amd64_edac: add a leaner syndrome decoding algorithm
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / edac / amd64_edac.c
blob0969a404f84ff6d5917f1839699a4ef55c84532b
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 /* Lookup table for all possible MC control instances */
17 struct amd64_pvt;
18 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
19 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
23 * later.
25 static int ddr2_dbam_revCG[] = {
26 [0] = 32,
27 [1] = 64,
28 [2] = 128,
29 [3] = 256,
30 [4] = 512,
31 [5] = 1024,
32 [6] = 2048,
35 static int ddr2_dbam_revD[] = {
36 [0] = 32,
37 [1] = 64,
38 [2 ... 3] = 128,
39 [4] = 256,
40 [5] = 512,
41 [6] = 256,
42 [7] = 512,
43 [8 ... 9] = 1024,
44 [10] = 2048,
47 static int ddr2_dbam[] = { [0] = 128,
48 [1] = 256,
49 [2 ... 4] = 512,
50 [5 ... 6] = 1024,
51 [7 ... 8] = 2048,
52 [9 ... 10] = 4096,
53 [11] = 8192,
56 static int ddr3_dbam[] = { [0] = -1,
57 [1] = 256,
58 [2] = 512,
59 [3 ... 4] = -1,
60 [5 ... 6] = 1024,
61 [7 ... 8] = 2048,
62 [9 ... 10] = 4096,
63 [11] = 8192,
67 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
68 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
69 * or higher value'.
71 *FIXME: Produce a better mapping/linearisation.
74 struct scrubrate scrubrates[] = {
75 { 0x01, 1600000000UL},
76 { 0x02, 800000000UL},
77 { 0x03, 400000000UL},
78 { 0x04, 200000000UL},
79 { 0x05, 100000000UL},
80 { 0x06, 50000000UL},
81 { 0x07, 25000000UL},
82 { 0x08, 12284069UL},
83 { 0x09, 6274509UL},
84 { 0x0A, 3121951UL},
85 { 0x0B, 1560975UL},
86 { 0x0C, 781440UL},
87 { 0x0D, 390720UL},
88 { 0x0E, 195300UL},
89 { 0x0F, 97650UL},
90 { 0x10, 48854UL},
91 { 0x11, 24427UL},
92 { 0x12, 12213UL},
93 { 0x13, 6101UL},
94 { 0x14, 3051UL},
95 { 0x15, 1523UL},
96 { 0x16, 761UL},
97 { 0x00, 0UL}, /* scrubbing off */
101 * Memory scrubber control interface. For K8, memory scrubbing is handled by
102 * hardware and can involve L2 cache, dcache as well as the main memory. With
103 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
104 * functionality.
106 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
107 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
108 * bytes/sec for the setting.
110 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
111 * other archs, we might not have access to the caches directly.
115 * scan the scrub rate mapping table for a close or matching bandwidth value to
116 * issue. If requested is too big, then use last maximum value found.
118 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
119 u32 min_scrubrate)
121 u32 scrubval;
122 int i;
125 * map the configured rate (new_bw) to a value specific to the AMD64
126 * memory controller and apply to register. Search for the first
127 * bandwidth entry that is greater or equal than the setting requested
128 * and program that. If at last entry, turn off DRAM scrubbing.
130 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
132 * skip scrub rates which aren't recommended
133 * (see F10 BKDG, F3x58)
135 if (scrubrates[i].scrubval < min_scrubrate)
136 continue;
138 if (scrubrates[i].bandwidth <= new_bw)
139 break;
142 * if no suitable bandwidth found, turn off DRAM scrubbing
143 * entirely by falling back to the last element in the
144 * scrubrates array.
