uml: const and other tidying
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / um / kernel / process.c
blob91bd68eaba2000ed8a1ef4553d0a2a5a8a09382f
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Copyright 2003 PathScale, Inc.
4 * Licensed under the GPL
5 */
7 #include "linux/stddef.h"
8 #include "linux/err.h"
9 #include "linux/hardirq.h"
10 #include "linux/mm.h"
11 #include "linux/personality.h"
12 #include "linux/proc_fs.h"
13 #include "linux/ptrace.h"
14 #include "linux/random.h"
15 #include "linux/sched.h"
16 #include "linux/tick.h"
17 #include "linux/threads.h"
18 #include "asm/pgtable.h"
19 #include "asm/uaccess.h"
20 #include "as-layout.h"
21 #include "kern_util.h"
22 #include "os.h"
23 #include "skas.h"
24 #include "tlb.h"
27 * This is a per-cpu array. A processor only modifies its entry and it only
28 * cares about its entry, so it's OK if another processor is modifying its
29 * entry.
31 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
33 static inline int external_pid(struct task_struct *task)
35 /* FIXME: Need to look up userspace_pid by cpu */
36 return userspace_pid[0];
39 int pid_to_processor_id(int pid)
41 int i;
43 for(i = 0; i < ncpus; i++) {
44 if (cpu_tasks[i].pid == pid)
45 return i;
47 return -1;
50 void free_stack(unsigned long stack, int order)
52 free_pages(stack, order);
55 unsigned long alloc_stack(int order, int atomic)
57 unsigned long page;
58 gfp_t flags = GFP_KERNEL;
60 if (atomic)
61 flags = GFP_ATOMIC;
62 page = __get_free_pages(flags, order);
64 return page;
67 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
69 int pid;
71 current->thread.request.u.thread.proc = fn;
72 current->thread.request.u.thread.arg = arg;
73 pid = do_fork(CLONE_VM | CLONE_UNTRACED | flags, 0,
74 &current->thread.regs, 0, NULL, NULL);
75 return pid;
78 static inline void set_current(struct task_struct *task)
80 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
81 { external_pid(task), task });
84 extern void arch_switch_to(struct task_struct *from, struct task_struct *to);
86 void *_switch_to(void *prev, void *next, void *last)
88 struct task_struct *from = prev;
89 struct task_struct *to= next;
91 to->thread.prev_sched = from;
92 set_current(to);
94 do {
95 current->thread.saved_task = NULL;
97 switch_threads(&from->thread.switch_buf,
98 &to->thread.switch_buf);
100 arch_switch_to(current->thread.prev_sched, current);
102 if (current->thread.saved_task)
103 show_regs(&(current->thread.regs));
104 next= current->thread.saved_task;
105 prev= current;
106 } while(current->thread.saved_task);
108 return current->thread.prev_sched;
112 void interrupt_end(void)
114 if (need_resched())
115 schedule();
116 if (test_tsk_thread_flag(current, TIF_SIGPENDING))
117 do_signal();
120 void exit_thread(void)
124 void *get_current(void)
126 return current;
129 extern void schedule_tail(struct task_struct *prev);
132 * This is called magically, by its address being stuffed in a jmp_buf
133 * and being longjmp-d to.
