4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
55 #include <asm/unistd.h>
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76 * Some helpers for converting nanosecond timing to jiffy resolution
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82 * These are the 'tuning knobs' of the scheduler:
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
107 * This part scales the interactivity limit depending on niceness.
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
173 static unsigned int task_timeslice(task_t
*p
)
175 if (p
->static_prio
< NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE
*4, p
->static_prio
);
178 return SCALE_PRIO(DEF_TIMESLICE
, p
->static_prio
);
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
184 * These are the runqueue data structures:
187 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
189 typedef struct runqueue runqueue_t
;
192 unsigned int nr_active
;
193 unsigned long bitmap
[BITMAP_SIZE
];
194 struct list_head queue
[MAX_PRIO
];
198 * This is the main, per-CPU runqueue data structure.
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
211 unsigned long nr_running
;
213 unsigned long cpu_load
[3];
215 unsigned long long nr_switches
;
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
223 unsigned long nr_uninterruptible
;
225 unsigned long expired_timestamp
;
226 unsigned long long timestamp_last_tick
;
228 struct mm_struct
*prev_mm
;
229 prio_array_t
*active
, *expired
, arrays
[2];
230 int best_expired_prio
;
234 struct sched_domain
*sd
;
236 /* For active balancing */
240 task_t
*migration_thread
;
241 struct list_head migration_queue
;
245 #ifdef CONFIG_SCHEDSTATS
247 struct sched_info rq_sched_info
;
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty
;
251 unsigned long yld_act_empty
;
252 unsigned long yld_both_empty
;
253 unsigned long yld_cnt
;
255 /* schedule() stats */
256 unsigned long sched_switch
;
257 unsigned long sched_cnt
;
258 unsigned long sched_goidle
;
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt
;
262 unsigned long ttwu_local
;
266 static DEFINE_PER_CPU(struct runqueue
, runqueues
);
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
270 * See detach_destroy_domains: synchronize_sched for details.
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
275 #define for_each_domain(cpu, domain) \
276 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
278 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279 #define this_rq() (&__get_cpu_var(runqueues))
280 #define task_rq(p) cpu_rq(task_cpu(p))
281 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
283 #ifndef prepare_arch_switch
284 # define prepare_arch_switch(next) do { } while (0)
286 #ifndef finish_arch_switch
287 # define finish_arch_switch(prev) do { } while (0)
290 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
291 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
293 return rq
->curr
== p
;
296 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
300 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
302 #ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq
->lock
.owner
= current
;
306 spin_unlock_irq(&rq
->lock
);
309 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
310 static inline int task_running(runqueue_t
*rq
, task_t
*p
)
315 return rq
->curr
== p
;
319 static inline void prepare_lock_switch(runqueue_t
*rq
, task_t
*next
)
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
329 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq
->lock
);
332 spin_unlock(&rq
->lock
);
336 static inline void finish_lock_switch(runqueue_t
*rq
, task_t
*prev
)
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
347 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
358 static inline runqueue_t
*task_rq_lock(task_t
*p
, unsigned long *flags
)
364 local_irq_save(*flags
);
366 spin_lock(&rq
->lock
);
367 if (unlikely(rq
!= task_rq(p
))) {
368 spin_unlock_irqrestore(&rq
->lock
, *flags
);
369 goto repeat_lock_task
;
374 static inline void task_rq_unlock(runqueue_t
*rq
, unsigned long *flags
)
377 spin_unlock_irqrestore(&rq
->lock
, *flags
);
380 #ifdef CONFIG_SCHEDSTATS
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
385 #define SCHEDSTAT_VERSION 12
387 static int show_schedstat(struct seq_file
*seq
, void *v
)
391 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
392 seq_printf(seq
, "timestamp %lu\n", jiffies
);
393 for_each_online_cpu(cpu
) {
394 runqueue_t
*rq
= cpu_rq(cpu
);
396 struct sched_domain
*sd
;
400 /* runqueue-specific stats */
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu
, rq
->yld_both_empty
,
404 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
405 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
406 rq
->ttwu_cnt
, rq
->ttwu_local
,
407 rq
->rq_sched_info
.cpu_time
,
408 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
410 seq_printf(seq
, "\n");
413 /* domain-specific stats */
415 for_each_domain(cpu
, sd
) {
416 enum idle_type itype
;
417 char mask_str
[NR_CPUS
];
419 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
420 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
421 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
423 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
425 sd
->lb_balanced
[itype
],
426 sd
->lb_failed
[itype
],
427 sd
->lb_imbalance
[itype
],
428 sd
->lb_gained
[itype
],
429 sd
->lb_hot_gained
[itype
],
430 sd
->lb_nobusyq
[itype
],
431 sd
->lb_nobusyg
[itype
]);
433 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
434 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
435 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
436 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
437 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
445 static int schedstat_open(struct inode
*inode
, struct file
*file
)
447 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
448 char *buf
= kmalloc(size
, GFP_KERNEL
);
454 res
= single_open(file
, show_schedstat
, NULL
);
456 m
= file
->private_data
;
464 struct file_operations proc_schedstat_operations
= {
465 .open
= schedstat_open
,
468 .release
= single_release
,
471 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473 #else /* !CONFIG_SCHEDSTATS */
474 # define schedstat_inc(rq, field) do { } while (0)
475 # define schedstat_add(rq, field, amt) do { } while (0)
479 * rq_lock - lock a given runqueue and disable interrupts.
481 static inline runqueue_t
*this_rq_lock(void)
488 spin_lock(&rq
->lock
);
493 #ifdef CONFIG_SCHEDSTATS
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
509 static inline void sched_info_dequeued(task_t
*t
)
511 t
->sched_info
.last_queued
= 0;
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
519 static void sched_info_arrive(task_t
*t
)
521 unsigned long now
= jiffies
, diff
= 0;
522 struct runqueue
*rq
= task_rq(t
);
524 if (t
->sched_info
.last_queued
)
525 diff
= now
- t
->sched_info
.last_queued
;
526 sched_info_dequeued(t
);
527 t
->sched_info
.run_delay
+= diff
;
528 t
->sched_info
.last_arrival
= now
;
529 t
->sched_info
.pcnt
++;
534 rq
->rq_sched_info
.run_delay
+= diff
;
535 rq
->rq_sched_info
.pcnt
++;
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
553 static inline void sched_info_queued(task_t
*t
)
555 if (!t
->sched_info
.last_queued
)
556 t
->sched_info
.last_queued
= jiffies
;
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
563 static inline void sched_info_depart(task_t
*t
)
565 struct runqueue
*rq
= task_rq(t
);
566 unsigned long diff
= jiffies
- t
->sched_info
.last_arrival
;
568 t
->sched_info
.cpu_time
+= diff
;
571 rq
->rq_sched_info
.cpu_time
+= diff
;
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
579 static inline void sched_info_switch(task_t
*prev
, task_t
*next
)
581 struct runqueue
*rq
= task_rq(prev
);
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
588 if (prev
!= rq
->idle
)
589 sched_info_depart(prev
);
591 if (next
!= rq
->idle
)
592 sched_info_arrive(next
);
595 #define sched_info_queued(t) do { } while (0)
596 #define sched_info_switch(t, next) do { } while (0)
597 #endif /* CONFIG_SCHEDSTATS */
600 * Adding/removing a task to/from a priority array:
602 static void dequeue_task(struct task_struct
*p
, prio_array_t
*array
)
605 list_del(&p
->run_list
);
606 if (list_empty(array
->queue
+ p
->prio
))
607 __clear_bit(p
->prio
, array
->bitmap
);
610 static void enqueue_task(struct task_struct
*p
, prio_array_t
*array
)
612 sched_info_queued(p
);
613 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
614 __set_bit(p
->prio
, array
->bitmap
);
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
623 static void requeue_task(struct task_struct
*p
, prio_array_t
*array
)
625 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
628 static inline void enqueue_task_head(struct task_struct
*p
, prio_array_t
*array
)
630 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
631 __set_bit(p
->prio
, array
->bitmap
);
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
643 * We use 25% of the full 0...39 priority range so that:
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
648 * Both properties are important to certain workloads.
650 static int effective_prio(task_t
*p
)
657 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
659 prio
= p
->static_prio
- bonus
;
660 if (prio
< MAX_RT_PRIO
)
662 if (prio
> MAX_PRIO
-1)
668 * __activate_task - move a task to the runqueue.
670 static void __activate_task(task_t
*p
, runqueue_t
*rq
)
672 prio_array_t
*target
= rq
->active
;
675 target
= rq
->expired
;
676 enqueue_task(p
, target
);
681 * __activate_idle_task - move idle task to the _front_ of runqueue.
683 static inline void __activate_idle_task(task_t
*p
, runqueue_t
*rq
)
685 enqueue_task_head(p
, rq
->active
);
689 static int recalc_task_prio(task_t
*p
, unsigned long long now
)
691 /* Caller must always ensure 'now >= p->timestamp' */
692 unsigned long long __sleep_time
= now
- p
->timestamp
;
693 unsigned long sleep_time
;
698 if (__sleep_time
> NS_MAX_SLEEP_AVG
)
699 sleep_time
= NS_MAX_SLEEP_AVG
;
701 sleep_time
= (unsigned long)__sleep_time
;
704 if (likely(sleep_time
> 0)) {
706 * User tasks that sleep a long time are categorised as
707 * idle. They will only have their sleep_avg increased to a
708 * level that makes them just interactive priority to stay
709 * active yet prevent them suddenly becoming cpu hogs and
710 * starving other processes.
712 if (p
->mm
&& sleep_time
> INTERACTIVE_SLEEP(p
)) {
713 unsigned long ceiling
;
715 ceiling
= JIFFIES_TO_NS(MAX_SLEEP_AVG
-
717 if (p
->sleep_avg
< ceiling
)
718 p
->sleep_avg
= ceiling
;
721 * Tasks waking from uninterruptible sleep are
722 * limited in their sleep_avg rise as they
723 * are likely to be waiting on I/O
725 if (p
->sleep_type
== SLEEP_NONINTERACTIVE
&& p
->mm
) {
726 if (p
->sleep_avg
>= INTERACTIVE_SLEEP(p
))
728 else if (p
->sleep_avg
+ sleep_time
>=
729 INTERACTIVE_SLEEP(p
)) {
730 p
->sleep_avg
= INTERACTIVE_SLEEP(p
);
736 * This code gives a bonus to interactive tasks.
738 * The boost works by updating the 'average sleep time'
739 * value here, based on ->timestamp. The more time a
740 * task spends sleeping, the higher the average gets -
741 * and the higher the priority boost gets as well.
743 p
->sleep_avg
+= sleep_time
;
745 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
746 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
750 return effective_prio(p
);
754 * activate_task - move a task to the runqueue and do priority recalculation
756 * Update all the scheduling statistics stuff. (sleep average
757 * calculation, priority modifiers, etc.)
759 static void activate_task(task_t
*p
, runqueue_t
*rq
, int local
)
761 unsigned long long now
;
766 /* Compensate for drifting sched_clock */
767 runqueue_t
*this_rq
= this_rq();
768 now
= (now
- this_rq
->timestamp_last_tick
)
769 + rq
->timestamp_last_tick
;
774 p
->prio
= recalc_task_prio(p
, now
);
777 * This checks to make sure it's not an uninterruptible task
778 * that is now waking up.
780 if (p
->sleep_type
== SLEEP_NORMAL
) {
782 * Tasks which were woken up by interrupts (ie. hw events)
783 * are most likely of interactive nature. So we give them
784 * the credit of extending their sleep time to the period
785 * of time they spend on the runqueue, waiting for execution
786 * on a CPU, first time around:
789 p
->sleep_type
= SLEEP_INTERRUPTED
;
792 * Normal first-time wakeups get a credit too for
793 * on-runqueue time, but it will be weighted down:
795 p
->sleep_type
= SLEEP_INTERACTIVE
;
800 __activate_task(p
, rq
);
804 * deactivate_task - remove a task from the runqueue.
806 static void deactivate_task(struct task_struct
*p
, runqueue_t
*rq
)
809 dequeue_task(p
, p
->array
);
814 * resched_task - mark a task 'to be rescheduled now'.
816 * On UP this means the setting of the need_resched flag, on SMP it
817 * might also involve a cross-CPU call to trigger the scheduler on
822 #ifndef tsk_is_polling
823 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
826 static void resched_task(task_t
*p
)
830 assert_spin_locked(&task_rq(p
)->lock
);
832 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
835 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
838 if (cpu
== smp_processor_id())
841 /* NEED_RESCHED must be visible before we test polling */
843 if (!tsk_is_polling(p
))
844 smp_send_reschedule(cpu
);
847 static inline void resched_task(task_t
*p
)
849 assert_spin_locked(&task_rq(p
)->lock
);
850 set_tsk_need_resched(p
);
855 * task_curr - is this task currently executing on a CPU?
856 * @p: the task in question.
858 inline int task_curr(const task_t
*p
)
860 return cpu_curr(task_cpu(p
)) == p
;
865 struct list_head list
;
870 struct completion done
;
874 * The task's runqueue lock must be held.
875 * Returns true if you have to wait for migration thread.
877 static int migrate_task(task_t
*p
, int dest_cpu
, migration_req_t
*req
)
879 runqueue_t
*rq
= task_rq(p
);
882 * If the task is not on a runqueue (and not running), then
883 * it is sufficient to simply update the task's cpu field.
885 if (!p
->array
&& !task_running(rq
, p
)) {
886 set_task_cpu(p
, dest_cpu
);
890 init_completion(&req
->done
);
892 req
->dest_cpu
= dest_cpu
;
893 list_add(&req
->list
, &rq
->migration_queue
);
898 * wait_task_inactive - wait for a thread to unschedule.
900 * The caller must ensure that the task *will* unschedule sometime soon,
901 * else this function might spin for a *long* time. This function can't
902 * be called with interrupts off, or it may introduce deadlock with
903 * smp_call_function() if an IPI is sent by the same process we are
904 * waiting to become inactive.
906 void wait_task_inactive(task_t
*p
)
913 rq
= task_rq_lock(p
, &flags
);
914 /* Must be off runqueue entirely, not preempted. */
915 if (unlikely(p
->array
|| task_running(rq
, p
))) {
916 /* If it's preempted, we yield. It could be a while. */
917 preempted
= !task_running(rq
, p
);
918 task_rq_unlock(rq
, &flags
);
924 task_rq_unlock(rq
, &flags
);
928 * kick_process - kick a running thread to enter/exit the kernel
929 * @p: the to-be-kicked thread
931 * Cause a process which is running on another CPU to enter
932 * kernel-mode, without any delay. (to get signals handled.)
934 * NOTE: this function doesnt have to take the runqueue lock,
935 * because all it wants to ensure is that the remote task enters
936 * the kernel. If the IPI races and the task has been migrated
937 * to another CPU then no harm is done and the purpose has been
940 void kick_process(task_t
*p
)
946 if ((cpu
!= smp_processor_id()) && task_curr(p
))
947 smp_send_reschedule(cpu
);
952 * Return a low guess at the load of a migration-source cpu.
954 * We want to under-estimate the load of migration sources, to
955 * balance conservatively.
957 static inline unsigned long source_load(int cpu
, int type
)
959 runqueue_t
*rq
= cpu_rq(cpu
);
960 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
964 return min(rq
->cpu_load
[type
-1], load_now
);
968 * Return a high guess at the load of a migration-target cpu
970 static inline unsigned long target_load(int cpu
, int type
)
972 runqueue_t
*rq
= cpu_rq(cpu
);
973 unsigned long load_now
= rq
->nr_running
* SCHED_LOAD_SCALE
;
977 return max(rq
->cpu_load
[type
-1], load_now
);
981 * find_idlest_group finds and returns the least busy CPU group within the
984 static struct sched_group
*
985 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
987 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
988 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
989 int load_idx
= sd
->forkexec_idx
;
990 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
993 unsigned long load
, avg_load
;
997 /* Skip over this group if it has no CPUs allowed */
998 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1001 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1003 /* Tally up the load of all CPUs in the group */
1006 for_each_cpu_mask(i
, group
->cpumask
) {
1007 /* Bias balancing toward cpus of our domain */
1009 load
= source_load(i
, load_idx
);
1011 load
= target_load(i
, load_idx
);
1016 /* Adjust by relative CPU power of the group */
1017 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1020 this_load
= avg_load
;
1022 } else if (avg_load
< min_load
) {
1023 min_load
= avg_load
;
1027 group
= group
->next
;
1028 } while (group
!= sd
->groups
);
1030 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1036 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1039 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1042 unsigned long load
, min_load
= ULONG_MAX
;
1046 /* Traverse only the allowed CPUs */
1047 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1049 for_each_cpu_mask(i
, tmp
) {
1050 load
= source_load(i
, 0);
1052 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1062 * sched_balance_self: balance the current task (running on cpu) in domains
1063 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1066 * Balance, ie. select the least loaded group.
1068 * Returns the target CPU number, or the same CPU if no balancing is needed.
1070 * preempt must be disabled.
1072 static int sched_balance_self(int cpu
, int flag
)
1074 struct task_struct
*t
= current
;
1075 struct sched_domain
*tmp
, *sd
= NULL
;
1077 for_each_domain(cpu
, tmp
)
1078 if (tmp
->flags
& flag
)
1083 struct sched_group
*group
;
1088 group
= find_idlest_group(sd
, t
, cpu
);
1092 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1093 if (new_cpu
== -1 || new_cpu
== cpu
)
1096 /* Now try balancing at a lower domain level */
1100 weight
= cpus_weight(span
);
1101 for_each_domain(cpu
, tmp
) {
1102 if (weight
<= cpus_weight(tmp
->span
))
1104 if (tmp
->flags
& flag
)
1107 /* while loop will break here if sd == NULL */
1113 #endif /* CONFIG_SMP */
1116 * wake_idle() will wake a task on an idle cpu if task->cpu is
1117 * not idle and an idle cpu is available. The span of cpus to
1118 * search starts with cpus closest then further out as needed,
1119 * so we always favor a closer, idle cpu.
1121 * Returns the CPU we should wake onto.
