4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
51 #include <asm/byteorder.h>
53 #include <asm/uaccess.h>
55 #include <asm/bitops.h>
57 static int __ide_end_request(ide_drive_t
*drive
, struct request
*rq
,
58 int uptodate
, int nr_sectors
)
62 BUG_ON(!blk_rq_started(rq
));
65 * if failfast is set on a request, override number of sectors and
66 * complete the whole request right now
68 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
69 nr_sectors
= rq
->hard_nr_sectors
;
71 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
75 * decide whether to reenable DMA -- 3 is a random magic for now,
76 * if we DMA timeout more than 3 times, just stay in PIO
78 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
80 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
83 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
84 add_disk_randomness(rq
->rq_disk
);
85 blkdev_dequeue_request(rq
);
86 HWGROUP(drive
)->rq
= NULL
;
87 end_that_request_last(rq
, uptodate
);
95 * ide_end_request - complete an IDE I/O
96 * @drive: IDE device for the I/O
98 * @nr_sectors: number of sectors completed
100 * This is our end_request wrapper function. We complete the I/O
101 * update random number input and dequeue the request, which if
102 * it was tagged may be out of order.
105 int ide_end_request (ide_drive_t
*drive
, int uptodate
, int nr_sectors
)
112 * room for locking improvements here, the calls below don't
113 * need the queue lock held at all
115 spin_lock_irqsave(&ide_lock
, flags
);
116 rq
= HWGROUP(drive
)->rq
;
119 nr_sectors
= rq
->hard_cur_sectors
;
121 ret
= __ide_end_request(drive
, rq
, uptodate
, nr_sectors
);
123 spin_unlock_irqrestore(&ide_lock
, flags
);
126 EXPORT_SYMBOL(ide_end_request
);
129 * Power Management state machine. This one is rather trivial for now,
130 * we should probably add more, like switching back to PIO on suspend
131 * to help some BIOSes, re-do the door locking on resume, etc...
135 ide_pm_flush_cache
= ide_pm_state_start_suspend
,
138 idedisk_pm_idle
= ide_pm_state_start_resume
,
142 static void ide_complete_power_step(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 error
)
144 struct request_pm_state
*pm
= rq
->data
;
146 if (drive
->media
!= ide_disk
)
149 switch (pm
->pm_step
) {
150 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) complete */
151 if (pm
->pm_state
== PM_EVENT_FREEZE
)
152 pm
->pm_step
= ide_pm_state_completed
;
154 pm
->pm_step
= idedisk_pm_standby
;
156 case idedisk_pm_standby
: /* Suspend step 2 (standby) complete */
157 pm
->pm_step
= ide_pm_state_completed
;
159 case idedisk_pm_idle
: /* Resume step 1 (idle) complete */
160 pm
->pm_step
= ide_pm_restore_dma
;
165 static ide_startstop_t
ide_start_power_step(ide_drive_t
*drive
, struct request
*rq
)
167 struct request_pm_state
*pm
= rq
->data
;
168 ide_task_t
*args
= rq
->special
;
170 memset(args
, 0, sizeof(*args
));
172 if (drive
->media
!= ide_disk
) {
173 /* skip idedisk_pm_idle for ATAPI devices */
174 if (pm
->pm_step
== idedisk_pm_idle
)
175 pm
->pm_step
= ide_pm_restore_dma
;
178 switch (pm
->pm_step
) {
179 case ide_pm_flush_cache
: /* Suspend step 1 (flush cache) */
180 if (drive
->media
!= ide_disk
)
182 /* Not supported? Switch to next step now. */
183 if (!drive
->wcache
|| !ide_id_has_flush_cache(drive
->id
)) {
184 ide_complete_power_step(drive
, rq
, 0, 0);
187 if (ide_id_has_flush_cache_ext(drive
->id
))
188 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE_EXT
;
190 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_FLUSH_CACHE
;
191 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
192 args
->handler
= &task_no_data_intr
;
193 return do_rw_taskfile(drive
, args
);
195 case idedisk_pm_standby
: /* Suspend step 2 (standby) */
196 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_STANDBYNOW1
;
197 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
198 args
->handler
= &task_no_data_intr
;
199 return do_rw_taskfile(drive
, args
);
201 case idedisk_pm_idle
: /* Resume step 1 (idle) */
202 args
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_IDLEIMMEDIATE
;
203 args
->command_type
= IDE_DRIVE_TASK_NO_DATA
;
204 args
->handler
= task_no_data_intr
;
205 return do_rw_taskfile(drive
, args
);
207 case ide_pm_restore_dma
: /* Resume step 2 (restore DMA) */
209 * Right now, all we do is call hwif->ide_dma_check(drive),
210 * we could be smarter and check for current xfer_speed
211 * in struct drive etc...
213 if ((drive
->id
->capability
& 1) == 0)
215 if (drive
->hwif
->ide_dma_check
== NULL
)
217 drive
->hwif
->ide_dma_check(drive
);
220 pm
->pm_step
= ide_pm_state_completed
;
225 * ide_end_dequeued_request - complete an IDE I/O
226 * @drive: IDE device for the I/O
228 * @nr_sectors: number of sectors completed
230 * Complete an I/O that is no longer on the request queue. This
231 * typically occurs when we pull the request and issue a REQUEST_SENSE.
232 * We must still finish the old request but we must not tamper with the
233 * queue in the meantime.
235 * NOTE: This path does not handle barrier, but barrier is not supported
239 int ide_end_dequeued_request(ide_drive_t
*drive
, struct request
*rq
,
240 int uptodate
, int nr_sectors
)
245 spin_lock_irqsave(&ide_lock
, flags
);
247 BUG_ON(!blk_rq_started(rq
));
250 * if failfast is set on a request, override number of sectors and
251 * complete the whole request right now
253 if (blk_noretry_request(rq
) && end_io_error(uptodate
))
254 nr_sectors
= rq
->hard_nr_sectors
;
256 if (!blk_fs_request(rq
) && end_io_error(uptodate
) && !rq
->errors
)
260 * decide whether to reenable DMA -- 3 is a random magic for now,
261 * if we DMA timeout more than 3 times, just stay in PIO
263 if (drive
->state
== DMA_PIO_RETRY
&& drive
->retry_pio
<= 3) {
265 HWGROUP(drive
)->hwif
->ide_dma_on(drive
);
268 if (!end_that_request_first(rq
, uptodate
, nr_sectors
)) {
269 add_disk_randomness(rq
->rq_disk
);
270 if (blk_rq_tagged(rq
))
271 blk_queue_end_tag(drive
->queue
, rq
);
272 end_that_request_last(rq
, uptodate
);
275 spin_unlock_irqrestore(&ide_lock
, flags
);
278 EXPORT_SYMBOL_GPL(ide_end_dequeued_request
);
282 * ide_complete_pm_request - end the current Power Management request
283 * @drive: target drive
286 * This function cleans up the current PM request and stops the queue
289 static void ide_complete_pm_request (ide_drive_t
*drive
, struct request
*rq
)
294 printk("%s: completing PM request, %s\n", drive
->name
,
295 blk_pm_suspend_request(rq
) ? "suspend" : "resume");
297 spin_lock_irqsave(&ide_lock
, flags
);
298 if (blk_pm_suspend_request(rq
)) {
299 blk_stop_queue(drive
->queue
);
302 blk_start_queue(drive
->queue
);
304 blkdev_dequeue_request(rq
);
305 HWGROUP(drive
)->rq
= NULL
;
306 end_that_request_last(rq
, 1);
307 spin_unlock_irqrestore(&ide_lock
, flags
);
311 * FIXME: probably move this somewhere else, name is bad too :)
313 u64
ide_get_error_location(ide_drive_t
*drive
, char *args
)
324 if (ide_id_has_flush_cache_ext(drive
->id
)) {
325 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
326 HWIF(drive
)->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
327 high
= ide_read_24(drive
);
329 u8 cur
= HWIF(drive
)->INB(IDE_SELECT_REG
);
332 low
= (hcyl
<< 16) | (lcyl
<< 8) | sect
;
334 low
= hcyl
* drive
->head
* drive
->sect
;
335 low
+= lcyl
* drive
->sect
;
340 sector
= ((u64
) high
<< 24) | low
;
343 EXPORT_SYMBOL(ide_get_error_location
);
346 * ide_end_drive_cmd - end an explicit drive command
351 * Clean up after success/failure of an explicit drive command.
