2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
53 #include <linux/ftrace_event.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
60 * Array of node states.
62 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
63 [N_POSSIBLE
] = NODE_MASK_ALL
,
64 [N_ONLINE
] = { { [0] = 1UL } },
66 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
68 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
70 [N_CPU
] = { { [0] = 1UL } },
73 EXPORT_SYMBOL(node_states
);
75 unsigned long totalram_pages __read_mostly
;
76 unsigned long totalreserve_pages __read_mostly
;
77 int percpu_pagelist_fraction
;
78 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
80 #ifdef CONFIG_PM_SLEEP
82 * The following functions are used by the suspend/hibernate code to temporarily
83 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
84 * while devices are suspended. To avoid races with the suspend/hibernate code,
85 * they should always be called with pm_mutex held (gfp_allowed_mask also should
86 * only be modified with pm_mutex held, unless the suspend/hibernate code is
87 * guaranteed not to run in parallel with that modification).
89 void set_gfp_allowed_mask(gfp_t mask
)
91 WARN_ON(!mutex_is_locked(&pm_mutex
));
92 gfp_allowed_mask
= mask
;
95 gfp_t
clear_gfp_allowed_mask(gfp_t mask
)
97 gfp_t ret
= gfp_allowed_mask
;
99 WARN_ON(!mutex_is_locked(&pm_mutex
));
100 gfp_allowed_mask
&= ~mask
;
103 #endif /* CONFIG_PM_SLEEP */
105 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
106 int pageblock_order __read_mostly
;
109 static void __free_pages_ok(struct page
*page
, unsigned int order
);
112 * results with 256, 32 in the lowmem_reserve sysctl:
113 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
114 * 1G machine -> (16M dma, 784M normal, 224M high)
115 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
116 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
117 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
119 * TBD: should special case ZONE_DMA32 machines here - in those we normally
120 * don't need any ZONE_NORMAL reservation
122 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
123 #ifdef CONFIG_ZONE_DMA
126 #ifdef CONFIG_ZONE_DMA32
129 #ifdef CONFIG_HIGHMEM
135 EXPORT_SYMBOL(totalram_pages
);
137 static char * const zone_names
[MAX_NR_ZONES
] = {
138 #ifdef CONFIG_ZONE_DMA
141 #ifdef CONFIG_ZONE_DMA32
145 #ifdef CONFIG_HIGHMEM
151 int min_free_kbytes
= 1024;
153 static unsigned long __meminitdata nr_kernel_pages
;
154 static unsigned long __meminitdata nr_all_pages
;
155 static unsigned long __meminitdata dma_reserve
;
157 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
159 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
160 * ranges of memory (RAM) that may be registered with add_active_range().
161 * Ranges passed to add_active_range() will be merged if possible
162 * so the number of times add_active_range() can be called is
163 * related to the number of nodes and the number of holes
165 #ifdef CONFIG_MAX_ACTIVE_REGIONS
166 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
167 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
169 #if MAX_NUMNODES >= 32
170 /* If there can be many nodes, allow up to 50 holes per node */
171 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
173 /* By default, allow up to 256 distinct regions */
174 #define MAX_ACTIVE_REGIONS 256
178 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
179 static int __meminitdata nr_nodemap_entries
;
180 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
181 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
182 static unsigned long __initdata required_kernelcore
;
183 static unsigned long __initdata required_movablecore
;
184 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
186 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
188 EXPORT_SYMBOL(movable_zone
);
189 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
192 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
193 int nr_online_nodes __read_mostly
= 1;
194 EXPORT_SYMBOL(nr_node_ids
);
195 EXPORT_SYMBOL(nr_online_nodes
);
198 int page_group_by_mobility_disabled __read_mostly
;
200 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
203 if (unlikely(page_group_by_mobility_disabled
))
204 migratetype
= MIGRATE_UNMOVABLE
;
206 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
207 PB_migrate
, PB_migrate_end
);
210 bool oom_killer_disabled __read_mostly
;
212 #ifdef CONFIG_DEBUG_VM
213 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
217 unsigned long pfn
= page_to_pfn(page
);
220 seq
= zone_span_seqbegin(zone
);
221 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
223 else if (pfn
< zone
->zone_start_pfn
)
225 } while (zone_span_seqretry(zone
, seq
));
230 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
232 if (!pfn_valid_within(page_to_pfn(page
)))
234 if (zone
!= page_zone(page
))
240 * Temporary debugging check for pages not lying within a given zone.
242 static int bad_range(struct zone
*zone
, struct page
*page
)
244 if (page_outside_zone_boundaries(zone
, page
))
246 if (!page_is_consistent(zone
, page
))
252 static inline int bad_range(struct zone
*zone
, struct page
*page
)
258 static void bad_page(struct page
*page
)
260 static unsigned long resume
;
261 static unsigned long nr_shown
;
262 static unsigned long nr_unshown
;
264 /* Don't complain about poisoned pages */
265 if (PageHWPoison(page
)) {
266 __ClearPageBuddy(page
);
271 * Allow a burst of 60 reports, then keep quiet for that minute;
272 * or allow a steady drip of one report per second.
274 if (nr_shown
== 60) {
275 if (time_before(jiffies
, resume
)) {
281 "BUG: Bad page state: %lu messages suppressed\n",
288 resume
= jiffies
+ 60 * HZ
;
290 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
291 current
->comm
, page_to_pfn(page
));
296 /* Leave bad fields for debug, except PageBuddy could make trouble */
297 __ClearPageBuddy(page
);
298 add_taint(TAINT_BAD_PAGE
);
302 * Higher-order pages are called "compound pages". They are structured thusly:
304 * The first PAGE_SIZE page is called the "head page".
306 * The remaining PAGE_SIZE pages are called "tail pages".
308 * All pages have PG_compound set. All pages have their ->private pointing at
309 * the head page (even the head page has this).
311 * The first tail page's ->lru.next holds the address of the compound page's
312 * put_page() function. Its ->lru.prev holds the order of allocation.
313 * This usage means that zero-order pages may not be compound.
316 static void free_compound_page(struct page
*page
)
318 __free_pages_ok(page
, compound_order(page
));
321 void prep_compound_page(struct page
*page
, unsigned long order
)
324 int nr_pages
= 1 << order
;
326 set_compound_page_dtor(page
, free_compound_page
);
327 set_compound_order(page
, order
);
329 for (i
= 1; i
< nr_pages
; i
++) {
330 struct page
*p
= page
+ i
;
333 p
->first_page
= page
;
337 static int destroy_compound_page(struct page
*page
, unsigned long order
)
340 int nr_pages
= 1 << order
;
343 if (unlikely(compound_order(page
) != order
) ||
344 unlikely(!PageHead(page
))) {
349 __ClearPageHead(page
);
351 for (i
= 1; i
< nr_pages
; i
++) {
352 struct page
*p
= page
+ i
;
354 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
364 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
369 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
370 * and __GFP_HIGHMEM from hard or soft interrupt context.
372 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
373 for (i
= 0; i
< (1 << order
); i
++)
374 clear_highpage(page
+ i
);
377 static inline void set_page_order(struct page
*page
, int order
)
379 set_page_private(page
, order
);
380 __SetPageBuddy(page
);
383 static inline void rmv_page_order(struct page
*page
)
385 __ClearPageBuddy(page
);
386 set_page_private(page
, 0);
390 * Locate the struct page for both the matching buddy in our
391 * pair (buddy1) and the combined O(n+1) page they form (page).
393 * 1) Any buddy B1 will have an order O twin B2 which satisfies
394 * the following equation:
396 * For example, if the starting buddy (buddy2) is #8 its order
398 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
400 * 2) Any buddy B will have an order O+1 parent P which
401 * satisfies the following equation:
404 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
406 static inline struct page
*
407 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
409 unsigned long buddy_idx
= page_idx
^ (1 << order
);
411 return page
+ (buddy_idx
- page_idx
);
414 static inline unsigned long
415 __find_combined_index(unsigned long page_idx
, unsigned int order
)
417 return (page_idx
& ~(1 << order
));
421 * This function checks whether a page is free && is the buddy
422 * we can do coalesce a page and its buddy if
423 * (a) the buddy is not in a hole &&
424 * (b) the buddy is in the buddy system &&
425 * (c) a page and its buddy have the same order &&
426 * (d) a page and its buddy are in the same zone.
428 * For recording whether a page is in the buddy system, we use PG_buddy.
429 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
431 * For recording page's order, we use page_private(page).
433 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
436 if (!pfn_valid_within(page_to_pfn(buddy
)))
439 if (page_zone_id(page
) != page_zone_id(buddy
))
442 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
443 VM_BUG_ON(page_count(buddy
) != 0);
450 * Freeing function for a buddy system allocator.
452 * The concept of a buddy system is to maintain direct-mapped table
453 * (containing bit values) for memory blocks of various "orders".
454 * The bottom level table contains the map for the smallest allocatable
455 * units of memory (here, pages), and each level above it describes
456 * pairs of units from the levels below, hence, "buddies".
457 * At a high level, all that happens here is marking the table entry
458 * at the bottom level available, and propagating the changes upward
459 * as necessary, plus some accounting needed to play nicely with other
460 * parts of the VM system.
461 * At each level, we keep a list of pages, which are heads of continuous
462 * free pages of length of (1 << order) and marked with PG_buddy. Page's
463 * order is recorded in page_private(page) field.
464 * So when we are allocating or freeing one, we can derive the state of the
465 * other. That is, if we allocate a small block, and both were
466 * free, the remainder of the region must be split into blocks.
467 * If a block is freed, and its buddy is also free, then this
468 * triggers coalescing into a block of larger size.
473 static inline void __free_one_page(struct page
*page
,
474 struct zone
*zone
, unsigned int order
,
477 unsigned long page_idx
;
479 if (unlikely(PageCompound(page
)))
480 if (unlikely(destroy_compound_page(page
, order
)))
483 VM_BUG_ON(migratetype
== -1);
485 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
487 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
488 VM_BUG_ON(bad_range(zone
, page
));
490 while (order
< MAX_ORDER
-1) {
491 unsigned long combined_idx
;
494 buddy
= __page_find_buddy(page
, page_idx
, order
);
495 if (!page_is_buddy(page
, buddy
, order
))
498 /* Our buddy is free, merge with it and move up one order. */
499 list_del(&buddy
->lru
);
500 zone
->free_area
[order
].nr_free
--;
501 rmv_page_order(buddy
);
502 combined_idx
= __find_combined_index(page_idx
, order
);
503 page
= page
+ (combined_idx
- page_idx
);
504 page_idx
= combined_idx
;
507 set_page_order(page
, order
);
509 &zone
->free_area
[order
].free_list
[migratetype
]);
510 zone
->free_area
[order
].nr_free
++;
514 * free_page_mlock() -- clean up attempts to free and mlocked() page.
515 * Page should not be on lru, so no need to fix that up.
516 * free_pages_check() will verify...
518 static inline void free_page_mlock(struct page
*page
)
520 __dec_zone_page_state(page
, NR_MLOCK
);
521 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
524 static inline int free_pages_check(struct page
*page
)
526 if (unlikely(page_mapcount(page
) |
527 (page
->mapping
!= NULL
) |
528 (atomic_read(&page
->_count
) != 0) |
529 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
533 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
534 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
539 * Frees a number of pages from the PCP lists
540 * Assumes all pages on list are in same zone, and of same order.
541 * count is the number of pages to free.
543 * If the zone was previously in an "all pages pinned" state then look to
544 * see if this freeing clears that state.
546 * And clear the zone's pages_scanned counter, to hold off the "all pages are
547 * pinned" detection logic.
549 static void free_pcppages_bulk(struct zone
*zone
, int count
,
550 struct per_cpu_pages
*pcp
)
555 spin_lock(&zone
->lock
);
556 zone
->all_unreclaimable
= 0;
557 zone
->pages_scanned
= 0;
559 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
562 struct list_head
*list
;
565 * Remove pages from lists in a round-robin fashion. A
566 * batch_free count is maintained that is incremented when an
567 * empty list is encountered. This is so more pages are freed
568 * off fuller lists instead of spinning excessively around empty
573 if (++migratetype
== MIGRATE_PCPTYPES
)
575 list
= &pcp
->lists
[migratetype
];
576 } while (list_empty(list
));
579 page
= list_entry(list
->prev
, struct page
, lru
);
580 /* must delete as __free_one_page list manipulates */
581 list_del(&page
->lru
);
582 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
583 __free_one_page(page
, zone
, 0, page_private(page
));
584 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
585 } while (--count
&& --batch_free
&& !list_empty(list
));
587 spin_unlock(&zone
->lock
);
590 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
593 spin_lock(&zone
->lock
);
594 zone
->all_unreclaimable
= 0;
595 zone
->pages_scanned
= 0;
597 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
598 __free_one_page(page
, zone
, order
, migratetype
);
599 spin_unlock(&zone
->lock
);
602 static void __free_pages_ok(struct page
*page
, unsigned int order
)
607 int wasMlocked
= __TestClearPageMlocked(page
);
609 trace_mm_page_free_direct(page
, order
);
610 kmemcheck_free_shadow(page
, order
);
612 for (i
= 0 ; i
< (1 << order
) ; ++i
)
613 bad
+= free_pages_check(page
+ i
);
617 if (!PageHighMem(page
)) {
618 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
619 debug_check_no_obj_freed(page_address(page
),
622 arch_free_page(page
, order
);
623 kernel_map_pages(page
, 1 << order
, 0);
625 local_irq_save(flags
);
626 if (unlikely(wasMlocked
))
627 free_page_mlock(page
);
628 __count_vm_events(PGFREE
, 1 << order
);
629 free_one_page(page_zone(page
), page
, order
,
630 get_pageblock_migratetype(page
));
631 local_irq_restore(flags
);
635 * permit the bootmem allocator to evade page validation on high-order frees
637 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
640 __ClearPageReserved(page
);
641 set_page_count(page
, 0);
642 set_page_refcounted(page
);
648 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
649 struct page
*p
= &page
[loop
];
651 if (loop
+ 1 < BITS_PER_LONG
)
653 __ClearPageReserved(p
);
654 set_page_count(p
, 0);
657 set_page_refcounted(page
);
658 __free_pages(page
, order
);
664 * The order of subdivision here is critical for the IO subsystem.
665 * Please do not alter this order without good reasons and regression
666 * testing. Specifically, as large blocks of memory are subdivided,
667 * the order in which smaller blocks are delivered depends on the order
668 * they're subdivided in this function. This is the primary factor
669 * influencing the order in which pages are delivered to the IO
670 * subsystem according to empirical testing, and this is also justified
671 * by considering the behavior of a buddy system containing a single
672 * large block of memory acted on by a series of small allocations.
673 * This behavior is a critical factor in sglist merging's success.