1123 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1124 static int wake_idle(int cpu
, task_t
*p
)
1127 struct sched_domain
*sd
;
1133 for_each_domain(cpu
, sd
) {
1134 if (sd
->flags
& SD_WAKE_IDLE
) {
1135 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1136 for_each_cpu_mask(i
, tmp
) {
1147 static inline int wake_idle(int cpu
, task_t
*p
)
1154 * try_to_wake_up - wake up a thread
1155 * @p: the to-be-woken-up thread
1156 * @state: the mask of task states that can be woken
1157 * @sync: do a synchronous wakeup?
1159 * Put it on the run-queue if it's not already there. The "current"
1160 * thread is always on the run-queue (except when the actual
1161 * re-schedule is in progress), and as such you're allowed to do
1162 * the simpler "current->state = TASK_RUNNING" to mark yourself
1163 * runnable without the overhead of this.
1165 * returns failure only if the task is already active.
1167 static int try_to_wake_up(task_t
*p
, unsigned int state
, int sync
)
1169 int cpu
, this_cpu
, success
= 0;
1170 unsigned long flags
;
1174 unsigned long load
, this_load
;
1175 struct sched_domain
*sd
, *this_sd
= NULL
;
1179 rq
= task_rq_lock(p
, &flags
);
1180 old_state
= p
->state
;
1181 if (!(old_state
& state
))
1188 this_cpu
= smp_processor_id();
1191 if (unlikely(task_running(rq
, p
)))
1196 schedstat_inc(rq
, ttwu_cnt
);
1197 if (cpu
== this_cpu
) {
1198 schedstat_inc(rq
, ttwu_local
);
1202 for_each_domain(this_cpu
, sd
) {
1203 if (cpu_isset(cpu
, sd
->span
)) {
1204 schedstat_inc(sd
, ttwu_wake_remote
);
1210 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1214 * Check for affine wakeup and passive balancing possibilities.
1217 int idx
= this_sd
->wake_idx
;
1218 unsigned int imbalance
;
1220 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1222 load
= source_load(cpu
, idx
);
1223 this_load
= target_load(this_cpu
, idx
);
1225 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1227 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1228 unsigned long tl
= this_load
;
1230 * If sync wakeup then subtract the (maximum possible)
1231 * effect of the currently running task from the load
1232 * of the current CPU:
1235 tl
-= SCHED_LOAD_SCALE
;
1238 tl
+ target_load(cpu
, idx
) <= SCHED_LOAD_SCALE
) ||
1239 100*(tl
+ SCHED_LOAD_SCALE
) <= imbalance
*load
) {
1241 * This domain has SD_WAKE_AFFINE and
1242 * p is cache cold in this domain, and
1243 * there is no bad imbalance.
1245 schedstat_inc(this_sd
, ttwu_move_affine
);
1251 * Start passive balancing when half the imbalance_pct
1254 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1255 if (imbalance
*this_load
<= 100*load
) {
1256 schedstat_inc(this_sd
, ttwu_move_balance
);
1262 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1264 new_cpu
= wake_idle(new_cpu
, p
);
1265 if (new_cpu
!= cpu
) {
1266 set_task_cpu(p
, new_cpu
);
1267 task_rq_unlock(rq
, &flags
);
1268 /* might preempt at this point */
1269 rq
= task_rq_lock(p
, &flags
);
1270 old_state
= p
->state
;
1271 if (!(old_state
& state
))
1276 this_cpu
= smp_processor_id();
1281 #endif /* CONFIG_SMP */
1282 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1283 rq
->nr_uninterruptible
--;
1285 * Tasks on involuntary sleep don't earn
1286 * sleep_avg beyond just interactive state.
1288 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1292 * Tasks that have marked their sleep as noninteractive get
1293 * woken up with their sleep average not weighted in an
1296 if (old_state
& TASK_NONINTERACTIVE
)
1297 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1300 activate_task(p
, rq
, cpu
== this_cpu
);
1302 * Sync wakeups (i.e. those types of wakeups where the waker
1303 * has indicated that it will leave the CPU in short order)
1304 * don't trigger a preemption, if the woken up task will run on
1305 * this cpu. (in this case the 'I will reschedule' promise of
1306 * the waker guarantees that the freshly woken up task is going
1307 * to be considered on this CPU.)
1309 if (!sync
|| cpu
!= this_cpu
) {
1310 if (TASK_PREEMPTS_CURR(p
, rq
))
1311 resched_task(rq
->curr
);
1316 p
->state
= TASK_RUNNING
;
1318 task_rq_unlock(rq
, &flags
);
1323 int fastcall
wake_up_process(task_t
*p
)
1325 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1326 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1329 EXPORT_SYMBOL(wake_up_process
);
1331 int fastcall
wake_up_state(task_t
*p
, unsigned int state
)
1333 return try_to_wake_up(p
, state
, 0);
1337 * Perform scheduler related setup for a newly forked process p.
1338 * p is forked by current.
1340 void fastcall
sched_fork(task_t
*p
, int clone_flags
)
1342 int cpu
= get_cpu();
1345 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1347 set_task_cpu(p
, cpu
);
1350 * We mark the process as running here, but have not actually
1351 * inserted it onto the runqueue yet. This guarantees that
1352 * nobody will actually run it, and a signal or other external
1353 * event cannot wake it up and insert it on the runqueue either.
1355 p
->state
= TASK_RUNNING
;
1356 INIT_LIST_HEAD(&p
->run_list
);
1358 #ifdef CONFIG_SCHEDSTATS
1359 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1361 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1364 #ifdef CONFIG_PREEMPT
1365 /* Want to start with kernel preemption disabled. */
1366 task_thread_info(p
)->preempt_count
= 1;
1369 * Share the timeslice between parent and child, thus the
1370 * total amount of pending timeslices in the system doesn't change,
1371 * resulting in more scheduling fairness.
1373 local_irq_disable();
1374 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1376 * The remainder of the first timeslice might be recovered by
1377 * the parent if the child exits early enough.
1379 p
->first_time_slice
= 1;
1380 current
->time_slice
>>= 1;
1381 p
->timestamp
= sched_clock();
1382 if (unlikely(!current
->time_slice
)) {
1384 * This case is rare, it happens when the parent has only
1385 * a single jiffy left from its timeslice. Taking the
1386 * runqueue lock is not a problem.
1388 current
->time_slice
= 1;
1396 * wake_up_new_task - wake up a newly created task for the first time.
1398 * This function will do some initial scheduler statistics housekeeping
1399 * that must be done for every newly created context, then puts the task
1400 * on the runqueue and wakes it.
1402 void fastcall
wake_up_new_task(task_t
*p
, unsigned long clone_flags
)
1404 unsigned long flags
;
1406 runqueue_t
*rq
, *this_rq
;
1408 rq
= task_rq_lock(p
, &flags
);
1409 BUG_ON(p
->state
!= TASK_RUNNING
);
1410 this_cpu
= smp_processor_id();
1414 * We decrease the sleep average of forking parents
1415 * and children as well, to keep max-interactive tasks
1416 * from forking tasks that are max-interactive. The parent
1417 * (current) is done further down, under its lock.
1419 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1420 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1422 p
->prio
= effective_prio(p
);
1424 if (likely(cpu
== this_cpu
)) {
1425 if (!(clone_flags
& CLONE_VM
)) {
1427 * The VM isn't cloned, so we're in a good position to
1428 * do child-runs-first in anticipation of an exec. This
1429 * usually avoids a lot of COW overhead.
1431 if (unlikely(!current
->array
))
1432 __activate_task(p
, rq
);
1434 p
->prio
= current
->prio
;
1435 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1436 p
->array
= current
->array
;
1437 p
->array
->nr_active
++;
1442 /* Run child last */
1443 __activate_task(p
, rq
);
1445 * We skip the following code due to cpu == this_cpu
1447 * task_rq_unlock(rq, &flags);
1448 * this_rq = task_rq_lock(current, &flags);
1452 this_rq
= cpu_rq(this_cpu
);
1455 * Not the local CPU - must adjust timestamp. This should
1456 * get optimised away in the !CONFIG_SMP case.
1458 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1459 + rq
->timestamp_last_tick
;
1460 __activate_task(p
, rq
);
1461 if (TASK_PREEMPTS_CURR(p
, rq
))
1462 resched_task(rq
->curr
);
1465 * Parent and child are on different CPUs, now get the
1466 * parent runqueue to update the parent's ->sleep_avg:
1468 task_rq_unlock(rq
, &flags
);
1469 this_rq
= task_rq_lock(current
, &flags
);
1471 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1472 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1473 task_rq_unlock(this_rq
, &flags
);
1477 * Potentially available exiting-child timeslices are
1478 * retrieved here - this way the parent does not get
1479 * penalized for creating too many threads.
1481 * (this cannot be used to 'generate' timeslices
1482 * artificially, because any timeslice recovered here
1483 * was given away by the parent in the first place.)
1485 void fastcall
sched_exit(task_t
*p
)
1487 unsigned long flags
;
1491 * If the child was a (relative-) CPU hog then decrease
1492 * the sleep_avg of the parent as well.
1494 rq
= task_rq_lock(p
->parent
, &flags
);
1495 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1496 p
->parent
->time_slice
+= p
->time_slice
;
1497 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1498 p
->parent
->time_slice
= task_timeslice(p
);
1500 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1501 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1502 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1504 task_rq_unlock(rq
, &flags
);
1508 * prepare_task_switch - prepare to switch tasks
1509 * @rq: the runqueue preparing to switch
1510 * @next: the task we are going to switch to.
1512 * This is called with the rq lock held and interrupts off. It must
1513 * be paired with a subsequent finish_task_switch after the context
1516 * prepare_task_switch sets up locking and calls architecture specific
1519 static inline void prepare_task_switch(runqueue_t
*rq
, task_t
*next
)
1521 prepare_lock_switch(rq
, next
);
1522 prepare_arch_switch(next
);
1526 * finish_task_switch - clean up after a task-switch
1527 * @rq: runqueue associated with task-switch
1528 * @prev: the thread we just switched away from.
1530 * finish_task_switch must be called after the context switch, paired
1531 * with a prepare_task_switch call before the context switch.
1532 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1533 * and do any other architecture-specific cleanup actions.
1535 * Note that we may have delayed dropping an mm in context_switch(). If
1536 * so, we finish that here outside of the runqueue lock. (Doing it
1537 * with the lock held can cause deadlocks; see schedule() for
1540 static inline void finish_task_switch(runqueue_t
*rq
, task_t
*prev
)
1541 __releases(rq
->lock
)
1543 struct mm_struct
*mm
= rq
->prev_mm
;
1544 unsigned long prev_task_flags
;
1549 * A task struct has one reference for the use as "current".
1550 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1551 * calls schedule one last time. The schedule call will never return,
1552 * and the scheduled task must drop that reference.
1553 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1554 * still held, otherwise prev could be scheduled on another cpu, die
1555 * there before we look at prev->state, and then the reference would
1557 * Manfred Spraul <manfred@colorfullife.com>
1559 prev_task_flags
= prev
->flags
;
1560 finish_arch_switch(prev
);
1561 finish_lock_switch(rq
, prev
);
1564 if (unlikely(prev_task_flags
& PF_DEAD
)) {
1566 * Remove function-return probe instances associated with this
1567 * task and put them back on the free list.
1569 kprobe_flush_task(prev
);
1570 put_task_struct(prev
);
1575 * schedule_tail - first thing a freshly forked thread must call.
1576 * @prev: the thread we just switched away from.
1578 asmlinkage
void schedule_tail(task_t
*prev
)
1579 __releases(rq
->lock
)
1581 runqueue_t
*rq
= this_rq();
1582 finish_task_switch(rq
, prev
);
1583 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1584 /* In this case, finish_task_switch does not reenable preemption */
1587 if (current
->set_child_tid
)
1588 put_user(current
->pid
, current
->set_child_tid
);
1592 * context_switch - switch to the new MM and the new
1593 * thread's register state.
1596 task_t
* context_switch(runqueue_t
*rq
, task_t
*prev
, task_t
*next
)
1598 struct mm_struct
*mm
= next
->mm
;
1599 struct mm_struct
*oldmm
= prev
->active_mm
;
1601 if (unlikely(!mm
)) {
1602 next
->active_mm
= oldmm
;
1603 atomic_inc(&oldmm
->mm_count
);
1604 enter_lazy_tlb(oldmm
, next
);
1606 switch_mm(oldmm
, mm
, next
);
1608 if (unlikely(!prev
->mm
)) {
1609 prev
->active_mm
= NULL
;
1610 WARN_ON(rq
->prev_mm
);
1611 rq
->prev_mm
= oldmm
;
1614 /* Here we just switch the register state and the stack. */
1615 switch_to(prev
, next
, prev
);
1621 * nr_running, nr_uninterruptible and nr_context_switches:
1623 * externally visible scheduler statistics: current number of runnable
1624 * threads, current number of uninterruptible-sleeping threads, total
1625 * number of context switches performed since bootup.
1627 unsigned long nr_running(void)
1629 unsigned long i
, sum
= 0;
1631 for_each_online_cpu(i
)
1632 sum
+= cpu_rq(i
)->nr_running
;
1637 unsigned long nr_uninterruptible(void)
1639 unsigned long i
, sum
= 0;
1641 for_each_possible_cpu(i
)
1642 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1645 * Since we read the counters lockless, it might be slightly
1646 * inaccurate. Do not allow it to go below zero though:
1648 if (unlikely((long)sum
< 0))
1654 unsigned long long nr_context_switches(void)
1656 unsigned long long i
, sum
= 0;
1658 for_each_possible_cpu(i
)
1659 sum
+= cpu_rq(i
)->nr_switches
;
1664 unsigned long nr_iowait(void)
1666 unsigned long i
, sum
= 0;
1668 for_each_possible_cpu(i
)
1669 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1674 unsigned long nr_active(void)
1676 unsigned long i
, running
= 0, uninterruptible
= 0;
1678 for_each_online_cpu(i
) {
1679 running
+= cpu_rq(i
)->nr_running
;
1680 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1683 if (unlikely((long)uninterruptible
< 0))
1684 uninterruptible
= 0;
1686 return running
+ uninterruptible
;
1692 * double_rq_lock - safely lock two runqueues
1694 * We must take them in cpu order to match code in
1695 * dependent_sleeper and wake_dependent_sleeper.
1697 * Note this does not disable interrupts like task_rq_lock,
1698 * you need to do so manually before calling.
1700 static void double_rq_lock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1701 __acquires(rq1
->lock
)
1702 __acquires(rq2
->lock
)
1705 spin_lock(&rq1
->lock
);
1706 __acquire(rq2
->lock
); /* Fake it out ;) */
1708 if (rq1
->cpu
< rq2
->cpu
) {
1709 spin_lock(&rq1
->lock
);
1710 spin_lock(&rq2
->lock
);
1712 spin_lock(&rq2
->lock
);
1713 spin_lock(&rq1
->lock
);
1719 * double_rq_unlock - safely unlock two runqueues
1721 * Note this does not restore interrupts like task_rq_unlock,
1722 * you need to do so manually after calling.
1724 static void double_rq_unlock(runqueue_t
*rq1
, runqueue_t
*rq2
)
1725 __releases(rq1
->lock
)
1726 __releases(rq2
->lock
)
1728 spin_unlock(&rq1
->lock
);
1730 spin_unlock(&rq2
->lock
);
1732 __release(rq2
->lock
);
1736 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1738 static void double_lock_balance(runqueue_t
*this_rq
, runqueue_t
*busiest
)
1739 __releases(this_rq
->lock
)
1740 __acquires(busiest
->lock
)
1741 __acquires(this_rq
->lock
)
1743 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1744 if (busiest
->cpu
< this_rq
->cpu
) {
1745 spin_unlock(&this_rq
->lock
);
1746 spin_lock(&busiest
->lock
);
1747 spin_lock(&this_rq
->lock
);
1749 spin_lock(&busiest
->lock
);
1754 * If dest_cpu is allowed for this process, migrate the task to it.
1755 * This is accomplished by forcing the cpu_allowed mask to only
1756 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1757 * the cpu_allowed mask is restored.
1759 static void sched_migrate_task(task_t
*p
, int dest_cpu
)
1761 migration_req_t req
;
1763 unsigned long flags
;
1765 rq
= task_rq_lock(p
, &flags
);
1766 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1767 || unlikely(cpu_is_offline(dest_cpu
)))
1770 /* force the process onto the specified CPU */
1771 if (migrate_task(p
, dest_cpu
, &req
)) {
1772 /* Need to wait for migration thread (might exit: take ref). */
1773 struct task_struct
*mt
= rq
->migration_thread
;
1774 get_task_struct(mt
);
1775 task_rq_unlock(rq
, &flags
);
1776 wake_up_process(mt
);
1777 put_task_struct(mt
);
1778 wait_for_completion(&req
.done
);
1782 task_rq_unlock(rq
, &flags
);
1786 * sched_exec - execve() is a valuable balancing opportunity, because at
1787 * this point the task has the smallest effective memory and cache footprint.
1789 void sched_exec(void)
1791 int new_cpu
, this_cpu
= get_cpu();
1792 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
1794 if (new_cpu
!= this_cpu
)
1795 sched_migrate_task(current
, new_cpu
);
1799 * pull_task - move a task from a remote runqueue to the local runqueue.
1800 * Both runqueues must be locked.
1803 void pull_task(runqueue_t
*src_rq
, prio_array_t
*src_array
, task_t
*p
,
1804 runqueue_t
*this_rq
, prio_array_t
*this_array
, int this_cpu
)
1806 dequeue_task(p
, src_array
);
1807 src_rq
->nr_running
--;
1808 set_task_cpu(p
, this_cpu
);
1809 this_rq
->nr_running
++;
1810 enqueue_task(p
, this_array
);
1811 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
1812 + this_rq
->timestamp_last_tick
;
1814 * Note that idle threads have a prio of MAX_PRIO, for this test
1815 * to be always true for them.
1817 if (TASK_PREEMPTS_CURR(p
, this_rq
))
1818 resched_task(this_rq
->curr
);
1822 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1825 int can_migrate_task(task_t
*p
, runqueue_t
*rq
, int this_cpu
,
1826 struct sched_domain
*sd
, enum idle_type idle
,
1830 * We do not migrate tasks that are:
1831 * 1) running (obviously), or
1832 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1833 * 3) are cache-hot on their current CPU.
