2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
25 #include <asm/cputype.h>
26 #include <asm/system_info.h>
27 #include <asm/thread_notify.h>
34 * Our undef handlers (in entry.S)
36 void vfp_testing_entry(void);
37 void vfp_support_entry(void);
38 void vfp_null_entry(void);
40 void (*vfp_vector
)(void) = vfp_null_entry
;
44 * Used in startup: set to non-zero if VFP checks fail
45 * After startup, holds VFP architecture
47 unsigned int VFP_arch
;
50 * The pointer to the vfpstate structure of the thread which currently
51 * owns the context held in the VFP hardware, or NULL if the hardware
54 * For UP, this is sufficient to tell which thread owns the VFP context.
55 * However, for SMP, we also need to check the CPU number stored in the
56 * saved state too to catch migrations.
58 union vfp_state
*vfp_current_hw_state
[NR_CPUS
];
61 * Is 'thread's most up to date state stored in this CPUs hardware?
62 * Must be called from non-preemptible context.
64 static bool vfp_state_in_hw(unsigned int cpu
, struct thread_info
*thread
)
67 if (thread
->vfpstate
.hard
.cpu
!= cpu
)
70 return vfp_current_hw_state
[cpu
] == &thread
->vfpstate
;
74 * Force a reload of the VFP context from the thread structure. We do
75 * this by ensuring that access to the VFP hardware is disabled, and
76 * clear vfp_current_hw_state. Must be called from non-preemptible context.
78 static void vfp_force_reload(unsigned int cpu
, struct thread_info
*thread
)
80 if (vfp_state_in_hw(cpu
, thread
)) {
81 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
82 vfp_current_hw_state
[cpu
] = NULL
;
85 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
90 * Per-thread VFP initialization.
92 static void vfp_thread_flush(struct thread_info
*thread
)
94 union vfp_state
*vfp
= &thread
->vfpstate
;
98 * Disable VFP to ensure we initialize it first. We must ensure
99 * that the modification of vfp_current_hw_state[] and hardware
100 * disable are done for the same CPU and without preemption.
102 * Do this first to ensure that preemption won't overwrite our
103 * state saving should access to the VFP be enabled at this point.
106 if (vfp_current_hw_state
[cpu
] == vfp
)
107 vfp_current_hw_state
[cpu
] = NULL
;
108 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
111 memset(vfp
, 0, sizeof(union vfp_state
));
113 vfp
->hard
.fpexc
= FPEXC_EN
;
114 vfp
->hard
.fpscr
= FPSCR_ROUND_NEAREST
;
116 vfp
->hard
.cpu
= NR_CPUS
;
120 static void vfp_thread_exit(struct thread_info
*thread
)
122 /* release case: Per-thread VFP cleanup. */
123 union vfp_state
*vfp
= &thread
->vfpstate
;
124 unsigned int cpu
= get_cpu();
126 if (vfp_current_hw_state
[cpu
] == vfp
)
127 vfp_current_hw_state
[cpu
] = NULL
;
131 static void vfp_thread_copy(struct thread_info
*thread
)
133 struct thread_info
*parent
= current_thread_info();
135 vfp_sync_hwstate(parent
);
136 thread
->vfpstate
= parent
->vfpstate
;
138 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
143 * When this function is called with the following 'cmd's, the following
144 * is true while this function is being run:
145 * THREAD_NOFTIFY_SWTICH:
146 * - the previously running thread will not be scheduled onto another CPU.
147 * - the next thread to be run (v) will not be running on another CPU.
148 * - thread->cpu is the local CPU number
149 * - not preemptible as we're called in the middle of a thread switch
150 * THREAD_NOTIFY_FLUSH:
151 * - the thread (v) will be running on the local CPU, so
152 * v === current_thread_info()
153 * - thread->cpu is the local CPU number at the time it is accessed,
154 * but may change at any time.
155 * - we could be preempted if tree preempt rcu is enabled, so
156 * it is unsafe to use thread->cpu.