148 scrubval = scrubrates[i].scrubval;
149 if (scrubval)
150 edac_printk(KERN_DEBUG, EDAC_MC,
151 "Setting scrub rate bandwidth: %u\n",
152 scrubrates[i].bandwidth);
153 else
154 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
156 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
158 return 0;
161 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
163 struct amd64_pvt *pvt = mci->pvt_info;
164 u32 min_scrubrate = 0x0;
166 switch (boot_cpu_data.x86) {
167 case 0xf:
168 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
169 break;
170 case 0x10:
171 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
172 break;
173 case 0x11:
174 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
175 break;
177 default:
178 amd64_printk(KERN_ERR, "Unsupported family!\n");
179 break;
181 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
182 min_scrubrate);
185 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
187 struct amd64_pvt *pvt = mci->pvt_info;
188 u32 scrubval = 0;
189 int status = -1, i;
191 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
193 scrubval = scrubval & 0x001F;
195 edac_printk(KERN_DEBUG, EDAC_MC,
196 "pci-read, sdram scrub control value: %d \n", scrubval);
198 for (i = 0; ARRAY_SIZE(scrubrates); i++) {
199 if (scrubrates[i].scrubval == scrubval) {
200 *bw = scrubrates[i].bandwidth;
201 status = 0;
202 break;
206 return status;
209 /* Map from a CSROW entry to the mask entry that operates on it */
210 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
212 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
213 return csrow;
214 else
215 return csrow >> 1;
218 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
219 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
221 if (dct == 0)
222 return pvt->dcsb0[csrow];
223 else
224 return pvt->dcsb1[csrow];
228 * Return the 'mask' address the i'th CS entry. This function is needed because
229 * there number of DCSM registers on Rev E and prior vs Rev F and later is
230 * different.
232 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
234 if (dct == 0)
235 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
236 else
237 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
242 * In *base and *limit, pass back the full 40-bit base and limit physical
243 * addresses for the node given by node_id. This information is obtained from
244 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
245 * base and limit addresses are of type SysAddr, as defined at the start of
246 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
247 * in the address range they represent.
249 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
250 u64 *base, u64 *limit)
252 *base = pvt->dram_base[node_id];
253 *limit = pvt->dram_limit[node_id];
257 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
258 * with node_id
260 static int amd64_base_limit_match(struct amd64_pvt *pvt,
261 u64 sys_addr, int node_id)
263 u64 base, limit, addr;
265 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
267 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
268 * all ones if the most significant implemented address bit is 1.
269 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
270 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
271 * Application Programming.
273 addr = sys_addr & 0x000000ffffffffffull;
275 return (addr >= base) && (addr <= limit);
279 * Attempt to map a SysAddr to a node. On success, return a pointer to the
280 * mem_ctl_info structure for the node that the SysAddr maps to.
282 * On failure, return NULL.
284 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
285 u64 sys_addr)
287 struct amd64_pvt *pvt;
288 int node_id;
289 u32 intlv_en, bits;
292 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
293 * 3.4.4.2) registers to map the SysAddr to a node ID.
295 pvt = mci->pvt_info;
298 * The value of this field should be the same for all DRAM Base
299 * registers. Therefore we arbitrarily choose to read it from the
300 * register for node 0.
302 intlv_en = pvt->dram_IntlvEn[0];
304 if (intlv_en == 0) {
305 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
306 if (amd64_base_limit_match(pvt, sys_addr, node_id))
307 goto found;
309 goto err_no_match;
312 if (unlikely((intlv_en != 0x01) &&
313 (intlv_en != 0x03) &&
314 (intlv_en != 0x07))) {
315 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
316 "IntlvEn field of DRAM Base Register for node 0: "
317 "this probably indicates a BIOS bug.\n", intlv_en);
318 return NULL;
321 bits = (((u32) sys_addr) >> 12) & intlv_en;
323 for (node_id = 0; ; ) {
324 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
325 break; /* intlv_sel field matches */
327 if (++node_id >= DRAM_REG_COUNT)
328 goto err_no_match;
331 /* sanity test for sys_addr */
332 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
333 amd64_printk(KERN_WARNING,
334 "%s(): sys_addr 0x%llx falls outside base/limit "
335 "address range for node %d with node interleaving "
336 "enabled.\n",
337 __func__, sys_addr, node_id);
338 return NULL;
341 found:
342 return edac_mc_find(node_id);
344 err_no_match:
345 debugf2("sys_addr 0x%lx doesn't match any node\n",
346 (unsigned long)sys_addr);
348 return NULL;
352 * Extract the DRAM CS base address from selected csrow register.
