drm/i915: Rename object_set_domain to object_set_to_gpu_domain
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / block / blk-core.c
blobc36aa98fafa3e4ed94adcf3e462945d59b0c1fcd
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
32 #include "blk.h"
34 static int __make_request(struct request_queue *q, struct bio *bio);
37 * For the allocated request tables
39 static struct kmem_cache *request_cachep;
42 * For queue allocation
44 struct kmem_cache *blk_requestq_cachep;
47 * Controlling structure to kblockd
49 static struct workqueue_struct *kblockd_workqueue;
51 static void drive_stat_acct(struct request *rq, int new_io)
53 struct hd_struct *part;
54 int rw = rq_data_dir(rq);
55 int cpu;
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
60 cpu = part_stat_lock();
61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
63 if (!new_io)
64 part_stat_inc(cpu, part, merges[rw]);
65 else {
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
70 part_stat_unlock();
73 void blk_queue_congestion_threshold(struct request_queue *q)
75 int nr;
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
88 /**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
95 * Will return NULL if the request queue cannot be located.
97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
99 struct backing_dev_info *ret = NULL;
100 struct request_queue *q = bdev_get_queue(bdev);
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
106 EXPORT_SYMBOL(blk_get_backing_dev_info);
108 void blk_rq_init(struct request_queue *q, struct request *rq)
110 memset(rq, 0, sizeof(*rq));
112 INIT_LIST_HEAD(&rq->queuelist);
113 INIT_LIST_HEAD(&rq->timeout_list);
114 rq->cpu = -1;
115 rq->q = q;
116 rq->sector = rq->hard_sector = (sector_t) -1;
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
119 rq->cmd = rq->__cmd;
120 rq->tag = -1;
121 rq->ref_count = 1;
123 EXPORT_SYMBOL(blk_rq_init);
125 static void req_bio_endio(struct request *rq, struct bio *bio,
126 unsigned int nbytes, int error)
128 struct request_queue *q = rq->q;
130 if (&q->bar_rq != rq) {
131 if (error)
132 clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 error = -EIO;
136 if (unlikely(nbytes > bio->bi_size)) {
137 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
138 __func__, nbytes, bio->bi_size);
139 nbytes = bio->bi_size;
142 bio->bi_size -= nbytes;
143 bio->bi_sector += (nbytes >> 9);
145 if (bio_integrity(bio))
146 bio_integrity_advance(bio, nbytes);
148 if (bio->bi_size == 0)
149 bio_endio(bio, error);
150 } else {
153 * Okay, this is the barrier request in progress, just
154 * record the error;
156 if (error && !q->orderr)
157 q->orderr = error;
161 void blk_dump_rq_flags(struct request *rq, char *msg)
163 int bit;
165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 rq->cmd_flags);
169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq->sector,
171 rq->nr_sectors,
172 rq->current_nr_sectors);
173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq->bio, rq->biotail,
175 rq->buffer, rq->data,
176 rq->data_len);
178 if (blk_pc_request(rq)) {
179 printk(KERN_INFO " cdb: ");
180 for (bit = 0; bit < BLK_MAX_CDB; bit++)
181 printk("%02x ", rq->cmd[bit]);
182 printk("\n");
185 EXPORT_SYMBOL(blk_dump_rq_flags);
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
190 * on the list.
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
195 void blk_plug_device(struct request_queue *q)
197 WARN_ON(!irqs_disabled());
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
203 if (blk_queue_stopped(q))
204 return;
206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 EXPORT_SYMBOL(blk_plug_device);
214 * blk_plug_device_unlocked - plug a device without queue lock held
215 * @q: The &struct request_queue to plug
217 * Description:
218 * Like @blk_plug_device(), but grabs the queue lock and disables
219 * interrupts.
221 void blk_plug_device_unlocked(struct request_queue *q)
223 unsigned long flags;
225 spin_lock_irqsave(q->queue_lock, flags);
226 blk_plug_device(q);
227 spin_unlock_irqrestore(q->queue_lock, flags);
229 EXPORT_SYMBOL(blk_plug_device_unlocked);
232 * remove the queue from the plugged list, if present. called with
233 * queue lock held and interrupts disabled.
235 int blk_remove_plug(struct request_queue *q)
237 WARN_ON(!irqs_disabled());
239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
240 return 0;
242 del_timer(&q->unplug_timer);
243 return 1;
245 EXPORT_SYMBOL(blk_remove_plug);
248 * remove the plug and let it rip..
250 void __generic_unplug_device(struct request_queue *q)
252 if (unlikely(blk_queue_stopped(q)))
253 return;
255 if (!blk_remove_plug(q))
256 return;
258 q->request_fn(q);
262 * generic_unplug_device - fire a request queue
263 * @q: The &struct request_queue in question
265 * Description:
266 * Linux uses plugging to build bigger requests queues before letting
267 * the device have at them. If a queue is plugged, the I/O scheduler
268 * is still adding and merging requests on the queue. Once the queue
269 * gets unplugged, the request_fn defined for the queue is invoked and
270 * transfers started.
272 void generic_unplug_device(struct request_queue *q)
274 if (blk_queue_plugged(q)) {
275 spin_lock_irq(q->queue_lock);
276 __generic_unplug_device(q);
277 spin_unlock_irq(q->queue_lock);
280 EXPORT_SYMBOL(generic_unplug_device);
282 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
283 struct page *page)
285 struct request_queue *q = bdi->unplug_io_data;
287 blk_unplug(q);
290 void blk_unplug_work(struct work_struct *work)
292 struct request_queue *q =
293 container_of(work, struct request_queue, unplug_work);
295 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
296 q->rq.count[READ] + q->rq.count[WRITE]);
298 q->unplug_fn(q);
301 void blk_unplug_timeout(unsigned long data)
303 struct request_queue *q = (struct request_queue *)data;
305 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
306 q->rq.count[READ] + q->rq.count[WRITE]);
308 kblockd_schedule_work(q, &q->unplug_work);
311 void blk_unplug(struct request_queue *q)
314 * devices don't necessarily have an ->unplug_fn defined
316 if (q->unplug_fn) {
317 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
318 q->rq.count[READ] + q->rq.count[WRITE]);
320 q->unplug_fn(q);
323 EXPORT_SYMBOL(blk_unplug);
325 static void blk_invoke_request_fn(struct request_queue *q)
327 if (unlikely(blk_queue_stopped(q)))
328 return;
331 * one level of recursion is ok and is much faster than kicking
332 * the unplug handling
334 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
335 q->request_fn(q);
336 queue_flag_clear(QUEUE_FLAG_REENTER, q);
337 } else {
338 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
339 kblockd_schedule_work(q, &q->unplug_work);
344 * blk_start_queue - restart a previously stopped queue
345 * @q: The &struct request_queue in question
347 * Description:
348 * blk_start_queue() will clear the stop flag on the queue, and call
349 * the request_fn for the queue if it was in a stopped state when
350 * entered. Also see blk_stop_queue(). Queue lock must be held.
352 void blk_start_queue(struct request_queue *q)
354 WARN_ON(!irqs_disabled());
356 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
357 blk_invoke_request_fn(q);
359 EXPORT_SYMBOL(blk_start_queue);
362 * blk_stop_queue - stop a queue
363 * @q: The &struct request_queue in question
365 * Description:
366 * The Linux block layer assumes that a block driver will consume all
367 * entries on the request queue when the request_fn strategy is called.
