= {
2377 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2381 .nr_to_reclaim
= nr_to_reclaim
,
2382 .hibernation_mode
= 1,
2383 .swappiness
= vm_swappiness
,
2385 .isolate_pages
= isolate_pages_global
,
2387 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2388 struct task_struct
*p
= current
;
2389 unsigned long nr_reclaimed
;
2391 p
->flags
|= PF_MEMALLOC
;
2392 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2393 reclaim_state
.reclaimed_slab
= 0;
2394 p
->reclaim_state
= &reclaim_state
;
2396 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2398 p
->reclaim_state
= NULL
;
2399 lockdep_clear_current_reclaim_state();
2400 p
->flags
&= ~PF_MEMALLOC
;
2402 return nr_reclaimed
;
2404 #endif /* CONFIG_HIBERNATION */
2406 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2407 not required for correctness. So if the last cpu in a node goes
2408 away, we get changed to run anywhere: as the first one comes back,
2409 restore their cpu bindings. */
2410 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2411 unsigned long action
, void *hcpu
)
2415 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2416 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2417 pg_data_t
*pgdat
= NODE_DATA(nid
);
2418 const struct cpumask
*mask
;
2420 mask
= cpumask_of_node(pgdat
->node_id
);
2422 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2423 /* One of our CPUs online: restore mask */
2424 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2431 * This kswapd start function will be called by init and node-hot-add.
2432 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2434 int kswapd_run(int nid
)
2436 pg_data_t
*pgdat
= NODE_DATA(nid
);
2442 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2443 if (IS_ERR(pgdat
->kswapd
)) {
2444 /* failure at boot is fatal */
2445 BUG_ON(system_state
== SYSTEM_BOOTING
);
2446 printk("Failed to start kswapd on node %d\n",nid
);
2453 * Called by memory hotplug when all memory in a node is offlined.
2455 void kswapd_stop(int nid
)
2457 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2460 kthread_stop(kswapd
);
2463 static int __init
kswapd_init(void)
2468 for_each_node_state(nid
, N_HIGH_MEMORY
)
2470 hotcpu_notifier(cpu_callback
, 0);
2474 module_init(kswapd_init
)
2480 * If non-zero call zone_reclaim when the number of free pages falls below
2483 int zone_reclaim_mode __read_mostly
;
2485 #define RECLAIM_OFF 0
2486 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2487 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2488 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2491 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2492 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2495 #define ZONE_RECLAIM_PRIORITY 4
2498 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2501 int sysctl_min_unmapped_ratio
= 1;
2504 * If the number of slab pages in a zone grows beyond this percentage then
2505 * slab reclaim needs to occur.
2507 int sysctl_min_slab_ratio
= 5;
2509 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2511 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2512 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2513 zone_page_state(zone
, NR_ACTIVE_FILE
);
2516 * It's possible for there to be more file mapped pages than
2517 * accounted for by the pages on the file LRU lists because
2518 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2520 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2523 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2524 static long zone_pagecache_reclaimable(struct zone
*zone
)
2526 long nr_pagecache_reclaimable
;
2530 * If RECLAIM_SWAP is set, then all file pages are considered
2531 * potentially reclaimable. Otherwise, we have to worry about
2532 * pages like swapcache and zone_unmapped_file_pages() provides
2535 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2536 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2538 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2540 /* If we can't clean pages, remove dirty pages from consideration */
2541 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2542 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2544 /* Watch for any possible underflows due to delta */
2545 if (unlikely(delta
> nr_pagecache_reclaimable
))
2546 delta
= nr_pagecache_reclaimable
;
2548 return nr_pagecache_reclaimable
- delta
;
2552 * Try to free up some pages from this zone through reclaim.
