p54: implement MRR
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / p54 / p54common.c
blob237090140243ccb54b778867107af6bbbbd16588
1 /*
2 * Common code for mac80211 Prism54 drivers
4 * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
5 * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de>
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
8 * Based on the islsm (softmac prism54) driver, which is:
9 * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
16 #include <linux/init.h>
17 #include <linux/firmware.h>
18 #include <linux/etherdevice.h>
20 #include <net/mac80211.h>
22 #include "p54.h"
23 #include "p54common.h"
25 MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>");
26 MODULE_DESCRIPTION("Softmac Prism54 common code");
27 MODULE_LICENSE("GPL");
28 MODULE_ALIAS("prism54common");
30 static struct ieee80211_rate p54_bgrates[] = {
31 { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
32 { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
33 { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
34 { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
35 { .bitrate = 60, .hw_value = 4, },
36 { .bitrate = 90, .hw_value = 5, },
37 { .bitrate = 120, .hw_value = 6, },
38 { .bitrate = 180, .hw_value = 7, },
39 { .bitrate = 240, .hw_value = 8, },
40 { .bitrate = 360, .hw_value = 9, },
41 { .bitrate = 480, .hw_value = 10, },
42 { .bitrate = 540, .hw_value = 11, },
45 static struct ieee80211_channel p54_bgchannels[] = {
46 { .center_freq = 2412, .hw_value = 1, },
47 { .center_freq = 2417, .hw_value = 2, },
48 { .center_freq = 2422, .hw_value = 3, },
49 { .center_freq = 2427, .hw_value = 4, },
50 { .center_freq = 2432, .hw_value = 5, },
51 { .center_freq = 2437, .hw_value = 6, },
52 { .center_freq = 2442, .hw_value = 7, },
53 { .center_freq = 2447, .hw_value = 8, },
54 { .center_freq = 2452, .hw_value = 9, },
55 { .center_freq = 2457, .hw_value = 10, },
56 { .center_freq = 2462, .hw_value = 11, },
57 { .center_freq = 2467, .hw_value = 12, },
58 { .center_freq = 2472, .hw_value = 13, },
59 { .center_freq = 2484, .hw_value = 14, },
62 static struct ieee80211_supported_band band_2GHz = {
63 .channels = p54_bgchannels,
64 .n_channels = ARRAY_SIZE(p54_bgchannels),
65 .bitrates = p54_bgrates,
66 .n_bitrates = ARRAY_SIZE(p54_bgrates),
69 static struct ieee80211_rate p54_arates[] = {
70 { .bitrate = 60, .hw_value = 4, },
71 { .bitrate = 90, .hw_value = 5, },
72 { .bitrate = 120, .hw_value = 6, },
73 { .bitrate = 180, .hw_value = 7, },
74 { .bitrate = 240, .hw_value = 8, },
75 { .bitrate = 360, .hw_value = 9, },
76 { .bitrate = 480, .hw_value = 10, },
77 { .bitrate = 540, .hw_value = 11, },
80 static struct ieee80211_channel p54_achannels[] = {
81 { .center_freq = 4920 },
82 { .center_freq = 4940 },
83 { .center_freq = 4960 },
84 { .center_freq = 4980 },
85 { .center_freq = 5040 },
86 { .center_freq = 5060 },
87 { .center_freq = 5080 },
88 { .center_freq = 5170 },
89 { .center_freq = 5180 },
90 { .center_freq = 5190 },
91 { .center_freq = 5200 },
92 { .center_freq = 5210 },
93 { .center_freq = 5220 },
94 { .center_freq = 5230 },
95 { .center_freq = 5240 },
96 { .center_freq = 5260 },
97 { .center_freq = 5280 },
98 { .center_freq = 5300 },
99 { .center_freq = 5320 },
100 { .center_freq = 5500 },
101 { .center_freq = 5520 },
102 { .center_freq = 5540 },
103 { .center_freq = 5560 },
104 { .center_freq = 5580 },
105 { .center_freq = 5600 },
106 { .center_freq = 5620 },
107 { .center_freq = 5640 },
108 { .center_freq = 5660 },
109 { .center_freq = 5680 },
110 { .center_freq = 5700 },
111 { .center_freq = 5745 },
112 { .center_freq = 5765 },
113 { .center_freq = 5785 },
114 { .center_freq = 5805 },
115 { .center_freq = 5825 },
118 static struct ieee80211_supported_band band_5GHz = {
119 .channels = p54_achannels,
120 .n_channels = ARRAY_SIZE(p54_achannels),
121 .bitrates = p54_arates,
122 .n_bitrates = ARRAY_SIZE(p54_arates),
125 int p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw)
127 struct p54_common *priv = dev->priv;
128 struct bootrec_exp_if *exp_if;
129 struct bootrec *bootrec;
130 u32 *data = (u32 *)fw->data;
131 u32 *end_data = (u32 *)fw->data + (fw->size >> 2);
132 u8 *fw_version = NULL;
133 size_t len;
134 int i;
136 if (priv->rx_start)
137 return 0;
139 while (data < end_data && *data)
140 data++;
142 while (data < end_data && !*data)
143 data++;
145 bootrec = (struct bootrec *) data;
147 while (bootrec->data <= end_data &&
148 (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) {
149 u32 code = le32_to_cpu(bootrec->code);
150 switch (code) {
151 case BR_CODE_COMPONENT_ID:
152 priv->fw_interface = be32_to_cpup((__be32 *)
153 bootrec->data);
154 switch (priv->fw_interface) {
155 case FW_FMAC:
156 printk(KERN_INFO "p54: FreeMAC firmware\n");
157 break;
158 case FW_LM20:
159 printk(KERN_INFO "p54: LM20 firmware\n");
160 break;
161 case FW_LM86:
162 printk(KERN_INFO "p54: LM86 firmware\n");
163 break;
164 case FW_LM87:
165 printk(KERN_INFO "p54: LM87 firmware\n");
166 break;
167 default:
168 printk(KERN_INFO "p54: unknown firmware\n");
169 break;
171 break;
172 case BR_CODE_COMPONENT_VERSION:
173 /* 24 bytes should be enough for all firmwares */
174 if (strnlen((unsigned char*)bootrec->data, 24) < 24)
175 fw_version = (unsigned char*)bootrec->data;
176 break;
177 case BR_CODE_DESCR: {
178 struct bootrec_desc *desc =
179 (struct bootrec_desc *)bootrec->data;
180 priv->rx_start = le32_to_cpu(desc->rx_start);
181 /* FIXME add sanity checking */