368 * Often this will not happen, because of hardware limitations (queue
369 * depth settings). If a device driver gets a 'queue full' response,
370 * or if it simply chooses not to queue more I/O at one point, it can
371 * call this function to prevent the request_fn from being called until
372 * the driver has signalled it's ready to go again. This happens by calling
373 * blk_start_queue() to restart queue operations. Queue lock must be held.
375 void blk_stop_queue(struct request_queue *q)
377 blk_remove_plug(q);
378 queue_flag_set(QUEUE_FLAG_STOPPED, q);
380 EXPORT_SYMBOL(blk_stop_queue);
383 * blk_sync_queue - cancel any pending callbacks on a queue
384 * @q: the queue
386 * Description:
387 * The block layer may perform asynchronous callback activity
388 * on a queue, such as calling the unplug function after a timeout.
389 * A block device may call blk_sync_queue to ensure that any
390 * such activity is cancelled, thus allowing it to release resources
391 * that the callbacks might use. The caller must already have made sure
392 * that its ->make_request_fn will not re-add plugging prior to calling
393 * this function.
396 void blk_sync_queue(struct request_queue *q)
398 del_timer_sync(&q->unplug_timer);
399 kblockd_flush_work(&q->unplug_work);
401 EXPORT_SYMBOL(blk_sync_queue);
404 * __blk_run_queue - run a single device queue
405 * @q: The queue to run
407 * Description:
408 * See @blk_run_queue. This variant must be called with the queue lock
409 * held and interrupts disabled.
412 void __blk_run_queue(struct request_queue *q)
414 blk_remove_plug(q);
417 * Only recurse once to avoid overrunning the stack, let the unplug
418 * handling reinvoke the handler shortly if we already got there.
420 if (!elv_queue_empty(q))
421 blk_invoke_request_fn(q);
423 EXPORT_SYMBOL(__blk_run_queue);
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
431 * May be used to restart queueing when a request has completed. Also
432 * See @blk_start_queueing.
435 void blk_run_queue(struct request_queue *q)
437 unsigned long flags;
439 spin_lock_irqsave(q->queue_lock, flags);
440 __blk_run_queue(q);
441 spin_unlock_irqrestore(q->queue_lock, flags);
443 EXPORT_SYMBOL(blk_run_queue);
445 void blk_put_queue(struct request_queue *q)
447 kobject_put(&q->kobj);
450 void blk_cleanup_queue(struct request_queue *q)
453 * We know we have process context here, so we can be a little
454 * cautious and ensure that pending block actions on this device
455 * are done before moving on. Going into this function, we should
456 * not have processes doing IO to this device.
458 blk_sync_queue(q);
460 mutex_lock(&q->sysfs_lock);
461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
462 mutex_unlock(&q->sysfs_lock);
464 if (q->elevator)
465 elevator_exit(q->elevator);
467 blk_put_queue(q);
469 EXPORT_SYMBOL(blk_cleanup_queue);
471 static int blk_init_free_list(struct request_queue *q)
473 struct request_list *rl = &q->rq;
475 rl->count[READ] = rl->count[WRITE] = 0;
476 rl->starved[READ] = rl->starved[WRITE] = 0;
477 rl->elvpriv = 0;
478 init_waitqueue_head(&rl->wait[READ]);
479 init_waitqueue_head(&rl->wait[WRITE]);
481 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
482 mempool_free_slab, request_cachep, q->node);
484 if (!rl->rq_pool)
485 return -ENOMEM;
487 return 0;
490 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
492 return blk_alloc_queue_node(gfp_mask, -1);
494 EXPORT_SYMBOL(blk_alloc_queue);
496 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
498 struct request_queue *q;
499 int err;
501 q = kmem_cache_alloc_node(blk_requestq_cachep,
502 gfp_mask | __GFP_ZERO, node_id);
503 if (!q)
504 return NULL;
506 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
507 q->backing_dev_info.unplug_io_data = q;
508 err = bdi_init(&q->backing_dev_info);
509 if (err) {
510 kmem_cache_free(blk_requestq_cachep, q);
511 return NULL;
514 init_timer(&q->unplug_timer);
515 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
516 INIT_LIST_HEAD(&q->timeout_list);
517 INIT_WORK(&q->unplug_work, blk_unplug_work);
519 kobject_init(&q->kobj, &blk_queue_ktype);
521 mutex_init(&q->sysfs_lock);
522 spin_lock_init(&q->__queue_lock);
524 return q;
526 EXPORT_SYMBOL(blk_alloc_queue_node);
529 * blk_init_queue - prepare a request queue for use with a block device
530 * @rfn: The function to be called to process requests that have been
531 * placed on the queue.
532 * @lock: Request queue spin lock
534 * Description:
535 * If a block device wishes to use the standard request handling procedures,
536 * which sorts requests and coalesces adjacent requests, then it must
537 * call blk_init_queue(). The function @rfn will be called when there
538 * are requests on the queue that need to be processed. If the device
539 * supports plugging, then @rfn may not be called immediately when requests
540 * are available on the queue, but may be called at some time later instead.
541 * Plugged queues are generally unplugged when a buffer belonging to one
542 * of the requests on the queue is needed, or due to memory pressure.
544 * @rfn is not required, or even expected, to remove all requests off the
545 * queue, but only as many as it can handle at a time. If it does leave
546 * requests on the queue, it is responsible for arranging that the requests
547 * get dealt with eventually.
549 * The queue spin lock must be held while manipulating the requests on the
550 * request queue; this lock will be taken also from interrupt context, so irq
551 * disabling is needed for it.
553 * Function returns a pointer to the initialized request queue, or %NULL if
554 * it didn't succeed.
556 * Note:
557 * blk_init_queue() must be paired with a blk_cleanup_queue() call
558 * when the block device is deactivated (such as at module unload).
561 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
563 return blk_init_queue_node(rfn, lock, -1);
565 EXPORT_SYMBOL(blk_init_queue);
567 struct request_queue *
568 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
570 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
572 if (!q)
573 return NULL;
575 q->node = node_id;
576 if (blk_init_free_list(q)) {
577 kmem_cache_free(blk_requestq_cachep, q);
578 return NULL;
582 * if caller didn't supply a lock, they get per-queue locking with
583 * our embedded lock
585 if (!lock)
586 lock = &q->__queue_lock;
588 q->request_fn = rfn;
589 q->prep_rq_fn = NULL;
590 q->unplug_fn = generic_unplug_device;
591 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER |
592 1 << QUEUE_FLAG_STACKABLE);
593 q->queue_lock = lock;
595 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK);
597 blk_queue_make_request(q, __make_request);
598 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
600 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
601 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
603 q->sg_reserved_size = INT_MAX;
605 blk_set_cmd_filter_defaults(&q->cmd_filter);
608 * all done
610 if (!elevator_init(q, NULL)) {
611 blk_queue_congestion_threshold(q);
612 return q;
615 blk_put_queue(q);
616 return NULL;
618 EXPORT_SYMBOL(blk_init_queue_node);
620 int blk_get_queue(struct request_queue *q)
622 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
623 kobject_get(&q->kobj);
624 return 0;
627 return 1;
630 static inline void blk_free_request(struct request_queue *q, struct request *rq)
632 if (rq->cmd_flags & REQ_ELVPRIV)
633 elv_put_request(q, rq);
634 mempool_free(rq, q->rq.rq_pool);
637 static struct request *
638 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
640 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
642 if (!rq)
643 return NULL;
645 blk_rq_init(q, rq);
647 rq->cmd_flags = rw | REQ_ALLOCED;
649 if (priv) {
650 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
651 mempool_free(rq, q->rq.rq_pool);
652 return NULL;
654 rq->cmd_flags |= REQ_ELVPRIV;
657 return rq;
661 * ioc_batching returns true if the ioc is a valid batching request and
662 * should be given priority access to a request.