2554 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2556 /* Minimum pages needed in order to stay on node */
2557 const unsigned long nr_pages
= 1 << order
;
2558 struct task_struct
*p
= current
;
2559 struct reclaim_state reclaim_state
;
2561 struct scan_control sc
= {
2562 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2563 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2565 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2567 .gfp_mask
= gfp_mask
,
2568 .swappiness
= vm_swappiness
,
2570 .isolate_pages
= isolate_pages_global
,
2572 unsigned long slab_reclaimable
;
2574 disable_swap_token();
2577 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2578 * and we also need to be able to write out pages for RECLAIM_WRITE
2581 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2582 lockdep_set_current_reclaim_state(gfp_mask
);
2583 reclaim_state
.reclaimed_slab
= 0;
2584 p
->reclaim_state
= &reclaim_state
;
2586 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2588 * Free memory by calling shrink zone with increasing
2589 * priorities until we have enough memory freed.
2591 priority
= ZONE_RECLAIM_PRIORITY
;
2593 note_zone_scanning_priority(zone
, priority
);
2594 shrink_zone(priority
, zone
, &sc
);
2596 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2599 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2600 if (slab_reclaimable
> zone
->min_slab_pages
) {
2602 * shrink_slab() does not currently allow us to determine how
2603 * many pages were freed in this zone. So we take the current
2604 * number of slab pages and shake the slab until it is reduced
2605 * by the same nr_pages that we used for reclaiming unmapped
2608 * Note that shrink_slab will free memory on all zones and may
2611 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2612 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2613 slab_reclaimable
- nr_pages
)
2617 * Update nr_reclaimed by the number of slab pages we
2618 * reclaimed from this zone.
2620 sc
.nr_reclaimed
+= slab_reclaimable
-
2621 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2624 p
->reclaim_state
= NULL
;
2625 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2626 lockdep_clear_current_reclaim_state();
2627 return sc
.nr_reclaimed
>= nr_pages
;
2630 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2636 * Zone reclaim reclaims unmapped file backed pages and
2637 * slab pages if we are over the defined limits.
2639 * A small portion of unmapped file backed pages is needed for
2640 * file I/O otherwise pages read by file I/O will be immediately
2641 * thrown out if the zone is overallocated. So we do not reclaim
2642 * if less than a specified percentage of the zone is used by
2643 * unmapped file backed pages.
2645 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
2646 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
2647 return ZONE_RECLAIM_FULL
;
2649 if (zone
->all_unreclaimable
)
2650 return ZONE_RECLAIM_FULL
;
2653 * Do not scan if the allocation should not be delayed.
2655 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2656 return ZONE_RECLAIM_NOSCAN
;
2659 * Only run zone reclaim on the local zone or on zones that do not
2660 * have associated processors. This will favor the local processor
2661 * over remote processors and spread off node memory allocations
2662 * as wide as possible.
2664 node_id
= zone_to_nid(zone
);
2665 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2666 return ZONE_RECLAIM_NOSCAN
;
2668 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2669 return ZONE_RECLAIM_NOSCAN
;
2671 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2672 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2675 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
2682 * page_evictable - test whether a page is evictable
2683 * @page: the page to test
2684 * @vma: the VMA in which the page is or will be mapped, may be NULL
2686 * Test whether page is evictable--i.e., should be placed on active/inactive
2687 * lists vs unevictable list. The vma argument is !NULL when called from the
2688 * fault path to determine how to instantate a new page.
2690 * Reasons page might not be evictable:
2691 * (1) page's mapping marked unevictable
2692 * (2) page is part of an mlocked VMA
2695 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2698 if (mapping_unevictable(page_mapping(page
)))
2701 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2708 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2709 * @page: page to check evictability and move to appropriate lru list
2710 * @zone: zone page is in
2712 * Checks a page for evictability and moves the page to the appropriate
2715 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2716 * have PageUnevictable set.