1835 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
1839 if (task_running(rq
, p
))
1843 * Aggressive migration if:
1844 * 1) task is cache cold, or
1845 * 2) too many balance attempts have failed.
1848 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
1851 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
1857 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1858 * as part of a balancing operation within "domain". Returns the number of
1861 * Called with both runqueues locked.
1863 static int move_tasks(runqueue_t
*this_rq
, int this_cpu
, runqueue_t
*busiest
,
1864 unsigned long max_nr_move
, struct sched_domain
*sd
,
1865 enum idle_type idle
, int *all_pinned
)
1867 prio_array_t
*array
, *dst_array
;
1868 struct list_head
*head
, *curr
;
1869 int idx
, pulled
= 0, pinned
= 0;
1872 if (max_nr_move
== 0)
1878 * We first consider expired tasks. Those will likely not be
1879 * executed in the near future, and they are most likely to
1880 * be cache-cold, thus switching CPUs has the least effect
1883 if (busiest
->expired
->nr_active
) {
1884 array
= busiest
->expired
;
1885 dst_array
= this_rq
->expired
;
1887 array
= busiest
->active
;
1888 dst_array
= this_rq
->active
;
1892 /* Start searching at priority 0: */
1896 idx
= sched_find_first_bit(array
->bitmap
);
1898 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
1899 if (idx
>= MAX_PRIO
) {
1900 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
1901 array
= busiest
->active
;
1902 dst_array
= this_rq
->active
;
1908 head
= array
->queue
+ idx
;
1911 tmp
= list_entry(curr
, task_t
, run_list
);
1915 if (!can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
1922 #ifdef CONFIG_SCHEDSTATS
1923 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
1924 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1927 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
1930 /* We only want to steal up to the prescribed number of tasks. */
1931 if (pulled
< max_nr_move
) {
1939 * Right now, this is the only place pull_task() is called,
1940 * so we can safely collect pull_task() stats here rather than
1941 * inside pull_task().
1943 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1946 *all_pinned
= pinned
;
1951 * find_busiest_group finds and returns the busiest CPU group within the
1952 * domain. It calculates and returns the number of tasks which should be
1953 * moved to restore balance via the imbalance parameter.
1955 static struct sched_group
*
1956 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
1957 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
)
1959 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1960 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
1961 unsigned long max_pull
;
1964 max_load
= this_load
= total_load
= total_pwr
= 0;
1965 if (idle
== NOT_IDLE
)
1966 load_idx
= sd
->busy_idx
;
1967 else if (idle
== NEWLY_IDLE
)
1968 load_idx
= sd
->newidle_idx
;
1970 load_idx
= sd
->idle_idx
;
1977 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1979 /* Tally up the load of all CPUs in the group */
1982 for_each_cpu_mask(i
, group
->cpumask
) {
1983 if (*sd_idle
&& !idle_cpu(i
))
1986 /* Bias balancing toward cpus of our domain */
1988 load
= target_load(i
, load_idx
);
1990 load
= source_load(i
, load_idx
);
1995 total_load
+= avg_load
;
1996 total_pwr
+= group
->cpu_power
;
1998 /* Adjust by relative CPU power of the group */
1999 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2002 this_load
= avg_load
;
2004 } else if (avg_load
> max_load
) {
2005 max_load
= avg_load
;
2008 group
= group
->next
;
2009 } while (group
!= sd
->groups
);
2011 if (!busiest
|| this_load
>= max_load
|| max_load
<= SCHED_LOAD_SCALE
)
2014 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2016 if (this_load
>= avg_load
||
2017 100*max_load
<= sd
->imbalance_pct
*this_load
)
2021 * We're trying to get all the cpus to the average_load, so we don't
2022 * want to push ourselves above the average load, nor do we wish to
2023 * reduce the max loaded cpu below the average load, as either of these
2024 * actions would just result in more rebalancing later, and ping-pong
2025 * tasks around. Thus we look for the minimum possible imbalance.
2026 * Negative imbalances (*we* are more loaded than anyone else) will
2027 * be counted as no imbalance for these purposes -- we can't fix that
2028 * by pulling tasks to us. Be careful of negative numbers as they'll
2029 * appear as very large values with unsigned longs.
2032 /* Don't want to pull so many tasks that a group would go idle */
2033 max_pull
= min(max_load
- avg_load
, max_load
- SCHED_LOAD_SCALE
);
2035 /* How much load to actually move to equalise the imbalance */
2036 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2037 (avg_load
- this_load
) * this->cpu_power
)
2040 if (*imbalance
< SCHED_LOAD_SCALE
) {
2041 unsigned long pwr_now
= 0, pwr_move
= 0;
2044 if (max_load
- this_load
>= SCHED_LOAD_SCALE
*2) {
2050 * OK, we don't have enough imbalance to justify moving tasks,
2051 * however we may be able to increase total CPU power used by
2055 pwr_now
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
, max_load
);
2056 pwr_now
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
);
2057 pwr_now
/= SCHED_LOAD_SCALE
;
2059 /* Amount of load we'd subtract */
2060 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2062 pwr_move
+= busiest
->cpu_power
*min(SCHED_LOAD_SCALE
,
2065 /* Amount of load we'd add */
2066 if (max_load
*busiest
->cpu_power
<
2067 SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
)
2068 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2070 tmp
= SCHED_LOAD_SCALE
*SCHED_LOAD_SCALE
/this->cpu_power
;
2071 pwr_move
+= this->cpu_power
*min(SCHED_LOAD_SCALE
, this_load
+ tmp
);
2072 pwr_move
/= SCHED_LOAD_SCALE
;
2074 /* Move if we gain throughput */
2075 if (pwr_move
<= pwr_now
)
2082 /* Get rid of the scaling factor, rounding down as we divide */
2083 *imbalance
= *imbalance
/ SCHED_LOAD_SCALE
;
2093 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2095 static runqueue_t
*find_busiest_queue(struct sched_group
*group
,
2096 enum idle_type idle
)
2098 unsigned long load
, max_load
= 0;
2099 runqueue_t
*busiest
= NULL
;
2102 for_each_cpu_mask(i
, group
->cpumask
) {
2103 load
= source_load(i
, 0);
2105 if (load
> max_load
) {
2107 busiest
= cpu_rq(i
);
2115 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2116 * so long as it is large enough.
2118 #define MAX_PINNED_INTERVAL 512
2121 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2122 * tasks if there is an imbalance.
2124 * Called with this_rq unlocked.
2126 static int load_balance(int this_cpu
, runqueue_t
*this_rq
,
2127 struct sched_domain
*sd
, enum idle_type idle
)
2129 struct sched_group
*group
;
2130 runqueue_t
*busiest
;
2131 unsigned long imbalance
;
2132 int nr_moved
, all_pinned
= 0;
2133 int active_balance
= 0;
2136 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2139 schedstat_inc(sd
, lb_cnt
[idle
]);
2141 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
);
2143 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2147 busiest
= find_busiest_queue(group
, idle
);
2149 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2153 BUG_ON(busiest
== this_rq
);
2155 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2158 if (busiest
->nr_running
> 1) {
2160 * Attempt to move tasks. If find_busiest_group has found
2161 * an imbalance but busiest->nr_running <= 1, the group is
2162 * still unbalanced. nr_moved simply stays zero, so it is
2163 * correctly treated as an imbalance.
2165 double_rq_lock(this_rq
, busiest
);
2166 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2167 imbalance
, sd
, idle
, &all_pinned
);
2168 double_rq_unlock(this_rq
, busiest
);
2170 /* All tasks on this runqueue were pinned by CPU affinity */
2171 if (unlikely(all_pinned
))
2176 schedstat_inc(sd
, lb_failed
[idle
]);
2177 sd
->nr_balance_failed
++;
2179 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2181 spin_lock(&busiest
->lock
);
2183 /* don't kick the migration_thread, if the curr
2184 * task on busiest cpu can't be moved to this_cpu
2186 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2187 spin_unlock(&busiest
->lock
);
2189 goto out_one_pinned
;
2192 if (!busiest
->active_balance
) {
2193 busiest
->active_balance
= 1;
2194 busiest
->push_cpu
= this_cpu
;
2197 spin_unlock(&busiest
->lock
);
2199 wake_up_process(busiest
->migration_thread
);
2202 * We've kicked active balancing, reset the failure
2205 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2208 sd
->nr_balance_failed
= 0;
2210 if (likely(!active_balance
)) {
2211 /* We were unbalanced, so reset the balancing interval */
2212 sd
->balance_interval
= sd
->min_interval
;
2215 * If we've begun active balancing, start to back off. This
2216 * case may not be covered by the all_pinned logic if there
2217 * is only 1 task on the busy runqueue (because we don't call
2220 if (sd
->balance_interval
< sd
->max_interval
)
2221 sd
->balance_interval
*= 2;
2224 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2229 schedstat_inc(sd
, lb_balanced
[idle
]);
2231 sd
->nr_balance_failed
= 0;
2234 /* tune up the balancing interval */
2235 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2236 (sd
->balance_interval
< sd
->max_interval
))
2237 sd
->balance_interval
*= 2;
2239 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2245 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2246 * tasks if there is an imbalance.
2248 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2249 * this_rq is locked.
2251 static int load_balance_newidle(int this_cpu
, runqueue_t
*this_rq
,
2252 struct sched_domain
*sd
)
2254 struct sched_group
*group
;
2255 runqueue_t
*busiest
= NULL
;
2256 unsigned long imbalance
;
2260 if (sd
->flags
& SD_SHARE_CPUPOWER
)
2263 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2264 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
, &sd_idle
);
2266 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2270 busiest
= find_busiest_queue(group
, NEWLY_IDLE
);
2272 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2276 BUG_ON(busiest
== this_rq
);
2278 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2281 if (busiest
->nr_running
> 1) {
2282 /* Attempt to move tasks */
2283 double_lock_balance(this_rq
, busiest
);
2284 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2285 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2286 spin_unlock(&busiest
->lock
);
2290 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2291 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2294 sd
->nr_balance_failed
= 0;
2299 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2300 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2302 sd
->nr_balance_failed
= 0;
2307 * idle_balance is called by schedule() if this_cpu is about to become
2308 * idle. Attempts to pull tasks from other CPUs.
2310 static void idle_balance(int this_cpu
, runqueue_t
*this_rq
)
2312 struct sched_domain
*sd
;
2314 for_each_domain(this_cpu
, sd
) {
2315 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2316 if (load_balance_newidle(this_cpu
, this_rq
, sd
)) {
2317 /* We've pulled tasks over so stop searching */
2325 * active_load_balance is run by migration threads. It pushes running tasks
2326 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2327 * running on each physical CPU where possible, and avoids physical /
2328 * logical imbalances.
2330 * Called with busiest_rq locked.
2332 static void active_load_balance(runqueue_t
*busiest_rq
, int busiest_cpu
)
2334 struct sched_domain
*sd
;
2335 runqueue_t
*target_rq
;
2336 int target_cpu
= busiest_rq
->push_cpu
;
2338 if (busiest_rq
->nr_running
<= 1)
2339 /* no task to move */
2342 target_rq
= cpu_rq(target_cpu
);
2345 * This condition is "impossible", if it occurs
2346 * we need to fix it. Originally reported by
2347 * Bjorn Helgaas on a 128-cpu setup.
2349 BUG_ON(busiest_rq
== target_rq
);
2351 /* move a task from busiest_rq to target_rq */
2352 double_lock_balance(busiest_rq
, target_rq
);
2354 /* Search for an sd spanning us and the target CPU. */
2355 for_each_domain(target_cpu
, sd
)
2356 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2357 cpu_isset(busiest_cpu
, sd
->span
))
2360 if (unlikely(sd
== NULL
))
2363 schedstat_inc(sd
, alb_cnt
);
2365 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1, sd
, SCHED_IDLE
, NULL
))
2366 schedstat_inc(sd
, alb_pushed
);
2368 schedstat_inc(sd
, alb_failed
);
2370 spin_unlock(&target_rq
->lock
);
2374 * rebalance_tick will get called every timer tick, on every CPU.
2376 * It checks each scheduling domain to see if it is due to be balanced,
2377 * and initiates a balancing operation if so.
2379 * Balancing parameters are set up in arch_init_sched_domains.
2382 /* Don't have all balancing operations going off at once */
2383 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2385 static void rebalance_tick(int this_cpu
, runqueue_t
*this_rq
,
2386 enum idle_type idle
)
2388 unsigned long old_load
, this_load
;
2389 unsigned long j
= jiffies
+ CPU_OFFSET(this_cpu
);
2390 struct sched_domain
*sd
;
2393 this_load
= this_rq
->nr_running
* SCHED_LOAD_SCALE
;
2394 /* Update our load */
2395 for (i
= 0; i
< 3; i
++) {
2396 unsigned long new_load
= this_load
;
2398 old_load
= this_rq
->cpu_load
[i
];
2400 * Round up the averaging division if load is increasing. This
2401 * prevents us from getting stuck on 9 if the load is 10, for
2404 if (new_load
> old_load
)
2405 new_load
+= scale
-1;
2406 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2409 for_each_domain(this_cpu
, sd
) {
2410 unsigned long interval
;
2412 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2415 interval
= sd
->balance_interval
;
2416 if (idle
!= SCHED_IDLE
)
2417 interval
*= sd
->busy_factor
;
2419 /* scale ms to jiffies */
2420 interval
= msecs_to_jiffies(interval
);
2421 if (unlikely(!interval
))
2424 if (j
- sd
->last_balance
>= interval
) {
2425 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2427 * We've pulled tasks over so either we're no
2428 * longer idle, or one of our SMT siblings is
2433 sd
->last_balance
+= interval
;
2439 * on UP we do not need to balance between CPUs:
2441 static inline void rebalance_tick(int cpu
, runqueue_t
*rq
, enum idle_type idle
)
2444 static inline void idle_balance(int cpu
, runqueue_t
*rq
)
2449 static inline int wake_priority_sleeper(runqueue_t
*rq
)
2452 #ifdef CONFIG_SCHED_SMT
2453 spin_lock(&rq
->lock
);
2455 * If an SMT sibling task has been put to sleep for priority
2456 * reasons reschedule the idle task to see if it can now run.
2458 if (rq
->nr_running
) {
2459 resched_task(rq
->idle
);
2462 spin_unlock(&rq
->lock
);
2467 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2469 EXPORT_PER_CPU_SYMBOL(kstat
);
2472 * This is called on clock ticks and on context switches.
2473 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2475 static inline void update_cpu_clock(task_t
*p
, runqueue_t
*rq
,
2476 unsigned long long now
)
2478 unsigned long long last
= max(p
->timestamp
, rq
->timestamp_last_tick
);
2479 p
->sched_time
+= now
- last
;
2483 * Return current->sched_time plus any more ns on the sched_clock
2484 * that have not yet been banked.
2486 unsigned long long current_sched_time(const task_t
*tsk
)
2488 unsigned long long ns
;
2489 unsigned long flags
;
2490 local_irq_save(flags
);
2491 ns
= max(tsk
->timestamp
, task_rq(tsk
)->timestamp_last_tick
);
2492 ns
= tsk
->sched_time
+ (sched_clock() - ns
);
2493 local_irq_restore(flags
);
2498 * We place interactive tasks back into the active array, if possible.
2500 * To guarantee that this does not starve expired tasks we ignore the
2501 * interactivity of a task if the first expired task had to wait more
2502 * than a 'reasonable' amount of time. This deadline timeout is
2503 * load-dependent, as the frequency of array switched decreases with
2504 * increasing number of running tasks. We also ignore the interactivity
2505 * if a better static_prio task has expired:
2507 #define EXPIRED_STARVING(rq) \
2508 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2509 (jiffies - (rq)->expired_timestamp >= \
2510 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2511 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2514 * Account user cpu time to a process.
2515 * @p: the process that the cpu time gets accounted to
2516 * @hardirq_offset: the offset to subtract from hardirq_count()
2517 * @cputime: the cpu time spent in user space since the last update
2519 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2521 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2524 p
->utime
= cputime_add(p
->utime
, cputime
);
2526 /* Add user time to cpustat. */
2527 tmp
= cputime_to_cputime64(cputime
);
2528 if (TASK_NICE(p
) > 0)
2529 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2531 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2535 * Account system cpu time to a process.
2536 * @p: the process that the cpu time gets accounted to
2537 * @hardirq_offset: the offset to subtract from hardirq_count()
2538 * @cputime: the cpu time spent in kernel space since the last update
2540 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2543 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2544 runqueue_t
*rq
= this_rq();
2547 p
->stime
= cputime_add(p
->stime
, cputime
);
2549 /* Add system time to cpustat. */
2550 tmp
= cputime_to_cputime64(cputime
);
2551 if (hardirq_count() - hardirq_offset
)
2552 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2553 else if (softirq_count())
2554 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2555 else if (p
!= rq
->idle
)
2556 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2557 else if (atomic_read(&rq
->nr_iowait
) > 0)
2558 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2560 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2561 /* Account for system time used */
2562 acct_update_integrals(p
);
2566 * Account for involuntary wait time.
2567 * @p: the process from which the cpu time has been stolen
2568 * @steal: the cpu time spent in involuntary wait
2570 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
2572 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2573 cputime64_t tmp
= cputime_to_cputime64(steal
);
2574 runqueue_t
*rq
= this_rq();
2576 if (p
== rq
->idle
) {
2577 p
->stime
= cputime_add(p
->stime
, steal
);
2578 if (atomic_read(&rq
->nr_iowait
) > 0)
2579 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2581 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2583 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
2587 * This function gets called by the timer code, with HZ frequency.
2588 * We call it with interrupts disabled.