664 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
666 if (!ioc)
667 return 0;
670 * Make sure the process is able to allocate at least 1 request
671 * even if the batch times out, otherwise we could theoretically
672 * lose wakeups.
674 return ioc->nr_batch_requests == q->nr_batching ||
675 (ioc->nr_batch_requests > 0
676 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
680 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
681 * will cause the process to be a "batcher" on all queues in the system. This
682 * is the behaviour we want though - once it gets a wakeup it should be given
683 * a nice run.
685 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
687 if (!ioc || ioc_batching(q, ioc))
688 return;
690 ioc->nr_batch_requests = q->nr_batching;
691 ioc->last_waited = jiffies;
694 static void __freed_request(struct request_queue *q, int rw)
696 struct request_list *rl = &q->rq;
698 if (rl->count[rw] < queue_congestion_off_threshold(q))
699 blk_clear_queue_congested(q, rw);
701 if (rl->count[rw] + 1 <= q->nr_requests) {
702 if (waitqueue_active(&rl->wait[rw]))
703 wake_up(&rl->wait[rw]);
705 blk_clear_queue_full(q, rw);
710 * A request has just been released. Account for it, update the full and
711 * congestion status, wake up any waiters. Called under q->queue_lock.
713 static void freed_request(struct request_queue *q, int rw, int priv)
715 struct request_list *rl = &q->rq;
717 rl->count[rw]--;
718 if (priv)
719 rl->elvpriv--;
721 __freed_request(q, rw);
723 if (unlikely(rl->starved[rw ^ 1]))
724 __freed_request(q, rw ^ 1);
727 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
729 * Get a free request, queue_lock must be held.
730 * Returns NULL on failure, with queue_lock held.
731 * Returns !NULL on success, with queue_lock *not held*.
733 static struct request *get_request(struct request_queue *q, int rw_flags,
734 struct bio *bio, gfp_t gfp_mask)
736 struct request *rq = NULL;
737 struct request_list *rl = &q->rq;
738 struct io_context *ioc = NULL;
739 const int rw = rw_flags & 0x01;
740 int may_queue, priv;
742 may_queue = elv_may_queue(q, rw_flags);
743 if (may_queue == ELV_MQUEUE_NO)
744 goto rq_starved;
746 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
747 if (rl->count[rw]+1 >= q->nr_requests) {
748 ioc = current_io_context(GFP_ATOMIC, q->node);
750 * The queue will fill after this allocation, so set
751 * it as full, and mark this process as "batching".
752 * This process will be allowed to complete a batch of
753 * requests, others will be blocked.
755 if (!blk_queue_full(q, rw)) {
756 ioc_set_batching(q, ioc);
757 blk_set_queue_full(q, rw);
758 } else {
759 if (may_queue != ELV_MQUEUE_MUST
760 && !ioc_batching(q, ioc)) {
762 * The queue is full and the allocating
763 * process is not a "batcher", and not
764 * exempted by the IO scheduler
766 goto out;
770 blk_set_queue_congested(q, rw);
774 * Only allow batching queuers to allocate up to 50% over the defined
775 * limit of requests, otherwise we could have thousands of requests
776 * allocated with any setting of ->nr_requests
778 if (rl->count[rw] >= (3 * q->nr_requests / 2))
779 goto out;
781 rl->count[rw]++;
782 rl->starved[rw] = 0;
784 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
785 if (priv)
786 rl->elvpriv++;
788 spin_unlock_irq(q->queue_lock);
790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
791 if (unlikely(!rq)) {
793 * Allocation failed presumably due to memory. Undo anything
794 * we might have messed up.
796 * Allocating task should really be put onto the front of the
797 * wait queue, but this is pretty rare.
799 spin_lock_irq(q->queue_lock);
800 freed_request(q, rw, priv);
803 * in the very unlikely event that allocation failed and no
804 * requests for this direction was pending, mark us starved
805 * so that freeing of a request in the other direction will
806 * notice us. another possible fix would be to split the
807 * rq mempool into READ and WRITE
809 rq_starved:
810 if (unlikely(rl->count[rw] == 0))
811 rl->starved[rw] = 1;
813 goto out;
817 * ioc may be NULL here, and ioc_batching will be false. That's
818 * OK, if the queue is under the request limit then requests need
819 * not count toward the nr_batch_requests limit. There will always
820 * be some limit enforced by BLK_BATCH_TIME.
822 if (ioc_batching(q, ioc))
823 ioc->nr_batch_requests--;
825 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
826 out:
827 return rq;
831 * No available requests for this queue, unplug the device and wait for some
832 * requests to become available.
834 * Called with q->queue_lock held, and returns with it unlocked.
836 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
837 struct bio *bio)
839 const int rw = rw_flags & 0x01;
840 struct request *rq;
842 rq = get_request(q, rw_flags, bio, GFP_NOIO);
843 while (!rq) {
844 DEFINE_WAIT(wait);
845 struct io_context *ioc;
846 struct request_list *rl = &q->rq;
848 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
849 TASK_UNINTERRUPTIBLE);
851 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
853 __generic_unplug_device(q);
854 spin_unlock_irq(q->queue_lock);
855 io_schedule();
858 * After sleeping, we become a "batching" process and
859 * will be able to allocate at least one request, and
860 * up to a big batch of them for a small period time.
861 * See ioc_batching, ioc_set_batching
863 ioc = current_io_context(GFP_NOIO, q->node);
864 ioc_set_batching(q, ioc);
866 spin_lock_irq(q->queue_lock);
867 finish_wait(&rl->wait[rw], &wait);
869 rq = get_request(q, rw_flags, bio, GFP_NOIO);
872 return rq;
875 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
877 struct request *rq;
879 BUG_ON(rw != READ && rw != WRITE);
881 spin_lock_irq(q->queue_lock);
882 if (gfp_mask & __GFP_WAIT) {
883 rq = get_request_wait(q, rw, NULL);
884 } else {
885 rq = get_request(q, rw, NULL, gfp_mask);
886 if (!rq)
887 spin_unlock_irq(q->queue_lock);
889 /* q->queue_lock is unlocked at this point */
891 return rq;
893 EXPORT_SYMBOL(blk_get_request);
896 * blk_start_queueing - initiate dispatch of requests to device
897 * @q: request queue to kick into gear
899 * This is basically a helper to remove the need to know whether a queue
900 * is plugged or not if someone just wants to initiate dispatch of requests
901 * for this queue. Should be used to start queueing on a device outside
902 * of ->request_fn() context. Also see @blk_run_queue.