354 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
356 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
357 pvt->dcs_shift;
361 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
363 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
365 u64 dcsm_bits, other_bits;
366 u64 mask;
368 /* Extract bits from DRAM CS Mask. */
369 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
371 other_bits = pvt->dcsm_mask;
372 other_bits = ~(other_bits << pvt->dcs_shift);
375 * The extracted bits from DCSM belong in the spaces represented by
376 * the cleared bits in other_bits.
378 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
380 return mask;
384 * @input_addr is an InputAddr associated with the node given by mci. Return the
385 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
387 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
389 struct amd64_pvt *pvt;
390 int csrow;
391 u64 base, mask;
393 pvt = mci->pvt_info;
396 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
397 * base/mask register pair, test the condition shown near the start of
398 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
400 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
402 /* This DRAM chip select is disabled on this node */
403 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
404 continue;
406 base = base_from_dct_base(pvt, csrow);
407 mask = ~mask_from_dct_mask(pvt, csrow);
409 if ((input_addr & mask) == (base & mask)) {
410 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
411 (unsigned long)input_addr, csrow,
412 pvt->mc_node_id);
414 return csrow;
418 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
419 (unsigned long)input_addr, pvt->mc_node_id);
421 return -1;
425 * Return the base value defined by the DRAM Base register for the node
426 * represented by mci. This function returns the full 40-bit value despite the
427 * fact that the register only stores bits 39-24 of the value. See section
428 * 3.4.4.1 (BKDG #26094, K8, revA-E)
430 static inline u64 get_dram_base(struct mem_ctl_info *mci)
432 struct amd64_pvt *pvt = mci->pvt_info;
434 return pvt->dram_base[pvt->mc_node_id];
438 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
439 * for the node represented by mci. Info is passed back in *hole_base,
440 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
441 * info is invalid. Info may be invalid for either of the following reasons:
443 * - The revision of the node is not E or greater. In this case, the DRAM Hole
444 * Address Register does not exist.
446 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
447 * indicating that its contents are not valid.
449 * The values passed back in *hole_base, *hole_offset, and *hole_size are
450 * complete 32-bit values despite the fact that the bitfields in the DHAR
451 * only represent bits 31-24 of the base and offset values.
453 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
454 u64 *hole_offset, u64 *hole_size)
456 struct amd64_pvt *pvt = mci->pvt_info;
457 u64 base;
459 /* only revE and later have the DRAM Hole Address Register */
460 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
461 debugf1(" revision %d for node %d does not support DHAR\n",
462 pvt->ext_model, pvt->mc_node_id);
463 return 1;
466 /* only valid for Fam10h */
467 if (boot_cpu_data.x86 == 0x10 &&
468 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
469 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
470 return 1;
473 if ((pvt->dhar & DHAR_VALID) == 0) {
474 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
475 pvt->mc_node_id);
476 return 1;
479 /* This node has Memory Hoisting */
481 /* +------------------+--------------------+--------------------+-----
482 * | memory | DRAM hole | relocated |
483 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
484 * | | | DRAM hole |
485 * | | | [0x100000000, |
486 * | | | (0x100000000+ |
487 * | | | (0xffffffff-x))] |
488 * +------------------+--------------------+--------------------+-----
490 * Above is a diagram of physical memory showing the DRAM hole and the
491 * relocated addresses from the DRAM hole. As shown, the DRAM hole
492 * starts at address x (the base address) and extends through address
493 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
494 * addresses in the hole so that they start at 0x100000000.
497 base = dhar_base(pvt->dhar);
499 *hole_base = base;
500 *hole_size = (0x1ull << 32) - base;
502 if (boot_cpu_data.x86 > 0xf)
503 *hole_offset = f10_dhar_offset(pvt->dhar);
504 else
505 *hole_offset = k8_dhar_offset(pvt->dhar);
507 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
508 pvt->mc_node_id, (unsigned long)*hole_base,
509 (unsigned long)*hole_offset, (unsigned long)*hole_size);
511 return 0;
513 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
516 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
517 * assumed that sys_addr maps to the node given by mci.
519 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
520 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
521 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
522 * then it is also involved in translating a SysAddr to a DramAddr. Sections
523 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
524 * These parts of the documentation are unclear. I interpret them as follows:
526 * When node n receives a SysAddr, it processes the SysAddr as follows:
528 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
529 * Limit registers for node n. If the SysAddr is not within the range
530 * specified by the base and limit values, then node n ignores the Sysaddr
531 * (since it does not map to node n). Otherwise continue to step 2 below.