182 priv->rx_end = le32_to_cpu(desc->rx_end) - 0x3500;
183 priv->headroom = desc->headroom;
184 priv->tailroom = desc->tailroom;
185 if (le32_to_cpu(bootrec->len) == 11)
186 priv->rx_mtu = le16_to_cpu(desc->rx_mtu);
187 else
188 priv->rx_mtu = (size_t)
189 0x620 - priv->tx_hdr_len;
190 break;
192 case BR_CODE_EXPOSED_IF:
193 exp_if = (struct bootrec_exp_if *) bootrec->data;
194 for (i = 0; i < (len * sizeof(*exp_if) / 4); i++)
195 if (exp_if[i].if_id == cpu_to_le16(0x1a))
196 priv->fw_var = le16_to_cpu(exp_if[i].variant);
197 break;
198 case BR_CODE_DEPENDENT_IF:
199 break;
200 case BR_CODE_END_OF_BRA:
201 case LEGACY_BR_CODE_END_OF_BRA:
202 end_data = NULL;
203 break;
204 default:
205 break;
207 bootrec = (struct bootrec *)&bootrec->data[len];
210 if (fw_version)
211 printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n",
212 fw_version, priv->fw_var >> 8, priv->fw_var & 0xff);
214 if (priv->fw_var >= 0x300) {
215 /* Firmware supports QoS, use it! */
216 priv->tx_stats[4].limit = 3;
217 priv->tx_stats[5].limit = 4;
218 priv->tx_stats[6].limit = 3;
219 priv->tx_stats[7].limit = 1;
220 dev->queues = 4;
223 return 0;
225 EXPORT_SYMBOL_GPL(p54_parse_firmware);
227 static int p54_convert_rev0(struct ieee80211_hw *dev,
228 struct pda_pa_curve_data *curve_data)
230 struct p54_common *priv = dev->priv;
231 struct p54_pa_curve_data_sample *dst;
232 struct pda_pa_curve_data_sample_rev0 *src;
233 size_t cd_len = sizeof(*curve_data) +
234 (curve_data->points_per_channel*sizeof(*dst) + 2) *
235 curve_data->channels;
236 unsigned int i, j;
237 void *source, *target;
239 priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
240 if (!priv->curve_data)
241 return -ENOMEM;
243 memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
244 source = curve_data->data;
245 target = priv->curve_data->data;
246 for (i = 0; i < curve_data->channels; i++) {
247 __le16 *freq = source;
248 source += sizeof(__le16);
249 *((__le16 *)target) = *freq;
250 target += sizeof(__le16);
251 for (j = 0; j < curve_data->points_per_channel; j++) {
252 dst = target;
253 src = source;
255 dst->rf_power = src->rf_power;
256 dst->pa_detector = src->pa_detector;
257 dst->data_64qam = src->pcv;
258 /* "invent" the points for the other modulations */
259 #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y)
260 dst->data_16qam = SUB(src->pcv, 12);
261 dst->data_qpsk = SUB(dst->data_16qam, 12);
262 dst->data_bpsk = SUB(dst->data_qpsk, 12);
263 dst->data_barker = SUB(dst->data_bpsk, 14);
264 #undef SUB
265 target += sizeof(*dst);
266 source += sizeof(*src);
270 return 0;
273 static int p54_convert_rev1(struct ieee80211_hw *dev,
274 struct pda_pa_curve_data *curve_data)
276 struct p54_common *priv = dev->priv;
277 struct p54_pa_curve_data_sample *dst;
278 struct pda_pa_curve_data_sample_rev1 *src;
279 size_t cd_len = sizeof(*curve_data) +
280 (curve_data->points_per_channel*sizeof(*dst) + 2) *
281 curve_data->channels;
282 unsigned int i, j;
283 void *source, *target;
285 priv->curve_data = kmalloc(cd_len, GFP_KERNEL);
286 if (!priv->curve_data)
287 return -ENOMEM;
289 memcpy(priv->curve_data, curve_data, sizeof(*curve_data));
290 source = curve_data->data;
291 target = priv->curve_data->data;
292 for (i = 0; i < curve_data->channels; i++) {
293 __le16 *freq = source;
294 source += sizeof(__le16);
295 *((__le16 *)target) = *freq;
296 target += sizeof(__le16);
297 for (j = 0; j < curve_data->points_per_channel; j++) {
298 memcpy(target, source, sizeof(*src));
300 target += sizeof(*dst);
301 source += sizeof(*src);
303 source++;
306 return 0;
309 static const char *p54_rf_chips[] = { "NULL", "Duette3", "Duette2",
310 "Frisbee", "Xbow", "Longbow", "NULL", "NULL" };
311 static int p54_init_xbow_synth(struct ieee80211_hw *dev);
313 static int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len)
315 struct p54_common *priv = dev->priv;
316 struct eeprom_pda_wrap *wrap = NULL;
317 struct pda_entry *entry;
318 unsigned int data_len, entry_len;
319 void *tmp;
320 int err;
321 u8 *end = (u8 *)eeprom + len;
322 u16 synth = 0;
324 wrap = (struct eeprom_pda_wrap *) eeprom;
325 entry = (void *)wrap->data + le16_to_cpu(wrap->len);
327 /* verify that at least the entry length/code fits */
328 while ((u8 *)entry <= end - sizeof(*entry)) {
329 entry_len = le16_to_cpu(entry->len);
330 data_len = ((entry_len - 1) << 1);
332 /* abort if entry exceeds whole structure */
333 if ((u8 *)entry + sizeof(*entry) + data_len > end)
334 break;
336 switch (le16_to_cpu(entry->code)) {
337 case PDR_MAC_ADDRESS:
338 SET_IEEE80211_PERM_ADDR(dev, entry->data);
339 break;
340 case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS:
341 if (data_len < 2) {
342 err = -EINVAL;
343 goto err;
346 if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) {
347 err = -EINVAL;
348 goto err;
351 priv->output_limit = kmalloc(entry->data[1] *
352 sizeof(*priv->output_limit), GFP_KERNEL);
354 if (!priv->output_limit) {
355 err = -ENOMEM;
356 goto err;
359 memcpy(priv->output_limit, &entry->data[2],
360 entry->data[1]*sizeof(*priv->output_limit));
361 priv->output_limit_len = entry->data[1];
362 break;
363 case PDR_PRISM_PA_CAL_CURVE_DATA: {
364 struct pda_pa_curve_data *curve_data =
365 (struct pda_pa_curve_data *)entry->data;
366 if (data_len < sizeof(*curve_data)) {
367 err = -EINVAL;
368 goto err;
371 switch (curve_data->cal_method_rev) {
372 case 0:
373 err = p54_convert_rev0(dev, curve_data);
374 break;
375 case 1:
376 err = p54_convert_rev1(dev, curve_data);
