2 * polling/bitbanging SPI master controller driver utilities
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include <linux/init.h>
20 #include <linux/spinlock.h>
21 #include <linux/workqueue.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi_bitbang.h>
33 /*----------------------------------------------------------------------*/
36 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
37 * Use this for GPIO or shift-register level hardware APIs.
39 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
40 * to glue code. These bitbang setup() and cleanup() routines are always
41 * used, though maybe they're called from controller-aware code.
43 * chipselect() and friends may use use spi_device->controller_data and
44 * controller registers as appropriate.
47 * NOTE: SPI controller pins can often be used as GPIO pins instead,
48 * which means you could use a bitbang driver either to get hardware
49 * working quickly, or testing for differences that aren't speed related.
52 struct spi_bitbang_cs
{
53 unsigned nsecs
; /* (clock cycle time)/2 */
54 u32 (*txrx_word
)(struct spi_device
*spi
, unsigned nsecs
,
56 unsigned (*txrx_bufs
)(struct spi_device
*,
58 struct spi_device
*spi
,
61 unsigned, struct spi_transfer
*);
64 static unsigned bitbang_txrx_8(
65 struct spi_device
*spi
,
66 u32 (*txrx_word
)(struct spi_device
*spi
,
70 struct spi_transfer
*t
72 unsigned bits
= t
->bits_per_word
? : spi
->bits_per_word
;
73 unsigned count
= t
->len
;
74 const u8
*tx
= t
->tx_buf
;
77 while (likely(count
> 0)) {
82 word
= txrx_word(spi
, ns
, word
, bits
);
87 return t
->len
- count
;
90 static unsigned bitbang_txrx_16(
91 struct spi_device
*spi
,
92 u32 (*txrx_word
)(struct spi_device
*spi
,
96 struct spi_transfer
*t
98 unsigned bits
= t
->bits_per_word
? : spi
->bits_per_word
;
99 unsigned count
= t
->len
;
100 const u16
*tx
= t
->tx_buf
;
103 while (likely(count
> 1)) {
108 word
= txrx_word(spi
, ns
, word
, bits
);
113 return t
->len
- count
;
116 static unsigned bitbang_txrx_32(
117 struct spi_device
*spi
,
118 u32 (*txrx_word
)(struct spi_device
*spi
,
122 struct spi_transfer
*t
124 unsigned bits
= t
->bits_per_word
? : spi
->bits_per_word
;
125 unsigned count
= t
->len
;
126 const u32
*tx
= t
->tx_buf
;
129 while (likely(count
> 3)) {
134 word
= txrx_word(spi
, ns
, word
, bits
);
139 return t
->len
- count
;
142 int spi_bitbang_setup_transfer(struct spi_device
*spi
, struct spi_transfer
*t
)
144 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
149 bits_per_word
= t
->bits_per_word
;
156 /* spi_transfer level calls that work per-word */
158 bits_per_word
= spi
->bits_per_word
;
159 if (bits_per_word
<= 8)
160 cs
->txrx_bufs
= bitbang_txrx_8
;
161 else if (bits_per_word
<= 16)
162 cs
->txrx_bufs
= bitbang_txrx_16
;
163 else if (bits_per_word
<= 32)
164 cs
->txrx_bufs
= bitbang_txrx_32
;
168 /* nsecs = (clock period)/2 */
170 hz
= spi
->max_speed_hz
;
172 cs
->nsecs
= (1000000000/2) / hz
;
173 if (cs
->nsecs
> (MAX_UDELAY_MS
* 1000 * 1000))
179 EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer
);
182 * spi_bitbang_setup - default setup for per-word I/O loops
184 int spi_bitbang_setup(struct spi_device
*spi
)
186 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
187 struct spi_bitbang
*bitbang
;
191 bitbang
= spi_master_get_devdata(spi
->master
);
194 cs
= kzalloc(sizeof *cs
, GFP_KERNEL
);
197 spi
->controller_state
= cs
;
200 /* per-word shift register access, in hardware or bitbanging */
201 cs
->txrx_word
= bitbang
->txrx_word
[spi
->mode
& (SPI_CPOL
|SPI_CPHA
)];
205 retval
= bitbang
->setup_transfer(spi
, NULL
);
209 dev_dbg(&spi
->dev
, "%s, %u nsec/bit\n", __func__
, 2 * cs
->nsecs
);
211 /* NOTE we _need_ to call chipselect() early, ideally with adapter
212 * setup, unless the hardware defaults cooperate to avoid confusion
213 * between normal (active low) and inverted chipselects.