904 * The queue lock must be held with interrupts disabled.
906 void blk_start_queueing(struct request_queue *q)
908 if (!blk_queue_plugged(q)) {
909 if (unlikely(blk_queue_stopped(q)))
910 return;
911 q->request_fn(q);
912 } else
913 __generic_unplug_device(q);
915 EXPORT_SYMBOL(blk_start_queueing);
918 * blk_requeue_request - put a request back on queue
919 * @q: request queue where request should be inserted
920 * @rq: request to be inserted
922 * Description:
923 * Drivers often keep queueing requests until the hardware cannot accept
924 * more, when that condition happens we need to put the request back
925 * on the queue. Must be called with queue lock held.
927 void blk_requeue_request(struct request_queue *q, struct request *rq)
929 blk_delete_timer(rq);
930 blk_clear_rq_complete(rq);
931 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
933 if (blk_rq_tagged(rq))
934 blk_queue_end_tag(q, rq);
936 elv_requeue_request(q, rq);
938 EXPORT_SYMBOL(blk_requeue_request);
941 * blk_insert_request - insert a special request into a request queue
942 * @q: request queue where request should be inserted
943 * @rq: request to be inserted
944 * @at_head: insert request at head or tail of queue
945 * @data: private data
947 * Description:
948 * Many block devices need to execute commands asynchronously, so they don't
949 * block the whole kernel from preemption during request execution. This is
950 * accomplished normally by inserting aritficial requests tagged as
951 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
952 * be scheduled for actual execution by the request queue.
954 * We have the option of inserting the head or the tail of the queue.
955 * Typically we use the tail for new ioctls and so forth. We use the head
956 * of the queue for things like a QUEUE_FULL message from a device, or a
957 * host that is unable to accept a particular command.
959 void blk_insert_request(struct request_queue *q, struct request *rq,
960 int at_head, void *data)
962 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
963 unsigned long flags;
966 * tell I/O scheduler that this isn't a regular read/write (ie it
967 * must not attempt merges on this) and that it acts as a soft
968 * barrier
970 rq->cmd_type = REQ_TYPE_SPECIAL;
971 rq->cmd_flags |= REQ_SOFTBARRIER;
973 rq->special = data;
975 spin_lock_irqsave(q->queue_lock, flags);
978 * If command is tagged, release the tag
980 if (blk_rq_tagged(rq))
981 blk_queue_end_tag(q, rq);
983 drive_stat_acct(rq, 1);
984 __elv_add_request(q, rq, where, 0);
985 blk_start_queueing(q);
986 spin_unlock_irqrestore(q->queue_lock, flags);
988 EXPORT_SYMBOL(blk_insert_request);
991 * add-request adds a request to the linked list.
992 * queue lock is held and interrupts disabled, as we muck with the
993 * request queue list.
995 static inline void add_request(struct request_queue *q, struct request *req)
997 drive_stat_acct(req, 1);
1000 * elevator indicated where it wants this request to be
1001 * inserted at elevator_merge time
1003 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1006 static void part_round_stats_single(int cpu, struct hd_struct *part,
1007 unsigned long now)
1009 if (now == part->stamp)
1010 return;
1012 if (part->in_flight) {
1013 __part_stat_add(cpu, part, time_in_queue,
1014 part->in_flight * (now - part->stamp));
1015 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1017 part->stamp = now;
1021 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1022 * @cpu: cpu number for stats access
1023 * @part: target partition
1025 * The average IO queue length and utilisation statistics are maintained
1026 * by observing the current state of the queue length and the amount of
1027 * time it has been in this state for.
1029 * Normally, that accounting is done on IO completion, but that can result
1030 * in more than a second's worth of IO being accounted for within any one
1031 * second, leading to >100% utilisation. To deal with that, we call this
1032 * function to do a round-off before returning the results when reading
1033 * /proc/diskstats. This accounts immediately for all queue usage up to
1034 * the current jiffies and restarts the counters again.
1036 void part_round_stats(int cpu, struct hd_struct *part)
1038 unsigned long now = jiffies;
1040 if (part->partno)
1041 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1042 part_round_stats_single(cpu, part, now);
1044 EXPORT_SYMBOL_GPL(part_round_stats);
1047 * queue lock must be held
1049 void __blk_put_request(struct request_queue *q, struct request *req)
1051 if (unlikely(!q))
1052 return;
1053 if (unlikely(--req->ref_count))
1054 return;
1056 elv_completed_request(q, req);
1059 * Request may not have originated from ll_rw_blk. if not,
1060 * it didn't come out of our reserved rq pools
1062 if (req->cmd_flags & REQ_ALLOCED) {
1063 int rw = rq_data_dir(req);
1064 int priv = req->cmd_flags & REQ_ELVPRIV;
1066 BUG_ON(!list_empty(&req->queuelist));
1067 BUG_ON(!hlist_unhashed(&req->hash));
1069 blk_free_request(q, req);
1070 freed_request(q, rw, priv);
1073 EXPORT_SYMBOL_GPL(__blk_put_request);
1075 void blk_put_request(struct request *req)
1077 unsigned long flags;
1078 struct request_queue *q = req->q;
1080 spin_lock_irqsave(q->queue_lock, flags);
1081 __blk_put_request(q, req);
1082 spin_unlock_irqrestore(q->queue_lock, flags);
1084 EXPORT_SYMBOL(blk_put_request);
1086 void init_request_from_bio(struct request *req, struct bio *bio)
1088 req->cpu = bio->bi_comp_cpu;
1089 req->cmd_type = REQ_TYPE_FS;
1092 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1094 if (bio_rw_ahead(bio))
1095 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
1096 REQ_FAILFAST_DRIVER);
1097 if (bio_failfast_dev(bio))
1098 req->cmd_flags |= REQ_FAILFAST_DEV;
1099 if (bio_failfast_transport(bio))
1100 req->cmd_flags |= REQ_FAILFAST_TRANSPORT;
1101 if (bio_failfast_driver(bio))
1102 req->cmd_flags |= REQ_FAILFAST_DRIVER;
1105 * REQ_BARRIER implies no merging, but lets make it explicit
1107 if (unlikely(bio_discard(bio))) {
1108 req->cmd_flags |= REQ_DISCARD;
1109 if (bio_barrier(bio))
1110 req->cmd_flags |= REQ_SOFTBARRIER;
1111 req->q->prepare_discard_fn(req->q, req);
1112 } else if (unlikely(bio_barrier(bio)))
1113 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1115 if (bio_sync(bio))
1116 req->cmd_flags |= REQ_RW_SYNC;
1117 if (bio_rw_meta(bio))
1118 req->cmd_flags |= REQ_RW_META;
1120 req->errors = 0;
1121 req->hard_sector = req->sector = bio->bi_sector;
1122 req->ioprio = bio_prio(bio);
1123 req->start_time = jiffies;
1124 blk_rq_bio_prep(req->q, req, bio);
1127 static int __make_request(struct request_queue *q, struct bio *bio)
1129 struct request *req;
1130 int el_ret, nr_sectors, barrier, discard, err;
1131 const unsigned short prio = bio_prio(bio);
1132 const int sync = bio_sync(bio);
1133 int rw_flags;
1135 nr_sectors = bio_sectors(bio);
1138 * low level driver can indicate that it wants pages above a
1139 * certain limit bounced to low memory (ie for highmem, or even
1140 * ISA dma in theory)
1142 blk_queue_bounce(q, &bio);
1144 barrier = bio_barrier(bio);
1145 if (unlikely(barrier) && bio_has_data(bio) &&
1146 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1147 err = -EOPNOTSUPP;
1148 goto end_io;
1151 discard = bio_discard(bio);
1152 if (unlikely(discard) && !q->prepare_discard_fn) {
1153 err = -EOPNOTSUPP;
1154 goto end_io;
1157 spin_lock_irq(q->queue_lock);
1159 if (unlikely(barrier) || elv_queue_empty(q))
1160 goto get_rq;
1162 el_ret = elv_merge(q, &req, bio);
1163 switch (el_ret) {
1164 case ELEVATOR_BACK_MERGE:
1165 BUG_ON(!rq_mergeable(req));
1167 if (!ll_back_merge_fn(q, req, bio))
1168 break;
1170 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1172 req->biotail->bi_next = bio;
1173 req->biotail = bio;
1174 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1175 req->ioprio = ioprio_best(req->ioprio, prio);
1176 if (!blk_rq_cpu_valid(req))
1177 req->cpu = bio->bi_comp_cpu;
1178 drive_stat_acct(req, 0);
1179 if (!attempt_back_merge(q, req))
1180 elv_merged_request(q, req, el_ret);
1181 goto out;
1183 case ELEVATOR_FRONT_MERGE:
1184 BUG_ON(!rq_mergeable(req));
1186 if (!ll_front_merge_fn(q, req, bio))
1187 break;
1189 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1191 bio->bi_next = req->bio;
1192 req->bio = bio;
1195 * may not be valid. if the low level driver said
1196 * it didn't need a bounce buffer then it better
1197 * not touch req->buffer either...