135 void new_thread_handler(void)
137 int (*fn)(void *), n;
138 void *arg;
140 if (current->thread.prev_sched != NULL)
141 schedule_tail(current->thread.prev_sched);
142 current->thread.prev_sched = NULL;
144 fn = current->thread.request.u.thread.proc;
145 arg = current->thread.request.u.thread.arg;
148 * The return value is 1 if the kernel thread execs a process,
149 * 0 if it just exits
151 n = run_kernel_thread(fn, arg, &current->thread.exec_buf);
152 if (n == 1) {
153 /* Handle any immediate reschedules or signals */
154 interrupt_end();
155 userspace(&current->thread.regs.regs);
157 else do_exit(0);
160 /* Called magically, see new_thread_handler above */
161 void fork_handler(void)
163 force_flush_all();
164 if (current->thread.prev_sched == NULL)
165 panic("blech");
167 schedule_tail(current->thread.prev_sched);
170 * XXX: if interrupt_end() calls schedule, this call to
171 * arch_switch_to isn't needed. We could want to apply this to
172 * improve performance. -bb
174 arch_switch_to(current->thread.prev_sched, current);
176 current->thread.prev_sched = NULL;
178 /* Handle any immediate reschedules or signals */
179 interrupt_end();
181 userspace(&current->thread.regs.regs);
184 int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
185 unsigned long stack_top, struct task_struct * p,
186 struct pt_regs *regs)
188 void (*handler)(void);
189 int ret = 0;
191 p->thread = (struct thread_struct) INIT_THREAD;
193 if (current->thread.forking) {
194 memcpy(&p->thread.regs.regs, &regs->regs,
195 sizeof(p->thread.regs.regs));
196 REGS_SET_SYSCALL_RETURN(p->thread.regs.regs.gp, 0);
197 if (sp != 0)
198 REGS_SP(p->thread.regs.regs.gp) = sp;
200 handler = fork_handler;
202 arch_copy_thread(&current->thread.arch, &p->thread.arch);
204 else {
205 init_thread_registers(&p->thread.regs.regs);
206 p->thread.request.u.thread = current->thread.request.u.thread;
207 handler = new_thread_handler;
210 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
212 if (current->thread.forking) {
213 clear_flushed_tls(p);
216 * Set a new TLS for the child thread?
218 if (clone_flags & CLONE_SETTLS)
219 ret = arch_copy_tls(p);
222 return ret;
225 void initial_thread_cb(void (*proc)(void *), void *arg)
227 int save_kmalloc_ok = kmalloc_ok;
229 kmalloc_ok = 0;
230 initial_thread_cb_skas(proc, arg);
231 kmalloc_ok = save_kmalloc_ok;
234 void default_idle(void)
236 unsigned long long nsecs;
238 while(1) {
239 /* endless idle loop with no priority at all */
242 * although we are an idle CPU, we do not want to
243 * get into the scheduler unnecessarily.
245 if (need_resched())
246 schedule();
248 tick_nohz_stop_sched_tick();
249 nsecs = disable_timer();
250 idle_sleep(nsecs);
251 tick_nohz_restart_sched_tick();
255 void cpu_idle(void)
257 cpu_tasks[current_thread->cpu].pid = os_getpid();
258 default_idle();
261 void *um_virt_to_phys(struct task_struct *task, unsigned long addr,
262 pte_t *pte_out)
264 pgd_t *pgd;
265 pud_t *pud;
266 pmd_t *pmd;
267 pte_t *pte;
268 pte_t ptent;
270 if (task->mm == NULL)
271 return ERR_PTR(-EINVAL);
272 pgd = pgd_offset(task->mm, addr);
273 if (!pgd_present(*pgd))
274 return ERR_PTR(-EINVAL);
276 pud = pud_offset(pgd, addr);
277 if (!pud_present(*pud))
278 return ERR_PTR(-EINVAL);
280 pmd = pmd_offset(pud, addr);
281 if (!pmd_present(*pmd))
282 return ERR_PTR(-EINVAL);
284 pte = pte_offset_kernel(pmd, addr);
285 ptent = *pte;
286 if (!pte_present(ptent))
287 return ERR_PTR(-EINVAL);
289 if (pte_out != NULL)
290 *pte_out = ptent;
291 return (void *) (pte_val(ptent) & PAGE_MASK) + (addr & ~PAGE_MASK);
294 char *current_cmd(void)
296 #if defined(CONFIG_SMP) || defined(CONFIG_HIGHMEM)
297 return "(Unknown)";
298 #else
299 void *addr = um_virt_to_phys(current, current->mm->arg_start, NULL);
300 return IS_ERR(addr) ? "(Unknown)": __va((unsigned long) addr);
301 #endif
304 void dump_thread(struct pt_regs *regs, struct user *u)