377 break;
378 default:
379 printk(KERN_ERR "p54: unknown curve data "
380 "revision %d\n",
381 curve_data->cal_method_rev);
382 err = -ENODEV;
383 break;
385 if (err)
386 goto err;
389 case PDR_PRISM_ZIF_TX_IQ_CALIBRATION:
390 priv->iq_autocal = kmalloc(data_len, GFP_KERNEL);
391 if (!priv->iq_autocal) {
392 err = -ENOMEM;
393 goto err;
396 memcpy(priv->iq_autocal, entry->data, data_len);
397 priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry);
398 break;
399 case PDR_INTERFACE_LIST:
400 tmp = entry->data;
401 while ((u8 *)tmp < entry->data + data_len) {
402 struct bootrec_exp_if *exp_if = tmp;
403 if (le16_to_cpu(exp_if->if_id) == 0xf)
404 synth = le16_to_cpu(exp_if->variant);
405 tmp += sizeof(struct bootrec_exp_if);
407 break;
408 case PDR_HARDWARE_PLATFORM_COMPONENT_ID:
409 priv->version = *(u8 *)(entry->data + 1);
410 break;
411 case PDR_END:
412 /* make it overrun */
413 entry_len = len;
414 break;
415 default:
416 printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n",
417 le16_to_cpu(entry->code));
418 break;
421 entry = (void *)entry + (entry_len + 1)*2;
424 if (!synth || !priv->iq_autocal || !priv->output_limit ||
425 !priv->curve_data) {
426 printk(KERN_ERR "p54: not all required entries found in eeprom!\n");
427 err = -EINVAL;
428 goto err;
431 priv->rxhw = synth & 0x07;
432 if (priv->rxhw == 4)
433 p54_init_xbow_synth(dev);
434 if (!(synth & 0x40))
435 dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz;
436 if (!(synth & 0x80))
437 dev->wiphy->bands[IEEE80211_BAND_5GHZ] = &band_5GHz;
439 if (!is_valid_ether_addr(dev->wiphy->perm_addr)) {
440 u8 perm_addr[ETH_ALEN];
442 printk(KERN_WARNING "%s: Invalid hwaddr! Using randomly generated MAC addr\n",
443 wiphy_name(dev->wiphy));
444 random_ether_addr(perm_addr);
445 SET_IEEE80211_PERM_ADDR(dev, perm_addr);
448 printk(KERN_INFO "%s: hwaddr %pM, MAC:isl38%02x RF:%s\n",
449 wiphy_name(dev->wiphy),
450 dev->wiphy->perm_addr,
451 priv->version, p54_rf_chips[priv->rxhw]);
453 return 0;
455 err:
456 if (priv->iq_autocal) {
457 kfree(priv->iq_autocal);
458 priv->iq_autocal = NULL;
461 if (priv->output_limit) {
462 kfree(priv->output_limit);
463 priv->output_limit = NULL;
466 if (priv->curve_data) {
467 kfree(priv->curve_data);
468 priv->curve_data = NULL;
471 printk(KERN_ERR "p54: eeprom parse failed!\n");
472 return err;
475 static int p54_rssi_to_dbm(struct ieee80211_hw *dev, int rssi)
477 /* TODO: get the rssi_add & rssi_mul data from the eeprom */
478 return ((rssi * 0x83) / 64 - 400) / 4;
481 static int p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb)
483 struct p54_common *priv = dev->priv;
484 struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data;
485 struct ieee80211_rx_status rx_status = {0};
486 u16 freq = le16_to_cpu(hdr->freq);
487 size_t header_len = sizeof(*hdr);
488 u32 tsf32;
490 if (!(hdr->magic & cpu_to_le16(0x0001))) {
491 if (priv->filter_flags & FIF_FCSFAIL)
492 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
493 else
494 return 0;
497 rx_status.signal = p54_rssi_to_dbm(dev, hdr->rssi);
498 rx_status.noise = priv->noise;
499 /* XX correct? */
500 rx_status.qual = (100 * hdr->rssi) / 127;
501 rx_status.rate_idx = (dev->conf.channel->band == IEEE80211_BAND_2GHZ ?
502 hdr->rate : (hdr->rate - 4)) & 0xf;
503 rx_status.freq = freq;
504 rx_status.band = dev->conf.channel->band;
505 rx_status.antenna = hdr->antenna;
507 tsf32 = le32_to_cpu(hdr->tsf32);
508 if (tsf32 < priv->tsf_low32)
509 priv->tsf_high32++;
510 rx_status.mactime = ((u64)priv->tsf_high32) << 32 | tsf32;
511 priv->tsf_low32 = tsf32;
513 rx_status.flag |= RX_FLAG_TSFT;
515 if (hdr->magic & cpu_to_le16(0x4000))
516 header_len += hdr->align[0];
518 skb_pull(skb, header_len);
519 skb_trim(skb, le16_to_cpu(hdr->len));
521 ieee80211_rx_irqsafe(dev, skb, &rx_status);
523 return -1;
526 static void inline p54_wake_free_queues(struct ieee80211_hw *dev)
528 struct p54_common *priv = dev->priv;
529 int i;
531 for (i = 0; i < dev->queues; i++)
532 if (priv->tx_stats[i + 4].len < priv->tx_stats[i + 4].limit)
533 ieee80211_wake_queue(dev, i);
536 static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb)
538 struct p54_common *priv = dev->priv;
539 struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
540 struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data;
541 struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next;
542 u32 addr = le32_to_cpu(hdr->req_id) - priv->headroom;
543 struct memrecord *range = NULL;
544 u32 freed = 0;
545 u32 last_addr = priv->rx_start;
546 unsigned long flags;
547 int count, idx;
549 spin_lock_irqsave(&priv->tx_queue.lock, flags);
550 while (entry != (struct sk_buff *)&priv->tx_queue) {
551 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
552 range = (void *)info->rate_driver_data;
553 if (range->start_addr == addr) {
554 struct p54_control_hdr *entry_hdr;
555 struct p54_tx_control_allocdata *entry_data;
556 int pad = 0;
558 if (entry->next != (struct sk_buff *)&priv->tx_queue) {
559 struct ieee80211_tx_info *ni;
560 struct memrecord *mr;
562 ni = IEEE80211_SKB_CB(entry->next);
563 mr = (struct memrecord *)ni->rate_driver_data;
564 freed = mr->start_addr - last_addr;
565 } else
566 freed = priv->rx_end - last_addr;
568 last_addr = range->end_addr;
569 __skb_unlink(entry, &priv->tx_queue);
570 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
573 * Clear manually, ieee80211_tx_info_clear_status would
574 * clear the counts too and we need them.