677 static inline void expand(struct zone
*zone
, struct page
*page
,
678 int low
, int high
, struct free_area
*area
,
681 unsigned long size
= 1 << high
;
687 VM_BUG_ON(bad_range(zone
, &page
[size
]));
688 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
690 set_page_order(&page
[size
], high
);
695 * This page is about to be returned from the page allocator
697 static inline int check_new_page(struct page
*page
)
699 if (unlikely(page_mapcount(page
) |
700 (page
->mapping
!= NULL
) |
701 (atomic_read(&page
->_count
) != 0) |
702 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
709 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
713 for (i
= 0; i
< (1 << order
); i
++) {
714 struct page
*p
= page
+ i
;
715 if (unlikely(check_new_page(p
)))
719 set_page_private(page
, 0);
720 set_page_refcounted(page
);
722 arch_alloc_page(page
, order
);
723 kernel_map_pages(page
, 1 << order
, 1);
725 if (gfp_flags
& __GFP_ZERO
)
726 prep_zero_page(page
, order
, gfp_flags
);
728 if (order
&& (gfp_flags
& __GFP_COMP
))
729 prep_compound_page(page
, order
);
735 * Go through the free lists for the given migratetype and remove
736 * the smallest available page from the freelists
739 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
742 unsigned int current_order
;
743 struct free_area
* area
;
746 /* Find a page of the appropriate size in the preferred list */
747 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
748 area
= &(zone
->free_area
[current_order
]);
749 if (list_empty(&area
->free_list
[migratetype
]))
752 page
= list_entry(area
->free_list
[migratetype
].next
,
754 list_del(&page
->lru
);
755 rmv_page_order(page
);
757 expand(zone
, page
, order
, current_order
, area
, migratetype
);
766 * This array describes the order lists are fallen back to when
767 * the free lists for the desirable migrate type are depleted
769 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
770 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
771 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
772 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
773 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
777 * Move the free pages in a range to the free lists of the requested type.
778 * Note that start_page and end_pages are not aligned on a pageblock
779 * boundary. If alignment is required, use move_freepages_block()
781 static int move_freepages(struct zone
*zone
,
782 struct page
*start_page
, struct page
*end_page
,
789 #ifndef CONFIG_HOLES_IN_ZONE
791 * page_zone is not safe to call in this context when
792 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
793 * anyway as we check zone boundaries in move_freepages_block().
794 * Remove at a later date when no bug reports exist related to
795 * grouping pages by mobility
797 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
800 for (page
= start_page
; page
<= end_page
;) {
801 /* Make sure we are not inadvertently changing nodes */
802 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
804 if (!pfn_valid_within(page_to_pfn(page
))) {
809 if (!PageBuddy(page
)) {
814 order
= page_order(page
);
815 list_del(&page
->lru
);
817 &zone
->free_area
[order
].free_list
[migratetype
]);
819 pages_moved
+= 1 << order
;
825 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
828 unsigned long start_pfn
, end_pfn
;
829 struct page
*start_page
, *end_page
;
831 start_pfn
= page_to_pfn(page
);
832 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
833 start_page
= pfn_to_page(start_pfn
);
834 end_page
= start_page
+ pageblock_nr_pages
- 1;
835 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
837 /* Do not cross zone boundaries */
838 if (start_pfn
< zone
->zone_start_pfn
)
840 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
843 return move_freepages(zone
, start_page
, end_page
, migratetype
);
846 static void change_pageblock_range(struct page
*pageblock_page
,
847 int start_order
, int migratetype
)
849 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
851 while (nr_pageblocks
--) {
852 set_pageblock_migratetype(pageblock_page
, migratetype
);
853 pageblock_page
+= pageblock_nr_pages
;
857 /* Remove an element from the buddy allocator from the fallback list */
858 static inline struct page
*
859 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
861 struct free_area
* area
;
866 /* Find the largest possible block of pages in the other list */
867 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
869 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
870 migratetype
= fallbacks
[start_migratetype
][i
];
872 /* MIGRATE_RESERVE handled later if necessary */
873 if (migratetype
== MIGRATE_RESERVE
)
876 area
= &(zone
->free_area
[current_order
]);
877 if (list_empty(&area
->free_list
[migratetype
]))
880 page
= list_entry(area
->free_list
[migratetype
].next
,
885 * If breaking a large block of pages, move all free
886 * pages to the preferred allocation list. If falling
887 * back for a reclaimable kernel allocation, be more
888 * agressive about taking ownership of free pages
890 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
891 start_migratetype
== MIGRATE_RECLAIMABLE
||
892 page_group_by_mobility_disabled
) {
894 pages
= move_freepages_block(zone
, page
,
897 /* Claim the whole block if over half of it is free */
898 if (pages
>= (1 << (pageblock_order
-1)) ||
899 page_group_by_mobility_disabled
)
900 set_pageblock_migratetype(page
,
903 migratetype
= start_migratetype
;
906 /* Remove the page from the freelists */
907 list_del(&page
->lru
);
908 rmv_page_order(page
);
910 /* Take ownership for orders >= pageblock_order */
911 if (current_order
>= pageblock_order
)
912 change_pageblock_range(page
, current_order
,
915 expand(zone
, page
, order
, current_order
, area
, migratetype
);
917 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
918 start_migratetype
, migratetype
);
928 * Do the hard work of removing an element from the buddy allocator.
929 * Call me with the zone->lock already held.
931 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
937 page
= __rmqueue_smallest(zone
, order
, migratetype
);
939 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
940 page
= __rmqueue_fallback(zone
, order
, migratetype
);
943 * Use MIGRATE_RESERVE rather than fail an allocation. goto
944 * is used because __rmqueue_smallest is an inline function
945 * and we want just one call site
948 migratetype
= MIGRATE_RESERVE
;
953 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
958 * Obtain a specified number of elements from the buddy allocator, all under
959 * a single hold of the lock, for efficiency. Add them to the supplied list.
960 * Returns the number of new pages which were placed at *list.
962 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
963 unsigned long count
, struct list_head
*list
,
964 int migratetype
, int cold
)
968 spin_lock(&zone
->lock
);
969 for (i
= 0; i
< count
; ++i
) {
970 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
971 if (unlikely(page
== NULL
))
975 * Split buddy pages returned by expand() are received here
976 * in physical page order. The page is added to the callers and
977 * list and the list head then moves forward. From the callers
978 * perspective, the linked list is ordered by page number in
979 * some conditions. This is useful for IO devices that can
980 * merge IO requests if the physical pages are ordered
983 if (likely(cold
== 0))
984 list_add(&page
->lru
, list
);
986 list_add_tail(&page
->lru
, list
);
987 set_page_private(page
, migratetype
);
990 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
991 spin_unlock(&zone
->lock
);
997 * Called from the vmstat counter updater to drain pagesets of this
998 * currently executing processor on remote nodes after they have
1001 * Note that this function must be called with the thread pinned to
1002 * a single processor.
1004 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1006 unsigned long flags
;
1009 local_irq_save(flags
);
1010 if (pcp
->count
>= pcp
->batch
)
1011 to_drain
= pcp
->batch
;
1013 to_drain
= pcp
->count
;
1014 free_pcppages_bulk(zone
, to_drain
, pcp
);
1015 pcp
->count
-= to_drain
;
1016 local_irq_restore(flags
);
1021 * Drain pages of the indicated processor.
1023 * The processor must either be the current processor and the
1024 * thread pinned to the current processor or a processor that
1027 static void drain_pages(unsigned int cpu
)
1029 unsigned long flags
;
1032 for_each_populated_zone(zone
) {
1033 struct per_cpu_pageset
*pset
;
1034 struct per_cpu_pages
*pcp
;
1036 local_irq_save(flags
);
1037 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1040 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1042 local_irq_restore(flags
);
1047 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1049 void drain_local_pages(void *arg
)
1051 drain_pages(smp_processor_id());
1055 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1057 void drain_all_pages(void)
1059 on_each_cpu(drain_local_pages
, NULL
, 1);
1062 #ifdef CONFIG_HIBERNATION
1064 void mark_free_pages(struct zone
*zone
)
1066 unsigned long pfn
, max_zone_pfn
;
1067 unsigned long flags
;
1069 struct list_head
*curr
;
1071 if (!zone
->spanned_pages
)
1074 spin_lock_irqsave(&zone
->lock
, flags
);
1076 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1077 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1078 if (pfn_valid(pfn
)) {
1079 struct page
*page
= pfn_to_page(pfn
);
1081 if (!swsusp_page_is_forbidden(page
))
1082 swsusp_unset_page_free(page
);
1085 for_each_migratetype_order(order
, t
) {
1086 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1089 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1090 for (i
= 0; i
< (1UL << order
); i
++)
1091 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1094 spin_unlock_irqrestore(&zone
->lock
, flags
);
1096 #endif /* CONFIG_PM */
1099 * Free a 0-order page
1100 * cold == 1 ? free a cold page : free a hot page
1102 void free_hot_cold_page(struct page
*page
, int cold
)
1104 struct zone
*zone
= page_zone(page
);
1105 struct per_cpu_pages
*pcp
;
1106 unsigned long flags
;
1108 int wasMlocked
= __TestClearPageMlocked(page
);
1110 trace_mm_page_free_direct(page
, 0);
1111 kmemcheck_free_shadow(page
, 0);
1114 page
->mapping
= NULL
;
1115 if (free_pages_check(page
))
1118 if (!PageHighMem(page
)) {
1119 debug_check_no_locks_freed(page_address(page
), PAGE_SIZE
);
1120 debug_check_no_obj_freed(page_address(page
), PAGE_SIZE
);
1122 arch_free_page(page
, 0);
1123 kernel_map_pages(page
, 1, 0);
1125 migratetype
= get_pageblock_migratetype(page
);
1126 set_page_private(page
, migratetype
);
1127 local_irq_save(flags
);
1128 if (unlikely(wasMlocked
))
1129 free_page_mlock(page
);
1130 __count_vm_event(PGFREE
);
1133 * We only track unmovable, reclaimable and movable on pcp lists.
1134 * Free ISOLATE pages back to the allocator because they are being
1135 * offlined but treat RESERVE as movable pages so we can get those
1136 * areas back if necessary. Otherwise, we may have to free
1137 * excessively into the page allocator
1139 if (migratetype
>= MIGRATE_PCPTYPES
) {
1140 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1141 free_one_page(zone
, page
, 0, migratetype
);
1144 migratetype
= MIGRATE_MOVABLE
;
1147 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1149 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1151 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1153 if (pcp
->count
>= pcp
->high
) {
1154 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1155 pcp
->count
-= pcp
->batch
;
1159 local_irq_restore(flags
);
1163 * split_page takes a non-compound higher-order page, and splits it into
1164 * n (1<<order) sub-pages: page[0..n]
1165 * Each sub-page must be freed individually.
1167 * Note: this is probably too low level an operation for use in drivers.
1168 * Please consult with lkml before using this in your driver.
1170 void split_page(struct page
*page
, unsigned int order
)
1174 VM_BUG_ON(PageCompound(page
));
1175 VM_BUG_ON(!page_count(page
));
1177 #ifdef CONFIG_KMEMCHECK
1179 * Split shadow pages too, because free(page[0]) would
1180 * otherwise free the whole shadow.
1182 if (kmemcheck_page_is_tracked(page
))
1183 split_page(virt_to_page(page
[0].shadow
), order
);
1186 for (i
= 1; i
< (1 << order
); i
++)
1187 set_page_refcounted(page
+ i
);
1191 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1192 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1196 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1197 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1200 unsigned long flags
;
1202 int cold
= !!(gfp_flags
& __GFP_COLD
);
1205 if (likely(order
== 0)) {
1206 struct per_cpu_pages
*pcp
;
1207 struct list_head
*list
;
1209 local_irq_save(flags
);
1210 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1211 list
= &pcp
->lists
[migratetype
];
1212 if (list_empty(list
)) {
1213 pcp
->count
+= rmqueue_bulk(zone
, 0,
1216 if (unlikely(list_empty(list
)))
1221 page
= list_entry(list
->prev
, struct page
, lru
);
1223 page
= list_entry(list
->next
, struct page
, lru
);
1225 list_del(&page
->lru
);
1228 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1230 * __GFP_NOFAIL is not to be used in new code.
1232 * All __GFP_NOFAIL callers should be fixed so that they
1233 * properly detect and handle allocation failures.
1235 * We most definitely don't want callers attempting to
1236 * allocate greater than order-1 page units with
1239 WARN_ON_ONCE(order
> 1);
1241 spin_lock_irqsave(&zone
->lock
, flags
);
1242 page
= __rmqueue(zone
, order
, migratetype
);
1243 spin_unlock(&zone
->lock
);
1246 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1249 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1250 zone_statistics(preferred_zone
, zone
);
1251 local_irq_restore(flags
);
1253 VM_BUG_ON(bad_range(zone
, page
));
1254 if (prep_new_page(page
, order
, gfp_flags
))
1259 local_irq_restore(flags
);
1263 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1264 #define ALLOC_WMARK_MIN WMARK_MIN
1265 #define ALLOC_WMARK_LOW WMARK_LOW
1266 #define ALLOC_WMARK_HIGH WMARK_HIGH
1267 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1269 /* Mask to get the watermark bits */
1270 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1272 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1273 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1274 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1276 #ifdef CONFIG_FAIL_PAGE_ALLOC
1278 static struct fail_page_alloc_attr
{
1279 struct fault_attr attr
;
1281 u32 ignore_gfp_highmem
;
1282 u32 ignore_gfp_wait
;
1285 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1287 struct dentry
*ignore_gfp_highmem_file
;
1288 struct dentry
*ignore_gfp_wait_file
;
1289 struct dentry
*min_order_file
;
1291 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1293 } fail_page_alloc
= {
1294 .attr
= FAULT_ATTR_INITIALIZER
,
1295 .ignore_gfp_wait
= 1,
1296 .ignore_gfp_highmem
= 1,
1300 static int __init
setup_fail_page_alloc(char *str
)
1302 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1304 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1306 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1308 if (order
< fail_page_alloc
.min_order
)
1310 if (gfp_mask
& __GFP_NOFAIL
)
1312 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1314 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1317 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1320 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1322 static int __init
fail_page_alloc_debugfs(void)
1324 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1328 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1332 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1334 fail_page_alloc
.ignore_gfp_wait_file
=
1335 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1336 &fail_page_alloc
.ignore_gfp_wait
);
1338 fail_page_alloc
.ignore_gfp_highmem_file
=
1339 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1340 &fail_page_alloc
.ignore_gfp_highmem
);
1341 fail_page_alloc
.min_order_file
=
1342 debugfs_create_u32("min-order", mode
, dir
,
1343 &fail_page_alloc
.min_order
);
1345 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1346 !fail_page_alloc
.ignore_gfp_highmem_file
||
1347 !fail_page_alloc
.min_order_file
) {
1349 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1350 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1351 debugfs_remove(fail_page_alloc
.min_order_file
);
1352 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1358 late_initcall(fail_page_alloc_debugfs
);
1360 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1362 #else /* CONFIG_FAIL_PAGE_ALLOC */
1364 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1369 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1372 * Return 1 if free pages are above 'mark'. This takes into account the order
1373 * of the allocation.
1375 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1376 int classzone_idx
, int alloc_flags
)
1378 /* free_pages my go negative - that's OK */
1380 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
) - (1 << order
) + 1;
1383 if (alloc_flags
& ALLOC_HIGH
)
1385 if (alloc_flags
& ALLOC_HARDER
)
1388 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1390 for (o
= 0; o
< order
; o
++) {
1391 /* At the next order, this order's pages become unavailable */
1392 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1394 /* Require fewer higher order pages to be free */
1397 if (free_pages
<= min
)
1405 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1406 * skip over zones that are not allowed by the cpuset, or that have
1407 * been recently (in last second) found to be nearly full. See further
1408 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1409 * that have to skip over a lot of full or unallowed zones.