1199 req->buffer = bio_data(bio);
1200 req->current_nr_sectors = bio_cur_sectors(bio);
1201 req->hard_cur_sectors = req->current_nr_sectors;
1202 req->sector = req->hard_sector = bio->bi_sector;
1203 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1204 req->ioprio = ioprio_best(req->ioprio, prio);
1205 if (!blk_rq_cpu_valid(req))
1206 req->cpu = bio->bi_comp_cpu;
1207 drive_stat_acct(req, 0);
1208 if (!attempt_front_merge(q, req))
1209 elv_merged_request(q, req, el_ret);
1210 goto out;
1212 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1213 default:
1217 get_rq:
1219 * This sync check and mask will be re-done in init_request_from_bio(),
1220 * but we need to set it earlier to expose the sync flag to the
1221 * rq allocator and io schedulers.
1223 rw_flags = bio_data_dir(bio);
1224 if (sync)
1225 rw_flags |= REQ_RW_SYNC;
1228 * Grab a free request. This is might sleep but can not fail.
1229 * Returns with the queue unlocked.
1231 req = get_request_wait(q, rw_flags, bio);
1234 * After dropping the lock and possibly sleeping here, our request
1235 * may now be mergeable after it had proven unmergeable (above).
1236 * We don't worry about that case for efficiency. It won't happen
1237 * often, and the elevators are able to handle it.
1239 init_request_from_bio(req, bio);
1241 spin_lock_irq(q->queue_lock);
1242 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1243 bio_flagged(bio, BIO_CPU_AFFINE))
1244 req->cpu = blk_cpu_to_group(smp_processor_id());
1245 if (elv_queue_empty(q))
1246 blk_plug_device(q);
1247 add_request(q, req);
1248 out:
1249 if (sync)
1250 __generic_unplug_device(q);
1251 spin_unlock_irq(q->queue_lock);
1252 return 0;
1254 end_io:
1255 bio_endio(bio, err);
1256 return 0;
1260 * If bio->bi_dev is a partition, remap the location
1262 static inline void blk_partition_remap(struct bio *bio)
1264 struct block_device *bdev = bio->bi_bdev;
1266 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1267 struct hd_struct *p = bdev->bd_part;
1269 bio->bi_sector += p->start_sect;
1270 bio->bi_bdev = bdev->bd_contains;
1272 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1273 bdev->bd_dev, bio->bi_sector,
1274 bio->bi_sector - p->start_sect);
1278 static void handle_bad_sector(struct bio *bio)
1280 char b[BDEVNAME_SIZE];
1282 printk(KERN_INFO "attempt to access beyond end of device\n");
1283 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1284 bdevname(bio->bi_bdev, b),
1285 bio->bi_rw,
1286 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1287 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1289 set_bit(BIO_EOF, &bio->bi_flags);
1292 #ifdef CONFIG_FAIL_MAKE_REQUEST
1294 static DECLARE_FAULT_ATTR(fail_make_request);
1296 static int __init setup_fail_make_request(char *str)
1298 return setup_fault_attr(&fail_make_request, str);
1300 __setup("fail_make_request=", setup_fail_make_request);
1302 static int should_fail_request(struct bio *bio)
1304 struct hd_struct *part = bio->bi_bdev->bd_part;
1306 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1307 return should_fail(&fail_make_request, bio->bi_size);
1309 return 0;
1312 static int __init fail_make_request_debugfs(void)
1314 return init_fault_attr_dentries(&fail_make_request,
1315 "fail_make_request");
1318 late_initcall(fail_make_request_debugfs);
1320 #else /* CONFIG_FAIL_MAKE_REQUEST */
1322 static inline int should_fail_request(struct bio *bio)
1324 return 0;
1327 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1330 * Check whether this bio extends beyond the end of the device.
1332 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1334 sector_t maxsector;
1336 if (!nr_sectors)
1337 return 0;
1339 /* Test device or partition size, when known. */
1340 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1341 if (maxsector) {
1342 sector_t sector = bio->bi_sector;
1344 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1346 * This may well happen - the kernel calls bread()
1347 * without checking the size of the device, e.g., when
1348 * mounting a device.
1350 handle_bad_sector(bio);
1351 return 1;
1355 return 0;
1359 * generic_make_request - hand a buffer to its device driver for I/O
1360 * @bio: The bio describing the location in memory and on the device.
1362 * generic_make_request() is used to make I/O requests of block
1363 * devices. It is passed a &struct bio, which describes the I/O that needs
1364 * to be done.
1366 * generic_make_request() does not return any status. The
1367 * success/failure status of the request, along with notification of
1368 * completion, is delivered asynchronously through the bio->bi_end_io
1369 * function described (one day) else where.
1371 * The caller of generic_make_request must make sure that bi_io_vec
1372 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1373 * set to describe the device address, and the
1374 * bi_end_io and optionally bi_private are set to describe how
1375 * completion notification should be signaled.
1377 * generic_make_request and the drivers it calls may use bi_next if this
1378 * bio happens to be merged with someone else, and may change bi_dev and
1379 * bi_sector for remaps as it sees fit. So the values of these fields
1380 * should NOT be depended on after the call to generic_make_request.
1382 static inline void __generic_make_request(struct bio *bio)
1384 struct request_queue *q;
1385 sector_t old_sector;
1386 int ret, nr_sectors = bio_sectors(bio);
1387 dev_t old_dev;
1388 int err = -EIO;
1390 might_sleep();
1392 if (bio_check_eod(bio, nr_sectors))
1393 goto end_io;
1396 * Resolve the mapping until finished. (drivers are
1397 * still free to implement/resolve their own stacking
1398 * by explicitly returning 0)
1400 * NOTE: we don't repeat the blk_size check for each new device.