2590 * It also gets called by the fork code, when changing the parent's
2593 void scheduler_tick(void)
2595 int cpu
= smp_processor_id();
2596 runqueue_t
*rq
= this_rq();
2597 task_t
*p
= current
;
2598 unsigned long long now
= sched_clock();
2600 update_cpu_clock(p
, rq
, now
);
2602 rq
->timestamp_last_tick
= now
;
2604 if (p
== rq
->idle
) {
2605 if (wake_priority_sleeper(rq
))
2607 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
2611 /* Task might have expired already, but not scheduled off yet */
2612 if (p
->array
!= rq
->active
) {
2613 set_tsk_need_resched(p
);
2616 spin_lock(&rq
->lock
);
2618 * The task was running during this tick - update the
2619 * time slice counter. Note: we do not update a thread's
2620 * priority until it either goes to sleep or uses up its
2621 * timeslice. This makes it possible for interactive tasks
2622 * to use up their timeslices at their highest priority levels.
2626 * RR tasks need a special form of timeslice management.
2627 * FIFO tasks have no timeslices.
2629 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
2630 p
->time_slice
= task_timeslice(p
);
2631 p
->first_time_slice
= 0;
2632 set_tsk_need_resched(p
);
2634 /* put it at the end of the queue: */
2635 requeue_task(p
, rq
->active
);
2639 if (!--p
->time_slice
) {
2640 dequeue_task(p
, rq
->active
);
2641 set_tsk_need_resched(p
);
2642 p
->prio
= effective_prio(p
);
2643 p
->time_slice
= task_timeslice(p
);
2644 p
->first_time_slice
= 0;
2646 if (!rq
->expired_timestamp
)
2647 rq
->expired_timestamp
= jiffies
;
2648 if (!TASK_INTERACTIVE(p
) || EXPIRED_STARVING(rq
)) {
2649 enqueue_task(p
, rq
->expired
);
2650 if (p
->static_prio
< rq
->best_expired_prio
)
2651 rq
->best_expired_prio
= p
->static_prio
;
2653 enqueue_task(p
, rq
->active
);
2656 * Prevent a too long timeslice allowing a task to monopolize
2657 * the CPU. We do this by splitting up the timeslice into
2660 * Note: this does not mean the task's timeslices expire or
2661 * get lost in any way, they just might be preempted by
2662 * another task of equal priority. (one with higher
2663 * priority would have preempted this task already.) We
2664 * requeue this task to the end of the list on this priority
2665 * level, which is in essence a round-robin of tasks with
2668 * This only applies to tasks in the interactive
2669 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2671 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
2672 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
2673 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
2674 (p
->array
== rq
->active
)) {
2676 requeue_task(p
, rq
->active
);
2677 set_tsk_need_resched(p
);
2681 spin_unlock(&rq
->lock
);
2683 rebalance_tick(cpu
, rq
, NOT_IDLE
);
2686 #ifdef CONFIG_SCHED_SMT
2687 static inline void wakeup_busy_runqueue(runqueue_t
*rq
)
2689 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2690 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
2691 resched_task(rq
->idle
);
2694 static void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2696 struct sched_domain
*tmp
, *sd
= NULL
;
2697 cpumask_t sibling_map
;
2700 for_each_domain(this_cpu
, tmp
)
2701 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2708 * Unlock the current runqueue because we have to lock in
2709 * CPU order to avoid deadlocks. Caller knows that we might
2710 * unlock. We keep IRQs disabled.
2712 spin_unlock(&this_rq
->lock
);
2714 sibling_map
= sd
->span
;
2716 for_each_cpu_mask(i
, sibling_map
)
2717 spin_lock(&cpu_rq(i
)->lock
);
2719 * We clear this CPU from the mask. This both simplifies the
2720 * inner loop and keps this_rq locked when we exit:
2722 cpu_clear(this_cpu
, sibling_map
);
2724 for_each_cpu_mask(i
, sibling_map
) {
2725 runqueue_t
*smt_rq
= cpu_rq(i
);
2727 wakeup_busy_runqueue(smt_rq
);
2730 for_each_cpu_mask(i
, sibling_map
)
2731 spin_unlock(&cpu_rq(i
)->lock
);
2733 * We exit with this_cpu's rq still held and IRQs
2739 * number of 'lost' timeslices this task wont be able to fully
2740 * utilize, if another task runs on a sibling. This models the
2741 * slowdown effect of other tasks running on siblings:
2743 static inline unsigned long smt_slice(task_t
*p
, struct sched_domain
*sd
)
2745 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
2748 static int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2750 struct sched_domain
*tmp
, *sd
= NULL
;
2751 cpumask_t sibling_map
;
2752 prio_array_t
*array
;
2756 for_each_domain(this_cpu
, tmp
)
2757 if (tmp
->flags
& SD_SHARE_CPUPOWER
)
2764 * The same locking rules and details apply as for
2765 * wake_sleeping_dependent():
2767 spin_unlock(&this_rq
->lock
);
2768 sibling_map
= sd
->span
;
2769 for_each_cpu_mask(i
, sibling_map
)
2770 spin_lock(&cpu_rq(i
)->lock
);
2771 cpu_clear(this_cpu
, sibling_map
);
2774 * Establish next task to be run - it might have gone away because
2775 * we released the runqueue lock above:
2777 if (!this_rq
->nr_running
)
2779 array
= this_rq
->active
;
2780 if (!array
->nr_active
)
2781 array
= this_rq
->expired
;
2782 BUG_ON(!array
->nr_active
);
2784 p
= list_entry(array
->queue
[sched_find_first_bit(array
->bitmap
)].next
,
2787 for_each_cpu_mask(i
, sibling_map
) {
2788 runqueue_t
*smt_rq
= cpu_rq(i
);
2789 task_t
*smt_curr
= smt_rq
->curr
;
2791 /* Kernel threads do not participate in dependent sleeping */
2792 if (!p
->mm
|| !smt_curr
->mm
|| rt_task(p
))
2793 goto check_smt_task
;
2796 * If a user task with lower static priority than the
2797 * running task on the SMT sibling is trying to schedule,
2798 * delay it till there is proportionately less timeslice
2799 * left of the sibling task to prevent a lower priority
2800 * task from using an unfair proportion of the
2801 * physical cpu's resources. -ck
2803 if (rt_task(smt_curr
)) {
2805 * With real time tasks we run non-rt tasks only
2806 * per_cpu_gain% of the time.
2808 if ((jiffies
% DEF_TIMESLICE
) >
2809 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2812 if (smt_curr
->static_prio
< p
->static_prio
&&
2813 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2814 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
2818 if ((!smt_curr
->mm
&& smt_curr
!= smt_rq
->idle
) ||
2822 wakeup_busy_runqueue(smt_rq
);
2827 * Reschedule a lower priority task on the SMT sibling for
2828 * it to be put to sleep, or wake it up if it has been put to
2829 * sleep for priority reasons to see if it should run now.
2832 if ((jiffies
% DEF_TIMESLICE
) >
2833 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
2834 resched_task(smt_curr
);
2836 if (TASK_PREEMPTS_CURR(p
, smt_rq
) &&
2837 smt_slice(p
, sd
) > task_timeslice(smt_curr
))
2838 resched_task(smt_curr
);
2840 wakeup_busy_runqueue(smt_rq
);
2844 for_each_cpu_mask(i
, sibling_map
)
2845 spin_unlock(&cpu_rq(i
)->lock
);
2849 static inline void wake_sleeping_dependent(int this_cpu
, runqueue_t
*this_rq
)
2853 static inline int dependent_sleeper(int this_cpu
, runqueue_t
*this_rq
)
2859 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2861 void fastcall
add_preempt_count(int val
)
2866 BUG_ON((preempt_count() < 0));
2867 preempt_count() += val
;
2869 * Spinlock count overflowing soon?
2871 BUG_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
2873 EXPORT_SYMBOL(add_preempt_count
);
2875 void fastcall
sub_preempt_count(int val
)
2880 BUG_ON(val
> preempt_count());
2882 * Is the spinlock portion underflowing?
2884 BUG_ON((val
< PREEMPT_MASK
) && !(preempt_count() & PREEMPT_MASK
));
2885 preempt_count() -= val
;
2887 EXPORT_SYMBOL(sub_preempt_count
);
2891 static inline int interactive_sleep(enum sleep_type sleep_type
)
2893 return (sleep_type
== SLEEP_INTERACTIVE
||
2894 sleep_type
== SLEEP_INTERRUPTED
);
2898 * schedule() is the main scheduler function.
2900 asmlinkage
void __sched
schedule(void)
2903 task_t
*prev
, *next
;
2905 prio_array_t
*array
;
2906 struct list_head
*queue
;
2907 unsigned long long now
;
2908 unsigned long run_time
;
2909 int cpu
, idx
, new_prio
;
2912 * Test if we are atomic. Since do_exit() needs to call into
2913 * schedule() atomically, we ignore that path for now.
2914 * Otherwise, whine if we are scheduling when we should not be.
2916 if (unlikely(in_atomic() && !current
->exit_state
)) {
2917 printk(KERN_ERR
"BUG: scheduling while atomic: "
2919 current
->comm
, preempt_count(), current
->pid
);
2922 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
2927 release_kernel_lock(prev
);
2928 need_resched_nonpreemptible
:
2932 * The idle thread is not allowed to schedule!
2933 * Remove this check after it has been exercised a bit.
2935 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
2936 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
2940 schedstat_inc(rq
, sched_cnt
);
2941 now
= sched_clock();
2942 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
2943 run_time
= now
- prev
->timestamp
;
2944 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
2947 run_time
= NS_MAX_SLEEP_AVG
;
2950 * Tasks charged proportionately less run_time at high sleep_avg to
2951 * delay them losing their interactive status
2953 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
2955 spin_lock_irq(&rq
->lock
);
2957 if (unlikely(prev
->flags
& PF_DEAD
))
2958 prev
->state
= EXIT_DEAD
;
2960 switch_count
= &prev
->nivcsw
;
2961 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
2962 switch_count
= &prev
->nvcsw
;
2963 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
2964 unlikely(signal_pending(prev
))))
2965 prev
->state
= TASK_RUNNING
;
2967 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
2968 rq
->nr_uninterruptible
++;
2969 deactivate_task(prev
, rq
);
2973 cpu
= smp_processor_id();
2974 if (unlikely(!rq
->nr_running
)) {
2976 idle_balance(cpu
, rq
);
2977 if (!rq
->nr_running
) {
2979 rq
->expired_timestamp
= 0;
2980 wake_sleeping_dependent(cpu
, rq
);
2982 * wake_sleeping_dependent() might have released
2983 * the runqueue, so break out if we got new
2986 if (!rq
->nr_running
)
2990 if (dependent_sleeper(cpu
, rq
)) {
2995 * dependent_sleeper() releases and reacquires the runqueue
2996 * lock, hence go into the idle loop if the rq went
2999 if (unlikely(!rq
->nr_running
))
3004 if (unlikely(!array
->nr_active
)) {
3006 * Switch the active and expired arrays.
3008 schedstat_inc(rq
, sched_switch
);
3009 rq
->active
= rq
->expired
;
3010 rq
->expired
= array
;
3012 rq
->expired_timestamp
= 0;
3013 rq
->best_expired_prio
= MAX_PRIO
;
3016 idx
= sched_find_first_bit(array
->bitmap
);
3017 queue
= array
->queue
+ idx
;
3018 next
= list_entry(queue
->next
, task_t
, run_list
);
3020 if (!rt_task(next
) && interactive_sleep(next
->sleep_type
)) {
3021 unsigned long long delta
= now
- next
->timestamp
;
3022 if (unlikely((long long)(now
- next
->timestamp
) < 0))
3025 if (next
->sleep_type
== SLEEP_INTERACTIVE
)
3026 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
3028 array
= next
->array
;
3029 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
3031 if (unlikely(next
->prio
!= new_prio
)) {
3032 dequeue_task(next
, array
);
3033 next
->prio
= new_prio
;
3034 enqueue_task(next
, array
);
3037 next
->sleep_type
= SLEEP_NORMAL
;
3039 if (next
== rq
->idle
)
3040 schedstat_inc(rq
, sched_goidle
);
3042 prefetch_stack(next
);
3043 clear_tsk_need_resched(prev
);
3044 rcu_qsctr_inc(task_cpu(prev
));
3046 update_cpu_clock(prev
, rq
, now
);
3048 prev
->sleep_avg
-= run_time
;
3049 if ((long)prev
->sleep_avg
<= 0)
3050 prev
->sleep_avg
= 0;
3051 prev
->timestamp
= prev
->last_ran
= now
;
3053 sched_info_switch(prev
, next
);
3054 if (likely(prev
!= next
)) {
3055 next
->timestamp
= now
;
3060 prepare_task_switch(rq
, next
);
3061 prev
= context_switch(rq
, prev
, next
);
3064 * this_rq must be evaluated again because prev may have moved
3065 * CPUs since it called schedule(), thus the 'rq' on its stack
3066 * frame will be invalid.
3068 finish_task_switch(this_rq(), prev
);
3070 spin_unlock_irq(&rq
->lock
);
3073 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3074 goto need_resched_nonpreemptible
;
3075 preempt_enable_no_resched();
3076 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3080 EXPORT_SYMBOL(schedule
);
3082 #ifdef CONFIG_PREEMPT
3084 * this is is the entry point to schedule() from in-kernel preemption
3085 * off of preempt_enable. Kernel preemptions off return from interrupt
3086 * occur there and call schedule directly.
3088 asmlinkage
void __sched
preempt_schedule(void)
3090 struct thread_info
*ti
= current_thread_info();
3091 #ifdef CONFIG_PREEMPT_BKL
3092 struct task_struct
*task
= current
;
3093 int saved_lock_depth
;
3096 * If there is a non-zero preempt_count or interrupts are disabled,
3097 * we do not want to preempt the current task. Just return..
3099 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3103 add_preempt_count(PREEMPT_ACTIVE
);
3105 * We keep the big kernel semaphore locked, but we
3106 * clear ->lock_depth so that schedule() doesnt
3107 * auto-release the semaphore:
3109 #ifdef CONFIG_PREEMPT_BKL
3110 saved_lock_depth
= task
->lock_depth
;
3111 task
->lock_depth
= -1;
3114 #ifdef CONFIG_PREEMPT_BKL
3115 task
->lock_depth
= saved_lock_depth
;
3117 sub_preempt_count(PREEMPT_ACTIVE
);
3119 /* we could miss a preemption opportunity between schedule and now */
3121 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3125 EXPORT_SYMBOL(preempt_schedule
);
3128 * this is is the entry point to schedule() from kernel preemption
3129 * off of irq context.
3130 * Note, that this is called and return with irqs disabled. This will
3131 * protect us against recursive calling from irq.
3133 asmlinkage
void __sched
preempt_schedule_irq(void)
3135 struct thread_info
*ti
= current_thread_info();
3136 #ifdef CONFIG_PREEMPT_BKL
3137 struct task_struct
*task
= current
;
3138 int saved_lock_depth
;
3140 /* Catch callers which need to be fixed*/
3141 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3144 add_preempt_count(PREEMPT_ACTIVE
);
3146 * We keep the big kernel semaphore locked, but we
3147 * clear ->lock_depth so that schedule() doesnt
3148 * auto-release the semaphore:
3150 #ifdef CONFIG_PREEMPT_BKL
3151 saved_lock_depth
= task
->lock_depth
;
3152 task
->lock_depth
= -1;
3156 local_irq_disable();
3157 #ifdef CONFIG_PREEMPT_BKL
3158 task
->lock_depth
= saved_lock_depth
;
3160 sub_preempt_count(PREEMPT_ACTIVE
);
3162 /* we could miss a preemption opportunity between schedule and now */
3164 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3168 #endif /* CONFIG_PREEMPT */
3170 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3173 task_t
*p
= curr
->private;
3174 return try_to_wake_up(p
, mode
, sync
);
3177 EXPORT_SYMBOL(default_wake_function
);
3180 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3181 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3182 * number) then we wake all the non-exclusive tasks and one exclusive task.
3184 * There are circumstances in which we can try to wake a task which has already
3185 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3186 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3188 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3189 int nr_exclusive
, int sync
, void *key
)
3191 struct list_head
*tmp
, *next
;
3193 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3196 curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3197 flags
= curr
->flags
;
3198 if (curr
->func(curr
, mode
, sync
, key
) &&
3199 (flags
& WQ_FLAG_EXCLUSIVE
) &&
3206 * __wake_up - wake up threads blocked on a waitqueue.
3208 * @mode: which threads
3209 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3210 * @key: is directly passed to the wakeup function
3212 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3213 int nr_exclusive
, void *key
)
3215 unsigned long flags
;
3217 spin_lock_irqsave(&q
->lock
, flags
);
3218 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3219 spin_unlock_irqrestore(&q
->lock
, flags
);
3222 EXPORT_SYMBOL(__wake_up
);
3225 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3227 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3229 __wake_up_common(q
, mode
, 1, 0, NULL
);
3233 * __wake_up_sync - wake up threads blocked on a waitqueue.
3235 * @mode: which threads
3236 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3238 * The sync wakeup differs that the waker knows that it will schedule
3239 * away soon, so while the target thread will be woken up, it will not
3240 * be migrated to another CPU - ie. the two threads are 'synchronized'
3241 * with each other. This can prevent needless bouncing between CPUs.
3243 * On UP it can prevent extra preemption.