1411 * If the zonelist cache is present in the passed in zonelist, then
1412 * returns a pointer to the allowed node mask (either the current
1413 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1415 * If the zonelist cache is not available for this zonelist, does
1416 * nothing and returns NULL.
1418 * If the fullzones BITMAP in the zonelist cache is stale (more than
1419 * a second since last zap'd) then we zap it out (clear its bits.)
1421 * We hold off even calling zlc_setup, until after we've checked the
1422 * first zone in the zonelist, on the theory that most allocations will
1423 * be satisfied from that first zone, so best to examine that zone as
1424 * quickly as we can.
1426 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1428 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1429 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1431 zlc
= zonelist
->zlcache_ptr
;
1435 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1436 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1437 zlc
->last_full_zap
= jiffies
;
1440 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1441 &cpuset_current_mems_allowed
:
1442 &node_states
[N_HIGH_MEMORY
];
1443 return allowednodes
;
1447 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1448 * if it is worth looking at further for free memory:
1449 * 1) Check that the zone isn't thought to be full (doesn't have its
1450 * bit set in the zonelist_cache fullzones BITMAP).
1451 * 2) Check that the zones node (obtained from the zonelist_cache
1452 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1453 * Return true (non-zero) if zone is worth looking at further, or
1454 * else return false (zero) if it is not.
1456 * This check -ignores- the distinction between various watermarks,
1457 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1458 * found to be full for any variation of these watermarks, it will
1459 * be considered full for up to one second by all requests, unless
1460 * we are so low on memory on all allowed nodes that we are forced
1461 * into the second scan of the zonelist.
1463 * In the second scan we ignore this zonelist cache and exactly
1464 * apply the watermarks to all zones, even it is slower to do so.
1465 * We are low on memory in the second scan, and should leave no stone
1466 * unturned looking for a free page.
1468 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1469 nodemask_t
*allowednodes
)
1471 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1472 int i
; /* index of *z in zonelist zones */
1473 int n
; /* node that zone *z is on */
1475 zlc
= zonelist
->zlcache_ptr
;
1479 i
= z
- zonelist
->_zonerefs
;
1482 /* This zone is worth trying if it is allowed but not full */
1483 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1487 * Given 'z' scanning a zonelist, set the corresponding bit in
1488 * zlc->fullzones, so that subsequent attempts to allocate a page
1489 * from that zone don't waste time re-examining it.
1491 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1493 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1494 int i
; /* index of *z in zonelist zones */
1496 zlc
= zonelist
->zlcache_ptr
;
1500 i
= z
- zonelist
->_zonerefs
;
1502 set_bit(i
, zlc
->fullzones
);
1505 #else /* CONFIG_NUMA */
1507 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1512 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1513 nodemask_t
*allowednodes
)
1518 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1521 #endif /* CONFIG_NUMA */
1524 * get_page_from_freelist goes through the zonelist trying to allocate
1527 static struct page
*
1528 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1529 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1530 struct zone
*preferred_zone
, int migratetype
)
1533 struct page
*page
= NULL
;
1536 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1537 int zlc_active
= 0; /* set if using zonelist_cache */
1538 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1540 classzone_idx
= zone_idx(preferred_zone
);
1543 * Scan zonelist, looking for a zone with enough free.
1544 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1546 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1547 high_zoneidx
, nodemask
) {
1548 if (NUMA_BUILD
&& zlc_active
&&
1549 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1551 if ((alloc_flags
& ALLOC_CPUSET
) &&
1552 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1555 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1556 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1560 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1561 if (zone_watermark_ok(zone
, order
, mark
,
1562 classzone_idx
, alloc_flags
))
1565 if (zone_reclaim_mode
== 0)
1566 goto this_zone_full
;
1568 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1570 case ZONE_RECLAIM_NOSCAN
:
1573 case ZONE_RECLAIM_FULL
:
1574 /* scanned but unreclaimable */
1575 goto this_zone_full
;
1577 /* did we reclaim enough */
1578 if (!zone_watermark_ok(zone
, order
, mark
,
1579 classzone_idx
, alloc_flags
))
1580 goto this_zone_full
;
1585 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1586 gfp_mask
, migratetype
);
1591 zlc_mark_zone_full(zonelist
, z
);
1593 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1595 * we do zlc_setup after the first zone is tried but only
1596 * if there are multiple nodes make it worthwhile
1598 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1604 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1605 /* Disable zlc cache for second zonelist scan */
1613 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1614 unsigned long pages_reclaimed
)
1616 /* Do not loop if specifically requested */
1617 if (gfp_mask
& __GFP_NORETRY
)
1621 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1622 * means __GFP_NOFAIL, but that may not be true in other
1625 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1629 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1630 * specified, then we retry until we no longer reclaim any pages
1631 * (above), or we've reclaimed an order of pages at least as
1632 * large as the allocation's order. In both cases, if the
1633 * allocation still fails, we stop retrying.
1635 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1639 * Don't let big-order allocations loop unless the caller
1640 * explicitly requests that.
1642 if (gfp_mask
& __GFP_NOFAIL
)
1648 static inline struct page
*
1649 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1650 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1651 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1656 /* Acquire the OOM killer lock for the zones in zonelist */
1657 if (!try_set_zone_oom(zonelist
, gfp_mask
)) {
1658 schedule_timeout_uninterruptible(1);
1663 * Go through the zonelist yet one more time, keep very high watermark
1664 * here, this is only to catch a parallel oom killing, we must fail if
1665 * we're still under heavy pressure.
1667 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1668 order
, zonelist
, high_zoneidx
,
1669 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1670 preferred_zone
, migratetype
);
1674 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1675 /* The OOM killer will not help higher order allocs */
1676 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1679 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1680 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1681 * The caller should handle page allocation failure by itself if
1682 * it specifies __GFP_THISNODE.
1683 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1685 if (gfp_mask
& __GFP_THISNODE
)
1688 /* Exhausted what can be done so it's blamo time */
1689 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1692 clear_zonelist_oom(zonelist
, gfp_mask
);
1696 /* The really slow allocator path where we enter direct reclaim */
1697 static inline struct page
*
1698 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1699 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1700 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1701 int migratetype
, unsigned long *did_some_progress
)
1703 struct page
*page
= NULL
;
1704 struct reclaim_state reclaim_state
;
1705 struct task_struct
*p
= current
;
1709 /* We now go into synchronous reclaim */
1710 cpuset_memory_pressure_bump();
1711 p
->flags
|= PF_MEMALLOC
;
1712 lockdep_set_current_reclaim_state(gfp_mask
);
1713 reclaim_state
.reclaimed_slab
= 0;
1714 p
->reclaim_state
= &reclaim_state
;
1716 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1718 p
->reclaim_state
= NULL
;
1719 lockdep_clear_current_reclaim_state();
1720 p
->flags
&= ~PF_MEMALLOC
;
1727 if (likely(*did_some_progress
))
1728 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1729 zonelist
, high_zoneidx
,
1730 alloc_flags
, preferred_zone
,
1736 * This is called in the allocator slow-path if the allocation request is of
1737 * sufficient urgency to ignore watermarks and take other desperate measures
1739 static inline struct page
*
1740 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1741 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1742 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1748 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1749 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1750 preferred_zone
, migratetype
);
1752 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1753 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1754 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1760 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1761 enum zone_type high_zoneidx
)
1766 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1767 wakeup_kswapd(zone
, order
);
1771 gfp_to_alloc_flags(gfp_t gfp_mask
)
1773 struct task_struct
*p
= current
;
1774 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1775 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1777 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1778 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1781 * The caller may dip into page reserves a bit more if the caller
1782 * cannot run direct reclaim, or if the caller has realtime scheduling
1783 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1784 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1786 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1789 alloc_flags
|= ALLOC_HARDER
;
1791 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1792 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1794 alloc_flags
&= ~ALLOC_CPUSET
;
1795 } else if (unlikely(rt_task(p
)) && !in_interrupt())
1796 alloc_flags
|= ALLOC_HARDER
;
1798 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1799 if (!in_interrupt() &&
1800 ((p
->flags
& PF_MEMALLOC
) ||
1801 unlikely(test_thread_flag(TIF_MEMDIE
))))
1802 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1808 static inline struct page
*
1809 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1810 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1811 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1814 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1815 struct page
*page
= NULL
;
1817 unsigned long pages_reclaimed
= 0;
1818 unsigned long did_some_progress
;
1819 struct task_struct
*p
= current
;
1822 * In the slowpath, we sanity check order to avoid ever trying to
1823 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1824 * be using allocators in order of preference for an area that is
1827 if (order
>= MAX_ORDER
) {
1828 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1833 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1834 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1835 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1836 * using a larger set of nodes after it has established that the
1837 * allowed per node queues are empty and that nodes are
1840 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
1844 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
1847 * OK, we're below the kswapd watermark and have kicked background
1848 * reclaim. Now things get more complex, so set up alloc_flags according
1849 * to how we want to proceed.
1851 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
1853 /* This is the last chance, in general, before the goto nopage. */
1854 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
1855 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
1856 preferred_zone
, migratetype
);
1861 /* Allocate without watermarks if the context allows */
1862 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
1863 page
= __alloc_pages_high_priority(gfp_mask
, order
,
1864 zonelist
, high_zoneidx
, nodemask
,
1865 preferred_zone
, migratetype
);
1870 /* Atomic allocations - we can't balance anything */
1874 /* Avoid recursion of direct reclaim */
1875 if (p
->flags
& PF_MEMALLOC
)
1878 /* Avoid allocations with no watermarks from looping endlessly */
1879 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
1882 /* Try direct reclaim and then allocating */
1883 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
1884 zonelist
, high_zoneidx
,
1886 alloc_flags
, preferred_zone
,
1887 migratetype
, &did_some_progress
);
1892 * If we failed to make any progress reclaiming, then we are
1893 * running out of options and have to consider going OOM
1895 if (!did_some_progress
) {
1896 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
1897 if (oom_killer_disabled
)
1899 page
= __alloc_pages_may_oom(gfp_mask
, order
,
1900 zonelist
, high_zoneidx
,
1901 nodemask
, preferred_zone
,
1907 * The OOM killer does not trigger for high-order
1908 * ~__GFP_NOFAIL allocations so if no progress is being
1909 * made, there are no other options and retrying is
1912 if (order
> PAGE_ALLOC_COSTLY_ORDER
&&
1913 !(gfp_mask
& __GFP_NOFAIL
))
1920 /* Check if we should retry the allocation */
1921 pages_reclaimed
+= did_some_progress
;
1922 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
1923 /* Wait for some write requests to complete then retry */
1924 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1929 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
1930 printk(KERN_WARNING
"%s: page allocation failure."
1931 " order:%d, mode:0x%x\n",
1932 p
->comm
, order
, gfp_mask
);
1938 if (kmemcheck_enabled
)
1939 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
1945 * This is the 'heart' of the zoned buddy allocator.
1948 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
1949 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
1951 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
1952 struct zone
*preferred_zone
;
1954 int migratetype
= allocflags_to_migratetype(gfp_mask
);
1956 gfp_mask
&= gfp_allowed_mask
;
1958 lockdep_trace_alloc(gfp_mask
);
1960 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1962 if (should_fail_alloc_page(gfp_mask
, order
))
1966 * Check the zones suitable for the gfp_mask contain at least one
1967 * valid zone. It's possible to have an empty zonelist as a result
1968 * of GFP_THISNODE and a memoryless node
1970 if (unlikely(!zonelist
->_zonerefs
->zone
))
1973 /* The preferred zone is used for statistics later */
1974 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
1975 if (!preferred_zone
)
1978 /* First allocation attempt */
1979 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
1980 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
1981 preferred_zone
, migratetype
);
1982 if (unlikely(!page
))
1983 page
= __alloc_pages_slowpath(gfp_mask
, order
,
1984 zonelist
, high_zoneidx
, nodemask
,
1985 preferred_zone
, migratetype
);
1987 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
1990 EXPORT_SYMBOL(__alloc_pages_nodemask
);
1993 * Common helper functions.
1995 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2000 * __get_free_pages() returns a 32-bit address, which cannot represent
2003 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2005 page
= alloc_pages(gfp_mask
, order
);
2008 return (unsigned long) page_address(page
);
2010 EXPORT_SYMBOL(__get_free_pages
);
2012 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2014 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2016 EXPORT_SYMBOL(get_zeroed_page
);
2018 void __pagevec_free(struct pagevec
*pvec
)
2020 int i
= pagevec_count(pvec
);
2023 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2024 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2028 void __free_pages(struct page
*page
, unsigned int order
)
2030 if (put_page_testzero(page
)) {
2032 free_hot_cold_page(page
, 0);
2034 __free_pages_ok(page
, order
);
2038 EXPORT_SYMBOL(__free_pages
);
2040 void free_pages(unsigned long addr
, unsigned int order
)
2043 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2044 __free_pages(virt_to_page((void *)addr
), order
);
2048 EXPORT_SYMBOL(free_pages
);
2051 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2052 * @size: the number of bytes to allocate
2053 * @gfp_mask: GFP flags for the allocation
2055 * This function is similar to alloc_pages(), except that it allocates the
2056 * minimum number of pages to satisfy the request. alloc_pages() can only
2057 * allocate memory in power-of-two pages.
2059 * This function is also limited by MAX_ORDER.
2061 * Memory allocated by this function must be released by free_pages_exact().
2063 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2065 unsigned int order
= get_order(size
);
2068 addr
= __get_free_pages(gfp_mask
, order
);
2070 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2071 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2073 split_page(virt_to_page((void *)addr
), order
);
2074 while (used
< alloc_end
) {
2080 return (void *)addr
;
2082 EXPORT_SYMBOL(alloc_pages_exact
);
2085 * free_pages_exact - release memory allocated via alloc_pages_exact()
2086 * @virt: the value returned by alloc_pages_exact.
2087 * @size: size of allocation, same value as passed to alloc_pages_exact().
2089 * Release the memory allocated by a previous call to alloc_pages_exact.
2091 void free_pages_exact(void *virt
, size_t size
)
2093 unsigned long addr
= (unsigned long)virt
;
2094 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2096 while (addr
< end
) {
2101 EXPORT_SYMBOL(free_pages_exact
);
2103 static unsigned int nr_free_zone_pages(int offset
)
2108 /* Just pick one node, since fallback list is circular */
2109 unsigned int sum
= 0;
2111 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2113 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2114 unsigned long size
= zone
->present_pages
;
2115 unsigned long high
= high_wmark_pages(zone
);
2124 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2126 unsigned int nr_free_buffer_pages(void)
2128 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2130 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2133 * Amount of free RAM allocatable within all zones
2135 unsigned int nr_free_pagecache_pages(void)
2137 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2140 static inline void show_node(struct zone
*zone
)
2143 printk("Node %d ", zone_to_nid(zone
));
2146 void si_meminfo(struct sysinfo
*val
)
2148 val
->totalram
= totalram_pages
;
2150 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2151 val
->bufferram
= nr_blockdev_pages();
2152 val
->totalhigh
= totalhigh_pages
;
2153 val
->freehigh
= nr_free_highpages();
2154 val
->mem_unit
= PAGE_SIZE
;
2157 EXPORT_SYMBOL(si_meminfo
);
2160 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2162 pg_data_t
*pgdat
= NODE_DATA(nid
);
2164 val
->totalram
= pgdat
->node_present_pages
;
2165 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2166 #ifdef CONFIG_HIGHMEM
2167 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2168 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2174 val
->mem_unit
= PAGE_SIZE
;
2178 #define K(x) ((x) << (PAGE_SHIFT-10))
2181 * Show free area list (used inside shift_scroll-lock stuff)
2182 * We also calculate the percentage fragmentation. We do this by counting the
2183 * memory on each free list with the exception of the first item on the list.