352 * These get thrown onto the queue so they are synchronized with
353 * real I/O operations on the drive.
355 * In LBA48 mode we have to read the register set twice to get
356 * all the extra information out.
359 void ide_end_drive_cmd (ide_drive_t
*drive
, u8 stat
, u8 err
)
361 ide_hwif_t
*hwif
= HWIF(drive
);
365 spin_lock_irqsave(&ide_lock
, flags
);
366 rq
= HWGROUP(drive
)->rq
;
367 spin_unlock_irqrestore(&ide_lock
, flags
);
369 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
370 u8
*args
= (u8
*) rq
->buffer
;
372 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
377 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
379 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
380 u8
*args
= (u8
*) rq
->buffer
;
382 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
387 args
[2] = hwif
->INB(IDE_NSECTOR_REG
);
388 args
[3] = hwif
->INB(IDE_SECTOR_REG
);
389 args
[4] = hwif
->INB(IDE_LCYL_REG
);
390 args
[5] = hwif
->INB(IDE_HCYL_REG
);
391 args
[6] = hwif
->INB(IDE_SELECT_REG
);
393 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
394 ide_task_t
*args
= (ide_task_t
*) rq
->special
;
396 rq
->errors
= !OK_STAT(stat
,READY_STAT
,BAD_STAT
);
399 if (args
->tf_in_flags
.b
.data
) {
400 u16 data
= hwif
->INW(IDE_DATA_REG
);
401 args
->tfRegister
[IDE_DATA_OFFSET
] = (data
) & 0xFF;
402 args
->hobRegister
[IDE_DATA_OFFSET
] = (data
>> 8) & 0xFF;
404 args
->tfRegister
[IDE_ERROR_OFFSET
] = err
;
405 /* be sure we're looking at the low order bits */
406 hwif
->OUTB(drive
->ctl
& ~0x80, IDE_CONTROL_REG
);
407 args
->tfRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
408 args
->tfRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
409 args
->tfRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
410 args
->tfRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
411 args
->tfRegister
[IDE_SELECT_OFFSET
] = hwif
->INB(IDE_SELECT_REG
);
412 args
->tfRegister
[IDE_STATUS_OFFSET
] = stat
;
414 if (drive
->addressing
== 1) {
415 hwif
->OUTB(drive
->ctl
|0x80, IDE_CONTROL_REG
);
416 args
->hobRegister
[IDE_FEATURE_OFFSET
] = hwif
->INB(IDE_FEATURE_REG
);
417 args
->hobRegister
[IDE_NSECTOR_OFFSET
] = hwif
->INB(IDE_NSECTOR_REG
);
418 args
->hobRegister
[IDE_SECTOR_OFFSET
] = hwif
->INB(IDE_SECTOR_REG
);
419 args
->hobRegister
[IDE_LCYL_OFFSET
] = hwif
->INB(IDE_LCYL_REG
);
420 args
->hobRegister
[IDE_HCYL_OFFSET
] = hwif
->INB(IDE_HCYL_REG
);
423 } else if (blk_pm_request(rq
)) {
424 struct request_pm_state
*pm
= rq
->data
;
426 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
427 drive
->name
, rq
->pm
->pm_step
, stat
, err
);
429 ide_complete_power_step(drive
, rq
, stat
, err
);
430 if (pm
->pm_step
== ide_pm_state_completed
)
431 ide_complete_pm_request(drive
, rq
);
435 spin_lock_irqsave(&ide_lock
, flags
);
436 blkdev_dequeue_request(rq
);
437 HWGROUP(drive
)->rq
= NULL
;
439 end_that_request_last(rq
, !rq
->errors
);
440 spin_unlock_irqrestore(&ide_lock
, flags
);
443 EXPORT_SYMBOL(ide_end_drive_cmd
);
446 * try_to_flush_leftover_data - flush junk
447 * @drive: drive to flush
449 * try_to_flush_leftover_data() is invoked in response to a drive
450 * unexpectedly having its DRQ_STAT bit set. As an alternative to
451 * resetting the drive, this routine tries to clear the condition
452 * by read a sector's worth of data from the drive. Of course,
453 * this may not help if the drive is *waiting* for data from *us*.