3246 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3248 unsigned long flags
;
3254 if (unlikely(!nr_exclusive
))
3257 spin_lock_irqsave(&q
->lock
, flags
);
3258 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3259 spin_unlock_irqrestore(&q
->lock
, flags
);
3261 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3263 void fastcall
complete(struct completion
*x
)
3265 unsigned long flags
;
3267 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3269 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3271 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3273 EXPORT_SYMBOL(complete
);
3275 void fastcall
complete_all(struct completion
*x
)
3277 unsigned long flags
;
3279 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3280 x
->done
+= UINT_MAX
/2;
3281 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3283 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3285 EXPORT_SYMBOL(complete_all
);
3287 void fastcall __sched
wait_for_completion(struct completion
*x
)
3290 spin_lock_irq(&x
->wait
.lock
);
3292 DECLARE_WAITQUEUE(wait
, current
);
3294 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3295 __add_wait_queue_tail(&x
->wait
, &wait
);
3297 __set_current_state(TASK_UNINTERRUPTIBLE
);
3298 spin_unlock_irq(&x
->wait
.lock
);
3300 spin_lock_irq(&x
->wait
.lock
);
3302 __remove_wait_queue(&x
->wait
, &wait
);
3305 spin_unlock_irq(&x
->wait
.lock
);
3307 EXPORT_SYMBOL(wait_for_completion
);
3309 unsigned long fastcall __sched
3310 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3314 spin_lock_irq(&x
->wait
.lock
);
3316 DECLARE_WAITQUEUE(wait
, current
);
3318 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3319 __add_wait_queue_tail(&x
->wait
, &wait
);
3321 __set_current_state(TASK_UNINTERRUPTIBLE
);
3322 spin_unlock_irq(&x
->wait
.lock
);
3323 timeout
= schedule_timeout(timeout
);
3324 spin_lock_irq(&x
->wait
.lock
);
3326 __remove_wait_queue(&x
->wait
, &wait
);
3330 __remove_wait_queue(&x
->wait
, &wait
);
3334 spin_unlock_irq(&x
->wait
.lock
);
3337 EXPORT_SYMBOL(wait_for_completion_timeout
);
3339 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3345 spin_lock_irq(&x
->wait
.lock
);
3347 DECLARE_WAITQUEUE(wait
, current
);
3349 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3350 __add_wait_queue_tail(&x
->wait
, &wait
);
3352 if (signal_pending(current
)) {
3354 __remove_wait_queue(&x
->wait
, &wait
);
3357 __set_current_state(TASK_INTERRUPTIBLE
);
3358 spin_unlock_irq(&x
->wait
.lock
);
3360 spin_lock_irq(&x
->wait
.lock
);
3362 __remove_wait_queue(&x
->wait
, &wait
);
3366 spin_unlock_irq(&x
->wait
.lock
);
3370 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3372 unsigned long fastcall __sched
3373 wait_for_completion_interruptible_timeout(struct completion
*x
,
3374 unsigned long timeout
)
3378 spin_lock_irq(&x
->wait
.lock
);
3380 DECLARE_WAITQUEUE(wait
, current
);
3382 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3383 __add_wait_queue_tail(&x
->wait
, &wait
);
3385 if (signal_pending(current
)) {
3386 timeout
= -ERESTARTSYS
;
3387 __remove_wait_queue(&x
->wait
, &wait
);
3390 __set_current_state(TASK_INTERRUPTIBLE
);
3391 spin_unlock_irq(&x
->wait
.lock
);
3392 timeout
= schedule_timeout(timeout
);
3393 spin_lock_irq(&x
->wait
.lock
);
3395 __remove_wait_queue(&x
->wait
, &wait
);
3399 __remove_wait_queue(&x
->wait
, &wait
);
3403 spin_unlock_irq(&x
->wait
.lock
);
3406 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3409 #define SLEEP_ON_VAR \
3410 unsigned long flags; \
3411 wait_queue_t wait; \
3412 init_waitqueue_entry(&wait, current);
3414 #define SLEEP_ON_HEAD \
3415 spin_lock_irqsave(&q->lock,flags); \
3416 __add_wait_queue(q, &wait); \
3417 spin_unlock(&q->lock);
3419 #define SLEEP_ON_TAIL \
3420 spin_lock_irq(&q->lock); \
3421 __remove_wait_queue(q, &wait); \
3422 spin_unlock_irqrestore(&q->lock, flags);
3424 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3428 current
->state
= TASK_INTERRUPTIBLE
;
3435 EXPORT_SYMBOL(interruptible_sleep_on
);
3437 long fastcall __sched
3438 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3442 current
->state
= TASK_INTERRUPTIBLE
;
3445 timeout
= schedule_timeout(timeout
);
3451 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3453 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3457 current
->state
= TASK_UNINTERRUPTIBLE
;
3464 EXPORT_SYMBOL(sleep_on
);
3466 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3470 current
->state
= TASK_UNINTERRUPTIBLE
;
3473 timeout
= schedule_timeout(timeout
);
3479 EXPORT_SYMBOL(sleep_on_timeout
);
3481 void set_user_nice(task_t
*p
, long nice
)
3483 unsigned long flags
;
3484 prio_array_t
*array
;
3486 int old_prio
, new_prio
, delta
;
3488 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3491 * We have to be careful, if called from sys_setpriority(),
3492 * the task might be in the middle of scheduling on another CPU.
3494 rq
= task_rq_lock(p
, &flags
);
3496 * The RT priorities are set via sched_setscheduler(), but we still
3497 * allow the 'normal' nice value to be set - but as expected
3498 * it wont have any effect on scheduling until the task is
3499 * not SCHED_NORMAL/SCHED_BATCH:
3502 p
->static_prio
= NICE_TO_PRIO(nice
);
3507 dequeue_task(p
, array
);
3510 new_prio
= NICE_TO_PRIO(nice
);
3511 delta
= new_prio
- old_prio
;
3512 p
->static_prio
= NICE_TO_PRIO(nice
);
3516 enqueue_task(p
, array
);
3518 * If the task increased its priority or is running and
3519 * lowered its priority, then reschedule its CPU:
3521 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3522 resched_task(rq
->curr
);
3525 task_rq_unlock(rq
, &flags
);
3528 EXPORT_SYMBOL(set_user_nice
);
3531 * can_nice - check if a task can reduce its nice value
3535 int can_nice(const task_t
*p
, const int nice
)
3537 /* convert nice value [19,-20] to rlimit style value [1,40] */
3538 int nice_rlim
= 20 - nice
;
3539 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3540 capable(CAP_SYS_NICE
));
3543 #ifdef __ARCH_WANT_SYS_NICE
3546 * sys_nice - change the priority of the current process.
3547 * @increment: priority increment
3549 * sys_setpriority is a more generic, but much slower function that
3550 * does similar things.
3552 asmlinkage
long sys_nice(int increment
)
3558 * Setpriority might change our priority at the same moment.
3559 * We don't have to worry. Conceptually one call occurs first
3560 * and we have a single winner.
3562 if (increment
< -40)
3567 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3573 if (increment
< 0 && !can_nice(current
, nice
))
3576 retval
= security_task_setnice(current
, nice
);
3580 set_user_nice(current
, nice
);
3587 * task_prio - return the priority value of a given task.
3588 * @p: the task in question.
3590 * This is the priority value as seen by users in /proc.
3591 * RT tasks are offset by -200. Normal tasks are centered
3592 * around 0, value goes from -16 to +15.
3594 int task_prio(const task_t
*p
)
3596 return p
->prio
- MAX_RT_PRIO
;
3600 * task_nice - return the nice value of a given task.
3601 * @p: the task in question.
3603 int task_nice(const task_t
*p
)
3605 return TASK_NICE(p
);
3607 EXPORT_SYMBOL_GPL(task_nice
);
3610 * idle_cpu - is a given cpu idle currently?
3611 * @cpu: the processor in question.
3613 int idle_cpu(int cpu
)
3615 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
3619 * idle_task - return the idle task for a given cpu.
3620 * @cpu: the processor in question.
3622 task_t
*idle_task(int cpu
)
3624 return cpu_rq(cpu
)->idle
;
3628 * find_process_by_pid - find a process with a matching PID value.
3629 * @pid: the pid in question.
3631 static inline task_t
*find_process_by_pid(pid_t pid
)
3633 return pid
? find_task_by_pid(pid
) : current
;
3636 /* Actually do priority change: must hold rq lock. */
3637 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
3641 p
->rt_priority
= prio
;
3642 if (policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) {
3643 p
->prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
3645 p
->prio
= p
->static_prio
;
3647 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3649 if (policy
== SCHED_BATCH
)
3655 * sched_setscheduler - change the scheduling policy and/or RT priority of
3657 * @p: the task in question.
3658 * @policy: new policy.
3659 * @param: structure containing the new RT priority.
3661 int sched_setscheduler(struct task_struct
*p
, int policy
,
3662 struct sched_param
*param
)
3665 int oldprio
, oldpolicy
= -1;
3666 prio_array_t
*array
;
3667 unsigned long flags
;
3671 /* double check policy once rq lock held */
3673 policy
= oldpolicy
= p
->policy
;
3674 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
3675 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
)
3678 * Valid priorities for SCHED_FIFO and SCHED_RR are
3679 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3682 if (param
->sched_priority
< 0 ||
3683 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
3684 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
3686 if ((policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
)
3687 != (param
->sched_priority
== 0))
3691 * Allow unprivileged RT tasks to decrease priority:
3693 if (!capable(CAP_SYS_NICE
)) {
3695 * can't change policy, except between SCHED_NORMAL
3698 if (((policy
!= SCHED_NORMAL
&& p
->policy
!= SCHED_BATCH
) &&
3699 (policy
!= SCHED_BATCH
&& p
->policy
!= SCHED_NORMAL
)) &&
3700 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3702 /* can't increase priority */
3703 if ((policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) &&
3704 param
->sched_priority
> p
->rt_priority
&&
3705 param
->sched_priority
>
3706 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
3708 /* can't change other user's priorities */
3709 if ((current
->euid
!= p
->euid
) &&
3710 (current
->euid
!= p
->uid
))
3714 retval
= security_task_setscheduler(p
, policy
, param
);
3718 * To be able to change p->policy safely, the apropriate
3719 * runqueue lock must be held.
3721 rq
= task_rq_lock(p
, &flags
);
3722 /* recheck policy now with rq lock held */
3723 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
3724 policy
= oldpolicy
= -1;
3725 task_rq_unlock(rq
, &flags
);
3730 deactivate_task(p
, rq
);
3732 __setscheduler(p
, policy
, param
->sched_priority
);
3734 __activate_task(p
, rq
);
3736 * Reschedule if we are currently running on this runqueue and
3737 * our priority decreased, or if we are not currently running on
3738 * this runqueue and our priority is higher than the current's
3740 if (task_running(rq
, p
)) {
3741 if (p
->prio
> oldprio
)
3742 resched_task(rq
->curr
);
3743 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3744 resched_task(rq
->curr
);
3746 task_rq_unlock(rq
, &flags
);
3749 EXPORT_SYMBOL_GPL(sched_setscheduler
);
3752 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
3755 struct sched_param lparam
;
3756 struct task_struct
*p
;
3758 if (!param
|| pid
< 0)
3760 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
3762 read_lock_irq(&tasklist_lock
);
3763 p
= find_process_by_pid(pid
);
3765 read_unlock_irq(&tasklist_lock
);
3768 retval
= sched_setscheduler(p
, policy
, &lparam
);
3769 read_unlock_irq(&tasklist_lock
);
3774 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775 * @pid: the pid in question.
3776 * @policy: new policy.
3777 * @param: structure containing the new RT priority.
3779 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
3780 struct sched_param __user
*param
)
3782 /* negative values for policy are not valid */
3786 return do_sched_setscheduler(pid
, policy
, param
);
3790 * sys_sched_setparam - set/change the RT priority of a thread
3791 * @pid: the pid in question.
3792 * @param: structure containing the new RT priority.
3794 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
3796 return do_sched_setscheduler(pid
, -1, param
);
3800 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3801 * @pid: the pid in question.
3803 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
3805 int retval
= -EINVAL
;
3812 read_lock(&tasklist_lock
);
3813 p
= find_process_by_pid(pid
);
3815 retval
= security_task_getscheduler(p
);
3819 read_unlock(&tasklist_lock
);
3826 * sys_sched_getscheduler - get the RT priority of a thread
3827 * @pid: the pid in question.
3828 * @param: structure containing the RT priority.
3830 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
3832 struct sched_param lp
;
3833 int retval
= -EINVAL
;
3836 if (!param
|| pid
< 0)
3839 read_lock(&tasklist_lock
);
3840 p
= find_process_by_pid(pid
);
3845 retval
= security_task_getscheduler(p
);
3849 lp
.sched_priority
= p
->rt_priority
;
3850 read_unlock(&tasklist_lock
);
3853 * This one might sleep, we cannot do it with a spinlock held ...
3855 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
3861 read_unlock(&tasklist_lock
);
3865 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
3869 cpumask_t cpus_allowed
;
3872 read_lock(&tasklist_lock
);
3874 p
= find_process_by_pid(pid
);
3876 read_unlock(&tasklist_lock
);
3877 unlock_cpu_hotplug();
3882 * It is not safe to call set_cpus_allowed with the
3883 * tasklist_lock held. We will bump the task_struct's
3884 * usage count and then drop tasklist_lock.
3887 read_unlock(&tasklist_lock
);
3890 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
3891 !capable(CAP_SYS_NICE
))
3894 retval
= security_task_setscheduler(p
, 0, NULL
);
3898 cpus_allowed
= cpuset_cpus_allowed(p
);
3899 cpus_and(new_mask
, new_mask
, cpus_allowed
);
3900 retval
= set_cpus_allowed(p
, new_mask
);
3904 unlock_cpu_hotplug();
3908 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
3909 cpumask_t
*new_mask
)
3911 if (len
< sizeof(cpumask_t
)) {
3912 memset(new_mask
, 0, sizeof(cpumask_t
));
3913 } else if (len
> sizeof(cpumask_t
)) {
3914 len
= sizeof(cpumask_t
);
3916 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
3920 * sys_sched_setaffinity - set the cpu affinity of a process
3921 * @pid: pid of the process
3922 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3923 * @user_mask_ptr: user-space pointer to the new cpu mask
3925 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
3926 unsigned long __user
*user_mask_ptr
)
3931 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
3935 return sched_setaffinity(pid
, new_mask
);
3939 * Represents all cpu's present in the system
3940 * In systems capable of hotplug, this map could dynamically grow
3941 * as new cpu's are detected in the system via any platform specific
3942 * method, such as ACPI for e.g.
3945 cpumask_t cpu_present_map __read_mostly
;
3946 EXPORT_SYMBOL(cpu_present_map
);
3949 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
3950 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
3953 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
3959 read_lock(&tasklist_lock
);
3962 p
= find_process_by_pid(pid
);
3966 retval
= security_task_getscheduler(p
);
3970 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
3973 read_unlock(&tasklist_lock
);
3974 unlock_cpu_hotplug();
3982 * sys_sched_getaffinity - get the cpu affinity of a process
3983 * @pid: pid of the process
3984 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3985 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3987 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
3988 unsigned long __user
*user_mask_ptr
)
3993 if (len
< sizeof(cpumask_t
))
3996 ret
= sched_getaffinity(pid
, &mask
);
4000 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4003 return sizeof(cpumask_t
);
4007 * sys_sched_yield - yield the current processor to other threads.
4009 * this function yields the current CPU by moving the calling thread
4010 * to the expired array. If there are no other threads running on this
4011 * CPU then this function will return.
4013 asmlinkage
long sys_sched_yield(void)
4015 runqueue_t
*rq
= this_rq_lock();
4016 prio_array_t
*array
= current
->array
;
4017 prio_array_t
*target
= rq
->expired
;
4019 schedstat_inc(rq
, yld_cnt
);
4021 * We implement yielding by moving the task into the expired
4024 * (special rule: RT tasks will just roundrobin in the active
4027 if (rt_task(current
))
4028 target
= rq
->active
;
4030 if (array
->nr_active
== 1) {
4031 schedstat_inc(rq
, yld_act_empty
);
4032 if (!rq
->expired
->nr_active
)
4033 schedstat_inc(rq
, yld_both_empty
);
4034 } else if (!rq
->expired
->nr_active
)
4035 schedstat_inc(rq
, yld_exp_empty
);
4037 if (array
!= target
) {
4038 dequeue_task(current
, array
);
4039 enqueue_task(current
, target
);
4042 * requeue_task is cheaper so perform that if possible.
4044 requeue_task(current
, array
);
4047 * Since we are going to call schedule() anyway, there's
4048 * no need to preempt or enable interrupts:
4050 __release(rq
->lock
);
4051 _raw_spin_unlock(&rq
->lock
);
4052 preempt_enable_no_resched();
4059 static inline void __cond_resched(void)
4061 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4062 __might_sleep(__FILE__
, __LINE__
);
4065 * The BKS might be reacquired before we have dropped
4066 * PREEMPT_ACTIVE, which could trigger a second
4067 * cond_resched() call.
4069 if (unlikely(preempt_count()))
4071 if (unlikely(system_state
!= SYSTEM_RUNNING
))
4074 add_preempt_count(PREEMPT_ACTIVE
);
4076 sub_preempt_count(PREEMPT_ACTIVE
);
4077 } while (need_resched());
4080 int __sched
cond_resched(void)
4082 if (need_resched()) {
4089 EXPORT_SYMBOL(cond_resched
);
4092 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4093 * call schedule, and on return reacquire the lock.
4095 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4096 * operations here to prevent schedule() from being called twice (once via
4097 * spin_unlock(), once by hand).
4099 int cond_resched_lock(spinlock_t
*lock
)
4103 if (need_lockbreak(lock
)) {
4109 if (need_resched()) {
4110 _raw_spin_unlock(lock
);
4111 preempt_enable_no_resched();
4119 EXPORT_SYMBOL(cond_resched_lock
);
4121 int __sched
cond_resched_softirq(void)
4123 BUG_ON(!in_softirq());
4125 if (need_resched()) {
4126 __local_bh_enable();
4134 EXPORT_SYMBOL(cond_resched_softirq
);
4138 * yield - yield the current processor to other threads.
4140 * this is a shortcut for kernel-space yielding - it marks the
4141 * thread runnable and calls sys_sched_yield().
4143 void __sched
yield(void)
4145 set_current_state(TASK_RUNNING
);
4149 EXPORT_SYMBOL(yield
);
4152 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4153 * that process accounting knows that this is a task in IO wait state.
4155 * But don't do that if it is a deliberate, throttling IO wait (this task
4156 * has set its backing_dev_info: the queue against which it should throttle)
4158 void __sched
io_schedule(void)
4160 struct runqueue
*rq
= &__raw_get_cpu_var(runqueues
);
4162 atomic_inc(&rq
->nr_iowait
);
4164 atomic_dec(&rq
->nr_iowait
);
4167 EXPORT_SYMBOL(io_schedule
);
4169 long __sched
io_schedule_timeout(long timeout
)
4171 struct runqueue
*rq
= &__raw_get_cpu_var(runqueues
);
4174 atomic_inc(&rq
->nr_iowait
);
4175 ret
= schedule_timeout(timeout
);
4176 atomic_dec(&rq
->nr_iowait
);
4181 * sys_sched_get_priority_max - return maximum RT priority.