216 /* deselect chip (low or high) */
217 spin_lock_irqsave(&bitbang
->lock
, flags
);
218 if (!bitbang
->busy
) {
219 bitbang
->chipselect(spi
, BITBANG_CS_INACTIVE
);
222 spin_unlock_irqrestore(&bitbang
->lock
, flags
);
226 EXPORT_SYMBOL_GPL(spi_bitbang_setup
);
229 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
231 void spi_bitbang_cleanup(struct spi_device
*spi
)
233 kfree(spi
->controller_state
);
235 EXPORT_SYMBOL_GPL(spi_bitbang_cleanup
);
237 static int spi_bitbang_bufs(struct spi_device
*spi
, struct spi_transfer
*t
)
239 struct spi_bitbang_cs
*cs
= spi
->controller_state
;
240 unsigned nsecs
= cs
->nsecs
;
242 return cs
->txrx_bufs(spi
, cs
->txrx_word
, nsecs
, t
);
245 /*----------------------------------------------------------------------*/
248 * SECOND PART ... simple transfer queue runner.
250 * This costs a task context per controller, running the queue by
251 * performing each transfer in sequence. Smarter hardware can queue
252 * several DMA transfers at once, and process several controller queues
253 * in parallel; this driver doesn't match such hardware very well.
255 * Drivers can provide word-at-a-time i/o primitives, or provide
256 * transfer-at-a-time ones to leverage dma or fifo hardware.
258 static void bitbang_work(struct work_struct
*work
)
260 struct spi_bitbang
*bitbang
=
261 container_of(work
, struct spi_bitbang
, work
);
263 struct spi_message
*m
, *_m
;
265 spin_lock_irqsave(&bitbang
->lock
, flags
);
267 list_for_each_entry_safe(m
, _m
, &bitbang
->queue
, queue
) {
268 struct spi_device
*spi
;
270 struct spi_transfer
*t
= NULL
;
277 spin_unlock_irqrestore(&bitbang
->lock
, flags
);
279 /* FIXME this is made-up ... the correct value is known to
280 * word-at-a-time bitbang code, and presumably chipselect()
281 * should enforce these requirements too?
290 list_for_each_entry (t
, &m
->transfers
, transfer_list
) {
292 /* override speed or wordsize? */
293 if (t
->speed_hz
|| t
->bits_per_word
)
296 /* init (-1) or override (1) transfer params */
298 status
= bitbang
->setup_transfer(spi
, t
);
305 /* set up default clock polarity, and activate chip;
306 * this implicitly updates clock and spi modes as
307 * previously recorded for this device via setup().
308 * (and also deselects any other chip that might be
312 bitbang
->chipselect(spi
, BITBANG_CS_ACTIVE
);
315 cs_change
= t
->cs_change
;
316 if (!t
->tx_buf
&& !t
->rx_buf
&& t
->len
) {
321 /* transfer data. the lower level code handles any
322 * new dma mappings it needs. our caller always gave
323 * us dma-safe buffers.
326 /* REVISIT dma API still needs a designated
327 * DMA_ADDR_INVALID; ~0 might be better.
329 if (!m
->is_dma_mapped
)
330 t
->rx_dma
= t
->tx_dma
= 0;
331 status
= bitbang
->txrx_bufs(spi
, t
);
334 m
->actual_length
+= status
;
335 if (status
!= t
->len
) {
336 /* always report some kind of error */
343 /* protocol tweaks before next transfer */
345 udelay(t
->delay_usecs
);
347 if (cs_change
&& !list_is_last(&t
->transfer_list
, &m
->transfers
)) {
348 /* sometimes a short mid-message deselect of the chip
349 * may be needed to terminate a mode or command
352 bitbang
->chipselect(spi
, BITBANG_CS_INACTIVE
);
358 m
->complete(m
->context
);
360 /* normally deactivate chipselect ... unless no error and
361 * cs_change has hinted that the next message will probably
362 * be for this chip too.