455 static void try_to_flush_leftover_data (ide_drive_t
*drive
)
457 int i
= (drive
->mult_count
? drive
->mult_count
: 1) * SECTOR_WORDS
;
459 if (drive
->media
!= ide_disk
)
463 u32 wcount
= (i
> 16) ? 16 : i
;
466 HWIF(drive
)->ata_input_data(drive
, buffer
, wcount
);
470 static void ide_kill_rq(ide_drive_t
*drive
, struct request
*rq
)
475 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
476 drv
->end_request(drive
, 0, 0);
478 ide_end_request(drive
, 0, 0);
481 static ide_startstop_t
ide_ata_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
483 ide_hwif_t
*hwif
= drive
->hwif
;
485 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
486 /* other bits are useless when BUSY */
487 rq
->errors
|= ERROR_RESET
;
488 } else if (stat
& ERR_STAT
) {
489 /* err has different meaning on cdrom and tape */
490 if (err
== ABRT_ERR
) {
491 if (drive
->select
.b
.lba
&&
492 /* some newer drives don't support WIN_SPECIFY */
493 hwif
->INB(IDE_COMMAND_REG
) == WIN_SPECIFY
)
495 } else if ((err
& BAD_CRC
) == BAD_CRC
) {
496 /* UDMA crc error, just retry the operation */
498 } else if (err
& (BBD_ERR
| ECC_ERR
)) {
499 /* retries won't help these */
500 rq
->errors
= ERROR_MAX
;
501 } else if (err
& TRK0_ERR
) {
502 /* help it find track zero */
503 rq
->errors
|= ERROR_RECAL
;
507 if ((stat
& DRQ_STAT
) && rq_data_dir(rq
) == READ
&& hwif
->err_stops_fifo
== 0)
508 try_to_flush_leftover_data(drive
);
510 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
512 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
514 if (rq
->errors
>= ERROR_MAX
|| blk_noretry_request(rq
))
515 ide_kill_rq(drive
, rq
);
517 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
519 return ide_do_reset(drive
);
521 if ((rq
->errors
& ERROR_RECAL
) == ERROR_RECAL
)
522 drive
->special
.b
.recalibrate
= 1;
528 static ide_startstop_t
ide_atapi_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
530 ide_hwif_t
*hwif
= drive
->hwif
;
532 if (stat
& BUSY_STAT
|| ((stat
& WRERR_STAT
) && !drive
->nowerr
)) {
533 /* other bits are useless when BUSY */
534 rq
->errors
|= ERROR_RESET
;
536 /* add decoding error stuff */
539 if (hwif
->INB(IDE_STATUS_REG
) & (BUSY_STAT
|DRQ_STAT
))
541 hwif
->OUTB(WIN_IDLEIMMEDIATE
, IDE_COMMAND_REG
);
543 if (rq
->errors
>= ERROR_MAX
) {
544 ide_kill_rq(drive
, rq
);
546 if ((rq
->errors
& ERROR_RESET
) == ERROR_RESET
) {
548 return ide_do_reset(drive
);
557 __ide_error(ide_drive_t
*drive
, struct request
*rq
, u8 stat
, u8 err
)
559 if (drive
->media
== ide_disk
)
560 return ide_ata_error(drive
, rq
, stat
, err
);
561 return ide_atapi_error(drive
, rq
, stat
, err
);
564 EXPORT_SYMBOL_GPL(__ide_error
);
567 * ide_error - handle an error on the IDE
568 * @drive: drive the error occurred on
569 * @msg: message to report
572 * ide_error() takes action based on the error returned by the drive.
573 * For normal I/O that may well include retries. We deal with
574 * both new-style (taskfile) and old style command handling here.
575 * In the case of taskfile command handling there is work left to
579 ide_startstop_t
ide_error (ide_drive_t
*drive
, const char *msg
, u8 stat
)
584 err
= ide_dump_status(drive
, msg
, stat
);
586 if ((rq
= HWGROUP(drive
)->rq
) == NULL
)
589 /* retry only "normal" I/O: */
590 if (!blk_fs_request(rq
)) {
592 ide_end_drive_cmd(drive
, stat
, err
);
599 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
600 return drv
->error(drive
, rq
, stat
, err
);
602 return __ide_error(drive
, rq
, stat
, err
);
605 EXPORT_SYMBOL_GPL(ide_error
);
607 ide_startstop_t
__ide_abort(ide_drive_t
*drive
, struct request
*rq
)
609 if (drive
->media
!= ide_disk
)
610 rq
->errors
|= ERROR_RESET
;
612 ide_kill_rq(drive
, rq
);
617 EXPORT_SYMBOL_GPL(__ide_abort
);
620 * ide_abort - abort pending IDE operations
621 * @drive: drive the error occurred on
622 * @msg: message to report
624 * ide_abort kills and cleans up when we are about to do a
625 * host initiated reset on active commands. Longer term we
626 * want handlers to have sensible abort handling themselves
628 * This differs fundamentally from ide_error because in
629 * this case the command is doing just fine when we
633 ide_startstop_t
ide_abort(ide_drive_t
*drive
, const char *msg
)
637 if (drive
== NULL
|| (rq
= HWGROUP(drive
)->rq
) == NULL
)
640 /* retry only "normal" I/O: */
641 if (!blk_fs_request(rq
)) {
643 ide_end_drive_cmd(drive
, BUSY_STAT
, 0);
650 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
651 return drv
->abort(drive
, rq
);
653 return __ide_abort(drive
, rq
);
657 * ide_cmd - issue a simple drive command
658 * @drive: drive the command is for
660 * @nsect: sector byte
661 * @handler: handler for the command completion
663 * Issue a simple drive command with interrupts.
664 * The drive must be selected beforehand.
667 static void ide_cmd (ide_drive_t
*drive
, u8 cmd
, u8 nsect
,
668 ide_handler_t
*handler
)
670 ide_hwif_t
*hwif
= HWIF(drive
);
672 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
); /* clear nIEN */
673 SELECT_MASK(drive
,0);
674 hwif
->OUTB(nsect
,IDE_NSECTOR_REG
);
675 ide_execute_command(drive
, cmd
, handler
, WAIT_CMD
, NULL
);
679 * drive_cmd_intr - drive command completion interrupt
680 * @drive: drive the completion interrupt occurred on
682 * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
683 * We do any necessary data reading and then wait for the drive to
684 * go non busy. At that point we may read the error data and complete
688 static ide_startstop_t
drive_cmd_intr (ide_drive_t
*drive
)
690 struct request
*rq
= HWGROUP(drive
)->rq
;
691 ide_hwif_t
*hwif
= HWIF(drive
);
692 u8
*args
= (u8
*) rq
->buffer
;
693 u8 stat
= hwif
->INB(IDE_STATUS_REG
);
696 local_irq_enable_in_hardirq();
697 if ((stat
& DRQ_STAT
) && args
&& args
[3]) {
698 u8 io_32bit
= drive
->io_32bit
;
700 hwif
->ata_input_data(drive
, &args
[4], args
[3] * SECTOR_WORDS
);
701 drive
->io_32bit
= io_32bit
;
702 while (((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) && retries
--)
706 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
))
707 return ide_error(drive
, "drive_cmd", stat
);
708 /* calls ide_end_drive_cmd */
709 ide_end_drive_cmd(drive
, stat
, hwif
->INB(IDE_ERROR_REG