576 memset(&info->status.ampdu_ack_len, 0,
577 sizeof(struct ieee80211_tx_info) -
578 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
579 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info,
580 status.ampdu_ack_len) != 23);
582 entry_hdr = (struct p54_control_hdr *) entry->data;
583 entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data;
584 if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0)
585 pad = entry_data->align[0];
587 /* walk through the rates array and adjust the counts */
588 count = payload->retries;
589 for (idx = 0; idx < 4; idx++) {
590 if (count >= info->status.rates[idx].count) {
591 count -= info->status.rates[idx].count;
592 } else if (count > 0) {
593 info->status.rates[idx].count = count;
594 count = 0;
595 } else {
596 info->status.rates[idx].idx = -1;
597 info->status.rates[idx].count = 0;
601 priv->tx_stats[entry_data->hw_queue].len--;
602 if (!(info->flags & IEEE80211_TX_CTL_NO_ACK) &&
603 !(payload->status & 0x01))
604 info->flags |= IEEE80211_TX_STAT_ACK;
605 info->status.ack_signal = p54_rssi_to_dbm(dev,
606 le16_to_cpu(payload->ack_rssi));
607 skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data));
608 ieee80211_tx_status_irqsafe(dev, entry);
609 goto out;
610 } else
611 last_addr = range->end_addr;
612 entry = entry->next;
614 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
616 out:
617 if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 +
618 sizeof(struct p54_control_hdr))
619 p54_wake_free_queues(dev);
622 static void p54_rx_eeprom_readback(struct ieee80211_hw *dev,
623 struct sk_buff *skb)
625 struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
626 struct p54_eeprom_lm86 *eeprom = (struct p54_eeprom_lm86 *) hdr->data;
627 struct p54_common *priv = dev->priv;
629 if (!priv->eeprom)
630 return ;
632 memcpy(priv->eeprom, eeprom->data, le16_to_cpu(eeprom->len));
634 complete(&priv->eeprom_comp);
637 static void p54_rx_stats(struct ieee80211_hw *dev, struct sk_buff *skb)
639 struct p54_common *priv = dev->priv;
640 struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
641 struct p54_statistics *stats = (struct p54_statistics *) hdr->data;
642 u32 tsf32 = le32_to_cpu(stats->tsf32);
644 if (tsf32 < priv->tsf_low32)
645 priv->tsf_high32++;
646 priv->tsf_low32 = tsf32;
648 priv->stats.dot11RTSFailureCount = le32_to_cpu(stats->rts_fail);
649 priv->stats.dot11RTSSuccessCount = le32_to_cpu(stats->rts_success);
650 priv->stats.dot11FCSErrorCount = le32_to_cpu(stats->rx_bad_fcs);
652 priv->noise = p54_rssi_to_dbm(dev, le32_to_cpu(stats->noise));
653 complete(&priv->stats_comp);
655 mod_timer(&priv->stats_timer, jiffies + 5 * HZ);
658 static int p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb)
660 struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data;
662 switch (le16_to_cpu(hdr->type)) {
663 case P54_CONTROL_TYPE_TXDONE:
664 p54_rx_frame_sent(dev, skb);
665 break;
666 case P54_CONTROL_TYPE_BBP:
667 break;
668 case P54_CONTROL_TYPE_STAT_READBACK:
669 p54_rx_stats(dev, skb);
670 break;
671 case P54_CONTROL_TYPE_EEPROM_READBACK:
672 p54_rx_eeprom_readback(dev, skb);
673 break;
674 default:
675 printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n",
676 wiphy_name(dev->wiphy), le16_to_cpu(hdr->type));
677 break;
680 return 0;
683 /* returns zero if skb can be reused */
684 int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb)
686 u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8;
688 if (type == 0x80)
689 return p54_rx_control(dev, skb);
690 else
691 return p54_rx_data(dev, skb);
693 EXPORT_SYMBOL_GPL(p54_rx);
696 * So, the firmware is somewhat stupid and doesn't know what places in its
697 * memory incoming data should go to. By poking around in the firmware, we
698 * can find some unused memory to upload our packets to. However, data that we
699 * want the card to TX needs to stay intact until the card has told us that
700 * it is done with it. This function finds empty places we can upload to and
701 * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees
702 * allocated areas.
704 static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb,
705 struct p54_control_hdr *data, u32 len)
707 struct p54_common *priv = dev->priv;
708 struct sk_buff *entry = priv->tx_queue.next;
709 struct sk_buff *target_skb = NULL;
710 u32 last_addr = priv->rx_start;
711 u32 largest_hole = 0;
712 u32 target_addr = priv->rx_start;
713 unsigned long flags;
714 unsigned int left;
715 len = (len + priv->headroom + priv->tailroom + 3) & ~0x3;
717 spin_lock_irqsave(&priv->tx_queue.lock, flags);
718 left = skb_queue_len(&priv->tx_queue);
719 while (left--) {
720 u32 hole_size;
721 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry);
722 struct memrecord *range = (void *)info->rate_driver_data;
723 hole_size = range->start_addr - last_addr;
724 if (!target_skb && hole_size >= len) {
725 target_skb = entry->prev;
726 hole_size -= len;
727 target_addr = last_addr;
729 largest_hole = max(largest_hole, hole_size);
730 last_addr = range->end_addr;
731 entry = entry->next;
733 if (!target_skb && priv->rx_end - last_addr >= len) {
734 target_skb = priv->tx_queue.prev;
735 largest_hole = max(largest_hole, priv->rx_end - last_addr - len);
736 if (!skb_queue_empty(&priv->tx_queue)) {
737 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb);
738 struct memrecord *range = (void *)info->rate_driver_data;
739 target_addr = range->end_addr;
741 } else
742 largest_hole = max(largest_hole, priv->rx_end - last_addr);
744 if (skb) {
745 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