158 * - the thread (v) will be running on the local CPU, so
159 * v === current_thread_info()
160 * - thread->cpu is the local CPU number at the time it is accessed,
161 * but may change at any time.
162 * - we could be preempted if tree preempt rcu is enabled, so
163 * it is unsafe to use thread->cpu.
165 static int vfp_notifier(struct notifier_block
*self
, unsigned long cmd
, void *v
)
167 struct thread_info
*thread
= v
;
174 case THREAD_NOTIFY_SWITCH
:
181 * On SMP, if VFP is enabled, save the old state in
182 * case the thread migrates to a different CPU. The
183 * restoring is done lazily.
185 if ((fpexc
& FPEXC_EN
) && vfp_current_hw_state
[cpu
])
186 vfp_save_state(vfp_current_hw_state
[cpu
], fpexc
);
190 * Always disable VFP so we can lazily save/restore the
193 fmxr(FPEXC
, fpexc
& ~FPEXC_EN
);
196 case THREAD_NOTIFY_FLUSH
:
197 vfp_thread_flush(thread
);
200 case THREAD_NOTIFY_EXIT
:
201 vfp_thread_exit(thread
);
204 case THREAD_NOTIFY_COPY
:
205 vfp_thread_copy(thread
);
212 static struct notifier_block vfp_notifier_block
= {
213 .notifier_call
= vfp_notifier
,
217 * Raise a SIGFPE for the current process.
218 * sicode describes the signal being raised.
220 static void vfp_raise_sigfpe(unsigned int sicode
, struct pt_regs
*regs
)
224 memset(&info
, 0, sizeof(info
));
226 info
.si_signo
= SIGFPE
;
227 info
.si_code
= sicode
;
228 info
.si_addr
= (void __user
*)(instruction_pointer(regs
) - 4);
231 * This is the same as NWFPE, because it's not clear what
234 current
->thread
.error_code
= 0;
235 current
->thread
.trap_no
= 6;
237 send_sig_info(SIGFPE
, &info
, current
);
240 static void vfp_panic(char *reason
, u32 inst
)
244 pr_err("VFP: Error: %s\n", reason
);
245 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
246 fmrx(FPEXC
), fmrx(FPSCR
), inst
);
247 for (i
= 0; i
< 32; i
+= 2)
248 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
249 i
, vfp_get_float(i
), i
+1, vfp_get_float(i
+1));
253 * Process bitmask of exception conditions.
255 static void vfp_raise_exceptions(u32 exceptions
, u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
259 pr_debug("VFP: raising exceptions %08x\n", exceptions
);
261 if (exceptions
== VFP_EXCEPTION_ERROR
) {
262 vfp_panic("unhandled bounce", inst
);
263 vfp_raise_sigfpe(0, regs
);
268 * If any of the status flags are set, update the FPSCR.
269 * Comparison instructions always return at least one of
272 if (exceptions
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
273 fpscr
&= ~(FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
);
279 #define RAISE(stat,en,sig) \
280 if (exceptions & stat && fpscr & en) \
284 * These are arranged in priority order, least to highest.
286 RAISE(FPSCR_DZC
, FPSCR_DZE
, FPE_FLTDIV
);
287 RAISE(FPSCR_IXC
, FPSCR_IXE
, FPE_FLTRES
);
288 RAISE(FPSCR_UFC
, FPSCR_UFE
, FPE_FLTUND
);
289 RAISE(FPSCR_OFC
, FPSCR_OFE
, FPE_FLTOVF
);
290 RAISE(FPSCR_IOC
, FPSCR_IOE
, FPE_FLTINV
);
293 vfp_raise_sigfpe(si_code
, regs
);
297 * Emulate a VFP instruction.