));
713 static void ide_init_specify_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
715 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
716 task
->tfRegister
[IDE_SECTOR_OFFSET
] = drive
->sect
;
717 task
->tfRegister
[IDE_LCYL_OFFSET
] = drive
->cyl
;
718 task
->tfRegister
[IDE_HCYL_OFFSET
] = drive
->cyl
>>8;
719 task
->tfRegister
[IDE_SELECT_OFFSET
] = ((drive
->head
-1)|drive
->select
.all
)&0xBF;
720 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SPECIFY
;
722 task
->handler
= &set_geometry_intr
;
725 static void ide_init_restore_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
727 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->sect
;
728 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_RESTORE
;
730 task
->handler
= &recal_intr
;
733 static void ide_init_setmult_cmd(ide_drive_t
*drive
, ide_task_t
*task
)
735 task
->tfRegister
[IDE_NSECTOR_OFFSET
] = drive
->mult_req
;
736 task
->tfRegister
[IDE_COMMAND_OFFSET
] = WIN_SETMULT
;
738 task
->handler
= &set_multmode_intr
;
741 static ide_startstop_t
ide_disk_special(ide_drive_t
*drive
)
743 special_t
*s
= &drive
->special
;
746 memset(&args
, 0, sizeof(ide_task_t
));
747 args
.command_type
= IDE_DRIVE_TASK_NO_DATA
;
749 if (s
->b
.set_geometry
) {
750 s
->b
.set_geometry
= 0;
751 ide_init_specify_cmd(drive
, &args
);
752 } else if (s
->b
.recalibrate
) {
753 s
->b
.recalibrate
= 0;
754 ide_init_restore_cmd(drive
, &args
);
755 } else if (s
->b
.set_multmode
) {
756 s
->b
.set_multmode
= 0;
757 if (drive
->mult_req
> drive
->id
->max_multsect
)
758 drive
->mult_req
= drive
->id
->max_multsect
;
759 ide_init_setmult_cmd(drive
, &args
);
761 int special
= s
->all
;
763 printk(KERN_ERR
"%s: bad special flag: 0x%02x\n", drive
->name
, special
);
767 do_rw_taskfile(drive
, &args
);
773 * do_special - issue some special commands
774 * @drive: drive the command is for
776 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
777 * commands to a drive. It used to do much more, but has been scaled
781 static ide_startstop_t
do_special (ide_drive_t
*drive
)
783 special_t
*s
= &drive
->special
;
786 printk("%s: do_special: 0x%02x\n", drive
->name
, s
->all
);
790 if (HWIF(drive
)->tuneproc
!= NULL
)
791 HWIF(drive
)->tuneproc(drive
, drive
->tune_req
);
794 if (drive
->media
== ide_disk
)
795 return ide_disk_special(drive
);
803 void ide_map_sg(ide_drive_t
*drive
, struct request
*rq
)
805 ide_hwif_t
*hwif
= drive
->hwif
;
806 struct scatterlist
*sg
= hwif
->sg_table
;
808 if (hwif
->sg_mapped
) /* needed by ide-scsi */
811 if (rq
->cmd_type
!= REQ_TYPE_ATA_TASKFILE
) {
812 hwif
->sg_nents
= blk_rq_map_sg(drive
->queue
, rq
, sg
);
814 sg_init_one(sg
, rq
->buffer
, rq
->nr_sectors
* SECTOR_SIZE
);
819 EXPORT_SYMBOL_GPL(ide_map_sg
);
821 void ide_init_sg_cmd(ide_drive_t
*drive
, struct request
*rq
)
823 ide_hwif_t
*hwif
= drive
->hwif
;
825 hwif
->nsect
= hwif
->nleft
= rq
->nr_sectors
;
826 hwif
->cursg
= hwif
->cursg_ofs
= 0;
829 EXPORT_SYMBOL_GPL(ide_init_sg_cmd
);
832 * execute_drive_command - issue special drive command
833 * @drive: the drive to issue the command on
834 * @rq: the request structure holding the command
836 * execute_drive_cmd() issues a special drive command, usually
837 * initiated by ioctl() from the external hdparm program. The
838 * command can be a drive command, drive task or taskfile
839 * operation. Weirdly you can call it with NULL to wait for
840 * all commands to finish. Don't do this as that is due to change
843 static ide_startstop_t
execute_drive_cmd (ide_drive_t
*drive
,
846 ide_hwif_t
*hwif
= HWIF(drive
);
847 if (rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
) {
848 ide_task_t
*args
= rq
->special
;
853 hwif
->data_phase
= args
->data_phase
;
855 switch (hwif
->data_phase
) {
856 case TASKFILE_MULTI_OUT
:
858 case TASKFILE_MULTI_IN
:
860 ide_init_sg_cmd(drive
, rq
);
861 ide_map_sg(drive
, rq
);
866 if (args
->tf_out_flags
.all
!= 0)
867 return flagged_taskfile(drive
, args
);
868 return do_rw_taskfile(drive
, args
);
869 } else if (rq
->cmd_type
== REQ_TYPE_ATA_TASK
) {
870 u8
*args
= rq
->buffer
;
876 printk("%s: DRIVE_TASK_CMD ", drive
->name
);
877 printk("cmd=0x%02x ", args
[0]);
878 printk("fr=0x%02x ", args
[1]);
879 printk("ns=0x%02x ", args
[2]);
880 printk("sc=0x%02x ", args
[3]);
881 printk("lcyl=0x%02x ", args
[4]);
882 printk("hcyl=0x%02x ", args
[5]);
883 printk("sel=0x%02x\n", args
[6]);
885 hwif
->OUTB(args
[1], IDE_FEATURE_REG
);
886 hwif
->OUTB(args
[3], IDE_SECTOR_REG
);
887 hwif
->OUTB(args
[4], IDE_LCYL_REG
);
888 hwif
->OUTB(args
[5], IDE_HCYL_REG
);
889 sel
= (args
[6] & ~0x10);
890 if (drive
->select
.b
.unit
)
892 hwif
->OUTB(sel
, IDE_SELECT_REG
);
893 ide_cmd(drive
, args
[0], args
[2], &drive_cmd_intr
);
895 } else if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
) {
896 u8
*args
= rq
->buffer
;
901 printk("%s: DRIVE_CMD ", drive
->name
);
902 printk("cmd=0x%02x ", args
[0]);
903 printk("sc=0x%02x ", args
[1]);
904 printk("fr=0x%02x ", args
[2]);
905 printk("xx=0x%02x\n", args
[3]);
907 if (args
[0] == WIN_SMART
) {
908 hwif
->OUTB(0x4f, IDE_LCYL_REG
);
909 hwif
->OUTB(0xc2, IDE_HCYL_REG
);
910 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
911 hwif
->OUTB(args
[1],IDE_SECTOR_REG
);
912 ide_cmd(drive
, args
[0], args
[3], &drive_cmd_intr
);
915 hwif
->OUTB(args
[2],IDE_FEATURE_REG
);
916 ide_cmd(drive
, args
[0], args
[1], &drive_cmd_intr
);
922 * NULL is actually a valid way of waiting for
923 * all current requests to be flushed from the queue.
926 printk("%s: DRIVE_CMD (null)\n", drive
->name
);
928 ide_end_drive_cmd(drive
,
929 hwif
->INB(IDE_STATUS_REG
),
930 hwif
->INB(IDE_ERROR_REG
));
934 static void ide_check_pm_state(ide_drive_t
*drive
, struct request
*rq
)
936 struct request_pm_state
*pm
= rq
->data
;
938 if (blk_pm_suspend_request(rq
) &&
939 pm
->pm_step
== ide_pm_state_start_suspend
)
940 /* Mark drive blocked when starting the suspend sequence. */
942 else if (blk_pm_resume_request(rq
) &&
943 pm
->pm_step
== ide_pm_state_start_resume
) {
945 * The first thing we do on wakeup is to wait for BSY bit to
946 * go away (with a looong timeout) as a drive on this hwif may
947 * just be POSTing itself.