2185 void show_free_areas(void)
2190 for_each_populated_zone(zone
) {
2192 printk("%s per-cpu:\n", zone
->name
);
2194 for_each_online_cpu(cpu
) {
2195 struct per_cpu_pageset
*pageset
;
2197 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2199 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2200 cpu
, pageset
->pcp
.high
,
2201 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2205 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2206 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2208 " dirty:%lu writeback:%lu unstable:%lu\n"
2209 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2210 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2211 global_page_state(NR_ACTIVE_ANON
),
2212 global_page_state(NR_INACTIVE_ANON
),
2213 global_page_state(NR_ISOLATED_ANON
),
2214 global_page_state(NR_ACTIVE_FILE
),
2215 global_page_state(NR_INACTIVE_FILE
),
2216 global_page_state(NR_ISOLATED_FILE
),
2217 global_page_state(NR_UNEVICTABLE
),
2218 global_page_state(NR_FILE_DIRTY
),
2219 global_page_state(NR_WRITEBACK
),
2220 global_page_state(NR_UNSTABLE_NFS
),
2221 global_page_state(NR_FREE_PAGES
),
2222 global_page_state(NR_SLAB_RECLAIMABLE
),
2223 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2224 global_page_state(NR_FILE_MAPPED
),
2225 global_page_state(NR_SHMEM
),
2226 global_page_state(NR_PAGETABLE
),
2227 global_page_state(NR_BOUNCE
));
2229 for_each_populated_zone(zone
) {
2238 " active_anon:%lukB"
2239 " inactive_anon:%lukB"
2240 " active_file:%lukB"
2241 " inactive_file:%lukB"
2242 " unevictable:%lukB"
2243 " isolated(anon):%lukB"
2244 " isolated(file):%lukB"
2251 " slab_reclaimable:%lukB"
2252 " slab_unreclaimable:%lukB"
2253 " kernel_stack:%lukB"
2257 " writeback_tmp:%lukB"
2258 " pages_scanned:%lu"
2259 " all_unreclaimable? %s"
2262 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2263 K(min_wmark_pages(zone
)),
2264 K(low_wmark_pages(zone
)),
2265 K(high_wmark_pages(zone
)),
2266 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2267 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2268 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2269 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2270 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2271 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2272 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2273 K(zone
->present_pages
),
2274 K(zone_page_state(zone
, NR_MLOCK
)),
2275 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2276 K(zone_page_state(zone
, NR_WRITEBACK
)),
2277 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2278 K(zone_page_state(zone
, NR_SHMEM
)),
2279 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2280 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2281 zone_page_state(zone
, NR_KERNEL_STACK
) *
2283 K(zone_page_state(zone
, NR_PAGETABLE
)),
2284 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2285 K(zone_page_state(zone
, NR_BOUNCE
)),
2286 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2287 zone
->pages_scanned
,
2288 (zone
->all_unreclaimable
? "yes" : "no")
2290 printk("lowmem_reserve[]:");
2291 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2292 printk(" %lu", zone
->lowmem_reserve
[i
]);
2296 for_each_populated_zone(zone
) {
2297 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2300 printk("%s: ", zone
->name
);
2302 spin_lock_irqsave(&zone
->lock
, flags
);
2303 for (order
= 0; order
< MAX_ORDER
; order
++) {
2304 nr
[order
] = zone
->free_area
[order
].nr_free
;
2305 total
+= nr
[order
] << order
;
2307 spin_unlock_irqrestore(&zone
->lock
, flags
);
2308 for (order
= 0; order
< MAX_ORDER
; order
++)
2309 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2310 printk("= %lukB\n", K(total
));
2313 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2315 show_swap_cache_info();
2318 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2320 zoneref
->zone
= zone
;
2321 zoneref
->zone_idx
= zone_idx(zone
);
2325 * Builds allocation fallback zone lists.
2327 * Add all populated zones of a node to the zonelist.
2329 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2330 int nr_zones
, enum zone_type zone_type
)
2334 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2339 zone
= pgdat
->node_zones
+ zone_type
;
2340 if (populated_zone(zone
)) {
2341 zoneref_set_zone(zone
,
2342 &zonelist
->_zonerefs
[nr_zones
++]);
2343 check_highest_zone(zone_type
);
2346 } while (zone_type
);
2353 * 0 = automatic detection of better ordering.
2354 * 1 = order by ([node] distance, -zonetype)
2355 * 2 = order by (-zonetype, [node] distance)
2357 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2358 * the same zonelist. So only NUMA can configure this param.
2360 #define ZONELIST_ORDER_DEFAULT 0
2361 #define ZONELIST_ORDER_NODE 1
2362 #define ZONELIST_ORDER_ZONE 2
2364 /* zonelist order in the kernel.
2365 * set_zonelist_order() will set this to NODE or ZONE.
2367 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2368 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2372 /* The value user specified ....changed by config */
2373 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2374 /* string for sysctl */
2375 #define NUMA_ZONELIST_ORDER_LEN 16
2376 char numa_zonelist_order
[16] = "default";
2379 * interface for configure zonelist ordering.
2380 * command line option "numa_zonelist_order"
2381 * = "[dD]efault - default, automatic configuration.
2382 * = "[nN]ode - order by node locality, then by zone within node
2383 * = "[zZ]one - order by zone, then by locality within zone
2386 static int __parse_numa_zonelist_order(char *s
)
2388 if (*s
== 'd' || *s
== 'D') {
2389 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2390 } else if (*s
== 'n' || *s
== 'N') {
2391 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2392 } else if (*s
== 'z' || *s
== 'Z') {
2393 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2396 "Ignoring invalid numa_zonelist_order value: "
2403 static __init
int setup_numa_zonelist_order(char *s
)
2406 return __parse_numa_zonelist_order(s
);
2409 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2412 * sysctl handler for numa_zonelist_order
2414 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2415 void __user
*buffer
, size_t *length
,
2418 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2420 static DEFINE_MUTEX(zl_order_mutex
);
2422 mutex_lock(&zl_order_mutex
);
2424 strcpy(saved_string
, (char*)table
->data
);
2425 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2429 int oldval
= user_zonelist_order
;
2430 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2432 * bogus value. restore saved string
2434 strncpy((char*)table
->data
, saved_string
,
2435 NUMA_ZONELIST_ORDER_LEN
);
2436 user_zonelist_order
= oldval
;
2437 } else if (oldval
!= user_zonelist_order
)
2438 build_all_zonelists();
2441 mutex_unlock(&zl_order_mutex
);
2446 #define MAX_NODE_LOAD (nr_online_nodes)
2447 static int node_load
[MAX_NUMNODES
];
2450 * find_next_best_node - find the next node that should appear in a given node's fallback list
2451 * @node: node whose fallback list we're appending
2452 * @used_node_mask: nodemask_t of already used nodes
2454 * We use a number of factors to determine which is the next node that should
2455 * appear on a given node's fallback list. The node should not have appeared
2456 * already in @node's fallback list, and it should be the next closest node
2457 * according to the distance array (which contains arbitrary distance values
2458 * from each node to each node in the system), and should also prefer nodes
2459 * with no CPUs, since presumably they'll have very little allocation pressure
2460 * on them otherwise.
2461 * It returns -1 if no node is found.
2463 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2466 int min_val
= INT_MAX
;
2468 const struct cpumask
*tmp
= cpumask_of_node(0);
2470 /* Use the local node if we haven't already */
2471 if (!node_isset(node
, *used_node_mask
)) {
2472 node_set(node
, *used_node_mask
);
2476 for_each_node_state(n
, N_HIGH_MEMORY
) {
2478 /* Don't want a node to appear more than once */
2479 if (node_isset(n
, *used_node_mask
))
2482 /* Use the distance array to find the distance */
2483 val
= node_distance(node
, n
);
2485 /* Penalize nodes under us ("prefer the next node") */
2488 /* Give preference to headless and unused nodes */
2489 tmp
= cpumask_of_node(n
);
2490 if (!cpumask_empty(tmp
))
2491 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2493 /* Slight preference for less loaded node */
2494 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2495 val
+= node_load
[n
];
2497 if (val
< min_val
) {
2504 node_set(best_node
, *used_node_mask
);
2511 * Build zonelists ordered by node and zones within node.
2512 * This results in maximum locality--normal zone overflows into local
2513 * DMA zone, if any--but risks exhausting DMA zone.
2515 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2518 struct zonelist
*zonelist
;
2520 zonelist
= &pgdat
->node_zonelists
[0];
2521 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2523 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2525 zonelist
->_zonerefs
[j
].zone
= NULL
;
2526 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2530 * Build gfp_thisnode zonelists
2532 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2535 struct zonelist
*zonelist
;
2537 zonelist
= &pgdat
->node_zonelists
[1];
2538 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2539 zonelist
->_zonerefs
[j
].zone
= NULL
;
2540 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2544 * Build zonelists ordered by zone and nodes within zones.
2545 * This results in conserving DMA zone[s] until all Normal memory is
2546 * exhausted, but results in overflowing to remote node while memory
2547 * may still exist in local DMA zone.
2549 static int node_order
[MAX_NUMNODES
];
2551 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2554 int zone_type
; /* needs to be signed */
2556 struct zonelist
*zonelist
;
2558 zonelist
= &pgdat
->node_zonelists
[0];
2560 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2561 for (j
= 0; j
< nr_nodes
; j
++) {
2562 node
= node_order
[j
];
2563 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2564 if (populated_zone(z
)) {
2566 &zonelist
->_zonerefs
[pos
++]);
2567 check_highest_zone(zone_type
);
2571 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2572 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2575 static int default_zonelist_order(void)
2578 unsigned long low_kmem_size
,total_size
;
2582 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2583 * If they are really small and used heavily, the system can fall
2584 * into OOM very easily.
2585 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2587 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2590 for_each_online_node(nid
) {
2591 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2592 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2593 if (populated_zone(z
)) {
2594 if (zone_type
< ZONE_NORMAL
)
2595 low_kmem_size
+= z
->present_pages
;
2596 total_size
+= z
->present_pages
;
2600 if (!low_kmem_size
|| /* there are no DMA area. */
2601 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2602 return ZONELIST_ORDER_NODE
;
2604 * look into each node's config.
2605 * If there is a node whose DMA/DMA32 memory is very big area on
2606 * local memory, NODE_ORDER may be suitable.
2608 average_size
= total_size
/
2609 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2610 for_each_online_node(nid
) {
2613 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2614 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2615 if (populated_zone(z
)) {
2616 if (zone_type
< ZONE_NORMAL
)
2617 low_kmem_size
+= z
->present_pages
;
2618 total_size
+= z
->present_pages
;
2621 if (low_kmem_size
&&
2622 total_size
> average_size
&& /* ignore small node */
2623 low_kmem_size
> total_size
* 70/100)
2624 return ZONELIST_ORDER_NODE
;
2626 return ZONELIST_ORDER_ZONE
;
2629 static void set_zonelist_order(void)
2631 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2632 current_zonelist_order
= default_zonelist_order();
2634 current_zonelist_order
= user_zonelist_order
;
2637 static void build_zonelists(pg_data_t
*pgdat
)
2641 nodemask_t used_mask
;
2642 int local_node
, prev_node
;
2643 struct zonelist
*zonelist
;
2644 int order
= current_zonelist_order
;
2646 /* initialize zonelists */
2647 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2648 zonelist
= pgdat
->node_zonelists
+ i
;
2649 zonelist
->_zonerefs
[0].zone
= NULL
;
2650 zonelist
->_zonerefs
[0].zone_idx
= 0;
2653 /* NUMA-aware ordering of nodes */
2654 local_node
= pgdat
->node_id
;
2655 load
= nr_online_nodes
;
2656 prev_node
= local_node
;
2657 nodes_clear(used_mask
);
2659 memset(node_order
, 0, sizeof(node_order
));
2662 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2663 int distance
= node_distance(local_node
, node
);
2666 * If another node is sufficiently far away then it is better
2667 * to reclaim pages in a zone before going off node.
2669 if (distance
> RECLAIM_DISTANCE
)
2670 zone_reclaim_mode
= 1;
2673 * We don't want to pressure a particular node.
2674 * So adding penalty to the first node in same
2675 * distance group to make it round-robin.
2677 if (distance
!= node_distance(local_node
, prev_node
))
2678 node_load
[node
] = load
;
2682 if (order
== ZONELIST_ORDER_NODE
)
2683 build_zonelists_in_node_order(pgdat
, node
);
2685 node_order
[j
++] = node
; /* remember order */
2688 if (order
== ZONELIST_ORDER_ZONE
) {
2689 /* calculate node order -- i.e., DMA last! */
2690 build_zonelists_in_zone_order(pgdat
, j
);
2693 build_thisnode_zonelists(pgdat
);
2696 /* Construct the zonelist performance cache - see further mmzone.h */
2697 static void build_zonelist_cache(pg_data_t
*pgdat
)
2699 struct zonelist
*zonelist
;
2700 struct zonelist_cache
*zlc
;
2703 zonelist
= &pgdat
->node_zonelists
[0];
2704 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2705 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2706 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2707 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2711 #else /* CONFIG_NUMA */
2713 static void set_zonelist_order(void)
2715 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2718 static void build_zonelists(pg_data_t
*pgdat
)
2720 int node
, local_node
;
2722 struct zonelist
*zonelist
;
2724 local_node
= pgdat
->node_id
;
2726 zonelist
= &pgdat
->node_zonelists
[0];
2727 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2730 * Now we build the zonelist so that it contains the zones
2731 * of all the other nodes.
2732 * We don't want to pressure a particular node, so when
2733 * building the zones for node N, we make sure that the
2734 * zones coming right after the local ones are those from
2735 * node N+1 (modulo N)
2737 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2738 if (!node_online(node
))
2740 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2743 for (node
= 0; node
< local_node
; node
++) {
2744 if (!node_online(node
))
2746 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2750 zonelist
->_zonerefs
[j
].zone
= NULL
;
2751 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2754 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2755 static void build_zonelist_cache(pg_data_t
*pgdat
)
2757 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2760 #endif /* CONFIG_NUMA */
2763 * Boot pageset table. One per cpu which is going to be used for all
2764 * zones and all nodes. The parameters will be set in such a way
2765 * that an item put on a list will immediately be handed over to
2766 * the buddy list. This is safe since pageset manipulation is done
2767 * with interrupts disabled.