2718 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2720 VM_BUG_ON(PageActive(page
));
2723 ClearPageUnevictable(page
);
2724 if (page_evictable(page
, NULL
)) {
2725 enum lru_list l
= page_lru_base_type(page
);
2727 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2728 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2729 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2730 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2731 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2734 * rotate unevictable list
2736 SetPageUnevictable(page
);
2737 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2738 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2739 if (page_evictable(page
, NULL
))
2745 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2746 * @mapping: struct address_space to scan for evictable pages
2748 * Scan all pages in mapping. Check unevictable pages for
2749 * evictability and move them to the appropriate zone lru list.
2751 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2754 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2757 struct pagevec pvec
;
2759 if (mapping
->nrpages
== 0)
2762 pagevec_init(&pvec
, 0);
2763 while (next
< end
&&
2764 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2770 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2771 struct page
*page
= pvec
.pages
[i
];
2772 pgoff_t page_index
= page
->index
;
2773 struct zone
*pagezone
= page_zone(page
);
2776 if (page_index
> next
)
2780 if (pagezone
!= zone
) {
2782 spin_unlock_irq(&zone
->lru_lock
);
2784 spin_lock_irq(&zone
->lru_lock
);
2787 if (PageLRU(page
) && PageUnevictable(page
))
2788 check_move_unevictable_page(page
, zone
);
2791 spin_unlock_irq(&zone
->lru_lock
);
2792 pagevec_release(&pvec
);
2794 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2800 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2801 * @zone - zone of which to scan the unevictable list
2803 * Scan @zone's unevictable LRU lists to check for pages that have become
2804 * evictable. Move those that have to @zone's inactive list where they
2805 * become candidates for reclaim, unless shrink_inactive_zone() decides
2806 * to reactivate them. Pages that are still unevictable are rotated
2807 * back onto @zone's unevictable list.
2809 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2810 static void scan_zone_unevictable_pages(struct zone
*zone
)
2812 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2814 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2816 while (nr_to_scan
> 0) {
2817 unsigned long batch_size
= min(nr_to_scan
,
2818 SCAN_UNEVICTABLE_BATCH_SIZE
);
2820 spin_lock_irq(&zone
->lru_lock
);
2821 for (scan
= 0; scan
< batch_size
; scan
++) {
2822 struct page
*page
= lru_to_page(l_unevictable
);
2824 if (!trylock_page(page
))
2827 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2829 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2830 check_move_unevictable_page(page
, zone
);
2834 spin_unlock_irq(&zone
->lru_lock
);
2836 nr_to_scan
-= batch_size
;
2842 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2844 * A really big hammer: scan all zones' unevictable LRU lists to check for
2845 * pages that have become evictable. Move those back to the zones'
2846 * inactive list where they become candidates for reclaim.
2847 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2848 * and we add swap to the system. As such, it runs in the context of a task
2849 * that has possibly/probably made some previously unevictable pages
2852 static void scan_all_zones_unevictable_pages(void)
2856 for_each_zone(zone
) {
2857 scan_zone_unevictable_pages(zone
);
2862 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2863 * all nodes' unevictable lists for evictable pages
2865 unsigned long scan_unevictable_pages
;
2867 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2868 void __user
*buffer
,
2869 size_t *length
, loff_t
*ppos
)
2871 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2873 if (write
&& *(unsigned long *)table
->data
)
2874 scan_all_zones_unevictable_pages();
2876 scan_unevictable_pages
= 0;
2881 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2882 * a specified node's per zone unevictable lists for evictable pages.
2885 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2886 struct sysdev_attribute
*attr
,
2889 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2892 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2893 struct sysdev_attribute
*attr
,
2894 const char *buf
, size_t count
)
2896 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2899 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2902 return 1; /* zero is no-op */
2904 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2905 if (!populated_zone(zone
))
2907 scan_zone_unevictable_pages(zone
);
2913 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2914 read_scan_unevictable_node
,
2915 write_scan_unevictable_node
);
2917 int scan_unevictable_register_node(struct node
*node
)
2919 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2922 void scan_unevictable_unregister_node(struct node
*node
)
2924 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);