948 * We do that before even selecting as the "other" device on
949 * the bus may be broken enough to walk on our toes at this
954 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive
->name
);
956 rc
= ide_wait_not_busy(HWIF(drive
), 35000);
958 printk(KERN_WARNING
"%s: bus not ready on wakeup\n", drive
->name
);
960 HWIF(drive
)->OUTB(8, HWIF(drive
)->io_ports
[IDE_CONTROL_OFFSET
]);
961 rc
= ide_wait_not_busy(HWIF(drive
), 100000);
963 printk(KERN_WARNING
"%s: drive not ready on wakeup\n", drive
->name
);
968 * start_request - start of I/O and command issuing for IDE
970 * start_request() initiates handling of a new I/O request. It
971 * accepts commands and I/O (read/write) requests. It also does
972 * the final remapping for weird stuff like EZDrive. Once
973 * device mapper can work sector level the EZDrive stuff can go away
975 * FIXME: this function needs a rename
978 static ide_startstop_t
start_request (ide_drive_t
*drive
, struct request
*rq
)
980 ide_startstop_t startstop
;
983 BUG_ON(!blk_rq_started(rq
));
986 printk("%s: start_request: current=0x%08lx\n",
987 HWIF(drive
)->name
, (unsigned long) rq
);
990 /* bail early if we've exceeded max_failures */
991 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
996 if (blk_fs_request(rq
) &&
997 (drive
->media
== ide_disk
|| drive
->media
== ide_floppy
)) {
998 block
+= drive
->sect0
;
1000 /* Yecch - this will shift the entire interval,
1001 possibly killing some innocent following sector */
1002 if (block
== 0 && drive
->remap_0_to_1
== 1)
1003 block
= 1; /* redirect MBR access to EZ-Drive partn table */
1005 if (blk_pm_request(rq
))
1006 ide_check_pm_state(drive
, rq
);
1008 SELECT_DRIVE(drive
);
1009 if (ide_wait_stat(&startstop
, drive
, drive
->ready_stat
, BUSY_STAT
|DRQ_STAT
, WAIT_READY
)) {
1010 printk(KERN_ERR
"%s: drive not ready for command\n", drive
->name
);
1013 if (!drive
->special
.all
) {
1016 if (rq
->cmd_type
== REQ_TYPE_ATA_CMD
||
1017 rq
->cmd_type
== REQ_TYPE_ATA_TASK
||
1018 rq
->cmd_type
== REQ_TYPE_ATA_TASKFILE
)
1019 return execute_drive_cmd(drive
, rq
);
1020 else if (blk_pm_request(rq
)) {
1021 struct request_pm_state
*pm
= rq
->data
;
1023 printk("%s: start_power_step(step: %d)\n",
1024 drive
->name
, rq
->pm
->pm_step
);
1026 startstop
= ide_start_power_step(drive
, rq
);
1027 if (startstop
== ide_stopped
&&
1028 pm
->pm_step
== ide_pm_state_completed
)
1029 ide_complete_pm_request(drive
, rq
);
1033 drv
= *(ide_driver_t
**)rq
->rq_disk
->private_data
;
1034 return drv
->do_request(drive
, rq
, block
);
1036 return do_special(drive
);
1038 ide_kill_rq(drive
, rq
);
1043 * ide_stall_queue - pause an IDE device
1044 * @drive: drive to stall
1045 * @timeout: time to stall for (jiffies)
1047 * ide_stall_queue() can be used by a drive to give excess bandwidth back
1048 * to the hwgroup by sleeping for timeout jiffies.
1051 void ide_stall_queue (ide_drive_t
*drive
, unsigned long timeout
)
1053 if (timeout
> WAIT_WORSTCASE
)
1054 timeout
= WAIT_WORSTCASE
;
1055 drive
->sleep
= timeout
+ jiffies
;
1056 drive
->sleeping
= 1;
1059 EXPORT_SYMBOL(ide_stall_queue
);
1061 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
1064 * choose_drive - select a drive to service
1065 * @hwgroup: hardware group to select on
1067 * choose_drive() selects the next drive which will be serviced.
1068 * This is necessary because the IDE layer can't issue commands
1069 * to both drives on the same cable, unlike SCSI.
1072 static inline ide_drive_t
*choose_drive (ide_hwgroup_t
*hwgroup
)
1074 ide_drive_t
*drive
, *best
;
1078 drive
= hwgroup
->drive
;
1081 * drive is doing pre-flush, ordered write, post-flush sequence. even
1082 * though that is 3 requests, it must be seen as a single transaction.
1083 * we must not preempt this drive until that is complete
1085 if (blk_queue_flushing(drive
->queue
)) {
1087 * small race where queue could get replugged during
1088 * the 3-request flush cycle, just yank the plug since
1089 * we want it to finish asap
1091 blk_remove_plug(drive
->queue
);
1096 if ((!drive
->sleeping
|| time_after_eq(jiffies
, drive
->sleep
))
1097 && !elv_queue_empty(drive
->queue
)) {
1099 || (drive
->sleeping
&& (!best
->sleeping
|| time_before(drive
->sleep
, best
->sleep
)))
1100 || (!best
->sleeping
&& time_before(WAKEUP(drive
), WAKEUP(best
))))
1102 if (!blk_queue_plugged(drive
->queue
))
1106 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1107 if (best
&& best
->nice1
&& !best
->sleeping
&& best
!= hwgroup
->drive
&& best
->service_time
> WAIT_MIN_SLEEP
) {
1108 long t
= (signed long)(WAKEUP(best
) - jiffies
);
1109 if (t
>= WAIT_MIN_SLEEP
) {
1111 * We *may* have some time to spare, but first let's see if
1112 * someone can potentially benefit from our nice mood today..
1116 if (!drive
->sleeping
1117 && time_before(jiffies
- best
->service_time
, WAKEUP(drive
))
1118 && time_before(WAKEUP(drive
), jiffies
+ t
))
1120 ide_stall_queue(best
, min_t(long, t
, 10 * WAIT_MIN_SLEEP
));
1123 } while ((drive
= drive
->next
) != best
);
1130 * Issue a new request to a drive from hwgroup
1131 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1133 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1134 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1135 * may have both interfaces in a single hwgroup to "serialize" access.
1136 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1137 * together into one hwgroup for serialized access.
1139 * Note also that several hwgroups can end up sharing a single IRQ,
1140 * possibly along with many other devices. This is especially common in
1141 * PCI-based systems with off-board IDE controller cards.
1143 * The IDE driver uses the single global ide_lock spinlock to protect
1144 * access to the request queues, and to protect the hwgroup->busy flag.