2769 * The boot_pagesets must be kept even after bootup is complete for
2770 * unused processors and/or zones. They do play a role for bootstrapping
2771 * hotplugged processors.
2773 * zoneinfo_show() and maybe other functions do
2774 * not check if the processor is online before following the pageset pointer.
2775 * Other parts of the kernel may not check if the zone is available.
2777 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
2778 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
2780 /* return values int ....just for stop_machine() */
2781 static int __build_all_zonelists(void *dummy
)
2787 memset(node_load
, 0, sizeof(node_load
));
2789 for_each_online_node(nid
) {
2790 pg_data_t
*pgdat
= NODE_DATA(nid
);
2792 build_zonelists(pgdat
);
2793 build_zonelist_cache(pgdat
);
2797 * Initialize the boot_pagesets that are going to be used
2798 * for bootstrapping processors. The real pagesets for
2799 * each zone will be allocated later when the per cpu
2800 * allocator is available.
2802 * boot_pagesets are used also for bootstrapping offline
2803 * cpus if the system is already booted because the pagesets
2804 * are needed to initialize allocators on a specific cpu too.
2805 * F.e. the percpu allocator needs the page allocator which
2806 * needs the percpu allocator in order to allocate its pagesets
2807 * (a chicken-egg dilemma).
2809 for_each_possible_cpu(cpu
)
2810 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
2815 void build_all_zonelists(void)
2817 set_zonelist_order();
2819 if (system_state
== SYSTEM_BOOTING
) {
2820 __build_all_zonelists(NULL
);
2821 mminit_verify_zonelist();
2822 cpuset_init_current_mems_allowed();
2824 /* we have to stop all cpus to guarantee there is no user
2826 stop_machine(__build_all_zonelists
, NULL
, NULL
);
2827 /* cpuset refresh routine should be here */
2829 vm_total_pages
= nr_free_pagecache_pages();
2831 * Disable grouping by mobility if the number of pages in the
2832 * system is too low to allow the mechanism to work. It would be
2833 * more accurate, but expensive to check per-zone. This check is
2834 * made on memory-hotadd so a system can start with mobility
2835 * disabled and enable it later
2837 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
2838 page_group_by_mobility_disabled
= 1;
2840 page_group_by_mobility_disabled
= 0;
2842 printk("Built %i zonelists in %s order, mobility grouping %s. "
2843 "Total pages: %ld\n",
2845 zonelist_order_name
[current_zonelist_order
],
2846 page_group_by_mobility_disabled
? "off" : "on",
2849 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
2854 * Helper functions to size the waitqueue hash table.
2855 * Essentially these want to choose hash table sizes sufficiently
2856 * large so that collisions trying to wait on pages are rare.
2857 * But in fact, the number of active page waitqueues on typical
2858 * systems is ridiculously low, less than 200. So this is even
2859 * conservative, even though it seems large.
2861 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2862 * waitqueues, i.e. the size of the waitq table given the number of pages.
2864 #define PAGES_PER_WAITQUEUE 256
2866 #ifndef CONFIG_MEMORY_HOTPLUG
2867 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2869 unsigned long size
= 1;
2871 pages
/= PAGES_PER_WAITQUEUE
;
2873 while (size
< pages
)
2877 * Once we have dozens or even hundreds of threads sleeping
2878 * on IO we've got bigger problems than wait queue collision.
2879 * Limit the size of the wait table to a reasonable size.
2881 size
= min(size
, 4096UL);
2883 return max(size
, 4UL);
2887 * A zone's size might be changed by hot-add, so it is not possible to determine
2888 * a suitable size for its wait_table. So we use the maximum size now.
2890 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2892 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2893 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2894 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2896 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2897 * or more by the traditional way. (See above). It equals:
2899 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2900 * ia64(16K page size) : = ( 8G + 4M)byte.
2901 * powerpc (64K page size) : = (32G +16M)byte.
2903 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
2910 * This is an integer logarithm so that shifts can be used later
2911 * to extract the more random high bits from the multiplicative
2912 * hash function before the remainder is taken.
2914 static inline unsigned long wait_table_bits(unsigned long size
)
2919 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2922 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2923 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2924 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2925 * higher will lead to a bigger reserve which will get freed as contiguous
2926 * blocks as reclaim kicks in
2928 static void setup_zone_migrate_reserve(struct zone
*zone
)
2930 unsigned long start_pfn
, pfn
, end_pfn
;
2932 unsigned long block_migratetype
;
2935 /* Get the start pfn, end pfn and the number of blocks to reserve */
2936 start_pfn
= zone
->zone_start_pfn
;
2937 end_pfn
= start_pfn
+ zone
->spanned_pages
;
2938 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
2942 * Reserve blocks are generally in place to help high-order atomic
2943 * allocations that are short-lived. A min_free_kbytes value that
2944 * would result in more than 2 reserve blocks for atomic allocations
2945 * is assumed to be in place to help anti-fragmentation for the
2946 * future allocation of hugepages at runtime.
2948 reserve
= min(2, reserve
);
2950 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
2951 if (!pfn_valid(pfn
))
2953 page
= pfn_to_page(pfn
);
2955 /* Watch out for overlapping nodes */
2956 if (page_to_nid(page
) != zone_to_nid(zone
))
2959 /* Blocks with reserved pages will never free, skip them. */
2960 if (PageReserved(page
))
2963 block_migratetype
= get_pageblock_migratetype(page
);
2965 /* If this block is reserved, account for it */
2966 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
2971 /* Suitable for reserving if this block is movable */
2972 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
2973 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
2974 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
2980 * If the reserve is met and this is a previous reserved block,
2983 if (block_migratetype
== MIGRATE_RESERVE
) {
2984 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
2985 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
2991 * Initially all pages are reserved - free ones are freed
2992 * up by free_all_bootmem() once the early boot process is
2993 * done. Non-atomic initialization, single-pass.
2995 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
2996 unsigned long start_pfn
, enum memmap_context context
)
2999 unsigned long end_pfn
= start_pfn
+ size
;
3003 if (highest_memmap_pfn
< end_pfn
- 1)
3004 highest_memmap_pfn
= end_pfn
- 1;
3006 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3007 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3009 * There can be holes in boot-time mem_map[]s
3010 * handed to this function. They do not
3011 * exist on hotplugged memory.
3013 if (context
== MEMMAP_EARLY
) {
3014 if (!early_pfn_valid(pfn
))
3016 if (!early_pfn_in_nid(pfn
, nid
))
3019 page
= pfn_to_page(pfn
);
3020 set_page_links(page
, zone
, nid
, pfn
);
3021 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3022 init_page_count(page
);
3023 reset_page_mapcount(page
);
3024 SetPageReserved(page
);
3026 * Mark the block movable so that blocks are reserved for
3027 * movable at startup. This will force kernel allocations
3028 * to reserve their blocks rather than leaking throughout
3029 * the address space during boot when many long-lived
3030 * kernel allocations are made. Later some blocks near
3031 * the start are marked MIGRATE_RESERVE by
3032 * setup_zone_migrate_reserve()
3034 * bitmap is created for zone's valid pfn range. but memmap
3035 * can be created for invalid pages (for alignment)
3036 * check here not to call set_pageblock_migratetype() against
3039 if ((z
->zone_start_pfn
<= pfn
)
3040 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3041 && !(pfn
& (pageblock_nr_pages
- 1)))
3042 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3044 INIT_LIST_HEAD(&page
->lru
);
3045 #ifdef WANT_PAGE_VIRTUAL
3046 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3047 if (!is_highmem_idx(zone
))
3048 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3053 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3056 for_each_migratetype_order(order
, t
) {
3057 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3058 zone
->free_area
[order
].nr_free
= 0;
3062 #ifndef __HAVE_ARCH_MEMMAP_INIT
3063 #define memmap_init(size, nid, zone, start_pfn) \
3064 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3067 static int zone_batchsize(struct zone
*zone
)
3073 * The per-cpu-pages pools are set to around 1000th of the
3074 * size of the zone. But no more than 1/2 of a meg.
3076 * OK, so we don't know how big the cache is. So guess.
3078 batch
= zone
->present_pages
/ 1024;
3079 if (batch
* PAGE_SIZE
> 512 * 1024)
3080 batch
= (512 * 1024) / PAGE_SIZE
;
3081 batch
/= 4; /* We effectively *= 4 below */
3086 * Clamp the batch to a 2^n - 1 value. Having a power
3087 * of 2 value was found to be more likely to have
3088 * suboptimal cache aliasing properties in some cases.
3090 * For example if 2 tasks are alternately allocating
3091 * batches of pages, one task can end up with a lot
3092 * of pages of one half of the possible page colors
3093 * and the other with pages of the other colors.
3095 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3100 /* The deferral and batching of frees should be suppressed under NOMMU
3103 * The problem is that NOMMU needs to be able to allocate large chunks
3104 * of contiguous memory as there's no hardware page translation to
3105 * assemble apparent contiguous memory from discontiguous pages.
3107 * Queueing large contiguous runs of pages for batching, however,
3108 * causes the pages to actually be freed in smaller chunks. As there
3109 * can be a significant delay between the individual batches being
3110 * recycled, this leads to the once large chunks of space being
3111 * fragmented and becoming unavailable for high-order allocations.
3117 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3119 struct per_cpu_pages
*pcp
;
3122 memset(p
, 0, sizeof(*p
));
3126 pcp
->high
= 6 * batch
;
3127 pcp
->batch
= max(1UL, 1 * batch
);
3128 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3129 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3133 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3134 * to the value high for the pageset p.
3137 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3140 struct per_cpu_pages
*pcp
;
3144 pcp
->batch
= max(1UL, high
/4);
3145 if ((high
/4) > (PAGE_SHIFT
* 8))
3146 pcp
->batch
= PAGE_SHIFT
* 8;
3150 * Allocate per cpu pagesets and initialize them.
3151 * Before this call only boot pagesets were available.
3152 * Boot pagesets will no longer be used by this processorr
3153 * after setup_per_cpu_pageset().
3155 void __init
setup_per_cpu_pageset(void)
3160 for_each_populated_zone(zone
) {
3161 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3163 for_each_possible_cpu(cpu
) {
3164 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3166 setup_pageset(pcp
, zone_batchsize(zone
));
3168 if (percpu_pagelist_fraction
)
3169 setup_pagelist_highmark(pcp
,
3170 (zone
->present_pages
/
3171 percpu_pagelist_fraction
));
3176 static noinline __init_refok
3177 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3180 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3184 * The per-page waitqueue mechanism uses hashed waitqueues
3187 zone
->wait_table_hash_nr_entries
=
3188 wait_table_hash_nr_entries(zone_size_pages
);
3189 zone
->wait_table_bits
=
3190 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3191 alloc_size
= zone
->wait_table_hash_nr_entries
3192 * sizeof(wait_queue_head_t
);
3194 if (!slab_is_available()) {
3195 zone
->wait_table
= (wait_queue_head_t
*)
3196 alloc_bootmem_node(pgdat
, alloc_size
);
3199 * This case means that a zone whose size was 0 gets new memory
3200 * via memory hot-add.
3201 * But it may be the case that a new node was hot-added. In
3202 * this case vmalloc() will not be able to use this new node's
3203 * memory - this wait_table must be initialized to use this new
3204 * node itself as well.
3205 * To use this new node's memory, further consideration will be
3208 zone
->wait_table
= vmalloc(alloc_size
);
3210 if (!zone
->wait_table
)
3213 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3214 init_waitqueue_head(zone
->wait_table
+ i
);
3219 static int __zone_pcp_update(void *data
)
3221 struct zone
*zone
= data
;
3223 unsigned long batch
= zone_batchsize(zone
), flags
;
3225 for_each_possible_cpu(cpu
) {
3226 struct per_cpu_pageset
*pset
;
3227 struct per_cpu_pages
*pcp
;
3229 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3232 local_irq_save(flags
);
3233 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3234 setup_pageset(pset
, batch
);
3235 local_irq_restore(flags
);
3240 void zone_pcp_update(struct zone
*zone
)
3242 stop_machine(__zone_pcp_update
, zone
, NULL
);
3245 static __meminit
void zone_pcp_init(struct zone
*zone
)
3248 * per cpu subsystem is not up at this point. The following code
3249 * relies on the ability of the linker to provide the
3250 * offset of a (static) per cpu variable into the per cpu area.
3252 zone
->pageset
= &boot_pageset
;
3254 if (zone
->present_pages
)
3255 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3256 zone
->name
, zone
->present_pages
,
3257 zone_batchsize(zone
));
3260 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3261 unsigned long zone_start_pfn
,
3263 enum memmap_context context
)
3265 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3267 ret
= zone_wait_table_init(zone
, size
);
3270 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3272 zone
->zone_start_pfn
= zone_start_pfn
;
3274 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3275 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3277 (unsigned long)zone_idx(zone
),
3278 zone_start_pfn
, (zone_start_pfn
+ size
));
3280 zone_init_free_lists(zone
);
3285 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3287 * Basic iterator support. Return the first range of PFNs for a node
3288 * Note: nid == MAX_NUMNODES returns first region regardless of node
3290 static int __meminit
first_active_region_index_in_nid(int nid
)
3294 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3295 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3302 * Basic iterator support. Return the next active range of PFNs for a node
3303 * Note: nid == MAX_NUMNODES returns next region regardless of node
3305 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3307 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3308 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3314 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3316 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3317 * Architectures may implement their own version but if add_active_range()
3318 * was used and there are no special requirements, this is a convenient
3321 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3325 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3326 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3327 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3329 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3330 return early_node_map
[i
].nid
;
3332 /* This is a memory hole */
3335 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3337 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3341 nid
= __early_pfn_to_nid(pfn
);
3344 /* just returns 0 */
3348 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3349 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3353 nid
= __early_pfn_to_nid(pfn
);
3354 if (nid
>= 0 && nid
!= node
)
3360 /* Basic iterator support to walk early_node_map[] */
3361 #define for_each_active_range_index_in_nid(i, nid) \
3362 for (i = first_active_region_index_in_nid(nid); i != -1; \
3363 i = next_active_region_index_in_nid(i, nid))
3366 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3367 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3368 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3370 * If an architecture guarantees that all ranges registered with
3371 * add_active_ranges() contain no holes and may be freed, this
3372 * this function may be used instead of calling free_bootmem() manually.