1401 * Stacking drivers are expected to know what they are doing.
1403 old_sector = -1;
1404 old_dev = 0;
1405 do {
1406 char b[BDEVNAME_SIZE];
1408 q = bdev_get_queue(bio->bi_bdev);
1409 if (!q) {
1410 printk(KERN_ERR
1411 "generic_make_request: Trying to access "
1412 "nonexistent block-device %s (%Lu)\n",
1413 bdevname(bio->bi_bdev, b),
1414 (long long) bio->bi_sector);
1415 end_io:
1416 bio_endio(bio, err);
1417 break;
1420 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1421 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1422 bdevname(bio->bi_bdev, b),
1423 bio_sectors(bio),
1424 q->max_hw_sectors);
1425 goto end_io;
1428 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1429 goto end_io;
1431 if (should_fail_request(bio))
1432 goto end_io;
1435 * If this device has partitions, remap block n
1436 * of partition p to block n+start(p) of the disk.
1438 blk_partition_remap(bio);
1440 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1441 goto end_io;
1443 if (old_sector != -1)
1444 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1445 old_sector);
1447 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1449 old_sector = bio->bi_sector;
1450 old_dev = bio->bi_bdev->bd_dev;
1452 if (bio_check_eod(bio, nr_sectors))
1453 goto end_io;
1454 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1455 (bio_discard(bio) && !q->prepare_discard_fn)) {
1456 err = -EOPNOTSUPP;
1457 goto end_io;
1460 ret = q->make_request_fn(q, bio);
1461 } while (ret);
1465 * We only want one ->make_request_fn to be active at a time,
1466 * else stack usage with stacked devices could be a problem.
1467 * So use current->bio_{list,tail} to keep a list of requests
1468 * submited by a make_request_fn function.
1469 * current->bio_tail is also used as a flag to say if
1470 * generic_make_request is currently active in this task or not.
1471 * If it is NULL, then no make_request is active. If it is non-NULL,
1472 * then a make_request is active, and new requests should be added
1473 * at the tail
1475 void generic_make_request(struct bio *bio)
1477 if (current->bio_tail) {
1478 /* make_request is active */
1479 *(current->bio_tail) = bio;
1480 bio->bi_next = NULL;
1481 current->bio_tail = &bio->bi_next;
1482 return;
1484 /* following loop may be a bit non-obvious, and so deserves some
1485 * explanation.
1486 * Before entering the loop, bio->bi_next is NULL (as all callers
1487 * ensure that) so we have a list with a single bio.
1488 * We pretend that we have just taken it off a longer list, so
1489 * we assign bio_list to the next (which is NULL) and bio_tail
1490 * to &bio_list, thus initialising the bio_list of new bios to be
1491 * added. __generic_make_request may indeed add some more bios
1492 * through a recursive call to generic_make_request. If it
1493 * did, we find a non-NULL value in bio_list and re-enter the loop
1494 * from the top. In this case we really did just take the bio
1495 * of the top of the list (no pretending) and so fixup bio_list and
1496 * bio_tail or bi_next, and call into __generic_make_request again.
1498 * The loop was structured like this to make only one call to
1499 * __generic_make_request (which is important as it is large and
1500 * inlined) and to keep the structure simple.
1502 BUG_ON(bio->bi_next);
1503 do {
1504 current->bio_list = bio->bi_next;
1505 if (bio->bi_next == NULL)
1506 current->bio_tail = &current->bio_list;
1507 else
1508 bio->bi_next = NULL;
1509 __generic_make_request(bio);
1510 bio = current->bio_list;
1511 } while (bio);
1512 current->bio_tail = NULL; /* deactivate */
1514 EXPORT_SYMBOL(generic_make_request);
1517 * submit_bio - submit a bio to the block device layer for I/O
1518 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1519 * @bio: The &struct bio which describes the I/O
1521 * submit_bio() is very similar in purpose to generic_make_request(), and
1522 * uses that function to do most of the work. Both are fairly rough
1523 * interfaces; @bio must be presetup and ready for I/O.
1526 void submit_bio(int rw, struct bio *bio)
1528 int count = bio_sectors(bio);
1530 bio->bi_rw |= rw;
1533 * If it's a regular read/write or a barrier with data attached,
1534 * go through the normal accounting stuff before submission.
1536 if (bio_has_data(bio)) {
1537 if (rw & WRITE) {
1538 count_vm_events(PGPGOUT, count);
1539 } else {
1540 task_io_account_read(bio->bi_size);
1541 count_vm_events(PGPGIN, count);
1544 if (unlikely(block_dump)) {
1545 char b[BDEVNAME_SIZE];
1546 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1547 current->comm, task_pid_nr(current),
1548 (rw & WRITE) ? "WRITE" : "READ",
1549 (unsigned long long)bio->bi_sector,
1550 bdevname(bio->bi_bdev, b));
1554 generic_make_request(bio);
1556 EXPORT_SYMBOL(submit_bio);
1559 * blk_rq_check_limits - Helper function to check a request for the queue limit
1560 * @q: the queue
1561 * @rq: the request being checked
1563 * Description:
1564 * @rq may have been made based on weaker limitations of upper-level queues
1565 * in request stacking drivers, and it may violate the limitation of @q.
1566 * Since the block layer and the underlying device driver trust @rq
1567 * after it is inserted to @q, it should be checked against @q before
1568 * the insertion using this generic function.
1570 * This function should also be useful for request stacking drivers
1571 * in some cases below, so export this fuction.
1572 * Request stacking drivers like request-based dm may change the queue
1573 * limits while requests are in the queue (e.g. dm's table swapping).
1574 * Such request stacking drivers should check those requests agaist
1575 * the new queue limits again when they dispatch those requests,
1576 * although such checkings are also done against the old queue limits
1577 * when submitting requests.
1579 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1581 if (rq->nr_sectors > q->max_sectors ||
1582 rq->data_len > q->max_hw_sectors << 9) {
1583 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1584 return -EIO;
1588 * queue's settings related to segment counting like q->bounce_pfn
1589 * may differ from that of other stacking queues.
1590 * Recalculate it to check the request correctly on this queue's
1591 * limitation.
1593 blk_recalc_rq_segments(rq);
1594 if (rq->nr_phys_segments > q->max_phys_segments ||
1595 rq->nr_phys_segments > q->max_hw_segments) {
1596 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1597 return -EIO;
1600 return 0;
1602 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1605 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1606 * @q: the queue to submit the request
1607 * @rq: the request being queued
1609 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1611 unsigned long flags;
1613 if (blk_rq_check_limits(q, rq))
1614 return -EIO;
1616 #ifdef CONFIG_FAIL_MAKE_REQUEST
1617 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1618 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1619 return -EIO;
1620 #endif
1622 spin_lock_irqsave(q->queue_lock, flags);
1625 * Submitting request must be dequeued before calling this function
1626 * because it will be linked to another request_queue
1628 BUG_ON(blk_queued_rq(rq));
1630 drive_stat_acct(rq, 1);
1631 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1633 spin_unlock_irqrestore(q->queue_lock, flags);
1635 return 0;
1637 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1640 * blkdev_dequeue_request - dequeue request and start timeout timer
1641 * @req: request to dequeue
1643 * Dequeue @req and start timeout timer on it. This hands off the
1644 * request to the driver.