1146 * The first thread into the driver for a particular hwgroup sets the
1147 * hwgroup->busy flag to indicate that this hwgroup is now active,
1148 * and then initiates processing of the top request from the request queue.
1150 * Other threads attempting entry notice the busy setting, and will simply
1151 * queue their new requests and exit immediately. Note that hwgroup->busy
1152 * remains set even when the driver is merely awaiting the next interrupt.
1153 * Thus, the meaning is "this hwgroup is busy processing a request".
1155 * When processing of a request completes, the completing thread or IRQ-handler
1156 * will start the next request from the queue. If no more work remains,
1157 * the driver will clear the hwgroup->busy flag and exit.
1159 * The ide_lock (spinlock) is used to protect all access to the
1160 * hwgroup->busy flag, but is otherwise not needed for most processing in
1161 * the driver. This makes the driver much more friendlier to shared IRQs
1162 * than previous designs, while remaining 100% (?) SMP safe and capable.
1164 static void ide_do_request (ide_hwgroup_t
*hwgroup
, int masked_irq
)
1169 ide_startstop_t startstop
;
1172 /* for atari only: POSSIBLY BROKEN HERE(?) */
1173 ide_get_lock(ide_intr
, hwgroup
);
1175 /* caller must own ide_lock */
1176 BUG_ON(!irqs_disabled());
1178 while (!hwgroup
->busy
) {
1180 drive
= choose_drive(hwgroup
);
1181 if (drive
== NULL
) {
1183 unsigned long sleep
= 0; /* shut up, gcc */
1185 drive
= hwgroup
->drive
;
1187 if (drive
->sleeping
&& (!sleeping
|| time_before(drive
->sleep
, sleep
))) {
1189 sleep
= drive
->sleep
;
1191 } while ((drive
= drive
->next
) != hwgroup
->drive
);
1194 * Take a short snooze, and then wake up this hwgroup again.
1195 * This gives other hwgroups on the same a chance to
1196 * play fairly with us, just in case there are big differences
1197 * in relative throughputs.. don't want to hog the cpu too much.
1199 if (time_before(sleep
, jiffies
+ WAIT_MIN_SLEEP
))
1200 sleep
= jiffies
+ WAIT_MIN_SLEEP
;
1202 if (timer_pending(&hwgroup
->timer
))
1203 printk(KERN_CRIT
"ide_set_handler: timer already active\n");
1205 /* so that ide_timer_expiry knows what to do */
1206 hwgroup
->sleeping
= 1;
1207 mod_timer(&hwgroup
->timer
, sleep
);
1208 /* we purposely leave hwgroup->busy==1
1211 /* Ugly, but how can we sleep for the lock
1212 * otherwise? perhaps from tq_disk?
1215 /* for atari only */
1220 /* no more work for this hwgroup (for now) */
1225 if (hwgroup
->hwif
->sharing_irq
&&
1226 hwif
!= hwgroup
->hwif
&&
1227 hwif
->io_ports
[IDE_CONTROL_OFFSET
]) {
1228 /* set nIEN for previous hwif */
1229 SELECT_INTERRUPT(drive
);
1231 hwgroup
->hwif
= hwif
;
1232 hwgroup
->drive
= drive
;
1233 drive
->sleeping
= 0;
1234 drive
->service_start
= jiffies
;
1236 if (blk_queue_plugged(drive
->queue
)) {
1237 printk(KERN_ERR
"ide: huh? queue was plugged!\n");
1242 * we know that the queue isn't empty, but this can happen
1243 * if the q->prep_rq_fn() decides to kill a request
1245 rq
= elv_next_request(drive
->queue
);
1252 * Sanity: don't accept a request that isn't a PM request
1253 * if we are currently power managed. This is very important as
1254 * blk_stop_queue() doesn't prevent the elv_next_request()
1255 * above to return us whatever is in the queue. Since we call
1256 * ide_do_request() ourselves, we end up taking requests while
1257 * the queue is blocked...
1259 * We let requests forced at head of queue with ide-preempt
1260 * though. I hope that doesn't happen too much, hopefully not
1261 * unless the subdriver triggers such a thing in its own PM
1264 * We count how many times we loop here to make sure we service
1265 * all drives in the hwgroup without looping for ever
1267 if (drive
->blocked
&& !blk_pm_request(rq
) && !(rq
->cmd_flags
& REQ_PREEMPT
)) {
1268 drive
= drive
->next
? drive
->next
: hwgroup
->drive
;
1269 if (loops
++ < 4 && !blk_queue_plugged(drive
->queue
))
1271 /* We clear busy, there should be no pending ATA command at this point. */
1279 * Some systems have trouble with IDE IRQs arriving while
1280 * the driver is still setting things up. So, here we disable
1281 * the IRQ used by this interface while the request is being started.
1282 * This may look bad at first, but pretty much the same thing
1283 * happens anyway when any interrupt comes in, IDE or otherwise
1284 * -- the kernel masks the IRQ while it is being handled.
1286 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1287 disable_irq_nosync(hwif
->irq
);
1288 spin_unlock(&ide_lock
);
1289 local_irq_enable_in_hardirq();
1290 /* allow other IRQs while we start this request */
1291 startstop
= start_request(drive
, rq
);
1292 spin_lock_irq(&ide_lock
);
1293 if (masked_irq
!= IDE_NO_IRQ
&& hwif
->irq
!= masked_irq
)
1294 enable_irq(hwif
->irq
);
1295 if (startstop
== ide_stopped
)
1301 * Passes the stuff to ide_do_request
1303 void do_ide_request(request_queue_t
*q
)
1305 ide_drive_t
*drive
= q
->queuedata
;
1307 ide_do_request(HWGROUP(drive
), IDE_NO_IRQ
);
1311 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1312 * retry the current request in pio mode instead of risking tossing it
1315 static ide_startstop_t
ide_dma_timeout_retry(ide_drive_t
*drive
, int error
)
1317 ide_hwif_t
*hwif
= HWIF(drive
);
1319 ide_startstop_t ret
= ide_stopped
;
1322 * end current dma transaction
1326 printk(KERN_WARNING
"%s: DMA timeout error\n", drive
->name
);
1327 (void)HWIF(drive
)->ide_dma_end(drive
);
1328 ret
= ide_error(drive
, "dma timeout error",
1329 hwif
->INB(IDE_STATUS_REG
));
1331 printk(KERN_WARNING
"%s: DMA timeout retry\n", drive
->name
);
1332 (void) hwif
->ide_dma_timeout(drive
);
1336 * disable dma for now, but remember that we did so because of
1337 * a timeout -- we'll reenable after we finish this next request
1338 * (or rather the first chunk of it) in pio.