3374 void __init
free_bootmem_with_active_regions(int nid
,
3375 unsigned long max_low_pfn
)
3379 for_each_active_range_index_in_nid(i
, nid
) {
3380 unsigned long size_pages
= 0;
3381 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3383 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3386 if (end_pfn
> max_low_pfn
)
3387 end_pfn
= max_low_pfn
;
3389 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3390 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3391 PFN_PHYS(early_node_map
[i
].start_pfn
),
3392 size_pages
<< PAGE_SHIFT
);
3396 int __init
add_from_early_node_map(struct range
*range
, int az
,
3397 int nr_range
, int nid
)
3402 /* need to go over early_node_map to find out good range for node */
3403 for_each_active_range_index_in_nid(i
, nid
) {
3404 start
= early_node_map
[i
].start_pfn
;
3405 end
= early_node_map
[i
].end_pfn
;
3406 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3411 #ifdef CONFIG_NO_BOOTMEM
3412 void * __init
__alloc_memory_core_early(int nid
, u64 size
, u64 align
,
3413 u64 goal
, u64 limit
)
3418 /* need to go over early_node_map to find out good range for node */
3419 for_each_active_range_index_in_nid(i
, nid
) {
3421 u64 ei_start
, ei_last
;
3423 ei_last
= early_node_map
[i
].end_pfn
;
3424 ei_last
<<= PAGE_SHIFT
;
3425 ei_start
= early_node_map
[i
].start_pfn
;
3426 ei_start
<<= PAGE_SHIFT
;
3427 addr
= find_early_area(ei_start
, ei_last
,
3428 goal
, limit
, size
, align
);
3434 printk(KERN_DEBUG
"alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3436 ei_start
, ei_last
, goal
, limit
, size
,
3440 ptr
= phys_to_virt(addr
);
3441 memset(ptr
, 0, size
);
3442 reserve_early_without_check(addr
, addr
+ size
, "BOOTMEM");
3451 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3456 for_each_active_range_index_in_nid(i
, nid
) {
3457 ret
= work_fn(early_node_map
[i
].start_pfn
,
3458 early_node_map
[i
].end_pfn
, data
);
3464 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3465 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3467 * If an architecture guarantees that all ranges registered with
3468 * add_active_ranges() contain no holes and may be freed, this
3469 * function may be used instead of calling memory_present() manually.
3471 void __init
sparse_memory_present_with_active_regions(int nid
)
3475 for_each_active_range_index_in_nid(i
, nid
)
3476 memory_present(early_node_map
[i
].nid
,
3477 early_node_map
[i
].start_pfn
,
3478 early_node_map
[i
].end_pfn
);
3482 * get_pfn_range_for_nid - Return the start and end page frames for a node
3483 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3484 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3485 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3487 * It returns the start and end page frame of a node based on information
3488 * provided by an arch calling add_active_range(). If called for a node
3489 * with no available memory, a warning is printed and the start and end
3492 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3493 unsigned long *start_pfn
, unsigned long *end_pfn
)
3499 for_each_active_range_index_in_nid(i
, nid
) {
3500 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3501 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3504 if (*start_pfn
== -1UL)
3509 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3510 * assumption is made that zones within a node are ordered in monotonic
3511 * increasing memory addresses so that the "highest" populated zone is used
3513 static void __init
find_usable_zone_for_movable(void)
3516 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3517 if (zone_index
== ZONE_MOVABLE
)
3520 if (arch_zone_highest_possible_pfn
[zone_index
] >
3521 arch_zone_lowest_possible_pfn
[zone_index
])
3525 VM_BUG_ON(zone_index
== -1);
3526 movable_zone
= zone_index
;
3530 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3531 * because it is sized independant of architecture. Unlike the other zones,
3532 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3533 * in each node depending on the size of each node and how evenly kernelcore
3534 * is distributed. This helper function adjusts the zone ranges
3535 * provided by the architecture for a given node by using the end of the
3536 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3537 * zones within a node are in order of monotonic increases memory addresses
3539 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3540 unsigned long zone_type
,
3541 unsigned long node_start_pfn
,
3542 unsigned long node_end_pfn
,
3543 unsigned long *zone_start_pfn
,
3544 unsigned long *zone_end_pfn
)
3546 /* Only adjust if ZONE_MOVABLE is on this node */
3547 if (zone_movable_pfn
[nid
]) {
3548 /* Size ZONE_MOVABLE */
3549 if (zone_type
== ZONE_MOVABLE
) {
3550 *zone_start_pfn
= zone_movable_pfn
[nid
];
3551 *zone_end_pfn
= min(node_end_pfn
,
3552 arch_zone_highest_possible_pfn
[movable_zone
]);
3554 /* Adjust for ZONE_MOVABLE starting within this range */
3555 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3556 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3557 *zone_end_pfn
= zone_movable_pfn
[nid
];
3559 /* Check if this whole range is within ZONE_MOVABLE */
3560 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3561 *zone_start_pfn
= *zone_end_pfn
;
3566 * Return the number of pages a zone spans in a node, including holes
3567 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3569 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3570 unsigned long zone_type
,
3571 unsigned long *ignored
)
3573 unsigned long node_start_pfn
, node_end_pfn
;
3574 unsigned long zone_start_pfn
, zone_end_pfn
;
3576 /* Get the start and end of the node and zone */
3577 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3578 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3579 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3580 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3581 node_start_pfn
, node_end_pfn
,
3582 &zone_start_pfn
, &zone_end_pfn
);
3584 /* Check that this node has pages within the zone's required range */
3585 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3588 /* Move the zone boundaries inside the node if necessary */
3589 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3590 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3592 /* Return the spanned pages */
3593 return zone_end_pfn
- zone_start_pfn
;
3597 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3598 * then all holes in the requested range will be accounted for.
3600 unsigned long __meminit
__absent_pages_in_range(int nid
,
3601 unsigned long range_start_pfn
,
3602 unsigned long range_end_pfn
)
3605 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3606 unsigned long start_pfn
;
3608 /* Find the end_pfn of the first active range of pfns in the node */
3609 i
= first_active_region_index_in_nid(nid
);
3613 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3615 /* Account for ranges before physical memory on this node */
3616 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3617 hole_pages
= prev_end_pfn
- range_start_pfn
;
3619 /* Find all holes for the zone within the node */
3620 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3622 /* No need to continue if prev_end_pfn is outside the zone */
3623 if (prev_end_pfn
>= range_end_pfn
)
3626 /* Make sure the end of the zone is not within the hole */
3627 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3628 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3630 /* Update the hole size cound and move on */
3631 if (start_pfn
> range_start_pfn
) {
3632 BUG_ON(prev_end_pfn
> start_pfn
);
3633 hole_pages
+= start_pfn
- prev_end_pfn
;
3635 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3638 /* Account for ranges past physical memory on this node */
3639 if (range_end_pfn
> prev_end_pfn
)
3640 hole_pages
+= range_end_pfn
-
3641 max(range_start_pfn
, prev_end_pfn
);
3647 * absent_pages_in_range - Return number of page frames in holes within a range
3648 * @start_pfn: The start PFN to start searching for holes
3649 * @end_pfn: The end PFN to stop searching for holes
3651 * It returns the number of pages frames in memory holes within a range.
3653 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3654 unsigned long end_pfn
)
3656 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3659 /* Return the number of page frames in holes in a zone on a node */
3660 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3661 unsigned long zone_type
,
3662 unsigned long *ignored
)
3664 unsigned long node_start_pfn
, node_end_pfn
;
3665 unsigned long zone_start_pfn
, zone_end_pfn
;
3667 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3668 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3670 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3673 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3674 node_start_pfn
, node_end_pfn
,
3675 &zone_start_pfn
, &zone_end_pfn
);
3676 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3680 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3681 unsigned long zone_type
,
3682 unsigned long *zones_size
)
3684 return zones_size
[zone_type
];
3687 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3688 unsigned long zone_type
,
3689 unsigned long *zholes_size
)
3694 return zholes_size
[zone_type
];
3699 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3700 unsigned long *zones_size
, unsigned long *zholes_size
)
3702 unsigned long realtotalpages
, totalpages
= 0;
3705 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3706 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3708 pgdat
->node_spanned_pages
= totalpages
;
3710 realtotalpages
= totalpages
;
3711 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3713 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3715 pgdat
->node_present_pages
= realtotalpages
;
3716 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3720 #ifndef CONFIG_SPARSEMEM
3722 * Calculate the size of the zone->blockflags rounded to an unsigned long
3723 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3724 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3725 * round what is now in bits to nearest long in bits, then return it in
3728 static unsigned long __init
usemap_size(unsigned long zonesize
)
3730 unsigned long usemapsize
;
3732 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3733 usemapsize
= usemapsize
>> pageblock_order
;
3734 usemapsize
*= NR_PAGEBLOCK_BITS
;
3735 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3737 return usemapsize
/ 8;
3740 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3741 struct zone
*zone
, unsigned long zonesize
)
3743 unsigned long usemapsize
= usemap_size(zonesize
);
3744 zone
->pageblock_flags
= NULL
;
3746 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
3749 static void inline setup_usemap(struct pglist_data
*pgdat
,
3750 struct zone
*zone
, unsigned long zonesize
) {}
3751 #endif /* CONFIG_SPARSEMEM */
3753 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3755 /* Return a sensible default order for the pageblock size. */
3756 static inline int pageblock_default_order(void)
3758 if (HPAGE_SHIFT
> PAGE_SHIFT
)
3759 return HUGETLB_PAGE_ORDER
;
3764 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3765 static inline void __init
set_pageblock_order(unsigned int order
)
3767 /* Check that pageblock_nr_pages has not already been setup */
3768 if (pageblock_order
)
3772 * Assume the largest contiguous order of interest is a huge page.
3773 * This value may be variable depending on boot parameters on IA64
3775 pageblock_order
= order
;
3777 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3780 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3781 * and pageblock_default_order() are unused as pageblock_order is set
3782 * at compile-time. See include/linux/pageblock-flags.h for the values of
3783 * pageblock_order based on the kernel config
3785 static inline int pageblock_default_order(unsigned int order
)
3789 #define set_pageblock_order(x) do {} while (0)
3791 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3794 * Set up the zone data structures:
3795 * - mark all pages reserved
3796 * - mark all memory queues empty
3797 * - clear the memory bitmaps
3799 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
3800 unsigned long *zones_size
, unsigned long *zholes_size
)
3803 int nid
= pgdat
->node_id
;
3804 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
3807 pgdat_resize_init(pgdat
);
3808 pgdat
->nr_zones
= 0;
3809 init_waitqueue_head(&pgdat
->kswapd_wait
);
3810 pgdat
->kswapd_max_order
= 0;
3811 pgdat_page_cgroup_init(pgdat
);
3813 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
3814 struct zone
*zone
= pgdat
->node_zones
+ j
;
3815 unsigned long size
, realsize
, memmap_pages
;
3818 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
3819 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
3823 * Adjust realsize so that it accounts for how much memory
3824 * is used by this zone for memmap. This affects the watermark
3825 * and per-cpu initialisations
3828 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
3829 if (realsize
>= memmap_pages
) {
3830 realsize
-= memmap_pages
;
3833 " %s zone: %lu pages used for memmap\n",
3834 zone_names
[j
], memmap_pages
);
3837 " %s zone: %lu pages exceeds realsize %lu\n",
3838 zone_names
[j
], memmap_pages
, realsize
);
3840 /* Account for reserved pages */
3841 if (j
== 0 && realsize
> dma_reserve
) {
3842 realsize
-= dma_reserve
;
3843 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
3844 zone_names
[0], dma_reserve
);
3847 if (!is_highmem_idx(j
))
3848 nr_kernel_pages
+= realsize
;
3849 nr_all_pages
+= realsize
;
3851 zone
->spanned_pages
= size
;
3852 zone
->present_pages
= realsize
;
3855 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
3857 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
3859 zone
->name
= zone_names
[j
];
3860 spin_lock_init(&zone
->lock
);
3861 spin_lock_init(&zone
->lru_lock
);
3862 zone_seqlock_init(zone
);
3863 zone
->zone_pgdat
= pgdat
;
3865 zone
->prev_priority
= DEF_PRIORITY
;
3867 zone_pcp_init(zone
);
3869 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
3870 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
3872 zone
->reclaim_stat
.recent_rotated
[0] = 0;
3873 zone
->reclaim_stat
.recent_rotated
[1] = 0;
3874 zone
->reclaim_stat
.recent_scanned
[0] = 0;
3875 zone
->reclaim_stat
.recent_scanned
[1] = 0;
3876 zap_zone_vm_stats(zone
);
3881 set_pageblock_order(pageblock_default_order());
3882 setup_usemap(pgdat
, zone
, size
);
3883 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
3884 size
, MEMMAP_EARLY
);
3886 memmap_init(size
, nid
, j
, zone_start_pfn
);
3887 zone_start_pfn
+= size
;
3891 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
3893 /* Skip empty nodes */
3894 if (!pgdat
->node_spanned_pages
)
3897 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3898 /* ia64 gets its own node_mem_map, before this, without bootmem */
3899 if (!pgdat
->node_mem_map
) {
3900 unsigned long size
, start
, end
;
3904 * The zone's endpoints aren't required to be MAX_ORDER
3905 * aligned but the node_mem_map endpoints must be in order
3906 * for the buddy allocator to function correctly.
3908 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
3909 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
3910 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
3911 size
= (end
- start
) * sizeof(struct page
);
3912 map
= alloc_remap(pgdat
->node_id
, size
);
3914 map
= alloc_bootmem_node(pgdat
, size
);
3915 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
3917 #ifndef CONFIG_NEED_MULTIPLE_NODES
3919 * With no DISCONTIG, the global mem_map is just set as node 0's
3921 if (pgdat
== NODE_DATA(0)) {
3922 mem_map
= NODE_DATA(0)->node_mem_map
;
3923 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3924 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
3925 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
3926 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3929 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3932 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
3933 unsigned long node_start_pfn
, unsigned long *zholes_size
)
3935 pg_data_t
*pgdat
= NODE_DATA(nid
);
3937 pgdat
->node_id
= nid
;
3938 pgdat
->node_start_pfn
= node_start_pfn
;
3939 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
3941 alloc_node_mem_map(pgdat
);
3942 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3943 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3944 nid
, (unsigned long)pgdat
,
3945 (unsigned long)pgdat
->node_mem_map
);
3948 free_area_init_core(pgdat
, zones_size
, zholes_size
);
3951 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3953 #if MAX_NUMNODES > 1
3955 * Figure out the number of possible node ids.
3957 static void __init
setup_nr_node_ids(void)
3960 unsigned int highest
= 0;
3962 for_each_node_mask(node
, node_possible_map
)
3964 nr_node_ids
= highest
+ 1;
3967 static inline void setup_nr_node_ids(void)
3973 * add_active_range - Register a range of PFNs backed by physical memory
3974 * @nid: The node ID the range resides on
3975 * @start_pfn: The start PFN of the available physical memory
3976 * @end_pfn: The end PFN of the available physical memory
3978 * These ranges are stored in an early_node_map[] and later used by
3979 * free_area_init_nodes() to calculate zone sizes and holes. If the
3980 * range spans a memory hole, it is up to the architecture to ensure
3981 * the memory is not freed by the bootmem allocator. If possible
3982 * the range being registered will be merged with existing ranges.