364 if (!(status
== 0 && cs_change
)) {
366 bitbang
->chipselect(spi
, BITBANG_CS_INACTIVE
);
370 spin_lock_irqsave(&bitbang
->lock
, flags
);
373 spin_unlock_irqrestore(&bitbang
->lock
, flags
);
377 * spi_bitbang_transfer - default submit to transfer queue
379 int spi_bitbang_transfer(struct spi_device
*spi
, struct spi_message
*m
)
381 struct spi_bitbang
*bitbang
;
385 m
->actual_length
= 0;
386 m
->status
= -EINPROGRESS
;
388 bitbang
= spi_master_get_devdata(spi
->master
);
390 spin_lock_irqsave(&bitbang
->lock
, flags
);
391 if (!spi
->max_speed_hz
)
394 list_add_tail(&m
->queue
, &bitbang
->queue
);
395 queue_work(bitbang
->workqueue
, &bitbang
->work
);
397 spin_unlock_irqrestore(&bitbang
->lock
, flags
);
401 EXPORT_SYMBOL_GPL(spi_bitbang_transfer
);
403 /*----------------------------------------------------------------------*/
406 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
407 * @bitbang: driver handle
409 * Caller should have zero-initialized all parts of the structure, and then
410 * provided callbacks for chip selection and I/O loops. If the master has
411 * a transfer method, its final step should call spi_bitbang_transfer; or,
412 * that's the default if the transfer routine is not initialized. It should
413 * also set up the bus number and number of chipselects.
415 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
416 * hardware that basically exposes a shift register) or per-spi_transfer
417 * (which takes better advantage of hardware like fifos or DMA engines).
419 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
420 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
421 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
422 * routine isn't initialized.
424 * This routine registers the spi_master, which will process requests in a
425 * dedicated task, keeping IRQs unblocked most of the time. To stop
426 * processing those requests, call spi_bitbang_stop().
428 int spi_bitbang_start(struct spi_bitbang
*bitbang
)
432 if (!bitbang
->master
|| !bitbang
->chipselect
)
435 INIT_WORK(&bitbang
->work
, bitbang_work
);
436 spin_lock_init(&bitbang
->lock
);
437 INIT_LIST_HEAD(&bitbang
->queue
);
439 if (!bitbang
->master
->mode_bits
)
440 bitbang
->master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| bitbang
->flags
;
442 if (!bitbang
->master
->transfer
)
443 bitbang
->master
->transfer
= spi_bitbang_transfer
;
444 if (!bitbang
->txrx_bufs
) {
445 bitbang
->use_dma
= 0;
446 bitbang
->txrx_bufs
= spi_bitbang_bufs
;
447 if (!bitbang
->master
->setup
) {
448 if (!bitbang
->setup_transfer
)
449 bitbang
->setup_transfer
=
450 spi_bitbang_setup_transfer
;
451 bitbang
->master
->setup
= spi_bitbang_setup
;
452 bitbang
->master
->cleanup
= spi_bitbang_cleanup
;
454 } else if (!bitbang
->master
->setup
)
456 if (bitbang
->master
->transfer
== spi_bitbang_transfer
&&
457 !bitbang
->setup_transfer
)
460 /* this task is the only thing to touch the SPI bits */
462 bitbang
->workqueue
= create_singlethread_workqueue(
463 dev_name(bitbang
->master
->dev
.parent
));
464 if (bitbang
->workqueue
== NULL
) {
469 /* driver may get busy before register() returns, especially
470 * if someone registered boardinfo for devices
472 status
= spi_register_master(bitbang
->master
);
479 destroy_workqueue(bitbang
->workqueue
);
483 EXPORT_SYMBOL_GPL(spi_bitbang_start
);
486 * spi_bitbang_stop - stops the task providing spi communication
488 int spi_bitbang_stop(struct spi_bitbang
*bitbang
)
490 spi_unregister_master(bitbang
->master
);
492 WARN_ON(!list_empty(&bitbang
->queue
));
494 destroy_workqueue(bitbang
->workqueue
);
498 EXPORT_SYMBOL_GPL(spi_bitbang_stop
);
500 MODULE_LICENSE("GPL");