1341 drive
->state
= DMA_PIO_RETRY
;
1342 (void) hwif
->ide_dma_off_quietly(drive
);
1345 * un-busy drive etc (hwgroup->busy is cleared on return) and
1346 * make sure request is sane
1348 rq
= HWGROUP(drive
)->rq
;
1349 HWGROUP(drive
)->rq
= NULL
;
1356 rq
->sector
= rq
->bio
->bi_sector
;
1357 rq
->current_nr_sectors
= bio_iovec(rq
->bio
)->bv_len
>> 9;
1358 rq
->hard_cur_sectors
= rq
->current_nr_sectors
;
1359 rq
->buffer
= bio_data(rq
->bio
);
1365 * ide_timer_expiry - handle lack of an IDE interrupt
1366 * @data: timer callback magic (hwgroup)
1368 * An IDE command has timed out before the expected drive return
1369 * occurred. At this point we attempt to clean up the current
1370 * mess. If the current handler includes an expiry handler then
1371 * we invoke the expiry handler, and providing it is happy the
1372 * work is done. If that fails we apply generic recovery rules
1373 * invoking the handler and checking the drive DMA status. We
1374 * have an excessively incestuous relationship with the DMA
1375 * logic that wants cleaning up.
1378 void ide_timer_expiry (unsigned long data
)
1380 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*) data
;
1381 ide_handler_t
*handler
;
1382 ide_expiry_t
*expiry
;
1383 unsigned long flags
;
1384 unsigned long wait
= -1;
1386 spin_lock_irqsave(&ide_lock
, flags
);
1388 if ((handler
= hwgroup
->handler
) == NULL
) {
1390 * Either a marginal timeout occurred
1391 * (got the interrupt just as timer expired),
1392 * or we were "sleeping" to give other devices a chance.
1393 * Either way, we don't really want to complain about anything.
1395 if (hwgroup
->sleeping
) {
1396 hwgroup
->sleeping
= 0;
1400 ide_drive_t
*drive
= hwgroup
->drive
;
1402 printk(KERN_ERR
"ide_timer_expiry: hwgroup->drive was NULL\n");
1403 hwgroup
->handler
= NULL
;
1406 ide_startstop_t startstop
= ide_stopped
;
1407 if (!hwgroup
->busy
) {
1408 hwgroup
->busy
= 1; /* paranoia */
1409 printk(KERN_ERR
"%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive
->name
);
1411 if ((expiry
= hwgroup
->expiry
) != NULL
) {
1413 if ((wait
= expiry(drive
)) > 0) {
1415 hwgroup
->timer
.expires
= jiffies
+ wait
;
1416 add_timer(&hwgroup
->timer
);
1417 spin_unlock_irqrestore(&ide_lock
, flags
);
1421 hwgroup
->handler
= NULL
;
1423 * We need to simulate a real interrupt when invoking
1424 * the handler() function, which means we need to
1425 * globally mask the specific IRQ:
1427 spin_unlock(&ide_lock
);
1429 #if DISABLE_IRQ_NOSYNC
1430 disable_irq_nosync(hwif
->irq
);
1432 /* disable_irq_nosync ?? */
1433 disable_irq(hwif
->irq
);
1434 #endif /* DISABLE_IRQ_NOSYNC */
1436 * as if we were handling an interrupt */
1437 local_irq_disable();
1438 if (hwgroup
->polling
) {
1439 startstop
= handler(drive
);
1440 } else if (drive_is_ready(drive
)) {
1441 if (drive
->waiting_for_dma
)
1442 (void) hwgroup
->hwif
->ide_dma_lostirq(drive
);
1443 (void)ide_ack_intr(hwif
);
1444 printk(KERN_WARNING
"%s: lost interrupt\n", drive
->name
);
1445 startstop
= handler(drive
);
1447 if (drive
->waiting_for_dma
) {
1448 startstop
= ide_dma_timeout_retry(drive
, wait
);
1451 ide_error(drive
, "irq timeout", hwif
->INB(IDE_STATUS_REG
));
1453 drive
->service_time
= jiffies
- drive
->service_start
;
1454 spin_lock_irq(&ide_lock
);
1455 enable_irq(hwif
->irq
);
1456 if (startstop
== ide_stopped
)
1460 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1461 spin_unlock_irqrestore(&ide_lock
, flags
);
1465 * unexpected_intr - handle an unexpected IDE interrupt
1466 * @irq: interrupt line
1467 * @hwgroup: hwgroup being processed
1469 * There's nothing really useful we can do with an unexpected interrupt,
1470 * other than reading the status register (to clear it), and logging it.
1471 * There should be no way that an irq can happen before we're ready for it,
1472 * so we needn't worry much about losing an "important" interrupt here.
1474 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1475 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1476 * looks "good", we just ignore the interrupt completely.
1478 * This routine assumes __cli() is in effect when called.
1480 * If an unexpected interrupt happens on irq15 while we are handling irq14
1481 * and if the two interfaces are "serialized" (CMD640), then it looks like
1482 * we could screw up by interfering with a new request being set up for
1485 * In reality, this is a non-issue. The new command is not sent unless
1486 * the drive is ready to accept one, in which case we know the drive is
1487 * not trying to interrupt us. And ide_set_handler() is always invoked
1488 * before completing the issuance of any new drive command, so we will not
1489 * be accidentally invoked as a result of any valid command completion
1492 * Note that we must walk the entire hwgroup here. We know which hwif
1493 * is doing the current command, but we don't know which hwif burped
1497 static void unexpected_intr (int irq
, ide_hwgroup_t
*hwgroup
)
1500 ide_hwif_t
*hwif
= hwgroup
->hwif
;
1503 * handle the unexpected interrupt
1506 if (hwif
->irq
== irq
) {
1507 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1508 if (!OK_STAT(stat
, READY_STAT
, BAD_STAT
)) {
1509 /* Try to not flood the console with msgs */
1510 static unsigned long last_msgtime
, count
;
1512 if (time_after(jiffies
, last_msgtime
+ HZ
)) {
1513 last_msgtime
= jiffies
;
1514 printk(KERN_ERR
"%s%s: unexpected interrupt, "
1515 "status=0x%02x, count=%ld\n",
1517 (hwif
->next
==hwgroup
->hwif
) ? "" : "(?)", stat
, count
);
1521 } while ((hwif
= hwif
->next
) != hwgroup
->hwif
);
1525 * ide_intr - default IDE interrupt handler
1526 * @irq: interrupt number
1527 * @dev_id: hwif group
1528 * @regs: unused weirdness from the kernel irq layer
1530 * This is the default IRQ handler for the IDE layer. You should
1531 * not need to override it. If you do be aware it is subtle in
1534 * hwgroup->hwif is the interface in the group currently performing
1535 * a command. hwgroup->drive is the drive and hwgroup->handler is
1536 * the IRQ handler to call. As we issue a command the handlers
1537 * step through multiple states, reassigning the handler to the
1538 * next step in the process. Unlike a smart SCSI controller IDE
1539 * expects the main processor to sequence the various transfer
1540 * stages. We also manage a poll timer to catch up with most
1541 * timeout situations. There are still a few where the handlers
1542 * don't ever decide to give up.