3984 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
3985 unsigned long end_pfn
)
3989 mminit_dprintk(MMINIT_TRACE
, "memory_register",
3990 "Entering add_active_range(%d, %#lx, %#lx) "
3991 "%d entries of %d used\n",
3992 nid
, start_pfn
, end_pfn
,
3993 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
3995 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
3997 /* Merge with existing active regions if possible */
3998 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3999 if (early_node_map
[i
].nid
!= nid
)
4002 /* Skip if an existing region covers this new one */
4003 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4004 end_pfn
<= early_node_map
[i
].end_pfn
)
4007 /* Merge forward if suitable */
4008 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4009 end_pfn
> early_node_map
[i
].end_pfn
) {
4010 early_node_map
[i
].end_pfn
= end_pfn
;
4014 /* Merge backward if suitable */
4015 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4016 end_pfn
>= early_node_map
[i
].start_pfn
) {
4017 early_node_map
[i
].start_pfn
= start_pfn
;
4022 /* Check that early_node_map is large enough */
4023 if (i
>= MAX_ACTIVE_REGIONS
) {
4024 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4025 MAX_ACTIVE_REGIONS
);
4029 early_node_map
[i
].nid
= nid
;
4030 early_node_map
[i
].start_pfn
= start_pfn
;
4031 early_node_map
[i
].end_pfn
= end_pfn
;
4032 nr_nodemap_entries
= i
+ 1;
4036 * remove_active_range - Shrink an existing registered range of PFNs
4037 * @nid: The node id the range is on that should be shrunk
4038 * @start_pfn: The new PFN of the range
4039 * @end_pfn: The new PFN of the range
4041 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4042 * The map is kept near the end physical page range that has already been
4043 * registered. This function allows an arch to shrink an existing registered
4046 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4047 unsigned long end_pfn
)
4052 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4053 nid
, start_pfn
, end_pfn
);
4055 /* Find the old active region end and shrink */
4056 for_each_active_range_index_in_nid(i
, nid
) {
4057 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4058 early_node_map
[i
].end_pfn
<= end_pfn
) {
4060 early_node_map
[i
].start_pfn
= 0;
4061 early_node_map
[i
].end_pfn
= 0;
4065 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4066 early_node_map
[i
].end_pfn
> start_pfn
) {
4067 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4068 early_node_map
[i
].end_pfn
= start_pfn
;
4069 if (temp_end_pfn
> end_pfn
)
4070 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4073 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4074 early_node_map
[i
].end_pfn
> end_pfn
&&
4075 early_node_map
[i
].start_pfn
< end_pfn
) {
4076 early_node_map
[i
].start_pfn
= end_pfn
;
4084 /* remove the blank ones */
4085 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4086 if (early_node_map
[i
].nid
!= nid
)
4088 if (early_node_map
[i
].end_pfn
)
4090 /* we found it, get rid of it */
4091 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4092 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4093 sizeof(early_node_map
[j
]));
4094 j
= nr_nodemap_entries
- 1;
4095 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4096 nr_nodemap_entries
--;
4101 * remove_all_active_ranges - Remove all currently registered regions
4103 * During discovery, it may be found that a table like SRAT is invalid
4104 * and an alternative discovery method must be used. This function removes
4105 * all currently registered regions.
4107 void __init
remove_all_active_ranges(void)
4109 memset(early_node_map
, 0, sizeof(early_node_map
));
4110 nr_nodemap_entries
= 0;
4113 /* Compare two active node_active_regions */
4114 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4116 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4117 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4119 /* Done this way to avoid overflows */
4120 if (arange
->start_pfn
> brange
->start_pfn
)
4122 if (arange
->start_pfn
< brange
->start_pfn
)
4128 /* sort the node_map by start_pfn */
4129 void __init
sort_node_map(void)
4131 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4132 sizeof(struct node_active_region
),
4133 cmp_node_active_region
, NULL
);
4136 /* Find the lowest pfn for a node */
4137 static unsigned long __init
find_min_pfn_for_node(int nid
)
4140 unsigned long min_pfn
= ULONG_MAX
;
4142 /* Assuming a sorted map, the first range found has the starting pfn */
4143 for_each_active_range_index_in_nid(i
, nid
)
4144 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4146 if (min_pfn
== ULONG_MAX
) {
4148 "Could not find start_pfn for node %d\n", nid
);
4156 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4158 * It returns the minimum PFN based on information provided via
4159 * add_active_range().
4161 unsigned long __init
find_min_pfn_with_active_regions(void)
4163 return find_min_pfn_for_node(MAX_NUMNODES
);
4167 * early_calculate_totalpages()
4168 * Sum pages in active regions for movable zone.
4169 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4171 static unsigned long __init
early_calculate_totalpages(void)
4174 unsigned long totalpages
= 0;
4176 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4177 unsigned long pages
= early_node_map
[i
].end_pfn
-
4178 early_node_map
[i
].start_pfn
;
4179 totalpages
+= pages
;
4181 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4187 * Find the PFN the Movable zone begins in each node. Kernel memory
4188 * is spread evenly between nodes as long as the nodes have enough
4189 * memory. When they don't, some nodes will have more kernelcore than
4192 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4195 unsigned long usable_startpfn
;
4196 unsigned long kernelcore_node
, kernelcore_remaining
;
4197 /* save the state before borrow the nodemask */
4198 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4199 unsigned long totalpages
= early_calculate_totalpages();
4200 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4203 * If movablecore was specified, calculate what size of
4204 * kernelcore that corresponds so that memory usable for
4205 * any allocation type is evenly spread. If both kernelcore
4206 * and movablecore are specified, then the value of kernelcore
4207 * will be used for required_kernelcore if it's greater than
4208 * what movablecore would have allowed.
4210 if (required_movablecore
) {
4211 unsigned long corepages
;
4214 * Round-up so that ZONE_MOVABLE is at least as large as what
4215 * was requested by the user
4217 required_movablecore
=
4218 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4219 corepages
= totalpages
- required_movablecore
;
4221 required_kernelcore
= max(required_kernelcore
, corepages
);
4224 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4225 if (!required_kernelcore
)
4228 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4229 find_usable_zone_for_movable();
4230 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4233 /* Spread kernelcore memory as evenly as possible throughout nodes */
4234 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4235 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4237 * Recalculate kernelcore_node if the division per node
4238 * now exceeds what is necessary to satisfy the requested
4239 * amount of memory for the kernel
4241 if (required_kernelcore
< kernelcore_node
)
4242 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4245 * As the map is walked, we track how much memory is usable
4246 * by the kernel using kernelcore_remaining. When it is
4247 * 0, the rest of the node is usable by ZONE_MOVABLE
4249 kernelcore_remaining
= kernelcore_node
;
4251 /* Go through each range of PFNs within this node */
4252 for_each_active_range_index_in_nid(i
, nid
) {
4253 unsigned long start_pfn
, end_pfn
;
4254 unsigned long size_pages
;
4256 start_pfn
= max(early_node_map
[i
].start_pfn
,
4257 zone_movable_pfn
[nid
]);
4258 end_pfn
= early_node_map
[i
].end_pfn
;
4259 if (start_pfn
>= end_pfn
)
4262 /* Account for what is only usable for kernelcore */
4263 if (start_pfn
< usable_startpfn
) {
4264 unsigned long kernel_pages
;
4265 kernel_pages
= min(end_pfn
, usable_startpfn
)
4268 kernelcore_remaining
-= min(kernel_pages
,
4269 kernelcore_remaining
);
4270 required_kernelcore
-= min(kernel_pages
,
4271 required_kernelcore
);
4273 /* Continue if range is now fully accounted */
4274 if (end_pfn
<= usable_startpfn
) {
4277 * Push zone_movable_pfn to the end so
4278 * that if we have to rebalance
4279 * kernelcore across nodes, we will
4280 * not double account here
4282 zone_movable_pfn
[nid
] = end_pfn
;
4285 start_pfn
= usable_startpfn
;
4289 * The usable PFN range for ZONE_MOVABLE is from
4290 * start_pfn->end_pfn. Calculate size_pages as the
4291 * number of pages used as kernelcore
4293 size_pages
= end_pfn
- start_pfn
;
4294 if (size_pages
> kernelcore_remaining
)
4295 size_pages
= kernelcore_remaining
;
4296 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4299 * Some kernelcore has been met, update counts and
4300 * break if the kernelcore for this node has been
4303 required_kernelcore
-= min(required_kernelcore
,
4305 kernelcore_remaining
-= size_pages
;
4306 if (!kernelcore_remaining
)
4312 * If there is still required_kernelcore, we do another pass with one
4313 * less node in the count. This will push zone_movable_pfn[nid] further
4314 * along on the nodes that still have memory until kernelcore is
4318 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4321 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4322 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4323 zone_movable_pfn
[nid
] =
4324 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4327 /* restore the node_state */
4328 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4331 /* Any regular memory on that node ? */
4332 static void check_for_regular_memory(pg_data_t
*pgdat
)
4334 #ifdef CONFIG_HIGHMEM
4335 enum zone_type zone_type
;
4337 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4338 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4339 if (zone
->present_pages
)
4340 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4346 * free_area_init_nodes - Initialise all pg_data_t and zone data
4347 * @max_zone_pfn: an array of max PFNs for each zone
4349 * This will call free_area_init_node() for each active node in the system.
4350 * Using the page ranges provided by add_active_range(), the size of each
4351 * zone in each node and their holes is calculated. If the maximum PFN
4352 * between two adjacent zones match, it is assumed that the zone is empty.
4353 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4354 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4355 * starts where the previous one ended. For example, ZONE_DMA32 starts
4356 * at arch_max_dma_pfn.
4358 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4363 /* Sort early_node_map as initialisation assumes it is sorted */
4366 /* Record where the zone boundaries are */
4367 memset(arch_zone_lowest_possible_pfn
, 0,
4368 sizeof(arch_zone_lowest_possible_pfn
));
4369 memset(arch_zone_highest_possible_pfn
, 0,
4370 sizeof(arch_zone_highest_possible_pfn
));
4371 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4372 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4373 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4374 if (i
== ZONE_MOVABLE
)
4376 arch_zone_lowest_possible_pfn
[i
] =
4377 arch_zone_highest_possible_pfn
[i
-1];
4378 arch_zone_highest_possible_pfn
[i
] =
4379 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4381 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4382 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4384 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4385 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4386 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4388 /* Print out the zone ranges */
4389 printk("Zone PFN ranges:\n");
4390 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4391 if (i
== ZONE_MOVABLE
)
4393 printk(" %-8s ", zone_names
[i
]);
4394 if (arch_zone_lowest_possible_pfn
[i
] ==
4395 arch_zone_highest_possible_pfn
[i
])
4398 printk("%0#10lx -> %0#10lx\n",
4399 arch_zone_lowest_possible_pfn
[i
],
4400 arch_zone_highest_possible_pfn
[i
]);
4403 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4404 printk("Movable zone start PFN for each node\n");
4405 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4406 if (zone_movable_pfn
[i
])
4407 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4410 /* Print out the early_node_map[] */
4411 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4412 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4413 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4414 early_node_map
[i
].start_pfn
,
4415 early_node_map
[i
].end_pfn
);
4417 /* Initialise every node */
4418 mminit_verify_pageflags_layout();
4419 setup_nr_node_ids();
4420 for_each_online_node(nid
) {
4421 pg_data_t
*pgdat
= NODE_DATA(nid
);
4422 free_area_init_node(nid
, NULL
,
4423 find_min_pfn_for_node(nid
), NULL
);
4425 /* Any memory on that node */
4426 if (pgdat
->node_present_pages
)
4427 node_set_state(nid
, N_HIGH_MEMORY
);
4428 check_for_regular_memory(pgdat
);
4432 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4434 unsigned long long coremem
;
4438 coremem
= memparse(p
, &p
);
4439 *core
= coremem
>> PAGE_SHIFT
;
4441 /* Paranoid check that UL is enough for the coremem value */
4442 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4448 * kernelcore=size sets the amount of memory for use for allocations that
4449 * cannot be reclaimed or migrated.
4451 static int __init
cmdline_parse_kernelcore(char *p
)
4453 return cmdline_parse_core(p
, &required_kernelcore
);
4457 * movablecore=size sets the amount of memory for use for allocations that
4458 * can be reclaimed or migrated.
4460 static int __init
cmdline_parse_movablecore(char *p
)
4462 return cmdline_parse_core(p
, &required_movablecore
);
4465 early_param("kernelcore", cmdline_parse_kernelcore
);
4466 early_param("movablecore", cmdline_parse_movablecore
);
4468 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4471 * set_dma_reserve - set the specified number of pages reserved in the first zone
4472 * @new_dma_reserve: The number of pages to mark reserved
4474 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4475 * In the DMA zone, a significant percentage may be consumed by kernel image
4476 * and other unfreeable allocations which can skew the watermarks badly. This
4477 * function may optionally be used to account for unfreeable pages in the
4478 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4479 * smaller per-cpu batchsize.
4481 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4483 dma_reserve
= new_dma_reserve
;
4486 #ifndef CONFIG_NEED_MULTIPLE_NODES
4487 struct pglist_data __refdata contig_page_data
= {
4488 #ifndef CONFIG_NO_BOOTMEM
4489 .bdata
= &bootmem_node_data
[0]
4492 EXPORT_SYMBOL(contig_page_data
);
4495 void __init
free_area_init(unsigned long *zones_size
)
4497 free_area_init_node(0, zones_size
,
4498 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4501 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4502 unsigned long action
, void *hcpu
)
4504 int cpu
= (unsigned long)hcpu
;
4506 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4510 * Spill the event counters of the dead processor
4511 * into the current processors event counters.
4512 * This artificially elevates the count of the current
4515 vm_events_fold_cpu(cpu
);
4518 * Zero the differential counters of the dead processor
4519 * so that the vm statistics are consistent.
4521 * This is only okay since the processor is dead and cannot
4522 * race with what we are doing.
4524 refresh_cpu_vm_stats(cpu
);
4529 void __init
page_alloc_init(void)
4531 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4535 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4536 * or min_free_kbytes changes.
4538 static void calculate_totalreserve_pages(void)
4540 struct pglist_data
*pgdat
;
4541 unsigned long reserve_pages
= 0;
4542 enum zone_type i
, j
;
4544 for_each_online_pgdat(pgdat
) {
4545 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4546 struct zone
*zone
= pgdat
->node_zones
+ i
;
4547 unsigned long max
= 0;
4549 /* Find valid and maximum lowmem_reserve in the zone */
4550 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4551 if (zone
->lowmem_reserve
[j
] > max
)
4552 max
= zone
->lowmem_reserve
[j
];
4555 /* we treat the high watermark as reserved pages. */
4556 max
+= high_wmark_pages(zone
);
4558 if (max
> zone
->present_pages
)
4559 max
= zone
->present_pages
;
4560 reserve_pages
+= max
;
4563 totalreserve_pages
= reserve_pages
;
4567 * setup_per_zone_lowmem_reserve - called whenever
4568 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4569 * has a correct pages reserved value, so an adequate number of
4570 * pages are left in the zone after a successful __alloc_pages().
4572 static void setup_per_zone_lowmem_reserve(void)
4574 struct pglist_data
*pgdat
;
4575 enum zone_type j
, idx
;
4577 for_each_online_pgdat(pgdat
) {
4578 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4579 struct zone
*zone
= pgdat
->node_zones
+ j
;
4580 unsigned long present_pages
= zone
->present_pages
;
4582 zone
->lowmem_reserve
[j
] = 0;
4586 struct zone
*lower_zone
;
4590 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4591 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4593 lower_zone
= pgdat
->node_zones
+ idx
;
4594 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4595 sysctl_lowmem_reserve_ratio
[idx
];
4596 present_pages
+= lower_zone
->present_pages
;
4601 /* update totalreserve_pages */
4602 calculate_totalreserve_pages();
4606 * setup_per_zone_wmarks - called when min_free_kbytes changes
4607 * or when memory is hot-{added|removed}
4609 * Ensures that the watermark[min,low,high] values for each zone are set
4610 * correctly with respect to min_free_kbytes.