1646 * Block internal functions which don't want to start timer should
1647 * call elv_dequeue_request().
1649 void blkdev_dequeue_request(struct request *req)
1651 elv_dequeue_request(req->q, req);
1654 * We are now handing the request to the hardware, add the
1655 * timeout handler.
1657 blk_add_timer(req);
1659 EXPORT_SYMBOL(blkdev_dequeue_request);
1662 * __end_that_request_first - end I/O on a request
1663 * @req: the request being processed
1664 * @error: %0 for success, < %0 for error
1665 * @nr_bytes: number of bytes to complete
1667 * Description:
1668 * Ends I/O on a number of bytes attached to @req, and sets it up
1669 * for the next range of segments (if any) in the cluster.
1671 * Return:
1672 * %0 - we are done with this request, call end_that_request_last()
1673 * %1 - still buffers pending for this request
1675 static int __end_that_request_first(struct request *req, int error,
1676 int nr_bytes)
1678 int total_bytes, bio_nbytes, next_idx = 0;
1679 struct bio *bio;
1681 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1684 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1685 * sense key with us all the way through
1687 if (!blk_pc_request(req))
1688 req->errors = 0;
1690 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1691 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1692 req->rq_disk ? req->rq_disk->disk_name : "?",
1693 (unsigned long long)req->sector);
1696 if (blk_fs_request(req) && req->rq_disk) {
1697 const int rw = rq_data_dir(req);
1698 struct hd_struct *part;
1699 int cpu;
1701 cpu = part_stat_lock();
1702 part = disk_map_sector_rcu(req->rq_disk, req->sector);
1703 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1704 part_stat_unlock();
1707 total_bytes = bio_nbytes = 0;
1708 while ((bio = req->bio) != NULL) {
1709 int nbytes;
1712 * For an empty barrier request, the low level driver must
1713 * store a potential error location in ->sector. We pass
1714 * that back up in ->bi_sector.
1716 if (blk_empty_barrier(req))
1717 bio->bi_sector = req->sector;
1719 if (nr_bytes >= bio->bi_size) {
1720 req->bio = bio->bi_next;
1721 nbytes = bio->bi_size;
1722 req_bio_endio(req, bio, nbytes, error);
1723 next_idx = 0;
1724 bio_nbytes = 0;
1725 } else {
1726 int idx = bio->bi_idx + next_idx;
1728 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1729 blk_dump_rq_flags(req, "__end_that");
1730 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1731 __func__, bio->bi_idx, bio->bi_vcnt);
1732 break;
1735 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1736 BIO_BUG_ON(nbytes > bio->bi_size);
1739 * not a complete bvec done
1741 if (unlikely(nbytes > nr_bytes)) {
1742 bio_nbytes += nr_bytes;
1743 total_bytes += nr_bytes;
1744 break;
1748 * advance to the next vector
1750 next_idx++;
1751 bio_nbytes += nbytes;
1754 total_bytes += nbytes;
1755 nr_bytes -= nbytes;
1757 bio = req->bio;
1758 if (bio) {
1760 * end more in this run, or just return 'not-done'
1762 if (unlikely(nr_bytes <= 0))
1763 break;
1768 * completely done
1770 if (!req->bio)
1771 return 0;
1774 * if the request wasn't completed, update state
1776 if (bio_nbytes) {
1777 req_bio_endio(req, bio, bio_nbytes, error);
1778 bio->bi_idx += next_idx;
1779 bio_iovec(bio)->bv_offset += nr_bytes;
1780 bio_iovec(bio)->bv_len -= nr_bytes;
1783 blk_recalc_rq_sectors(req, total_bytes >> 9);
1784 blk_recalc_rq_segments(req);
1785 return 1;
1789 * queue lock must be held
1791 static void end_that_request_last(struct request *req, int error)
1793 struct gendisk *disk = req->rq_disk;
1795 if (blk_rq_tagged(req))
1796 blk_queue_end_tag(req->q, req);
1798 if (blk_queued_rq(req))
1799 elv_dequeue_request(req->q, req);
1801 if (unlikely(laptop_mode) && blk_fs_request(req))
1802 laptop_io_completion();
1804 blk_delete_timer(req);
1807 * Account IO completion. bar_rq isn't accounted as a normal
1808 * IO on queueing nor completion. Accounting the containing
1809 * request is enough.
1811 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1812 unsigned long duration = jiffies - req->start_time;
1813 const int rw = rq_data_dir(req);
1814 struct hd_struct *part;
1815 int cpu;
1817 cpu = part_stat_lock();
1818 part = disk_map_sector_rcu(disk, req->sector);
1820 part_stat_inc(cpu, part, ios[rw]);
1821 part_stat_add(cpu, part, ticks[rw], duration);
1822 part_round_stats(cpu, part);
1823 part_dec_in_flight(part);
1825 part_stat_unlock();
1828 if (req->end_io)
1829 req->end_io(req, error);
1830 else {
1831 if (blk_bidi_rq(req))
1832 __blk_put_request(req->next_rq->q, req->next_rq);
1834 __blk_put_request(req->q, req);
1839 * blk_rq_bytes - Returns bytes left to complete in the entire request
1840 * @rq: the request being processed
1842 unsigned int blk_rq_bytes(struct request *rq)
1844 if (blk_fs_request(rq))
1845 return rq->hard_nr_sectors << 9;
1847 return rq->data_len;
1849 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1852 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1853 * @rq: the request being processed
1855 unsigned int blk_rq_cur_bytes(struct request *rq)
1857 if (blk_fs_request(rq))
1858 return rq->current_nr_sectors << 9;
1860 if (rq->bio)
1861 return rq->bio->bi_size;
1863 return rq->data_len;
1865 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1868 * end_request - end I/O on the current segment of the request
1869 * @req: the request being processed
1870 * @uptodate: error value or %0/%1 uptodate flag
1872 * Description:
1873 * Ends I/O on the current segment of a request. If that is the only
1874 * remaining segment, the request is also completed and freed.
1876 * This is a remnant of how older block drivers handled I/O completions.
1877 * Modern drivers typically end I/O on the full request in one go, unless
1878 * they have a residual value to account for. For that case this function
1879 * isn't really useful, unless the residual just happens to be the
1880 * full current segment. In other words, don't use this function in new
1881 * code. Use blk_end_request() or __blk_end_request() to end a request.
1883 void end_request(struct request *req, int uptodate)
1885 int error = 0;
1887 if (uptodate <= 0)
1888 error = uptodate ? uptodate : -EIO;
1890 __blk_end_request(req, error, req->hard_cur_sectors << 9);
1892 EXPORT_SYMBOL(end_request);
1894 static int end_that_request_data(struct request *rq, int error,
1895 unsigned int nr_bytes, unsigned int bidi_bytes)
1897 if (rq->bio) {
1898 if (__end_that_request_first(rq, error, nr_bytes))
1899 return 1;
1901 /* Bidi request must be completed as a whole */
1902 if (blk_bidi_rq(rq) &&
1903 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1904 return 1;
1907 return 0;
1911 * blk_end_io - Generic end_io function to complete a request.