1544 * The handler eventually returns ide_stopped to indicate the
1545 * request completed. At this point we issue the next request
1546 * on the hwgroup and the process begins again.
1549 irqreturn_t
ide_intr (int irq
, void *dev_id
, struct pt_regs
*regs
)
1551 unsigned long flags
;
1552 ide_hwgroup_t
*hwgroup
= (ide_hwgroup_t
*)dev_id
;
1555 ide_handler_t
*handler
;
1556 ide_startstop_t startstop
;
1558 spin_lock_irqsave(&ide_lock
, flags
);
1559 hwif
= hwgroup
->hwif
;
1561 if (!ide_ack_intr(hwif
)) {
1562 spin_unlock_irqrestore(&ide_lock
, flags
);
1566 if ((handler
= hwgroup
->handler
) == NULL
|| hwgroup
->polling
) {
1568 * Not expecting an interrupt from this drive.
1569 * That means this could be:
1570 * (1) an interrupt from another PCI device
1571 * sharing the same PCI INT# as us.
1572 * or (2) a drive just entered sleep or standby mode,
1573 * and is interrupting to let us know.
1574 * or (3) a spurious interrupt of unknown origin.
1576 * For PCI, we cannot tell the difference,
1577 * so in that case we just ignore it and hope it goes away.
1579 * FIXME: unexpected_intr should be hwif-> then we can
1580 * remove all the ifdef PCI crap
1582 #ifdef CONFIG_BLK_DEV_IDEPCI
1583 if (hwif
->pci_dev
&& !hwif
->pci_dev
->vendor
)
1584 #endif /* CONFIG_BLK_DEV_IDEPCI */
1587 * Probably not a shared PCI interrupt,
1588 * so we can safely try to do something about it:
1590 unexpected_intr(irq
, hwgroup
);
1591 #ifdef CONFIG_BLK_DEV_IDEPCI
1594 * Whack the status register, just in case
1595 * we have a leftover pending IRQ.
1597 (void) hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1598 #endif /* CONFIG_BLK_DEV_IDEPCI */
1600 spin_unlock_irqrestore(&ide_lock
, flags
);
1603 drive
= hwgroup
->drive
;
1606 * This should NEVER happen, and there isn't much
1607 * we could do about it here.
1609 * [Note - this can occur if the drive is hot unplugged]
1611 spin_unlock_irqrestore(&ide_lock
, flags
);
1614 if (!drive_is_ready(drive
)) {
1616 * This happens regularly when we share a PCI IRQ with
1617 * another device. Unfortunately, it can also happen
1618 * with some buggy drives that trigger the IRQ before
1619 * their status register is up to date. Hopefully we have
1620 * enough advance overhead that the latter isn't a problem.
1622 spin_unlock_irqrestore(&ide_lock
, flags
);
1625 if (!hwgroup
->busy
) {
1626 hwgroup
->busy
= 1; /* paranoia */
1627 printk(KERN_ERR
"%s: ide_intr: hwgroup->busy was 0 ??\n", drive
->name
);
1629 hwgroup
->handler
= NULL
;
1630 del_timer(&hwgroup
->timer
);
1631 spin_unlock(&ide_lock
);
1634 local_irq_enable_in_hardirq();
1635 /* service this interrupt, may set handler for next interrupt */
1636 startstop
= handler(drive
);
1637 spin_lock_irq(&ide_lock
);
1640 * Note that handler() may have set things up for another
1641 * interrupt to occur soon, but it cannot happen until
1642 * we exit from this routine, because it will be the
1643 * same irq as is currently being serviced here, and Linux
1644 * won't allow another of the same (on any CPU) until we return.
1646 drive
->service_time
= jiffies
- drive
->service_start
;
1647 if (startstop
== ide_stopped
) {
1648 if (hwgroup
->handler
== NULL
) { /* paranoia */
1650 ide_do_request(hwgroup
, hwif
->irq
);
1652 printk(KERN_ERR
"%s: ide_intr: huh? expected NULL handler "
1653 "on exit\n", drive
->name
);
1656 spin_unlock_irqrestore(&ide_lock
, flags
);
1661 * ide_init_drive_cmd - initialize a drive command request
1662 * @rq: request object
1664 * Initialize a request before we fill it in and send it down to
1665 * ide_do_drive_cmd. Commands must be set up by this function. Right
1666 * now it doesn't do a lot, but if that changes abusers will have a
1670 void ide_init_drive_cmd (struct request
*rq
)
1672 memset(rq
, 0, sizeof(*rq
));
1673 rq
->cmd_type
= REQ_TYPE_ATA_CMD
;
1677 EXPORT_SYMBOL(ide_init_drive_cmd
);
1680 * ide_do_drive_cmd - issue IDE special command
1681 * @drive: device to issue command
1682 * @rq: request to issue
1683 * @action: action for processing
1685 * This function issues a special IDE device request
1686 * onto the request queue.
1688 * If action is ide_wait, then the rq is queued at the end of the
1689 * request queue, and the function sleeps until it has been processed.
1690 * This is for use when invoked from an ioctl handler.
1692 * If action is ide_preempt, then the rq is queued at the head of
1693 * the request queue, displacing the currently-being-processed
1694 * request and this function returns immediately without waiting
1695 * for the new rq to be completed. This is VERY DANGEROUS, and is
1696 * intended for careful use by the ATAPI tape/cdrom driver code.
1698 * If action is ide_end, then the rq is queued at the end of the
1699 * request queue, and the function returns immediately without waiting
1700 * for the new rq to be completed. This is again intended for careful
1701 * use by the ATAPI tape/cdrom driver code.
1704 int ide_do_drive_cmd (ide_drive_t
*drive
, struct request
*rq
, ide_action_t action
)
1706 unsigned long flags
;
1707 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1708 DECLARE_COMPLETION_ONSTACK(wait
);
1709 int where
= ELEVATOR_INSERT_BACK
, err
;
1710 int must_wait
= (action
== ide_wait
|| action
== ide_head_wait
);
1713 rq
->rq_status
= RQ_ACTIVE
;
1716 * we need to hold an extra reference to request for safe inspection
1721 rq
->end_io_data
= &wait
;
1722 rq
->end_io
= blk_end_sync_rq
;
1725 spin_lock_irqsave(&ide_lock
, flags
);
1726 if (action
== ide_preempt
)
1728 if (action
== ide_preempt
|| action
== ide_head_wait
) {
1729 where
= ELEVATOR_INSERT_FRONT
;
1730 rq
->cmd_flags
|= REQ_PREEMPT
;
1732 __elv_add_request(drive
->queue
, rq
, where
, 0);
1733 ide_do_request(hwgroup
, IDE_NO_IRQ
);
1734 spin_unlock_irqrestore(&ide_lock
, flags
);
1738 wait_for_completion(&wait
);
1742 blk_put_request(rq
);
1748 EXPORT_SYMBOL(ide_do_drive_cmd
);