308 int __cant_sleep(void) {
309 return in_atomic() || irqs_disabled() || in_interrupt();
310 /* Is in_interrupt() really needed? */
313 int user_context(unsigned long sp)
315 unsigned long stack;
317 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
318 return stack != (unsigned long) current_thread;
321 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
323 void do_uml_exitcalls(void)
325 exitcall_t *call;
327 call = &__uml_exitcall_end;
328 while (--call >= &__uml_exitcall_begin)
329 (*call)();
332 char *uml_strdup(const char *string)
334 return kstrdup(string, GFP_KERNEL);
337 int copy_to_user_proc(void __user *to, void *from, int size)
339 return copy_to_user(to, from, size);
342 int copy_from_user_proc(void *to, void __user *from, int size)
344 return copy_from_user(to, from, size);
347 int clear_user_proc(void __user *buf, int size)
349 return clear_user(buf, size);
352 int strlen_user_proc(char __user *str)
354 return strlen_user(str);
357 int smp_sigio_handler(void)
359 #ifdef CONFIG_SMP
360 int cpu = current_thread->cpu;
361 IPI_handler(cpu);
362 if (cpu != 0)
363 return 1;
364 #endif
365 return 0;
368 int cpu(void)
370 return current_thread->cpu;
373 static atomic_t using_sysemu = ATOMIC_INIT(0);
374 int sysemu_supported;
376 void set_using_sysemu(int value)
378 if (value > sysemu_supported)
379 return;
380 atomic_set(&using_sysemu, value);
383 int get_using_sysemu(void)
385 return atomic_read(&using_sysemu);
388 static int proc_read_sysemu(char *buf, char **start, off_t offset, int size,int *eof, void *data)
390 if (snprintf(buf, size, "%d\n", get_using_sysemu()) < size)
391 /* No overflow */
392 *eof = 1;
394 return strlen(buf);
397 static int proc_write_sysemu(struct file *file,const char __user *buf, unsigned long count,void *data)
399 char tmp[2];
401 if (copy_from_user(tmp, buf, 1))
402 return -EFAULT;
404 if (tmp[0] >= '0' && tmp[0] <= '2')
405 set_using_sysemu(tmp[0] - '0');
406 /* We use the first char, but pretend to write everything */
407 return count;
410 int __init make_proc_sysemu(void)
412 struct proc_dir_entry *ent;
413 if (!sysemu_supported)
414 return 0;
416 ent = create_proc_entry("sysemu", 0600, &proc_root);
418 if (ent == NULL)
420 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
421 return 0;
424 ent->read_proc = proc_read_sysemu;
425 ent->write_proc = proc_write_sysemu;
427 return 0;
430 late_initcall(make_proc_sysemu);
432 int singlestepping(void * t)
434 struct task_struct *task = t ? t : current;
436 if ( ! (task->ptrace & PT_DTRACE) )
437 return 0;
439 if (task->thread.singlestep_syscall)
440 return 1;
442 return 2;
446 * Only x86 and x86_64 have an arch_align_stack().
447 * All other arches have "#define arch_align_stack(x) (x)"
448 * in their asm/system.h
449 * As this is included in UML from asm-um/system-generic.h,
450 * we can use it to behave as the subarch does.
452 #ifndef arch_align_stack
453 unsigned long arch_align_stack(unsigned long sp)
455 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
456 sp -= get_random_int() % 8192;
457 return sp & ~0xf;
459 #endif
461 unsigned long get_wchan(struct task_struct *p)
463 unsigned long stack_page, sp, ip;
464 bool seen_sched = 0;
466 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
467 return 0;
469 stack_page = (unsigned long) task_stack_page(p);
470 /* Bail if the process has no kernel stack for some reason */
471 if (stack_page == 0)
472 return 0;
474 sp = p->thread.switch_buf->JB_SP;
476 * Bail if the stack pointer is below the bottom of the kernel
477 * stack for some reason
479 if (sp < stack_page)
480 return 0;
482 while (sp < stack_page + THREAD_SIZE) {
483 ip = *((unsigned long *) sp);
484 if (in_sched_functions(ip))
485 /* Ignore everything until we're above the scheduler */
486 seen_sched = 1;
487 else if (kernel_text_address(ip) && seen_sched)
488 return ip;
490 sp += sizeof(unsigned long);
493 return 0;