4612 void setup_per_zone_wmarks(void)
4614 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4615 unsigned long lowmem_pages
= 0;
4617 unsigned long flags
;
4619 /* Calculate total number of !ZONE_HIGHMEM pages */
4620 for_each_zone(zone
) {
4621 if (!is_highmem(zone
))
4622 lowmem_pages
+= zone
->present_pages
;
4625 for_each_zone(zone
) {
4628 spin_lock_irqsave(&zone
->lock
, flags
);
4629 tmp
= (u64
)pages_min
* zone
->present_pages
;
4630 do_div(tmp
, lowmem_pages
);
4631 if (is_highmem(zone
)) {
4633 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4634 * need highmem pages, so cap pages_min to a small
4637 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4638 * deltas controls asynch page reclaim, and so should
4639 * not be capped for highmem.
4643 min_pages
= zone
->present_pages
/ 1024;
4644 if (min_pages
< SWAP_CLUSTER_MAX
)
4645 min_pages
= SWAP_CLUSTER_MAX
;
4646 if (min_pages
> 128)
4648 zone
->watermark
[WMARK_MIN
] = min_pages
;
4651 * If it's a lowmem zone, reserve a number of pages
4652 * proportionate to the zone's size.
4654 zone
->watermark
[WMARK_MIN
] = tmp
;
4657 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4658 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4659 setup_zone_migrate_reserve(zone
);
4660 spin_unlock_irqrestore(&zone
->lock
, flags
);
4663 /* update totalreserve_pages */
4664 calculate_totalreserve_pages();
4668 * The inactive anon list should be small enough that the VM never has to
4669 * do too much work, but large enough that each inactive page has a chance
4670 * to be referenced again before it is swapped out.
4672 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4673 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4674 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4675 * the anonymous pages are kept on the inactive list.
4678 * memory ratio inactive anon
4679 * -------------------------------------
4688 void calculate_zone_inactive_ratio(struct zone
*zone
)
4690 unsigned int gb
, ratio
;
4692 /* Zone size in gigabytes */
4693 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4695 ratio
= int_sqrt(10 * gb
);
4699 zone
->inactive_ratio
= ratio
;
4702 static void __init
setup_per_zone_inactive_ratio(void)
4707 calculate_zone_inactive_ratio(zone
);
4711 * Initialise min_free_kbytes.
4713 * For small machines we want it small (128k min). For large machines
4714 * we want it large (64MB max). But it is not linear, because network
4715 * bandwidth does not increase linearly with machine size. We use
4717 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4718 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4734 static int __init
init_per_zone_wmark_min(void)
4736 unsigned long lowmem_kbytes
;
4738 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4740 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4741 if (min_free_kbytes
< 128)
4742 min_free_kbytes
= 128;
4743 if (min_free_kbytes
> 65536)
4744 min_free_kbytes
= 65536;
4745 setup_per_zone_wmarks();
4746 setup_per_zone_lowmem_reserve();
4747 setup_per_zone_inactive_ratio();
4750 module_init(init_per_zone_wmark_min
)
4753 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4754 * that we can call two helper functions whenever min_free_kbytes
4757 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
4758 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4760 proc_dointvec(table
, write
, buffer
, length
, ppos
);
4762 setup_per_zone_wmarks();
4767 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
4768 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4773 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4778 zone
->min_unmapped_pages
= (zone
->present_pages
*
4779 sysctl_min_unmapped_ratio
) / 100;
4783 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
4784 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4789 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4794 zone
->min_slab_pages
= (zone
->present_pages
*
4795 sysctl_min_slab_ratio
) / 100;
4801 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4802 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4803 * whenever sysctl_lowmem_reserve_ratio changes.
4805 * The reserve ratio obviously has absolutely no relation with the
4806 * minimum watermarks. The lowmem reserve ratio can only make sense
4807 * if in function of the boot time zone sizes.
4809 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
4810 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4812 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4813 setup_per_zone_lowmem_reserve();
4818 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4819 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4820 * can have before it gets flushed back to buddy allocator.
4823 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
4824 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
4830 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
4831 if (!write
|| (ret
== -EINVAL
))
4833 for_each_populated_zone(zone
) {
4834 for_each_possible_cpu(cpu
) {
4836 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
4837 setup_pagelist_highmark(
4838 per_cpu_ptr(zone
->pageset
, cpu
), high
);
4844 int hashdist
= HASHDIST_DEFAULT
;
4847 static int __init
set_hashdist(char *str
)
4851 hashdist
= simple_strtoul(str
, &str
, 0);
4854 __setup("hashdist=", set_hashdist
);
4858 * allocate a large system hash table from bootmem
4859 * - it is assumed that the hash table must contain an exact power-of-2
4860 * quantity of entries
4861 * - limit is the number of hash buckets, not the total allocation size
4863 void *__init
alloc_large_system_hash(const char *tablename
,
4864 unsigned long bucketsize
,
4865 unsigned long numentries
,
4868 unsigned int *_hash_shift
,
4869 unsigned int *_hash_mask
,
4870 unsigned long limit
)
4872 unsigned long long max
= limit
;
4873 unsigned long log2qty
, size
;
4876 /* allow the kernel cmdline to have a say */
4878 /* round applicable memory size up to nearest megabyte */
4879 numentries
= nr_kernel_pages
;
4880 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
4881 numentries
>>= 20 - PAGE_SHIFT
;
4882 numentries
<<= 20 - PAGE_SHIFT
;
4884 /* limit to 1 bucket per 2^scale bytes of low memory */
4885 if (scale
> PAGE_SHIFT
)
4886 numentries
>>= (scale
- PAGE_SHIFT
);
4888 numentries
<<= (PAGE_SHIFT
- scale
);
4890 /* Make sure we've got at least a 0-order allocation.. */
4891 if (unlikely(flags
& HASH_SMALL
)) {
4892 /* Makes no sense without HASH_EARLY */
4893 WARN_ON(!(flags
& HASH_EARLY
));
4894 if (!(numentries
>> *_hash_shift
)) {
4895 numentries
= 1UL << *_hash_shift
;
4896 BUG_ON(!numentries
);
4898 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
4899 numentries
= PAGE_SIZE
/ bucketsize
;
4901 numentries
= roundup_pow_of_two(numentries
);
4903 /* limit allocation size to 1/16 total memory by default */
4905 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
4906 do_div(max
, bucketsize
);
4909 if (numentries
> max
)
4912 log2qty
= ilog2(numentries
);
4915 size
= bucketsize
<< log2qty
;
4916 if (flags
& HASH_EARLY
)
4917 table
= alloc_bootmem_nopanic(size
);
4919 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
4922 * If bucketsize is not a power-of-two, we may free
4923 * some pages at the end of hash table which
4924 * alloc_pages_exact() automatically does
4926 if (get_order(size
) < MAX_ORDER
) {
4927 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
4928 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
4931 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
4934 panic("Failed to allocate %s hash table\n", tablename
);
4936 printk(KERN_INFO
"%s hash table entries: %d (order: %d, %lu bytes)\n",
4939 ilog2(size
) - PAGE_SHIFT
,
4943 *_hash_shift
= log2qty
;
4945 *_hash_mask
= (1 << log2qty
) - 1;
4950 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4951 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
4954 #ifdef CONFIG_SPARSEMEM
4955 return __pfn_to_section(pfn
)->pageblock_flags
;
4957 return zone
->pageblock_flags
;
4958 #endif /* CONFIG_SPARSEMEM */
4961 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
4963 #ifdef CONFIG_SPARSEMEM
4964 pfn
&= (PAGES_PER_SECTION
-1);
4965 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4967 pfn
= pfn
- zone
->zone_start_pfn
;
4968 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
4969 #endif /* CONFIG_SPARSEMEM */
4973 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4974 * @page: The page within the block of interest
4975 * @start_bitidx: The first bit of interest to retrieve
4976 * @end_bitidx: The last bit of interest
4977 * returns pageblock_bits flags
4979 unsigned long get_pageblock_flags_group(struct page
*page
,
4980 int start_bitidx
, int end_bitidx
)
4983 unsigned long *bitmap
;
4984 unsigned long pfn
, bitidx
;
4985 unsigned long flags
= 0;
4986 unsigned long value
= 1;
4988 zone
= page_zone(page
);
4989 pfn
= page_to_pfn(page
);
4990 bitmap
= get_pageblock_bitmap(zone
, pfn
);
4991 bitidx
= pfn_to_bitidx(zone
, pfn
);
4993 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
4994 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5001 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5002 * @page: The page within the block of interest
5003 * @start_bitidx: The first bit of interest
5004 * @end_bitidx: The last bit of interest
5005 * @flags: The flags to set
5007 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5008 int start_bitidx
, int end_bitidx
)
5011 unsigned long *bitmap
;
5012 unsigned long pfn
, bitidx
;
5013 unsigned long value
= 1;
5015 zone
= page_zone(page
);
5016 pfn
= page_to_pfn(page
);
5017 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5018 bitidx
= pfn_to_bitidx(zone
, pfn
);
5019 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5020 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5022 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5024 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5026 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5030 * This is designed as sub function...plz see page_isolation.c also.
5031 * set/clear page block's type to be ISOLATE.
5032 * page allocater never alloc memory from ISOLATE block.
5035 int set_migratetype_isolate(struct page
*page
)
5038 struct page
*curr_page
;
5039 unsigned long flags
, pfn
, iter
;
5040 unsigned long immobile
= 0;
5041 struct memory_isolate_notify arg
;
5046 zone
= page_zone(page
);
5047 zone_idx
= zone_idx(zone
);
5049 spin_lock_irqsave(&zone
->lock
, flags
);
5050 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
||
5051 zone_idx
== ZONE_MOVABLE
) {
5056 pfn
= page_to_pfn(page
);
5057 arg
.start_pfn
= pfn
;
5058 arg
.nr_pages
= pageblock_nr_pages
;
5059 arg
.pages_found
= 0;
5062 * It may be possible to isolate a pageblock even if the
5063 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5064 * notifier chain is used by balloon drivers to return the
5065 * number of pages in a range that are held by the balloon
5066 * driver to shrink memory. If all the pages are accounted for
5067 * by balloons, are free, or on the LRU, isolation can continue.
5068 * Later, for example, when memory hotplug notifier runs, these
5069 * pages reported as "can be isolated" should be isolated(freed)
5070 * by the balloon driver through the memory notifier chain.
5072 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5073 notifier_ret
= notifier_to_errno(notifier_ret
);
5074 if (notifier_ret
|| !arg
.pages_found
)
5077 for (iter
= pfn
; iter
< (pfn
+ pageblock_nr_pages
); iter
++) {
5078 if (!pfn_valid_within(pfn
))
5081 curr_page
= pfn_to_page(iter
);
5082 if (!page_count(curr_page
) || PageLRU(curr_page
))
5088 if (arg
.pages_found
== immobile
)
5093 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5094 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5097 spin_unlock_irqrestore(&zone
->lock
, flags
);
5103 void unset_migratetype_isolate(struct page
*page
)
5106 unsigned long flags
;
5107 zone
= page_zone(page
);
5108 spin_lock_irqsave(&zone
->lock
, flags
);
5109 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5111 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5112 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5114 spin_unlock_irqrestore(&zone
->lock
, flags
);
5117 #ifdef CONFIG_MEMORY_HOTREMOVE
5119 * All pages in the range must be isolated before calling this.
5122 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5128 unsigned long flags
;
5129 /* find the first valid pfn */
5130 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5135 zone
= page_zone(pfn_to_page(pfn
));
5136 spin_lock_irqsave(&zone
->lock
, flags
);
5138 while (pfn
< end_pfn
) {
5139 if (!pfn_valid(pfn
)) {
5143 page
= pfn_to_page(pfn
);
5144 BUG_ON(page_count(page
));
5145 BUG_ON(!PageBuddy(page
));
5146 order
= page_order(page
);
5147 #ifdef CONFIG_DEBUG_VM
5148 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5149 pfn
, 1 << order
, end_pfn
);
5151 list_del(&page
->lru
);
5152 rmv_page_order(page
);
5153 zone
->free_area
[order
].nr_free
--;
5154 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5156 for (i
= 0; i
< (1 << order
); i
++)
5157 SetPageReserved((page
+i
));
5158 pfn
+= (1 << order
);
5160 spin_unlock_irqrestore(&zone
->lock
, flags
);
5164 #ifdef CONFIG_MEMORY_FAILURE
5165 bool is_free_buddy_page(struct page
*page
)
5167 struct zone
*zone
= page_zone(page
);
5168 unsigned long pfn
= page_to_pfn(page
);
5169 unsigned long flags
;
5172 spin_lock_irqsave(&zone
->lock
, flags
);
5173 for (order
= 0; order
< MAX_ORDER
; order
++) {
5174 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5176 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5179 spin_unlock_irqrestore(&zone
->lock
, flags
);
5181 return order
< MAX_ORDER
;
5185 static struct trace_print_flags pageflag_names
[] = {
5186 {1UL << PG_locked
, "locked" },
5187 {1UL << PG_error
, "error" },
5188 {1UL << PG_referenced
, "referenced" },
5189 {1UL << PG_uptodate
, "uptodate" },
5190 {1UL << PG_dirty
, "dirty" },
5191 {1UL << PG_lru
, "lru" },
5192 {1UL << PG_active
, "active" },
5193 {1UL << PG_slab
, "slab" },
5194 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5195 {1UL << PG_arch_1
, "arch_1" },
5196 {1UL << PG_reserved
, "reserved" },
5197 {1UL << PG_private
, "private" },
5198 {1UL << PG_private_2
, "private_2" },
5199 {1UL << PG_writeback
, "writeback" },
5200 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5201 {1UL << PG_head
, "head" },
5202 {1UL << PG_tail
, "tail" },
5204 {1UL << PG_compound
, "compound" },
5206 {1UL << PG_swapcache
, "swapcache" },
5207 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5208 {1UL << PG_reclaim
, "reclaim" },
5209 {1UL << PG_buddy
, "buddy" },
5210 {1UL << PG_swapbacked
, "swapbacked" },
5211 {1UL << PG_unevictable
, "unevictable" },
5213 {1UL << PG_mlocked
, "mlocked" },
5215 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5216 {1UL << PG_uncached
, "uncached" },
5218 #ifdef CONFIG_MEMORY_FAILURE
5219 {1UL << PG_hwpoison
, "hwpoison" },
5224 static void dump_page_flags(unsigned long flags
)
5226 const char *delim
= "";
5230 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5232 /* remove zone id */
5233 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5235 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5237 mask
= pageflag_names
[i
].mask
;
5238 if ((flags
& mask
) != mask
)
5242 printk("%s%s", delim
, pageflag_names
[i
].name
);
5246 /* check for left over flags */
5248 printk("%s%#lx", delim
, flags
);
5253 void dump_page(struct page
*page
)
5256 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5257 page
, page_count(page
), page_mapcount(page
),
5258 page
->mapping
, page
->index
);
5259 dump_page_flags(page
->flags
);