4182 * @policy: scheduling class.
4184 * this syscall returns the maximum rt_priority that can be used
4185 * by a given scheduling class.
4187 asmlinkage
long sys_sched_get_priority_max(int policy
)
4194 ret
= MAX_USER_RT_PRIO
-1;
4205 * sys_sched_get_priority_min - return minimum RT priority.
4206 * @policy: scheduling class.
4208 * this syscall returns the minimum rt_priority that can be used
4209 * by a given scheduling class.
4211 asmlinkage
long sys_sched_get_priority_min(int policy
)
4228 * sys_sched_rr_get_interval - return the default timeslice of a process.
4229 * @pid: pid of the process.
4230 * @interval: userspace pointer to the timeslice value.
4232 * this syscall writes the default timeslice value of a given process
4233 * into the user-space timespec buffer. A value of '0' means infinity.
4236 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4238 int retval
= -EINVAL
;
4246 read_lock(&tasklist_lock
);
4247 p
= find_process_by_pid(pid
);
4251 retval
= security_task_getscheduler(p
);
4255 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4256 0 : task_timeslice(p
), &t
);
4257 read_unlock(&tasklist_lock
);
4258 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4262 read_unlock(&tasklist_lock
);
4266 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4268 if (list_empty(&p
->children
)) return NULL
;
4269 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4272 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4274 if (p
->sibling
.prev
==&p
->parent
->children
) return NULL
;
4275 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4278 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4280 if (p
->sibling
.next
==&p
->parent
->children
) return NULL
;
4281 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4284 static void show_task(task_t
*p
)
4288 unsigned long free
= 0;
4289 static const char *stat_nam
[] = { "R", "S", "D", "T", "t", "Z", "X" };
4291 printk("%-13.13s ", p
->comm
);
4292 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4293 if (state
< ARRAY_SIZE(stat_nam
))
4294 printk(stat_nam
[state
]);
4297 #if (BITS_PER_LONG == 32)
4298 if (state
== TASK_RUNNING
)
4299 printk(" running ");
4301 printk(" %08lX ", thread_saved_pc(p
));
4303 if (state
== TASK_RUNNING
)
4304 printk(" running task ");
4306 printk(" %016lx ", thread_saved_pc(p
));
4308 #ifdef CONFIG_DEBUG_STACK_USAGE
4310 unsigned long *n
= end_of_stack(p
);
4313 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4316 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4317 if ((relative
= eldest_child(p
)))
4318 printk("%5d ", relative
->pid
);
4321 if ((relative
= younger_sibling(p
)))
4322 printk("%7d", relative
->pid
);
4325 if ((relative
= older_sibling(p
)))
4326 printk(" %5d", relative
->pid
);
4330 printk(" (L-TLB)\n");
4332 printk(" (NOTLB)\n");
4334 if (state
!= TASK_RUNNING
)
4335 show_stack(p
, NULL
);
4338 void show_state(void)
4342 #if (BITS_PER_LONG == 32)
4345 printk(" task PC pid father child younger older\n");
4349 printk(" task PC pid father child younger older\n");
4351 read_lock(&tasklist_lock
);
4352 do_each_thread(g
, p
) {
4354 * reset the NMI-timeout, listing all files on a slow
4355 * console might take alot of time:
4357 touch_nmi_watchdog();
4359 } while_each_thread(g
, p
);
4361 read_unlock(&tasklist_lock
);
4362 mutex_debug_show_all_locks();
4366 * init_idle - set up an idle thread for a given CPU
4367 * @idle: task in question
4368 * @cpu: cpu the idle task belongs to
4370 * NOTE: this function does not set the idle thread's NEED_RESCHED
4371 * flag, to make booting more robust.
4373 void __devinit
init_idle(task_t
*idle
, int cpu
)
4375 runqueue_t
*rq
= cpu_rq(cpu
);
4376 unsigned long flags
;
4378 idle
->timestamp
= sched_clock();
4379 idle
->sleep_avg
= 0;
4381 idle
->prio
= MAX_PRIO
;
4382 idle
->state
= TASK_RUNNING
;
4383 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4384 set_task_cpu(idle
, cpu
);
4386 spin_lock_irqsave(&rq
->lock
, flags
);
4387 rq
->curr
= rq
->idle
= idle
;
4388 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4391 spin_unlock_irqrestore(&rq
->lock
, flags
);
4393 /* Set the preempt count _outside_ the spinlocks! */
4394 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4395 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4397 task_thread_info(idle
)->preempt_count
= 0;
4402 * In a system that switches off the HZ timer nohz_cpu_mask
4403 * indicates which cpus entered this state. This is used
4404 * in the rcu update to wait only for active cpus. For system
4405 * which do not switch off the HZ timer nohz_cpu_mask should
4406 * always be CPU_MASK_NONE.
4408 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4412 * This is how migration works:
4414 * 1) we queue a migration_req_t structure in the source CPU's
4415 * runqueue and wake up that CPU's migration thread.
4416 * 2) we down() the locked semaphore => thread blocks.
4417 * 3) migration thread wakes up (implicitly it forces the migrated
4418 * thread off the CPU)
4419 * 4) it gets the migration request and checks whether the migrated
4420 * task is still in the wrong runqueue.
4421 * 5) if it's in the wrong runqueue then the migration thread removes
4422 * it and puts it into the right queue.
4423 * 6) migration thread up()s the semaphore.
4424 * 7) we wake up and the migration is done.
4428 * Change a given task's CPU affinity. Migrate the thread to a
4429 * proper CPU and schedule it away if the CPU it's executing on
4430 * is removed from the allowed bitmask.
4432 * NOTE: the caller must have a valid reference to the task, the
4433 * task must not exit() & deallocate itself prematurely. The
4434 * call is not atomic; no spinlocks may be held.
4436 int set_cpus_allowed(task_t
*p
, cpumask_t new_mask
)
4438 unsigned long flags
;
4440 migration_req_t req
;
4443 rq
= task_rq_lock(p
, &flags
);
4444 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4449 p
->cpus_allowed
= new_mask
;
4450 /* Can the task run on the task's current CPU? If so, we're done */
4451 if (cpu_isset(task_cpu(p
), new_mask
))
4454 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4455 /* Need help from migration thread: drop lock and wait. */
4456 task_rq_unlock(rq
, &flags
);
4457 wake_up_process(rq
->migration_thread
);
4458 wait_for_completion(&req
.done
);
4459 tlb_migrate_finish(p
->mm
);
4463 task_rq_unlock(rq
, &flags
);
4467 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4470 * Move (not current) task off this cpu, onto dest cpu. We're doing
4471 * this because either it can't run here any more (set_cpus_allowed()
4472 * away from this CPU, or CPU going down), or because we're
4473 * attempting to rebalance this task on exec (sched_exec).
4475 * So we race with normal scheduler movements, but that's OK, as long
4476 * as the task is no longer on this CPU.
4478 static void __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4480 runqueue_t
*rq_dest
, *rq_src
;
4482 if (unlikely(cpu_is_offline(dest_cpu
)))
4485 rq_src
= cpu_rq(src_cpu
);
4486 rq_dest
= cpu_rq(dest_cpu
);
4488 double_rq_lock(rq_src
, rq_dest
);
4489 /* Already moved. */
4490 if (task_cpu(p
) != src_cpu
)
4492 /* Affinity changed (again). */
4493 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4496 set_task_cpu(p
, dest_cpu
);
4499 * Sync timestamp with rq_dest's before activating.
4500 * The same thing could be achieved by doing this step
4501 * afterwards, and pretending it was a local activate.
4502 * This way is cleaner and logically correct.
4504 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4505 + rq_dest
->timestamp_last_tick
;
4506 deactivate_task(p
, rq_src
);
4507 activate_task(p
, rq_dest
, 0);
4508 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4509 resched_task(rq_dest
->curr
);
4513 double_rq_unlock(rq_src
, rq_dest
);
4517 * migration_thread - this is a highprio system thread that performs
4518 * thread migration by bumping thread off CPU then 'pushing' onto
4521 static int migration_thread(void *data
)
4524 int cpu
= (long)data
;
4527 BUG_ON(rq
->migration_thread
!= current
);
4529 set_current_state(TASK_INTERRUPTIBLE
);
4530 while (!kthread_should_stop()) {
4531 struct list_head
*head
;
4532 migration_req_t
*req
;
4536 spin_lock_irq(&rq
->lock
);
4538 if (cpu_is_offline(cpu
)) {
4539 spin_unlock_irq(&rq
->lock
);
4543 if (rq
->active_balance
) {
4544 active_load_balance(rq
, cpu
);
4545 rq
->active_balance
= 0;
4548 head
= &rq
->migration_queue
;
4550 if (list_empty(head
)) {
4551 spin_unlock_irq(&rq
->lock
);
4553 set_current_state(TASK_INTERRUPTIBLE
);
4556 req
= list_entry(head
->next
, migration_req_t
, list
);
4557 list_del_init(head
->next
);
4559 spin_unlock(&rq
->lock
);
4560 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
4563 complete(&req
->done
);
4565 __set_current_state(TASK_RUNNING
);
4569 /* Wait for kthread_stop */
4570 set_current_state(TASK_INTERRUPTIBLE
);
4571 while (!kthread_should_stop()) {
4573 set_current_state(TASK_INTERRUPTIBLE
);
4575 __set_current_state(TASK_RUNNING
);
4579 #ifdef CONFIG_HOTPLUG_CPU
4580 /* Figure out where task on dead CPU should go, use force if neccessary. */
4581 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*tsk
)
4587 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
4588 cpus_and(mask
, mask
, tsk
->cpus_allowed
);
4589 dest_cpu
= any_online_cpu(mask
);
4591 /* On any allowed CPU? */
4592 if (dest_cpu
== NR_CPUS
)
4593 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4595 /* No more Mr. Nice Guy. */
4596 if (dest_cpu
== NR_CPUS
) {
4597 cpus_setall(tsk
->cpus_allowed
);
4598 dest_cpu
= any_online_cpu(tsk
->cpus_allowed
);
4601 * Don't tell them about moving exiting tasks or
4602 * kernel threads (both mm NULL), since they never
4605 if (tsk
->mm
&& printk_ratelimit())
4606 printk(KERN_INFO
"process %d (%s) no "
4607 "longer affine to cpu%d\n",
4608 tsk
->pid
, tsk
->comm
, dead_cpu
);
4610 __migrate_task(tsk
, dead_cpu
, dest_cpu
);
4614 * While a dead CPU has no uninterruptible tasks queued at this point,
4615 * it might still have a nonzero ->nr_uninterruptible counter, because
4616 * for performance reasons the counter is not stricly tracking tasks to
4617 * their home CPUs. So we just add the counter to another CPU's counter,
4618 * to keep the global sum constant after CPU-down:
4620 static void migrate_nr_uninterruptible(runqueue_t
*rq_src
)
4622 runqueue_t
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
4623 unsigned long flags
;
4625 local_irq_save(flags
);
4626 double_rq_lock(rq_src
, rq_dest
);
4627 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
4628 rq_src
->nr_uninterruptible
= 0;
4629 double_rq_unlock(rq_src
, rq_dest
);
4630 local_irq_restore(flags
);
4633 /* Run through task list and migrate tasks from the dead cpu. */
4634 static void migrate_live_tasks(int src_cpu
)
4636 struct task_struct
*tsk
, *t
;
4638 write_lock_irq(&tasklist_lock
);
4640 do_each_thread(t
, tsk
) {
4644 if (task_cpu(tsk
) == src_cpu
)
4645 move_task_off_dead_cpu(src_cpu
, tsk
);
4646 } while_each_thread(t
, tsk
);
4648 write_unlock_irq(&tasklist_lock
);
4651 /* Schedules idle task to be the next runnable task on current CPU.
4652 * It does so by boosting its priority to highest possible and adding it to
4653 * the _front_ of runqueue. Used by CPU offline code.
4655 void sched_idle_next(void)
4657 int cpu
= smp_processor_id();
4658 runqueue_t
*rq
= this_rq();
4659 struct task_struct
*p
= rq
->idle
;
4660 unsigned long flags
;
4662 /* cpu has to be offline */
4663 BUG_ON(cpu_online(cpu
));
4665 /* Strictly not necessary since rest of the CPUs are stopped by now
4666 * and interrupts disabled on current cpu.
4668 spin_lock_irqsave(&rq
->lock
, flags
);
4670 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4671 /* Add idle task to _front_ of it's priority queue */
4672 __activate_idle_task(p
, rq
);
4674 spin_unlock_irqrestore(&rq
->lock
, flags
);
4677 /* Ensures that the idle task is using init_mm right before its cpu goes
4680 void idle_task_exit(void)
4682 struct mm_struct
*mm
= current
->active_mm
;
4684 BUG_ON(cpu_online(smp_processor_id()));
4687 switch_mm(mm
, &init_mm
, current
);
4691 static void migrate_dead(unsigned int dead_cpu
, task_t
*tsk
)
4693 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4695 /* Must be exiting, otherwise would be on tasklist. */
4696 BUG_ON(tsk
->exit_state
!= EXIT_ZOMBIE
&& tsk
->exit_state
!= EXIT_DEAD
);
4698 /* Cannot have done final schedule yet: would have vanished. */
4699 BUG_ON(tsk
->flags
& PF_DEAD
);
4701 get_task_struct(tsk
);
4704 * Drop lock around migration; if someone else moves it,
4705 * that's OK. No task can be added to this CPU, so iteration is
4708 spin_unlock_irq(&rq
->lock
);
4709 move_task_off_dead_cpu(dead_cpu
, tsk
);
4710 spin_lock_irq(&rq
->lock
);
4712 put_task_struct(tsk
);
4715 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4716 static void migrate_dead_tasks(unsigned int dead_cpu
)
4719 struct runqueue
*rq
= cpu_rq(dead_cpu
);
4721 for (arr
= 0; arr
< 2; arr
++) {
4722 for (i
= 0; i
< MAX_PRIO
; i
++) {
4723 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
4724 while (!list_empty(list
))
4725 migrate_dead(dead_cpu
,
4726 list_entry(list
->next
, task_t
,
4731 #endif /* CONFIG_HOTPLUG_CPU */
4734 * migration_call - callback that gets triggered when a CPU is added.
4735 * Here we can start up the necessary migration thread for the new CPU.
4737 static int migration_call(struct notifier_block
*nfb
, unsigned long action
,
4740 int cpu
= (long)hcpu
;
4741 struct task_struct
*p
;
4742 struct runqueue
*rq
;
4743 unsigned long flags
;
4746 case CPU_UP_PREPARE
:
4747 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
4750 p
->flags
|= PF_NOFREEZE
;
4751 kthread_bind(p
, cpu
);
4752 /* Must be high prio: stop_machine expects to yield to it. */
4753 rq
= task_rq_lock(p
, &flags
);
4754 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
4755 task_rq_unlock(rq
, &flags
);
4756 cpu_rq(cpu
)->migration_thread
= p
;
4759 /* Strictly unneccessary, as first user will wake it. */
4760 wake_up_process(cpu_rq(cpu
)->migration_thread
);
4762 #ifdef CONFIG_HOTPLUG_CPU
4763 case CPU_UP_CANCELED
:
4764 if (!cpu_rq(cpu
)->migration_thread
)
4766 /* Unbind it from offline cpu so it can run. Fall thru. */
4767 kthread_bind(cpu_rq(cpu
)->migration_thread
,
4768 any_online_cpu(cpu_online_map
));
4769 kthread_stop(cpu_rq(cpu
)->migration_thread
);
4770 cpu_rq(cpu
)->migration_thread
= NULL
;
4773 migrate_live_tasks(cpu
);
4775 kthread_stop(rq
->migration_thread
);
4776 rq
->migration_thread
= NULL
;
4777 /* Idle task back to normal (off runqueue, low prio) */
4778 rq
= task_rq_lock(rq
->idle
, &flags
);
4779 deactivate_task(rq
->idle
, rq
);
4780 rq
->idle
->static_prio
= MAX_PRIO
;
4781 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
4782 migrate_dead_tasks(cpu
);
4783 task_rq_unlock(rq
, &flags
);
4784 migrate_nr_uninterruptible(rq
);
4785 BUG_ON(rq
->nr_running
!= 0);
4787 /* No need to migrate the tasks: it was best-effort if
4788 * they didn't do lock_cpu_hotplug(). Just wake up
4789 * the requestors. */
4790 spin_lock_irq(&rq
->lock
);
4791 while (!list_empty(&rq
->migration_queue
)) {
4792 migration_req_t
*req
;
4793 req
= list_entry(rq
->migration_queue
.next
,
4794 migration_req_t
, list
);
4795 list_del_init(&req
->list
);
4796 complete(&req
->done
);
4798 spin_unlock_irq(&rq
->lock
);
4805 /* Register at highest priority so that task migration (migrate_all_tasks)
4806 * happens before everything else.