746 struct memrecord *range = (void *)info->rate_driver_data;
747 range->start_addr = target_addr;
748 range->end_addr = target_addr + len;
749 __skb_queue_after(&priv->tx_queue, target_skb, skb);
750 if (largest_hole < priv->rx_mtu + priv->headroom +
751 priv->tailroom +
752 sizeof(struct p54_control_hdr))
753 ieee80211_stop_queues(dev);
755 spin_unlock_irqrestore(&priv->tx_queue.lock, flags);
757 data->req_id = cpu_to_le32(target_addr + priv->headroom);
760 int p54_read_eeprom(struct ieee80211_hw *dev)
762 struct p54_common *priv = dev->priv;
763 struct p54_control_hdr *hdr = NULL;
764 struct p54_eeprom_lm86 *eeprom_hdr;
765 size_t eeprom_size = 0x2020, offset = 0, blocksize;
766 int ret = -ENOMEM;
767 void *eeprom = NULL;
769 hdr = (struct p54_control_hdr *)kzalloc(sizeof(*hdr) +
770 sizeof(*eeprom_hdr) + EEPROM_READBACK_LEN, GFP_KERNEL);
771 if (!hdr)
772 goto free;
774 priv->eeprom = kzalloc(EEPROM_READBACK_LEN, GFP_KERNEL);
775 if (!priv->eeprom)
776 goto free;
778 eeprom = kzalloc(eeprom_size, GFP_KERNEL);
779 if (!eeprom)
780 goto free;
782 hdr->magic1 = cpu_to_le16(0x8000);
783 hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK);
784 hdr->retry1 = hdr->retry2 = 0;
785 eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data;
787 while (eeprom_size) {
788 blocksize = min(eeprom_size, (size_t)EEPROM_READBACK_LEN);
789 hdr->len = cpu_to_le16(blocksize + sizeof(*eeprom_hdr));
790 eeprom_hdr->offset = cpu_to_le16(offset);
791 eeprom_hdr->len = cpu_to_le16(blocksize);
792 p54_assign_address(dev, NULL, hdr, le16_to_cpu(hdr->len) +
793 sizeof(*hdr));
794 priv->tx(dev, hdr, le16_to_cpu(hdr->len) + sizeof(*hdr), 0);
796 if (!wait_for_completion_interruptible_timeout(&priv->eeprom_comp, HZ)) {
797 printk(KERN_ERR "%s: device does not respond!\n",
798 wiphy_name(dev->wiphy));
799 ret = -EBUSY;
800 goto free;
803 memcpy(eeprom + offset, priv->eeprom, blocksize);
804 offset += blocksize;
805 eeprom_size -= blocksize;
808 ret = p54_parse_eeprom(dev, eeprom, offset);
809 free:
810 kfree(priv->eeprom);
811 priv->eeprom = NULL;
812 kfree(hdr);
813 kfree(eeprom);
815 return ret;
817 EXPORT_SYMBOL_GPL(p54_read_eeprom);
819 static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb)
821 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
822 struct ieee80211_tx_queue_stats *current_queue;
823 struct p54_common *priv = dev->priv;
824 struct p54_control_hdr *hdr;
825 struct p54_tx_control_allocdata *txhdr;
826 size_t padding, len;
827 int i, j, ridx;
828 u8 rate;
829 u8 cts_rate = 0x20;
830 u8 rc_flags;
831 u8 calculated_tries[4];
832 u8 nrates = 0, nremaining = 8;
834 current_queue = &priv->tx_stats[skb_get_queue_mapping(skb) + 4];
835 if (unlikely(current_queue->len > current_queue->limit))
836 return NETDEV_TX_BUSY;
837 current_queue->len++;
838 current_queue->count++;
839 if (current_queue->len == current_queue->limit)
840 ieee80211_stop_queue(dev, skb_get_queue_mapping(skb));
842 padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3;
843 len = skb->len;
845 txhdr = (struct p54_tx_control_allocdata *)
846 skb_push(skb, sizeof(*txhdr) + padding);
847 hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr));
849 if (padding)
850 hdr->magic1 = cpu_to_le16(0x4010);
851 else
852 hdr->magic1 = cpu_to_le16(0x0010);
853 hdr->len = cpu_to_le16(len);
854 hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1);
855 hdr->retry1 = info->control.rates[0].count;
858 * we register the rates in perfect order, and
859 * RTS/CTS won't happen on 5 GHz
861 cts_rate = info->control.rts_cts_rate_idx;
863 memset(&txhdr->rateset, 0, sizeof(txhdr->rateset));
865 /* see how many rates got used */
866 for (i = 0; i < 4; i++) {
867 if (info->control.rates[i].idx < 0)
868 break;
869 nrates++;
872 /* limit tries to 8/nrates per rate */
873 for (i = 0; i < nrates; i++) {
875 * The magic expression here is equivalent to 8/nrates for
876 * all values that matter, but avoids division and jumps.
877 * Note that nrates can only take the values 1 through 4.
879 calculated_tries[i] = min_t(int, ((15 >> nrates) | 1) + 1,
880 info->control.rates[i].count);
881 nremaining -= calculated_tries[i];
884 /* if there are tries left, distribute from back to front */
885 for (i = nrates - 1; nremaining > 0 && i >= 0; i--) {
886 int tmp = info->control.rates[i].count - calculated_tries[i];
888 if (tmp <= 0)
889 continue;
890 /* RC requested more tries at this rate */
892 tmp = min_t(int, tmp, nremaining);
893 calculated_tries[i] += tmp;
894 nremaining -= tmp;
897 ridx = 0;
898 for (i = 0; i < nrates && ridx < 8; i++) {
899 /* we register the rates in perfect order */
900 rate = info->control.rates[i].idx;
901 if (info->band == IEEE80211_BAND_5GHZ)
902 rate += 4;
904 /* store the count we actually calculated for TX status */
905 info->control.rates[i].count = calculated_tries[i];
907 rc_flags = info->control.rates[i].flags;
908 if (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) {
909 rate |= 0x10;
910 cts_rate |= 0x10;
912 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS)
913 rate |= 0x40;
914 else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
915 rate |= 0x20;
916 for (j = 0; j < calculated_tries[i] && ridx < 8; j++) {
917 txhdr->rateset[ridx] = rate;
918 ridx++;
921 hdr->retry2 = ridx;
923 txhdr->key_type = 0;
924 txhdr->key_len = 0;
925 txhdr->hw_queue = skb_get_queue_mapping(skb) + 4;
926 txhdr->tx_antenna = (info->antenna_sel_tx == 0) ?
927 2 : info->antenna_sel_tx - 1;
928 txhdr->output_power = priv->output_power;
929 txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ?