533 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
534 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
535 * the range of relocated addresses (starting at 0x100000000) from the DRAM
536 * hole. If not, skip to step 3 below. Else get the value of the
537 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
538 * offset defined by this value from the SysAddr.
540 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
541 * Base register for node n. To obtain the DramAddr, subtract the base
542 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
544 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
546 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
547 int ret = 0;
549 dram_base = get_dram_base(mci);
551 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
552 &hole_size);
553 if (!ret) {
554 if ((sys_addr >= (1ull << 32)) &&
555 (sys_addr < ((1ull << 32) + hole_size))) {
556 /* use DHAR to translate SysAddr to DramAddr */
557 dram_addr = sys_addr - hole_offset;
559 debugf2("using DHAR to translate SysAddr 0x%lx to "
560 "DramAddr 0x%lx\n",
561 (unsigned long)sys_addr,
562 (unsigned long)dram_addr);
564 return dram_addr;
569 * Translate the SysAddr to a DramAddr as shown near the start of
570 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
571 * only deals with 40-bit values. Therefore we discard bits 63-40 of
572 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
573 * discard are all 1s. Otherwise the bits we discard are all 0s. See
574 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
575 * Programmer's Manual Volume 1 Application Programming.
577 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
579 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
580 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
581 (unsigned long)dram_addr);
582 return dram_addr;
586 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
587 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
588 * for node interleaving.
590 static int num_node_interleave_bits(unsigned intlv_en)
592 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
593 int n;
595 BUG_ON(intlv_en > 7);
596 n = intlv_shift_table[intlv_en];
597 return n;
600 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
601 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
603 struct amd64_pvt *pvt;
604 int intlv_shift;
605 u64 input_addr;
607 pvt = mci->pvt_info;
610 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
611 * concerning translating a DramAddr to an InputAddr.
613 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
614 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
615 (dram_addr & 0xfff);
617 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
618 intlv_shift, (unsigned long)dram_addr,
619 (unsigned long)input_addr);
621 return input_addr;
625 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
626 * assumed that @sys_addr maps to the node given by mci.
628 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
630 u64 input_addr;
632 input_addr =
633 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
635 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
636 (unsigned long)sys_addr, (unsigned long)input_addr);
638 return input_addr;
643 * @input_addr is an InputAddr associated with the node represented by mci.
644 * Translate @input_addr to a DramAddr and return the result.
646 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
648 struct amd64_pvt *pvt;
649 int node_id, intlv_shift;
650 u64 bits, dram_addr;
651 u32 intlv_sel;
654 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
655 * shows how to translate a DramAddr to an InputAddr. Here we reverse
656 * this procedure. When translating from a DramAddr to an InputAddr, the
657 * bits used for node interleaving are discarded. Here we recover these
658 * bits from the IntlvSel field of the DRAM Limit register (section
659 * 3.4.4.2) for the node that input_addr is associated with.
661 pvt = mci->pvt_info;
662 node_id = pvt->mc_node_id;
663 BUG_ON((node_id < 0) || (node_id > 7));
665 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
667 if (intlv_shift == 0) {
668 debugf1(" InputAddr 0x%lx translates to DramAddr of "
669 "same value\n", (unsigned long)input_addr);
671 return input_addr;
674 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
675 (input_addr & 0xfff);
677 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
678 dram_addr = bits + (intlv_sel << 12);
680 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
681 "(%d node interleave bits)\n", (unsigned long)input_addr,
682 (unsigned long)dram_addr, intlv_shift);
684 return dram_addr;
688 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
689 * @dram_addr to a SysAddr.
691 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
693 struct amd64_pvt *pvt = mci->pvt_info;
694 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
695 int ret = 0;
697 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
698 &hole_size);
699 if (!ret) {
700 if ((dram_addr >= hole_base) &&
701 (dram_addr < (hole_base + hole_size))) {
702 sys_addr = dram_addr + hole_offset;
704 debugf1("using DHAR to translate DramAddr 0x%lx to "
705 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
706 (unsigned long)sys_addr);
708 return sys_addr;
712 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
713 sys_addr = dram_addr + base;
716 * The sys_addr we have computed up to this point is a 40-bit value
717 * because the k8 deals with 40-bit values. However, the value we are
718 * supposed to return is a full 64-bit physical address. The AMD
719 * x86-64 architecture specifies that the most significant implemented
720 * address bit through bit 63 of a physical address must be either all
721 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
722 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
723 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
724 * Programming.