4808 static struct notifier_block migration_notifier
= {
4809 .notifier_call
= migration_call
,
4813 int __init
migration_init(void)
4815 void *cpu
= (void *)(long)smp_processor_id();
4816 /* Start one for boot CPU. */
4817 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
4818 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
4819 register_cpu_notifier(&migration_notifier
);
4825 #undef SCHED_DOMAIN_DEBUG
4826 #ifdef SCHED_DOMAIN_DEBUG
4827 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
4832 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
4836 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
4841 struct sched_group
*group
= sd
->groups
;
4842 cpumask_t groupmask
;
4844 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
4845 cpus_clear(groupmask
);
4848 for (i
= 0; i
< level
+ 1; i
++)
4850 printk("domain %d: ", level
);
4852 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
4853 printk("does not load-balance\n");
4855 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
4859 printk("span %s\n", str
);
4861 if (!cpu_isset(cpu
, sd
->span
))
4862 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
4863 if (!cpu_isset(cpu
, group
->cpumask
))
4864 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
4867 for (i
= 0; i
< level
+ 2; i
++)
4873 printk(KERN_ERR
"ERROR: group is NULL\n");
4877 if (!group
->cpu_power
) {
4879 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
4882 if (!cpus_weight(group
->cpumask
)) {
4884 printk(KERN_ERR
"ERROR: empty group\n");
4887 if (cpus_intersects(groupmask
, group
->cpumask
)) {
4889 printk(KERN_ERR
"ERROR: repeated CPUs\n");
4892 cpus_or(groupmask
, groupmask
, group
->cpumask
);
4894 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
4897 group
= group
->next
;
4898 } while (group
!= sd
->groups
);
4901 if (!cpus_equal(sd
->span
, groupmask
))
4902 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
4908 if (!cpus_subset(groupmask
, sd
->span
))
4909 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
4915 #define sched_domain_debug(sd, cpu) {}
4918 static int sd_degenerate(struct sched_domain
*sd
)
4920 if (cpus_weight(sd
->span
) == 1)
4923 /* Following flags need at least 2 groups */
4924 if (sd
->flags
& (SD_LOAD_BALANCE
|
4925 SD_BALANCE_NEWIDLE
|
4928 if (sd
->groups
!= sd
->groups
->next
)
4932 /* Following flags don't use groups */
4933 if (sd
->flags
& (SD_WAKE_IDLE
|
4941 static int sd_parent_degenerate(struct sched_domain
*sd
,
4942 struct sched_domain
*parent
)
4944 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
4946 if (sd_degenerate(parent
))
4949 if (!cpus_equal(sd
->span
, parent
->span
))
4952 /* Does parent contain flags not in child? */
4953 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4954 if (cflags
& SD_WAKE_AFFINE
)
4955 pflags
&= ~SD_WAKE_BALANCE
;
4956 /* Flags needing groups don't count if only 1 group in parent */
4957 if (parent
->groups
== parent
->groups
->next
) {
4958 pflags
&= ~(SD_LOAD_BALANCE
|
4959 SD_BALANCE_NEWIDLE
|
4963 if (~cflags
& pflags
)
4970 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4971 * hold the hotplug lock.
4973 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
4975 runqueue_t
*rq
= cpu_rq(cpu
);
4976 struct sched_domain
*tmp
;
4978 /* Remove the sched domains which do not contribute to scheduling. */
4979 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
4980 struct sched_domain
*parent
= tmp
->parent
;
4983 if (sd_parent_degenerate(tmp
, parent
))
4984 tmp
->parent
= parent
->parent
;
4987 if (sd
&& sd_degenerate(sd
))
4990 sched_domain_debug(sd
, cpu
);
4992 rcu_assign_pointer(rq
->sd
, sd
);
4995 /* cpus with isolated domains */
4996 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
4998 /* Setup the mask of cpus configured for isolated domains */
4999 static int __init
isolated_cpu_setup(char *str
)
5001 int ints
[NR_CPUS
], i
;
5003 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5004 cpus_clear(cpu_isolated_map
);
5005 for (i
= 1; i
<= ints
[0]; i
++)
5006 if (ints
[i
] < NR_CPUS
)
5007 cpu_set(ints
[i
], cpu_isolated_map
);
5011 __setup ("isolcpus=", isolated_cpu_setup
);
5014 * init_sched_build_groups takes an array of groups, the cpumask we wish
5015 * to span, and a pointer to a function which identifies what group a CPU
5016 * belongs to. The return value of group_fn must be a valid index into the
5017 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5018 * keep track of groups covered with a cpumask_t).
5020 * init_sched_build_groups will build a circular linked list of the groups
5021 * covered by the given span, and will set each group's ->cpumask correctly,
5022 * and ->cpu_power to 0.
5024 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
5025 int (*group_fn
)(int cpu
))
5027 struct sched_group
*first
= NULL
, *last
= NULL
;
5028 cpumask_t covered
= CPU_MASK_NONE
;
5031 for_each_cpu_mask(i
, span
) {
5032 int group
= group_fn(i
);
5033 struct sched_group
*sg
= &groups
[group
];
5036 if (cpu_isset(i
, covered
))
5039 sg
->cpumask
= CPU_MASK_NONE
;
5042 for_each_cpu_mask(j
, span
) {
5043 if (group_fn(j
) != group
)
5046 cpu_set(j
, covered
);
5047 cpu_set(j
, sg
->cpumask
);
5058 #define SD_NODES_PER_DOMAIN 16
5061 * Self-tuning task migration cost measurement between source and target CPUs.
5063 * This is done by measuring the cost of manipulating buffers of varying
5064 * sizes. For a given buffer-size here are the steps that are taken:
5066 * 1) the source CPU reads+dirties a shared buffer
5067 * 2) the target CPU reads+dirties the same shared buffer
5069 * We measure how long they take, in the following 4 scenarios:
5071 * - source: CPU1, target: CPU2 | cost1
5072 * - source: CPU2, target: CPU1 | cost2
5073 * - source: CPU1, target: CPU1 | cost3
5074 * - source: CPU2, target: CPU2 | cost4
5076 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5077 * the cost of migration.
5079 * We then start off from a small buffer-size and iterate up to larger
5080 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5081 * doing a maximum search for the cost. (The maximum cost for a migration
5082 * normally occurs when the working set size is around the effective cache
5085 #define SEARCH_SCOPE 2
5086 #define MIN_CACHE_SIZE (64*1024U)
5087 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5088 #define ITERATIONS 1
5089 #define SIZE_THRESH 130
5090 #define COST_THRESH 130
5093 * The migration cost is a function of 'domain distance'. Domain
5094 * distance is the number of steps a CPU has to iterate down its
5095 * domain tree to share a domain with the other CPU. The farther
5096 * two CPUs are from each other, the larger the distance gets.
5098 * Note that we use the distance only to cache measurement results,
5099 * the distance value is not used numerically otherwise. When two
5100 * CPUs have the same distance it is assumed that the migration
5101 * cost is the same. (this is a simplification but quite practical)
5103 #define MAX_DOMAIN_DISTANCE 32
5105 static unsigned long long migration_cost
[MAX_DOMAIN_DISTANCE
] =
5106 { [ 0 ... MAX_DOMAIN_DISTANCE
-1 ] =
5108 * Architectures may override the migration cost and thus avoid
5109 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5110 * virtualized hardware:
5112 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5113 CONFIG_DEFAULT_MIGRATION_COST
5120 * Allow override of migration cost - in units of microseconds.
5121 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5122 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5124 static int __init
migration_cost_setup(char *str
)
5126 int ints
[MAX_DOMAIN_DISTANCE
+1], i
;
5128 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5130 printk("#ints: %d\n", ints
[0]);
5131 for (i
= 1; i
<= ints
[0]; i
++) {
5132 migration_cost
[i
-1] = (unsigned long long)ints
[i
]*1000;
5133 printk("migration_cost[%d]: %Ld\n", i
-1, migration_cost
[i
-1]);
5138 __setup ("migration_cost=", migration_cost_setup
);
5141 * Global multiplier (divisor) for migration-cutoff values,
5142 * in percentiles. E.g. use a value of 150 to get 1.5 times
5143 * longer cache-hot cutoff times.
5145 * (We scale it from 100 to 128 to long long handling easier.)
5148 #define MIGRATION_FACTOR_SCALE 128
5150 static unsigned int migration_factor
= MIGRATION_FACTOR_SCALE
;
5152 static int __init
setup_migration_factor(char *str
)
5154 get_option(&str
, &migration_factor
);
5155 migration_factor
= migration_factor
* MIGRATION_FACTOR_SCALE
/ 100;
5159 __setup("migration_factor=", setup_migration_factor
);
5162 * Estimated distance of two CPUs, measured via the number of domains
5163 * we have to pass for the two CPUs to be in the same span:
5165 static unsigned long domain_distance(int cpu1
, int cpu2
)
5167 unsigned long distance
= 0;
5168 struct sched_domain
*sd
;
5170 for_each_domain(cpu1
, sd
) {
5171 WARN_ON(!cpu_isset(cpu1
, sd
->span
));
5172 if (cpu_isset(cpu2
, sd
->span
))
5176 if (distance
>= MAX_DOMAIN_DISTANCE
) {
5178 distance
= MAX_DOMAIN_DISTANCE
-1;
5184 static unsigned int migration_debug
;
5186 static int __init
setup_migration_debug(char *str
)
5188 get_option(&str
, &migration_debug
);
5192 __setup("migration_debug=", setup_migration_debug
);
5195 * Maximum cache-size that the scheduler should try to measure.
5196 * Architectures with larger caches should tune this up during
5197 * bootup. Gets used in the domain-setup code (i.e. during SMP
5200 unsigned int max_cache_size
;
5202 static int __init
setup_max_cache_size(char *str
)
5204 get_option(&str
, &max_cache_size
);
5208 __setup("max_cache_size=", setup_max_cache_size
);
5211 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5212 * is the operation that is timed, so we try to generate unpredictable
5213 * cachemisses that still end up filling the L2 cache:
5215 static void touch_cache(void *__cache
, unsigned long __size
)
5217 unsigned long size
= __size
/sizeof(long), chunk1
= size
/3,
5219 unsigned long *cache
= __cache
;
5222 for (i
= 0; i
< size
/6; i
+= 8) {
5225 case 1: cache
[size
-1-i
]++;
5226 case 2: cache
[chunk1
-i
]++;
5227 case 3: cache
[chunk1
+i
]++;
5228 case 4: cache
[chunk2
-i
]++;
5229 case 5: cache
[chunk2
+i
]++;
5235 * Measure the cache-cost of one task migration. Returns in units of nsec.
5237 static unsigned long long measure_one(void *cache
, unsigned long size
,
5238 int source
, int target
)
5240 cpumask_t mask
, saved_mask
;
5241 unsigned long long t0
, t1
, t2
, t3
, cost
;
5243 saved_mask
= current
->cpus_allowed
;
5246 * Flush source caches to RAM and invalidate them:
5251 * Migrate to the source CPU:
5253 mask
= cpumask_of_cpu(source
);
5254 set_cpus_allowed(current
, mask
);
5255 WARN_ON(smp_processor_id() != source
);
5258 * Dirty the working set:
5261 touch_cache(cache
, size
);
5265 * Migrate to the target CPU, dirty the L2 cache and access
5266 * the shared buffer. (which represents the working set
5267 * of a migrated task.)
5269 mask
= cpumask_of_cpu(target
);
5270 set_cpus_allowed(current
, mask
);
5271 WARN_ON(smp_processor_id() != target
);
5274 touch_cache(cache
, size
);
5277 cost
= t1
-t0
+ t3
-t2
;
5279 if (migration_debug
>= 2)
5280 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5281 source
, target
, t1
-t0
, t1
-t0
, t3
-t2
, cost
);
5283 * Flush target caches to RAM and invalidate them:
5287 set_cpus_allowed(current
, saved_mask
);
5293 * Measure a series of task migrations and return the average
5294 * result. Since this code runs early during bootup the system
5295 * is 'undisturbed' and the average latency makes sense.
5297 * The algorithm in essence auto-detects the relevant cache-size,
5298 * so it will properly detect different cachesizes for different
5299 * cache-hierarchies, depending on how the CPUs are connected.
5301 * Architectures can prime the upper limit of the search range via
5302 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5304 static unsigned long long
5305 measure_cost(int cpu1
, int cpu2
, void *cache
, unsigned int size
)
5307 unsigned long long cost1
, cost2
;
5311 * Measure the migration cost of 'size' bytes, over an
5312 * average of 10 runs:
5314 * (We perturb the cache size by a small (0..4k)
5315 * value to compensate size/alignment related artifacts.
5316 * We also subtract the cost of the operation done on
5322 * dry run, to make sure we start off cache-cold on cpu1,
5323 * and to get any vmalloc pagefaults in advance:
5325 measure_one(cache
, size
, cpu1
, cpu2
);
5326 for (i
= 0; i
< ITERATIONS
; i
++)
5327 cost1
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu2
);
5329 measure_one(cache
, size
, cpu2
, cpu1
);
5330 for (i
= 0; i
< ITERATIONS
; i
++)
5331 cost1
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu1
);
5334 * (We measure the non-migrating [cached] cost on both
5335 * cpu1 and cpu2, to handle CPUs with different speeds)
5339 measure_one(cache
, size
, cpu1
, cpu1
);
5340 for (i
= 0; i
< ITERATIONS
; i
++)
5341 cost2
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu1
);
5343 measure_one(cache
, size
, cpu2
, cpu2
);
5344 for (i
= 0; i
< ITERATIONS
; i
++)
5345 cost2
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu2
);
5348 * Get the per-iteration migration cost:
5350 do_div(cost1
, 2*ITERATIONS
);
5351 do_div(cost2
, 2*ITERATIONS
);
5353 return cost1
- cost2
;
5356 static unsigned long long measure_migration_cost(int cpu1
, int cpu2
)
5358 unsigned long long max_cost
= 0, fluct
= 0, avg_fluct
= 0;
5359 unsigned int max_size
, size
, size_found
= 0;
5360 long long cost
= 0, prev_cost
;
5364 * Search from max_cache_size*5 down to 64K - the real relevant
5365 * cachesize has to lie somewhere inbetween.
5367 if (max_cache_size
) {
5368 max_size
= max(max_cache_size
* SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5369 size
= max(max_cache_size
/ SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5372 * Since we have no estimation about the relevant
5375 max_size
= DEFAULT_CACHE_SIZE
* SEARCH_SCOPE
;
5376 size
= MIN_CACHE_SIZE
;
5379 if (!cpu_online(cpu1
) || !cpu_online(cpu2
)) {
5380 printk("cpu %d and %d not both online!\n", cpu1
, cpu2
);
5385 * Allocate the working set:
5387 cache
= vmalloc(max_size
);
5389 printk("could not vmalloc %d bytes for cache!\n", 2*max_size
);
5390 return 1000000; // return 1 msec on very small boxen
5393 while (size
<= max_size
) {
5395 cost
= measure_cost(cpu1
, cpu2
, cache
, size
);
5401 if (max_cost
< cost
) {
5407 * Calculate average fluctuation, we use this to prevent
5408 * noise from triggering an early break out of the loop:
5410 fluct
= abs(cost
- prev_cost
);
5411 avg_fluct
= (avg_fluct
+ fluct
)/2;
5413 if (migration_debug
)
5414 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5416 (long)cost
/ 1000000,
5417 ((long)cost
/ 100000) % 10,
5418 (long)max_cost
/ 1000000,
5419 ((long)max_cost
/ 100000) % 10,
5420 domain_distance(cpu1
, cpu2
),
5424 * If we iterated at least 20% past the previous maximum,
5425 * and the cost has dropped by more than 20% already,
5426 * (taking fluctuations into account) then we assume to
5427 * have found the maximum and break out of the loop early:
5429 if (size_found
&& (size
*100 > size_found
*SIZE_THRESH
))
5430 if (cost
+avg_fluct
<= 0 ||
5431 max_cost
*100 > (cost
+avg_fluct
)*COST_THRESH
) {
5433 if (migration_debug
)
5434 printk("-> found max.\n");
5438 * Increase the cachesize in 10% steps:
5440 size
= size
* 10 / 9;
5443 if (migration_debug
)
5444 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5445 cpu1
, cpu2
, size_found
, max_cost
);
5450 * A task is considered 'cache cold' if at least 2 times
5451 * the worst-case cost of migration has passed.
5453 * (this limit is only listened to if the load-balancing
5454 * situation is 'nice' - if there is a large imbalance we
5455 * ignore it for the sake of CPU utilization and
5456 * processing fairness.)
5458 return 2 * max_cost
* migration_factor
/ MIGRATION_FACTOR_SCALE
;
5461 static void calibrate_migration_costs(const cpumask_t
*cpu_map
)
5463 int cpu1
= -1, cpu2
= -1, cpu
, orig_cpu
= raw_smp_processor_id();
5464 unsigned long j0
, j1
, distance
, max_distance
= 0;
5465 struct sched_domain
*sd
;
5470 * First pass - calculate the cacheflush times:
5472 for_each_cpu_mask(cpu1
, *cpu_map
) {
5473 for_each_cpu_mask(cpu2
, *cpu_map
) {
5476 distance
= domain_distance(cpu1
, cpu2
);
5477 max_distance
= max(max_distance
, distance
);
5479 * No result cached yet?
5481 if (migration_cost
[distance
] == -1LL)
5482 migration_cost
[distance
] =
5483 measure_migration_cost(cpu1
, cpu2
);
5487 * Second pass - update the sched domain hierarchy with
5488 * the new cache-hot-time estimations:
5490 for_each_cpu_mask(cpu
, *cpu_map
) {
5492 for_each_domain(cpu
, sd
) {
5493 sd
->cache_hot_time
= migration_cost
[distance
];
5500 if (migration_debug
)
5501 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5509 if (system_state
== SYSTEM_BOOTING
) {
5510 printk("migration_cost=");
5511 for (distance
= 0; distance
<= max_distance
; distance
++) {
5514 printk("%ld", (long)migration_cost
[distance
] / 1000);
5519 if (migration_debug
)
5520 printk("migration: %ld seconds\n", (j1
-j0
)/HZ
);
5523 * Move back to the original CPU. NUMA-Q gets confused
5524 * if we migrate to another quad during bootup.
5526 if (raw_smp_processor_id() != orig_cpu
) {
5527 cpumask_t mask
= cpumask_of_cpu(orig_cpu
),
5528 saved_mask
= current
->cpus_allowed
;
5530 set_cpus_allowed(current
, mask
);
5531 set_cpus_allowed(current
, saved_mask
);
5538 * find_next_best_node - find the next node to include in a sched_domain
5539 * @node: node whose sched_domain we're building
5540 * @used_nodes: nodes already in the sched_domain
5542 * Find the next node to include in a given scheduling domain. Simply
5543 * finds the closest node not already in the @used_nodes map.
5545 * Should use nodemask_t.