930 0 : cts_rate;
931 if (padding)
932 txhdr->align[0] = padding;
934 /* modifies skb->cb and with it info, so must be last! */
935 p54_assign_address(dev, skb, hdr, skb->len);
937 priv->tx(dev, hdr, skb->len, 0);
938 return 0;
941 static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type,
942 const u8 *bssid)
944 struct p54_common *priv = dev->priv;
945 struct p54_control_hdr *hdr;
946 struct p54_tx_control_filter *filter;
947 size_t data_len;
949 hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) +
950 priv->tx_hdr_len, GFP_ATOMIC);
951 if (!hdr)
952 return -ENOMEM;
954 hdr = (void *)hdr + priv->tx_hdr_len;
956 filter = (struct p54_tx_control_filter *) hdr->data;
957 hdr->magic1 = cpu_to_le16(0x8001);
958 hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET);
960 priv->filter_type = filter->filter_type = cpu_to_le16(filter_type);
961 memcpy(filter->mac_addr, priv->mac_addr, ETH_ALEN);
962 if (!bssid)
963 memset(filter->bssid, ~0, ETH_ALEN);
964 else
965 memcpy(filter->bssid, bssid, ETH_ALEN);
966 filter->rx_antenna = priv->rx_antenna;
967 if (priv->fw_var < 0x500) {
968 data_len = P54_TX_CONTROL_FILTER_V1_LEN;
969 filter->v1.basic_rate_mask = cpu_to_le32(0x15f);
970 filter->v1.rx_addr = cpu_to_le32(priv->rx_end);
971 filter->v1.max_rx = cpu_to_le16(priv->rx_mtu);
972 filter->v1.rxhw = cpu_to_le16(priv->rxhw);
973 filter->v1.wakeup_timer = cpu_to_le16(500);
974 } else {
975 data_len = P54_TX_CONTROL_FILTER_V2_LEN;
976 filter->v2.rx_addr = cpu_to_le32(priv->rx_end);
977 filter->v2.max_rx = cpu_to_le16(priv->rx_mtu);
978 filter->v2.rxhw = cpu_to_le16(priv->rxhw);
979 filter->v2.timer = cpu_to_le16(1000);
981 hdr->len = cpu_to_le16(data_len);
982 p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
983 priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
984 return 0;
987 static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq)
989 struct p54_common *priv = dev->priv;
990 struct p54_control_hdr *hdr;
991 struct p54_tx_control_channel *chan;
992 unsigned int i;
993 size_t data_len;
994 void *entry;
996 hdr = kzalloc(sizeof(*hdr) + sizeof(*chan) +
997 priv->tx_hdr_len, GFP_KERNEL);
998 if (!hdr)
999 return -ENOMEM;
1001 hdr = (void *)hdr + priv->tx_hdr_len;
1003 chan = (struct p54_tx_control_channel *) hdr->data;
1005 hdr->magic1 = cpu_to_le16(0x8001);
1007 hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE);
1009 chan->flags = cpu_to_le16(0x1);
1010 chan->dwell = cpu_to_le16(0x0);
1012 for (i = 0; i < priv->iq_autocal_len; i++) {
1013 if (priv->iq_autocal[i].freq != freq)
1014 continue;
1016 memcpy(&chan->iq_autocal, &priv->iq_autocal[i],
1017 sizeof(*priv->iq_autocal));
1018 break;
1020 if (i == priv->iq_autocal_len)
1021 goto err;
1023 for (i = 0; i < priv->output_limit_len; i++) {
1024 if (priv->output_limit[i].freq != freq)
1025 continue;
1027 chan->val_barker = 0x38;
1028 chan->val_bpsk = chan->dup_bpsk =
1029 priv->output_limit[i].val_bpsk;
1030 chan->val_qpsk = chan->dup_qpsk =
1031 priv->output_limit[i].val_qpsk;
1032 chan->val_16qam = chan->dup_16qam =
1033 priv->output_limit[i].val_16qam;
1034 chan->val_64qam = chan->dup_64qam =
1035 priv->output_limit[i].val_64qam;
1036 break;
1038 if (i == priv->output_limit_len)
1039 goto err;
1041 entry = priv->curve_data->data;
1042 for (i = 0; i < priv->curve_data->channels; i++) {
1043 if (*((__le16 *)entry) != freq) {
1044 entry += sizeof(__le16);
1045 entry += sizeof(struct p54_pa_curve_data_sample) *
1046 priv->curve_data->points_per_channel;
1047 continue;
1050 entry += sizeof(__le16);
1051 chan->pa_points_per_curve =
1052 min(priv->curve_data->points_per_channel, (u8) 8);
1054 memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) *
1055 chan->pa_points_per_curve);
1056 break;
1059 if (priv->fw_var < 0x500) {
1060 data_len = P54_TX_CONTROL_CHANNEL_V1_LEN;
1061 chan->v1.rssical_mul = cpu_to_le16(130);
1062 chan->v1.rssical_add = cpu_to_le16(0xfe70);
1063 } else {
1064 data_len = P54_TX_CONTROL_CHANNEL_V2_LEN;
1065 chan->v2.rssical_mul = cpu_to_le16(130);
1066 chan->v2.rssical_add = cpu_to_le16(0xfe70);
1067 chan->v2.basic_rate_mask = cpu_to_le32(0x15f);
1070 hdr->len = cpu_to_le16(data_len);
1071 p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + data_len);
1072 priv->tx(dev, hdr, sizeof(*hdr) + data_len, 1);
1073 return 0;
1075 err:
1076 printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy));
1077 kfree(hdr);
1078 return -EINVAL;
1081 static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act)
1083 struct p54_common *priv = dev->priv;
1084 struct p54_control_hdr *hdr;
1085 struct p54_tx_control_led *led;
1087 hdr = kzalloc(sizeof(*hdr) + sizeof(*led) +
1088 priv->tx_hdr_len, GFP_KERNEL);
1089 if (!hdr)
1090 return -ENOMEM;
1092 hdr = (void *)hdr + priv->tx_hdr_len;
1093 hdr->magic1 = cpu_to_le16(0x8001);
1094 hdr->len = cpu_to_le16(sizeof(*led));
1095 hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED);
1096 p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led));
1098 led = (struct p54_tx_control_led *) hdr->data;
1099 led->mode = cpu_to_le16(mode);
1100 led->led_permanent = cpu_to_le16(link);
1101 led->led_temporary = cpu_to_le16(act);
1102 led->duration = cpu_to_le16(1000);
1104 priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1);
1106 return 0;
1109 #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop) \
1110 do { \
1111 queue.aifs = cpu_to_le16(ai_fs); \
1112 queue.cwmin = cpu_to_le16(cw_min); \
1113 queue.cwmax = cpu_to_le16(cw_max); \
1114 queue.txop = cpu_to_le16(_txop); \