299 static u32
vfp_emulate_instruction(u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
301 u32 exceptions
= VFP_EXCEPTION_ERROR
;
303 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst
, fpscr
);
305 if (INST_CPRTDO(inst
)) {
306 if (!INST_CPRT(inst
)) {
310 if (vfp_single(inst
)) {
311 exceptions
= vfp_single_cpdo(inst
, fpscr
);
313 exceptions
= vfp_double_cpdo(inst
, fpscr
);
317 * A CPRT instruction can not appear in FPINST2, nor
318 * can it cause an exception. Therefore, we do not
319 * have to emulate it.
324 * A CPDT instruction can not appear in FPINST2, nor can
325 * it cause an exception. Therefore, we do not have to
329 return exceptions
& ~VFP_NAN_FLAG
;
333 * Package up a bounce condition.
335 void VFP_bounce(u32 trigger
, u32 fpexc
, struct pt_regs
*regs
)
337 u32 fpscr
, orig_fpscr
, fpsid
, exceptions
;
339 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger
, fpexc
);
342 * At this point, FPEXC can have the following configuration:
345 * 0 1 x - synchronous exception
346 * 1 x 0 - asynchronous exception
347 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
348 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
349 * implementation), undefined otherwise
351 * Clear various bits and enable access to the VFP so we can
354 fmxr(FPEXC
, fpexc
& ~(FPEXC_EX
|FPEXC_DEX
|FPEXC_FP2V
|FPEXC_VV
|FPEXC_TRAP_MASK
));
357 orig_fpscr
= fpscr
= fmrx(FPSCR
);
360 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
362 if ((fpsid
& FPSID_ARCH_MASK
) == (1 << FPSID_ARCH_BIT
)
363 && (fpscr
& FPSCR_IXE
)) {
365 * Synchronous exception, emulate the trigger instruction
370 if (fpexc
& FPEXC_EX
) {
371 #ifndef CONFIG_CPU_FEROCEON
373 * Asynchronous exception. The instruction is read from FPINST
374 * and the interrupted instruction has to be restarted.
376 trigger
= fmrx(FPINST
);
379 } else if (!(fpexc
& FPEXC_DEX
)) {
381 * Illegal combination of bits. It can be caused by an
382 * unallocated VFP instruction but with FPSCR.IXE set and not
385 vfp_raise_exceptions(VFP_EXCEPTION_ERROR
, trigger
, fpscr
, regs
);
390 * Modify fpscr to indicate the number of iterations remaining.
391 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
392 * whether FPEXC.VECITR or FPSCR.LEN is used.
394 if (fpexc
& (FPEXC_EX
| FPEXC_VV
)) {
397 len
= fpexc
+ (1 << FPEXC_LENGTH_BIT
);
399 fpscr
&= ~FPSCR_LENGTH_MASK
;
400 fpscr
|= (len
& FPEXC_LENGTH_MASK
) << (FPSCR_LENGTH_BIT
- FPEXC_LENGTH_BIT
);
404 * Handle the first FP instruction. We used to take note of the
405 * FPEXC bounce reason, but this appears to be unreliable.
406 * Emulate the bounced instruction instead.
408 exceptions
= vfp_emulate_instruction(trigger
, fpscr
, regs
);
410 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
413 * If there isn't a second FP instruction, exit now. Note that
414 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
416 if (fpexc
^ (FPEXC_EX
| FPEXC_FP2V
))
420 * The barrier() here prevents fpinst2 being read
421 * before the condition above.