5547 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5549 int i
, n
, val
, min_val
, best_node
= 0;
5553 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5554 /* Start at @node */
5555 n
= (node
+ i
) % MAX_NUMNODES
;
5557 if (!nr_cpus_node(n
))
5560 /* Skip already used nodes */
5561 if (test_bit(n
, used_nodes
))
5564 /* Simple min distance search */
5565 val
= node_distance(node
, n
);
5567 if (val
< min_val
) {
5573 set_bit(best_node
, used_nodes
);
5578 * sched_domain_node_span - get a cpumask for a node's sched_domain
5579 * @node: node whose cpumask we're constructing
5580 * @size: number of nodes to include in this span
5582 * Given a node, construct a good cpumask for its sched_domain to span. It
5583 * should be one that prevents unnecessary balancing, but also spreads tasks
5586 static cpumask_t
sched_domain_node_span(int node
)
5589 cpumask_t span
, nodemask
;
5590 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5593 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5595 nodemask
= node_to_cpumask(node
);
5596 cpus_or(span
, span
, nodemask
);
5597 set_bit(node
, used_nodes
);
5599 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5600 int next_node
= find_next_best_node(node
, used_nodes
);
5601 nodemask
= node_to_cpumask(next_node
);
5602 cpus_or(span
, span
, nodemask
);
5610 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5611 * can switch it on easily if needed.
5613 #ifdef CONFIG_SCHED_SMT
5614 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5615 static struct sched_group sched_group_cpus
[NR_CPUS
];
5616 static int cpu_to_cpu_group(int cpu
)
5622 #ifdef CONFIG_SCHED_MC
5623 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5624 static struct sched_group sched_group_core
[NR_CPUS
];
5627 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5628 static int cpu_to_core_group(int cpu
)
5630 return first_cpu(cpu_sibling_map
[cpu
]);
5632 #elif defined(CONFIG_SCHED_MC)
5633 static int cpu_to_core_group(int cpu
)
5639 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5640 static struct sched_group sched_group_phys
[NR_CPUS
];
5641 static int cpu_to_phys_group(int cpu
)
5643 #if defined(CONFIG_SCHED_MC)
5644 cpumask_t mask
= cpu_coregroup_map(cpu
);
5645 return first_cpu(mask
);
5646 #elif defined(CONFIG_SCHED_SMT)
5647 return first_cpu(cpu_sibling_map
[cpu
]);
5655 * The init_sched_build_groups can't handle what we want to do with node
5656 * groups, so roll our own. Now each node has its own list of groups which
5657 * gets dynamically allocated.
5659 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5660 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5662 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5663 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
5665 static int cpu_to_allnodes_group(int cpu
)
5667 return cpu_to_node(cpu
);
5669 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5671 struct sched_group
*sg
= group_head
;
5677 for_each_cpu_mask(j
, sg
->cpumask
) {
5678 struct sched_domain
*sd
;
5680 sd
= &per_cpu(phys_domains
, j
);
5681 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5683 * Only add "power" once for each
5689 sg
->cpu_power
+= sd
->groups
->cpu_power
;
5692 if (sg
!= group_head
)
5698 * Build sched domains for a given set of cpus and attach the sched domains
5699 * to the individual cpus
5701 void build_sched_domains(const cpumask_t
*cpu_map
)
5705 struct sched_group
**sched_group_nodes
= NULL
;
5706 struct sched_group
*sched_group_allnodes
= NULL
;
5709 * Allocate the per-node list of sched groups
5711 sched_group_nodes
= kmalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
5713 if (!sched_group_nodes
) {
5714 printk(KERN_WARNING
"Can not alloc sched group node list\n");
5717 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
5721 * Set up domains for cpus specified by the cpu_map.
5723 for_each_cpu_mask(i
, *cpu_map
) {
5725 struct sched_domain
*sd
= NULL
, *p
;
5726 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
5728 cpus_and(nodemask
, nodemask
, *cpu_map
);
5731 if (cpus_weight(*cpu_map
)
5732 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
5733 if (!sched_group_allnodes
) {
5734 sched_group_allnodes
5735 = kmalloc(sizeof(struct sched_group
)
5738 if (!sched_group_allnodes
) {
5740 "Can not alloc allnodes sched group\n");
5743 sched_group_allnodes_bycpu
[i
]
5744 = sched_group_allnodes
;
5746 sd
= &per_cpu(allnodes_domains
, i
);
5747 *sd
= SD_ALLNODES_INIT
;
5748 sd
->span
= *cpu_map
;
5749 group
= cpu_to_allnodes_group(i
);
5750 sd
->groups
= &sched_group_allnodes
[group
];
5755 sd
= &per_cpu(node_domains
, i
);
5757 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
5759 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5763 sd
= &per_cpu(phys_domains
, i
);
5764 group
= cpu_to_phys_group(i
);
5766 sd
->span
= nodemask
;
5768 sd
->groups
= &sched_group_phys
[group
];
5770 #ifdef CONFIG_SCHED_MC
5772 sd
= &per_cpu(core_domains
, i
);
5773 group
= cpu_to_core_group(i
);
5775 sd
->span
= cpu_coregroup_map(i
);
5776 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5778 sd
->groups
= &sched_group_core
[group
];
5781 #ifdef CONFIG_SCHED_SMT
5783 sd
= &per_cpu(cpu_domains
, i
);
5784 group
= cpu_to_cpu_group(i
);
5785 *sd
= SD_SIBLING_INIT
;
5786 sd
->span
= cpu_sibling_map
[i
];
5787 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
5789 sd
->groups
= &sched_group_cpus
[group
];
5793 #ifdef CONFIG_SCHED_SMT
5794 /* Set up CPU (sibling) groups */
5795 for_each_cpu_mask(i
, *cpu_map
) {
5796 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
5797 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
5798 if (i
!= first_cpu(this_sibling_map
))
5801 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
5806 #ifdef CONFIG_SCHED_MC
5807 /* Set up multi-core groups */
5808 for_each_cpu_mask(i
, *cpu_map
) {
5809 cpumask_t this_core_map
= cpu_coregroup_map(i
);
5810 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
5811 if (i
!= first_cpu(this_core_map
))
5813 init_sched_build_groups(sched_group_core
, this_core_map
,
5814 &cpu_to_core_group
);
5819 /* Set up physical groups */
5820 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5821 cpumask_t nodemask
= node_to_cpumask(i
);
5823 cpus_and(nodemask
, nodemask
, *cpu_map
);
5824 if (cpus_empty(nodemask
))
5827 init_sched_build_groups(sched_group_phys
, nodemask
,
5828 &cpu_to_phys_group
);
5832 /* Set up node groups */
5833 if (sched_group_allnodes
)
5834 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
5835 &cpu_to_allnodes_group
);
5837 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5838 /* Set up node groups */
5839 struct sched_group
*sg
, *prev
;
5840 cpumask_t nodemask
= node_to_cpumask(i
);
5841 cpumask_t domainspan
;
5842 cpumask_t covered
= CPU_MASK_NONE
;
5845 cpus_and(nodemask
, nodemask
, *cpu_map
);
5846 if (cpus_empty(nodemask
)) {
5847 sched_group_nodes
[i
] = NULL
;
5851 domainspan
= sched_domain_node_span(i
);
5852 cpus_and(domainspan
, domainspan
, *cpu_map
);
5854 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5855 sched_group_nodes
[i
] = sg
;
5856 for_each_cpu_mask(j
, nodemask
) {
5857 struct sched_domain
*sd
;
5858 sd
= &per_cpu(node_domains
, j
);
5860 if (sd
->groups
== NULL
) {
5861 /* Turn off balancing if we have no groups */
5867 "Can not alloc domain group for node %d\n", i
);
5871 sg
->cpumask
= nodemask
;
5872 cpus_or(covered
, covered
, nodemask
);
5875 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
5876 cpumask_t tmp
, notcovered
;
5877 int n
= (i
+ j
) % MAX_NUMNODES
;
5879 cpus_complement(notcovered
, covered
);
5880 cpus_and(tmp
, notcovered
, *cpu_map
);
5881 cpus_and(tmp
, tmp
, domainspan
);
5882 if (cpus_empty(tmp
))
5885 nodemask
= node_to_cpumask(n
);
5886 cpus_and(tmp
, tmp
, nodemask
);
5887 if (cpus_empty(tmp
))
5890 sg
= kmalloc(sizeof(struct sched_group
), GFP_KERNEL
);
5893 "Can not alloc domain group for node %d\n", j
);
5898 cpus_or(covered
, covered
, tmp
);
5902 prev
->next
= sched_group_nodes
[i
];
5906 /* Calculate CPU power for physical packages and nodes */
5907 for_each_cpu_mask(i
, *cpu_map
) {
5909 struct sched_domain
*sd
;
5910 #ifdef CONFIG_SCHED_SMT
5911 sd
= &per_cpu(cpu_domains
, i
);
5912 power
= SCHED_LOAD_SCALE
;
5913 sd
->groups
->cpu_power
= power
;
5915 #ifdef CONFIG_SCHED_MC
5916 sd
= &per_cpu(core_domains
, i
);
5917 power
= SCHED_LOAD_SCALE
+ (cpus_weight(sd
->groups
->cpumask
)-1)
5918 * SCHED_LOAD_SCALE
/ 10;
5919 sd
->groups
->cpu_power
= power
;
5921 sd
= &per_cpu(phys_domains
, i
);
5924 * This has to be < 2 * SCHED_LOAD_SCALE
5925 * Lets keep it SCHED_LOAD_SCALE, so that
5926 * while calculating NUMA group's cpu_power
5928 * numa_group->cpu_power += phys_group->cpu_power;
5930 * See "only add power once for each physical pkg"
5933 sd
->groups
->cpu_power
= SCHED_LOAD_SCALE
;
5935 sd
= &per_cpu(phys_domains
, i
);
5936 power
= SCHED_LOAD_SCALE
+ SCHED_LOAD_SCALE
*
5937 (cpus_weight(sd
->groups
->cpumask
)-1) / 10;
5938 sd
->groups
->cpu_power
= power
;
5943 for (i
= 0; i
< MAX_NUMNODES
; i
++)
5944 init_numa_sched_groups_power(sched_group_nodes
[i
]);
5946 init_numa_sched_groups_power(sched_group_allnodes
);
5949 /* Attach the domains */
5950 for_each_cpu_mask(i
, *cpu_map
) {
5951 struct sched_domain
*sd
;
5952 #ifdef CONFIG_SCHED_SMT
5953 sd
= &per_cpu(cpu_domains
, i
);
5954 #elif defined(CONFIG_SCHED_MC)
5955 sd
= &per_cpu(core_domains
, i
);
5957 sd
= &per_cpu(phys_domains
, i
);
5959 cpu_attach_domain(sd
, i
);
5962 * Tune cache-hot values:
5964 calibrate_migration_costs(cpu_map
);
5967 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5969 static void arch_init_sched_domains(const cpumask_t
*cpu_map
)
5971 cpumask_t cpu_default_map
;
5974 * Setup mask for cpus without special case scheduling requirements.
5975 * For now this just excludes isolated cpus, but could be used to
5976 * exclude other special cases in the future.
5978 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
5980 build_sched_domains(&cpu_default_map
);
5983 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
5989 for_each_cpu_mask(cpu
, *cpu_map
) {
5990 struct sched_group
*sched_group_allnodes
5991 = sched_group_allnodes_bycpu
[cpu
];
5992 struct sched_group
**sched_group_nodes
5993 = sched_group_nodes_bycpu
[cpu
];
5995 if (sched_group_allnodes
) {
5996 kfree(sched_group_allnodes
);
5997 sched_group_allnodes_bycpu
[cpu
] = NULL
;
6000 if (!sched_group_nodes
)
6003 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6004 cpumask_t nodemask
= node_to_cpumask(i
);
6005 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6007 cpus_and(nodemask
, nodemask
, *cpu_map
);
6008 if (cpus_empty(nodemask
))
6018 if (oldsg
!= sched_group_nodes
[i
])
6021 kfree(sched_group_nodes
);
6022 sched_group_nodes_bycpu
[cpu
] = NULL
;
6028 * Detach sched domains from a group of cpus specified in cpu_map
6029 * These cpus will now be attached to the NULL domain
6031 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6035 for_each_cpu_mask(i
, *cpu_map
)
6036 cpu_attach_domain(NULL
, i
);
6037 synchronize_sched();
6038 arch_destroy_sched_domains(cpu_map
);
6042 * Partition sched domains as specified by the cpumasks below.
6043 * This attaches all cpus from the cpumasks to the NULL domain,
6044 * waits for a RCU quiescent period, recalculates sched
6045 * domain information and then attaches them back to the
6046 * correct sched domains
6047 * Call with hotplug lock held
6049 void partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6051 cpumask_t change_map
;
6053 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6054 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6055 cpus_or(change_map
, *partition1
, *partition2
);
6057 /* Detach sched domains from all of the affected cpus */
6058 detach_destroy_domains(&change_map
);
6059 if (!cpus_empty(*partition1
))
6060 build_sched_domains(partition1
);
6061 if (!cpus_empty(*partition2
))
6062 build_sched_domains(partition2
);
6065 #ifdef CONFIG_HOTPLUG_CPU
6067 * Force a reinitialization of the sched domains hierarchy. The domains
6068 * and groups cannot be updated in place without racing with the balancing
6069 * code, so we temporarily attach all running cpus to the NULL domain
6070 * which will prevent rebalancing while the sched domains are recalculated.
6072 static int update_sched_domains(struct notifier_block
*nfb
,
6073 unsigned long action
, void *hcpu
)
6076 case CPU_UP_PREPARE
:
6077 case CPU_DOWN_PREPARE
:
6078 detach_destroy_domains(&cpu_online_map
);
6081 case CPU_UP_CANCELED
:
6082 case CPU_DOWN_FAILED
:
6086 * Fall through and re-initialise the domains.
6093 /* The hotplug lock is already held by cpu_up/cpu_down */
6094 arch_init_sched_domains(&cpu_online_map
);
6100 void __init
sched_init_smp(void)
6103 arch_init_sched_domains(&cpu_online_map
);
6104 unlock_cpu_hotplug();
6105 /* XXX: Theoretical race here - CPU may be hotplugged now */
6106 hotcpu_notifier(update_sched_domains
, 0);
6109 void __init
sched_init_smp(void)
6112 #endif /* CONFIG_SMP */
6114 int in_sched_functions(unsigned long addr
)
6116 /* Linker adds these: start and end of __sched functions */
6117 extern char __sched_text_start
[], __sched_text_end
[];
6118 return in_lock_functions(addr
) ||
6119 (addr
>= (unsigned long)__sched_text_start
6120 && addr
< (unsigned long)__sched_text_end
);
6123 void __init
sched_init(void)
6128 for_each_possible_cpu(i
) {
6129 prio_array_t
*array
;
6132 spin_lock_init(&rq
->lock
);
6134 rq
->active
= rq
->arrays
;
6135 rq
->expired
= rq
->arrays
+ 1;
6136 rq
->best_expired_prio
= MAX_PRIO
;
6140 for (j
= 1; j
< 3; j
++)
6141 rq
->cpu_load
[j
] = 0;
6142 rq
->active_balance
= 0;
6144 rq
->migration_thread
= NULL
;
6145 INIT_LIST_HEAD(&rq
->migration_queue
);
6148 atomic_set(&rq
->nr_iowait
, 0);
6150 for (j
= 0; j
< 2; j
++) {
6151 array
= rq
->arrays
+ j
;
6152 for (k
= 0; k
< MAX_PRIO
; k
++) {
6153 INIT_LIST_HEAD(array
->queue
+ k
);
6154 __clear_bit(k
, array
->bitmap
);
6156 // delimiter for bitsearch
6157 __set_bit(MAX_PRIO
, array
->bitmap
);
6162 * The boot idle thread does lazy MMU switching as well:
6164 atomic_inc(&init_mm
.mm_count
);
6165 enter_lazy_tlb(&init_mm
, current
);
6168 * Make us the idle thread. Technically, schedule() should not be
6169 * called from this thread, however somewhere below it might be,
6170 * but because we are the idle thread, we just pick up running again
6171 * when this runqueue becomes "idle".
6173 init_idle(current
, smp_processor_id());
6176 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6177 void __might_sleep(char *file
, int line
)
6179 #if defined(in_atomic)
6180 static unsigned long prev_jiffy
; /* ratelimiting */
6182 if ((in_atomic() || irqs_disabled()) &&
6183 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6184 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6186 prev_jiffy
= jiffies
;
6187 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6188 " context at %s:%d\n", file
, line
);
6189 printk("in_atomic():%d, irqs_disabled():%d\n",
6190 in_atomic(), irqs_disabled());
6195 EXPORT_SYMBOL(__might_sleep
);
6198 #ifdef CONFIG_MAGIC_SYSRQ
6199 void normalize_rt_tasks(void)
6201 struct task_struct
*p
;
6202 prio_array_t
*array
;
6203 unsigned long flags
;
6206 read_lock_irq(&tasklist_lock
);
6207 for_each_process (p
) {
6211 rq
= task_rq_lock(p
, &flags
);
6215 deactivate_task(p
, task_rq(p
));
6216 __setscheduler(p
, SCHED_NORMAL
, 0);
6218 __activate_task(p
, task_rq(p
));
6219 resched_task(rq
->curr
);
6222 task_rq_unlock(rq
, &flags
);
6224 read_unlock_irq(&tasklist_lock
);
6227 #endif /* CONFIG_MAGIC_SYSRQ */
6231 * These functions are only useful for the IA64 MCA handling.
6233 * They can only be called when the whole system has been
6234 * stopped - every CPU needs to be quiescent, and no scheduling
6235 * activity can take place. Using them for anything else would
6236 * be a serious bug, and as a result, they aren't even visible
6237 * under any other configuration.
6241 * curr_task - return the current task for a given cpu.
6242 * @cpu: the processor in question.
6244 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6246 task_t
*curr_task(int cpu
)
6248 return cpu_curr(cpu
);
6252 * set_curr_task - set the current task for a given cpu.
6253 * @cpu: the processor in question.
6254 * @p: the task pointer to set.
6256 * Description: This function must only be used when non-maskable interrupts
6257 * are serviced on a separate stack. It allows the architecture to switch the
6258 * notion of the current task on a cpu in a non-blocking manner. This function
6259 * must be called with all CPU's synchronized, and interrupts disabled, the
6260 * and caller must save the original value of the current task (see
6261 * curr_task() above) and restore that value before reenabling interrupts and
6262 * re-starting the system.
6264 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6266 void set_curr_task(int cpu
, task_t
*p
)