1912 * @rq: the request being processed
1913 * @error: %0 for success, < %0 for error
1914 * @nr_bytes: number of bytes to complete @rq
1915 * @bidi_bytes: number of bytes to complete @rq->next_rq
1916 * @drv_callback: function called between completion of bios in the request
1917 * and completion of the request.
1918 * If the callback returns non %0, this helper returns without
1919 * completion of the request.
1921 * Description:
1922 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1923 * If @rq has leftover, sets it up for the next range of segments.
1925 * Return:
1926 * %0 - we are done with this request
1927 * %1 - this request is not freed yet, it still has pending buffers.
1929 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1930 unsigned int bidi_bytes,
1931 int (drv_callback)(struct request *))
1933 struct request_queue *q = rq->q;
1934 unsigned long flags = 0UL;
1936 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1937 return 1;
1939 /* Special feature for tricky drivers */
1940 if (drv_callback && drv_callback(rq))
1941 return 1;
1943 add_disk_randomness(rq->rq_disk);
1945 spin_lock_irqsave(q->queue_lock, flags);
1946 end_that_request_last(rq, error);
1947 spin_unlock_irqrestore(q->queue_lock, flags);
1949 return 0;
1953 * blk_end_request - Helper function for drivers to complete the request.
1954 * @rq: the request being processed
1955 * @error: %0 for success, < %0 for error
1956 * @nr_bytes: number of bytes to complete
1958 * Description:
1959 * Ends I/O on a number of bytes attached to @rq.
1960 * If @rq has leftover, sets it up for the next range of segments.
1962 * Return:
1963 * %0 - we are done with this request
1964 * %1 - still buffers pending for this request
1966 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1968 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1970 EXPORT_SYMBOL_GPL(blk_end_request);
1973 * __blk_end_request - Helper function for drivers to complete the request.
1974 * @rq: the request being processed
1975 * @error: %0 for success, < %0 for error
1976 * @nr_bytes: number of bytes to complete
1978 * Description:
1979 * Must be called with queue lock held unlike blk_end_request().
1981 * Return:
1982 * %0 - we are done with this request
1983 * %1 - still buffers pending for this request
1985 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1987 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1988 return 1;
1990 add_disk_randomness(rq->rq_disk);
1992 end_that_request_last(rq, error);
1994 return 0;
1996 EXPORT_SYMBOL_GPL(__blk_end_request);
1999 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
2000 * @rq: the bidi request being processed
2001 * @error: %0 for success, < %0 for error
2002 * @nr_bytes: number of bytes to complete @rq
2003 * @bidi_bytes: number of bytes to complete @rq->next_rq
2005 * Description:
2006 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2008 * Return:
2009 * %0 - we are done with this request
2010 * %1 - still buffers pending for this request
2012 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
2013 unsigned int bidi_bytes)
2015 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
2017 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
2020 * blk_update_request - Special helper function for request stacking drivers
2021 * @rq: the request being processed
2022 * @error: %0 for success, < %0 for error
2023 * @nr_bytes: number of bytes to complete @rq
2025 * Description:
2026 * Ends I/O on a number of bytes attached to @rq, but doesn't complete
2027 * the request structure even if @rq doesn't have leftover.
2028 * If @rq has leftover, sets it up for the next range of segments.
2030 * This special helper function is only for request stacking drivers
2031 * (e.g. request-based dm) so that they can handle partial completion.
2032 * Actual device drivers should use blk_end_request instead.
2034 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
2036 if (!end_that_request_data(rq, error, nr_bytes, 0)) {
2038 * These members are not updated in end_that_request_data()
2039 * when all bios are completed.
2040 * Update them so that the request stacking driver can find
2041 * how many bytes remain in the request later.
2043 rq->nr_sectors = rq->hard_nr_sectors = 0;
2044 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2047 EXPORT_SYMBOL_GPL(blk_update_request);
2050 * blk_end_request_callback - Special helper function for tricky drivers
2051 * @rq: the request being processed
2052 * @error: %0 for success, < %0 for error
2053 * @nr_bytes: number of bytes to complete
2054 * @drv_callback: function called between completion of bios in the request
2055 * and completion of the request.
2056 * If the callback returns non %0, this helper returns without
2057 * completion of the request.
2059 * Description:
2060 * Ends I/O on a number of bytes attached to @rq.
2061 * If @rq has leftover, sets it up for the next range of segments.
2063 * This special helper function is used only for existing tricky drivers.
2064 * (e.g. cdrom_newpc_intr() of ide-cd)
2065 * This interface will be removed when such drivers are rewritten.
2066 * Don't use this interface in other places anymore.
2068 * Return:
2069 * %0 - we are done with this request
2070 * %1 - this request is not freed yet.
2071 * this request still has pending buffers or
2072 * the driver doesn't want to finish this request yet.
2074 int blk_end_request_callback(struct request *rq, int error,
2075 unsigned int nr_bytes,
2076 int (drv_callback)(struct request *))
2078 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2080 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2082 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2083 struct bio *bio)
2085 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2086 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2087 rq->cmd_flags |= (bio->bi_rw & 3);
2089 if (bio_has_data(bio)) {
2090 rq->nr_phys_segments = bio_phys_segments(q, bio);
2091 rq->buffer = bio_data(bio);
2093 rq->current_nr_sectors = bio_cur_sectors(bio);
2094 rq->hard_cur_sectors = rq->current_nr_sectors;
2095 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2096 rq->data_len = bio->bi_size;
2098 rq->bio = rq->biotail = bio;
2100 if (bio->bi_bdev)
2101 rq->rq_disk = bio->bi_bdev->bd_disk;
2105 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2106 * @q : the queue of the device being checked
2108 * Description:
2109 * Check if underlying low-level drivers of a device are busy.
2110 * If the drivers want to export their busy state, they must set own
2111 * exporting function using blk_queue_lld_busy() first.
2113 * Basically, this function is used only by request stacking drivers
2114 * to stop dispatching requests to underlying devices when underlying
2115 * devices are busy. This behavior helps more I/O merging on the queue
2116 * of the request stacking driver and prevents I/O throughput regression
2117 * on burst I/O load.
2119 * Return:
2120 * 0 - Not busy (The request stacking driver should dispatch request)
2121 * 1 - Busy (The request stacking driver should stop dispatching request)
2123 int blk_lld_busy(struct request_queue *q)
2125 if (q->lld_busy_fn)
2126 return q->lld_busy_fn(q);
2128 return 0;
2130 EXPORT_SYMBOL_GPL(blk_lld_busy);
2132 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2134 return queue_work(kblockd_workqueue, work);
2136 EXPORT_SYMBOL(kblockd_schedule_work);
2138 void kblockd_flush_work(struct work_struct *work)
2140 cancel_work_sync(work);
2142 EXPORT_SYMBOL(kblockd_flush_work);
2144 int __init blk_dev_init(void)
2146 kblockd_workqueue = create_workqueue("kblockd");
2147 if (!kblockd_workqueue)
2148 panic("Failed to create kblockd\n");
2150 request_cachep = kmem_cache_create("blkdev_requests",
2151 sizeof(struct request), 0, SLAB_PANIC, NULL);
2153 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2154 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2156 return 0;