424 trigger
= fmrx(FPINST2
);
427 exceptions
= vfp_emulate_instruction(trigger
, orig_fpscr
, regs
);
429 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
434 static void vfp_enable(void *unused
)
438 BUG_ON(preemptible());
439 access
= get_copro_access();
442 * Enable full access to VFP (cp10 and cp11)
444 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
448 static int vfp_pm_suspend(void)
450 struct thread_info
*ti
= current_thread_info();
451 u32 fpexc
= fmrx(FPEXC
);
453 /* if vfp is on, then save state for resumption */
454 if (fpexc
& FPEXC_EN
) {
455 pr_debug("%s: saving vfp state\n", __func__
);
456 vfp_save_state(&ti
->vfpstate
, fpexc
);
458 /* disable, just in case */
459 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
460 } else if (vfp_current_hw_state
[ti
->cpu
]) {
462 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
463 vfp_save_state(vfp_current_hw_state
[ti
->cpu
], fpexc
);
468 /* clear any information we had about last context state */
469 vfp_current_hw_state
[ti
->cpu
] = NULL
;
474 static void vfp_pm_resume(void)
476 /* ensure we have access to the vfp */
479 /* and disable it to ensure the next usage restores the state */
480 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
483 static int vfp_cpu_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
490 case CPU_PM_ENTER_FAILED
:
498 static struct notifier_block vfp_cpu_pm_notifier_block
= {
499 .notifier_call
= vfp_cpu_pm_notifier
,
502 static void vfp_pm_init(void)
504 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block
);
508 static inline void vfp_pm_init(void) { }
509 #endif /* CONFIG_CPU_PM */
512 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
513 * with the hardware state.
515 void vfp_sync_hwstate(struct thread_info
*thread
)
517 unsigned int cpu
= get_cpu();
519 if (vfp_state_in_hw(cpu
, thread
)) {
520 u32 fpexc
= fmrx(FPEXC
);
523 * Save the last VFP state on this CPU.
525 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
526 vfp_save_state(&thread
->vfpstate
, fpexc
| FPEXC_EN
);
533 /* Ensure that the thread reloads the hardware VFP state on the next use. */
534 void vfp_flush_hwstate(struct thread_info
*thread
)
536 unsigned int cpu
= get_cpu();
538 vfp_force_reload(cpu
, thread
);
544 * Save the current VFP state into the provided structures and prepare
545 * for entry into a new function (signal handler).
547 int vfp_preserve_user_clear_hwstate(struct user_vfp __user
*ufp
,
548 struct user_vfp_exc __user
*ufp_exc
)
550 struct thread_info
*thread
= current_thread_info();
551 struct vfp_hard_struct
*hwstate
= &thread
->vfpstate
.hard
;
554 /* Ensure that the saved hwstate is up-to-date. */
555 vfp_sync_hwstate(thread
);
558 * Copy the floating point registers. There can be unused
559 * registers see asm/hwcap.h for details.
561 err
|= __copy_to_user(&ufp
->fpregs
, &hwstate
->fpregs
,
562 sizeof(hwstate
->fpregs
));
564 * Copy the status and control register.
566 __put_user_error(hwstate
->fpscr
, &ufp
->fpscr
, err
);
569 * Copy the exception registers.
571 __put_user_error(hwstate
->fpexc
, &ufp_exc
->fpexc
, err
);
572 __put_user_error(hwstate
->fpinst
, &ufp_exc
->fpinst
, err
);
573 __put_user_error(hwstate
->fpinst2
, &ufp_exc
->fpinst2
, err
);
578 /* Ensure that VFP is disabled. */
579 vfp_flush_hwstate(thread
);
582 * As per the PCS, clear the length and stride bits for function
585 hwstate
->fpscr
&= ~(FPSCR_LENGTH_MASK
| FPSCR_STRIDE_MASK
);
589 /* Sanitise and restore the current VFP state from the provided structures. */
590 int vfp_restore_user_hwstate(struct user_vfp __user
*ufp
,
591 struct user_vfp_exc __user
*ufp_exc
)
593 struct thread_info
*thread
= current_thread_info();
594 struct vfp_hard_struct
*hwstate
= &thread
->vfpstate
.hard
;
598 /* Disable VFP to avoid corrupting the new thread state. */
599 vfp_flush_hwstate(thread
);
602 * Copy the floating point registers. There can be unused
603 * registers see asm/hwcap.h for details.
605 err
|= __copy_from_user(&hwstate
->fpregs
, &ufp
->fpregs
,
606 sizeof(hwstate
->fpregs
));
608 * Copy the status and control register.