1115 } while(0)
1117 static void p54_init_vdcf(struct ieee80211_hw *dev)
1119 struct p54_common *priv = dev->priv;
1120 struct p54_control_hdr *hdr;
1121 struct p54_tx_control_vdcf *vdcf;
1123 /* all USB V1 adapters need a extra headroom */
1124 hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1125 hdr->magic1 = cpu_to_le16(0x8001);
1126 hdr->len = cpu_to_le16(sizeof(*vdcf));
1127 hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT);
1128 hdr->req_id = cpu_to_le32(priv->rx_start);
1130 vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1132 P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47);
1133 P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94);
1134 P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0);
1135 P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0);
1138 static void p54_set_vdcf(struct ieee80211_hw *dev)
1140 struct p54_common *priv = dev->priv;
1141 struct p54_control_hdr *hdr;
1142 struct p54_tx_control_vdcf *vdcf;
1144 hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len;
1146 p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf));
1148 vdcf = (struct p54_tx_control_vdcf *) hdr->data;
1150 if (priv->use_short_slot) {
1151 vdcf->slottime = 9;
1152 vdcf->magic1 = 0x10;
1153 vdcf->magic2 = 0x00;
1154 } else {
1155 vdcf->slottime = 20;
1156 vdcf->magic1 = 0x0a;
1157 vdcf->magic2 = 0x06;
1160 /* (see prism54/isl_oid.h for further details) */
1161 vdcf->frameburst = cpu_to_le16(0);
1163 priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0);
1166 static int p54_start(struct ieee80211_hw *dev)
1168 struct p54_common *priv = dev->priv;
1169 int err;
1171 if (!priv->cached_vdcf) {
1172 priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+
1173 priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1174 GFP_KERNEL);
1176 if (!priv->cached_vdcf)
1177 return -ENOMEM;
1180 if (!priv->cached_stats) {
1181 priv->cached_stats = kzalloc(sizeof(struct p54_statistics) +
1182 priv->tx_hdr_len + sizeof(struct p54_control_hdr),
1183 GFP_KERNEL);
1185 if (!priv->cached_stats) {
1186 kfree(priv->cached_vdcf);
1187 priv->cached_vdcf = NULL;
1188 return -ENOMEM;
1192 err = priv->open(dev);
1193 if (!err)
1194 priv->mode = NL80211_IFTYPE_MONITOR;
1196 p54_init_vdcf(dev);
1197 mod_timer(&priv->stats_timer, jiffies + HZ);
1198 return err;
1201 static void p54_stop(struct ieee80211_hw *dev)
1203 struct p54_common *priv = dev->priv;
1204 struct sk_buff *skb;
1206 del_timer(&priv->stats_timer);
1207 while ((skb = skb_dequeue(&priv->tx_queue)))
1208 kfree_skb(skb);
1209 priv->stop(dev);
1210 priv->tsf_high32 = priv->tsf_low32 = 0;
1211 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1214 static int p54_add_interface(struct ieee80211_hw *dev,
1215 struct ieee80211_if_init_conf *conf)
1217 struct p54_common *priv = dev->priv;
1219 if (priv->mode != NL80211_IFTYPE_MONITOR)
1220 return -EOPNOTSUPP;
1222 switch (conf->type) {
1223 case NL80211_IFTYPE_STATION:
1224 priv->mode = conf->type;
1225 break;
1226 default:
1227 return -EOPNOTSUPP;
1230 memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN);
1232 p54_set_filter(dev, 0, NULL);
1234 switch (conf->type) {
1235 case NL80211_IFTYPE_STATION:
1236 p54_set_filter(dev, 1, NULL);
1237 break;
1238 default:
1239 BUG(); /* impossible */
1240 break;
1243 p54_set_leds(dev, 1, 0, 0);
1245 return 0;
1248 static void p54_remove_interface(struct ieee80211_hw *dev,
1249 struct ieee80211_if_init_conf *conf)
1251 struct p54_common *priv = dev->priv;
1252 priv->mode = NL80211_IFTYPE_MONITOR;
1253 memset(priv->mac_addr, 0, ETH_ALEN);
1254 p54_set_filter(dev, 0, NULL);
1257 static int p54_config(struct ieee80211_hw *dev, u32 changed)
1259 int ret;
1260 struct p54_common *priv = dev->priv;
1261 struct ieee80211_conf *conf = &dev->conf;
1263 mutex_lock(&priv->conf_mutex);
1264 priv->rx_antenna = 2; /* automatic */
1265 priv->output_power = conf->power_level << 2;
1266 ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq));
1267 p54_set_vdcf(dev);
1268 mutex_unlock(&priv->conf_mutex);
1269 return ret;
1272 static int p54_config_interface(struct ieee80211_hw *dev,
1273 struct ieee80211_vif *vif,
1274 struct ieee80211_if_conf *conf)
1276 struct p54_common *priv = dev->priv;
1278 mutex_lock(&priv->conf_mutex);
1279 p54_set_filter(dev, 0, conf->bssid);
1280 p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0);
1281 memcpy(priv->bssid, conf->bssid, ETH_ALEN);
1282 mutex_unlock(&priv->conf_mutex);
1283 return 0;
1286 static void p54_configure_filter(struct ieee80211_hw *dev,
1287 unsigned int changed_flags,
1288 unsigned int *total_flags,
1289 int mc_count, struct dev_mc_list *mclist)
1291 struct p54_common *priv = dev->priv;
1293 *total_flags &= FIF_BCN_PRBRESP_PROMISC |
1294 FIF_PROMISC_IN_BSS |
1295 FIF_FCSFAIL;
1297 priv->filter_flags = *total_flags;
1299 if (changed_flags & FIF_BCN_PRBRESP_PROMISC) {
1300 if (*total_flags & FIF_BCN_PRBRESP_PROMISC)
1301 p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1302 NULL);
1303 else
1304 p54_set_filter(dev, le16_to_cpu(priv->filter_type),
1305 priv->bssid);
1308 if (changed_flags & FIF_PROMISC_IN_BSS) {
1309 if (*total_flags & FIF_PROMISC_IN_BSS)
1310 p54_set_filter(dev, le16_to_cpu(priv->filter_type) |
1311 0x8, NULL);
1312 else
1313 p54_set_filter(dev, le16_to_cpu(priv->filter_type) &
1314 ~0x8, priv->bssid);
1318 static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue,
1319 const struct ieee80211_tx_queue_params *params)
1321 struct p54_common *priv = dev->priv;