610 __get_user_error(hwstate
->fpscr
, &ufp
->fpscr
, err
);
613 * Sanitise and restore the exception registers.
615 __get_user_error(fpexc
, &ufp_exc
->fpexc
, err
);
617 /* Ensure the VFP is enabled. */
620 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
621 fpexc
&= ~(FPEXC_EX
| FPEXC_FP2V
);
622 hwstate
->fpexc
= fpexc
;
624 __get_user_error(hwstate
->fpinst
, &ufp_exc
->fpinst
, err
);
625 __get_user_error(hwstate
->fpinst2
, &ufp_exc
->fpinst2
, err
);
627 return err
? -EFAULT
: 0;
631 * VFP hardware can lose all context when a CPU goes offline.
632 * As we will be running in SMP mode with CPU hotplug, we will save the
633 * hardware state at every thread switch. We clear our held state when
634 * a CPU has been killed, indicating that the VFP hardware doesn't contain
635 * a threads VFP state. When a CPU starts up, we re-enable access to the
638 * Both CPU_DYING and CPU_STARTING are called on the CPU which
639 * is being offlined/onlined.
641 static int vfp_hotplug(struct notifier_block
*b
, unsigned long action
,
644 if (action
== CPU_DYING
|| action
== CPU_DYING_FROZEN
) {
645 vfp_force_reload((long)hcpu
, current_thread_info());
646 } else if (action
== CPU_STARTING
|| action
== CPU_STARTING_FROZEN
)
652 * VFP support code initialisation.
654 static int __init
vfp_init(void)
657 unsigned int cpu_arch
= cpu_architecture();
659 if (cpu_arch
>= CPU_ARCH_ARMv6
)
660 on_each_cpu(vfp_enable
, NULL
, 1);
663 * First check that there is a VFP that we can use.
664 * The handler is already setup to just log calls, so
665 * we just need to read the VFPSID register.
667 vfp_vector
= vfp_testing_entry
;
669 vfpsid
= fmrx(FPSID
);
671 vfp_vector
= vfp_null_entry
;
673 pr_info("VFP support v0.3: ");
675 pr_cont("not present\n");
676 else if (vfpsid
& FPSID_NODOUBLE
) {
677 pr_cont("no double precision support\n");
679 hotcpu_notifier(vfp_hotplug
, 0);
681 VFP_arch
= (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
; /* Extract the architecture version */
682 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
683 (vfpsid
& FPSID_IMPLEMENTER_MASK
) >> FPSID_IMPLEMENTER_BIT
,
684 (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
,
685 (vfpsid
& FPSID_PART_MASK
) >> FPSID_PART_BIT
,
686 (vfpsid
& FPSID_VARIANT_MASK
) >> FPSID_VARIANT_BIT
,
687 (vfpsid
& FPSID_REV_MASK
) >> FPSID_REV_BIT
);
689 vfp_vector
= vfp_support_entry
;
691 thread_register_notifier(&vfp_notifier_block
);
695 * We detected VFP, and the support code is
696 * in place; report VFP support to userspace.
698 elf_hwcap
|= HWCAP_VFP
;
701 elf_hwcap
|= HWCAP_VFPv3
;
704 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
705 * this configuration only have 16 x 64bit
708 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
)) == 1)
709 elf_hwcap
|= HWCAP_VFPv3D16
; /* also v4-D16 */
711 elf_hwcap
|= HWCAP_VFPD32
;
715 * Check for the presence of the Advanced SIMD
716 * load/store instructions, integer and single
717 * precision floating point operations. Only check
718 * for NEON if the hardware has the MVFR registers.
720 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
722 if ((fmrx(MVFR1
) & 0x000fff00) == 0x00011100)
723 elf_hwcap
|= HWCAP_NEON
;
726 if ((fmrx(MVFR1
) & 0xf0000000) == 0x10000000)
727 elf_hwcap
|= HWCAP_VFPv4
;
734 late_initcall(vfp_init
);