1322 struct p54_tx_control_vdcf *vdcf;
1324 vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *)
1325 ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data);
1327 if ((params) && !(queue > 4)) {
1328 P54_SET_QUEUE(vdcf->queue[queue], params->aifs,
1329 params->cw_min, params->cw_max, params->txop);
1330 } else
1331 return -EINVAL;
1333 p54_set_vdcf(dev);
1335 return 0;
1338 static int p54_init_xbow_synth(struct ieee80211_hw *dev)
1340 struct p54_common *priv = dev->priv;
1341 struct p54_control_hdr *hdr;
1342 struct p54_tx_control_xbow_synth *xbow;
1344 hdr = kzalloc(sizeof(*hdr) + sizeof(*xbow) +
1345 priv->tx_hdr_len, GFP_KERNEL);
1346 if (!hdr)
1347 return -ENOMEM;
1349 hdr = (void *)hdr + priv->tx_hdr_len;
1350 hdr->magic1 = cpu_to_le16(0x8001);
1351 hdr->len = cpu_to_le16(sizeof(*xbow));
1352 hdr->type = cpu_to_le16(P54_CONTROL_TYPE_XBOW_SYNTH_CFG);
1353 p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*xbow));
1355 xbow = (struct p54_tx_control_xbow_synth *) hdr->data;
1356 xbow->magic1 = cpu_to_le16(0x1);
1357 xbow->magic2 = cpu_to_le16(0x2);
1358 xbow->freq = cpu_to_le16(5390);
1360 priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*xbow), 1);
1362 return 0;
1365 static void p54_statistics_timer(unsigned long data)
1367 struct ieee80211_hw *dev = (struct ieee80211_hw *) data;
1368 struct p54_common *priv = dev->priv;
1369 struct p54_control_hdr *hdr;
1370 struct p54_statistics *stats;
1372 BUG_ON(!priv->cached_stats);
1374 hdr = (void *)priv->cached_stats + priv->tx_hdr_len;
1375 hdr->magic1 = cpu_to_le16(0x8000);
1376 hdr->len = cpu_to_le16(sizeof(*stats));
1377 hdr->type = cpu_to_le16(P54_CONTROL_TYPE_STAT_READBACK);
1378 p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*stats));
1380 priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*stats), 0);
1383 static int p54_get_stats(struct ieee80211_hw *dev,
1384 struct ieee80211_low_level_stats *stats)
1386 struct p54_common *priv = dev->priv;
1388 del_timer(&priv->stats_timer);
1389 p54_statistics_timer((unsigned long)dev);
1391 if (!wait_for_completion_interruptible_timeout(&priv->stats_comp, HZ)) {
1392 printk(KERN_ERR "%s: device does not respond!\n",
1393 wiphy_name(dev->wiphy));
1394 return -EBUSY;
1397 memcpy(stats, &priv->stats, sizeof(*stats));
1399 return 0;
1402 static int p54_get_tx_stats(struct ieee80211_hw *dev,
1403 struct ieee80211_tx_queue_stats *stats)
1405 struct p54_common *priv = dev->priv;
1407 memcpy(stats, &priv->tx_stats[4], sizeof(stats[0]) * dev->queues);
1409 return 0;
1412 static void p54_bss_info_changed(struct ieee80211_hw *dev,
1413 struct ieee80211_vif *vif,
1414 struct ieee80211_bss_conf *info,
1415 u32 changed)
1417 struct p54_common *priv = dev->priv;
1419 if (changed & BSS_CHANGED_ERP_SLOT) {
1420 priv->use_short_slot = info->use_short_slot;
1421 p54_set_vdcf(dev);
1425 static const struct ieee80211_ops p54_ops = {
1426 .tx = p54_tx,
1427 .start = p54_start,
1428 .stop = p54_stop,
1429 .add_interface = p54_add_interface,
1430 .remove_interface = p54_remove_interface,
1431 .config = p54_config,
1432 .config_interface = p54_config_interface,
1433 .bss_info_changed = p54_bss_info_changed,
1434 .configure_filter = p54_configure_filter,
1435 .conf_tx = p54_conf_tx,
1436 .get_stats = p54_get_stats,
1437 .get_tx_stats = p54_get_tx_stats
1440 struct ieee80211_hw *p54_init_common(size_t priv_data_len)
1442 struct ieee80211_hw *dev;
1443 struct p54_common *priv;
1445 dev = ieee80211_alloc_hw(priv_data_len, &p54_ops);
1446 if (!dev)
1447 return NULL;
1449 priv = dev->priv;
1450 priv->mode = NL80211_IFTYPE_UNSPECIFIED;
1451 skb_queue_head_init(&priv->tx_queue);
1452 dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */
1453 IEEE80211_HW_RX_INCLUDES_FCS |
1454 IEEE80211_HW_SIGNAL_DBM |
1455 IEEE80211_HW_NOISE_DBM;
1458 * XXX: when this driver gets support for any mode that
1459 * requires beacons (AP, MESH, IBSS) then it must
1460 * implement IEEE80211_TX_CTL_ASSIGN_SEQ.
1462 dev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1464 dev->channel_change_time = 1000; /* TODO: find actual value */
1465 priv->tx_stats[0].limit = 1;
1466 priv->tx_stats[1].limit = 1;
1467 priv->tx_stats[2].limit = 1;
1468 priv->tx_stats[3].limit = 1;
1469 priv->tx_stats[4].limit = 5;
1470 dev->queues = 1;
1471 priv->noise = -94;
1473 * We support at most 8 tries no matter which rate they're at,
1474 * we cannot support max_rates * max_rate_tries as we set it
1475 * here, but setting it correctly to 4/2 or so would limit us
1476 * artificially if the RC algorithm wants just two rates, so
1477 * let's say 4/7, we'll redistribute it at TX time, see the
1478 * comments there.
1480 dev->max_rates = 4;
1481 dev->max_rate_tries = 7;
1482 dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 +
1483 sizeof(struct p54_tx_control_allocdata);
1485 mutex_init(&priv->conf_mutex);
1486 init_completion(&priv->eeprom_comp);
1487 init_completion(&priv->stats_comp);
1488 setup_timer(&priv->stats_timer, p54_statistics_timer,
1489 (unsigned long)dev);
1491 return dev;
1493 EXPORT_SYMBOL_GPL(p54_init_common);
1495 void p54_free_common(struct ieee80211_hw *dev)
1497 struct p54_common *priv = dev->priv;
1498 kfree(priv->cached_stats);
1499 kfree(priv->iq_autocal);
1500 kfree(priv->output_limit);
1501 kfree(priv->curve_data);
1502 kfree(priv->cached_vdcf);
1504 EXPORT_SYMBOL_GPL(p54_free_common);
1506 static int __init p54_init(void)
1508 return 0;
1511 static void __exit p54_exit(void)
1515 module_init(p54_init);
1516 module_exit(p54_exit);