726 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
728 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
729 pvt->mc_node_id, (unsigned long)dram_addr,
730 (unsigned long)sys_addr);
732 return sys_addr;
736 * @input_addr is an InputAddr associated with the node given by mci. Translate
737 * @input_addr to a SysAddr.
739 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
740 u64 input_addr)
742 return dram_addr_to_sys_addr(mci,
743 input_addr_to_dram_addr(mci, input_addr));
747 * Find the minimum and maximum InputAddr values that map to the given @csrow.
748 * Pass back these values in *input_addr_min and *input_addr_max.
750 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
751 u64 *input_addr_min, u64 *input_addr_max)
753 struct amd64_pvt *pvt;
754 u64 base, mask;
756 pvt = mci->pvt_info;
757 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
759 base = base_from_dct_base(pvt, csrow);
760 mask = mask_from_dct_mask(pvt, csrow);
762 *input_addr_min = base & ~mask;
763 *input_addr_max = base | mask | pvt->dcs_mask_notused;
766 /* Map the Error address to a PAGE and PAGE OFFSET. */
767 static inline void error_address_to_page_and_offset(u64 error_address,
768 u32 *page, u32 *offset)
770 *page = (u32) (error_address >> PAGE_SHIFT);
771 *offset = ((u32) error_address) & ~PAGE_MASK;
775 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
776 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
777 * of a node that detected an ECC memory error. mci represents the node that
778 * the error address maps to (possibly different from the node that detected
779 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
780 * error.
782 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
784 int csrow;
786 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
788 if (csrow == -1)
789 amd64_mc_printk(mci, KERN_ERR,
790 "Failed to translate InputAddr to csrow for "
791 "address 0x%lx\n", (unsigned long)sys_addr);
792 return csrow;
795 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
797 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
799 if (boot_cpu_data.x86 == 0x11)
800 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
801 else if (boot_cpu_data.x86 == 0x10)
802 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
803 else if (boot_cpu_data.x86 == 0xf)
804 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
805 (pvt->ext_model >= K8_REV_F) ?
806 "Rev F or later" : "Rev E or earlier");
807 else
808 /* we'll hardly ever ever get here */
809 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
813 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
814 * are ECC capable.
816 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
818 int bit;
819 enum dev_type edac_cap = EDAC_FLAG_NONE;
821 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
822 ? 19
823 : 17;
825 if (pvt->dclr0 & BIT(bit))
826 edac_cap = EDAC_FLAG_SECDED;
828 return edac_cap;
832 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
834 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
836 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
838 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
839 (dclr & BIT(16)) ? "un" : "",
840 (dclr & BIT(19)) ? "yes" : "no");
842 debugf1(" PAR/ERR parity: %s\n",
843 (dclr & BIT(8)) ? "enabled" : "disabled");
845 debugf1(" DCT 128bit mode width: %s\n",
846 (dclr & BIT(11)) ? "128b" : "64b");
848 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
849 (dclr & BIT(12)) ? "yes" : "no",
850 (dclr & BIT(13)) ? "yes" : "no",
851 (dclr & BIT(14)) ? "yes" : "no",
852 (dclr & BIT(15)) ? "yes" : "no");
855 /* Display and decode various NB registers for debug purposes. */
856 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
858 int ganged;
860 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
862 debugf1(" NB two channel DRAM capable: %s\n",
863 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
865 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
866 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
867 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
869 amd64_dump_dramcfg_low(pvt->dclr0, 0);
871 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
873 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
874 "offset: 0x%08x\n",
875 pvt->dhar,
876 dhar_base(pvt->dhar),
877 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
878 : f10_dhar_offset(pvt->dhar));
880 debugf1(" DramHoleValid: %s\n",
881 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
883 /* everything below this point is Fam10h and above */
884 if (boot_cpu_data.x86 == 0xf) {
885 amd64_debug_display_dimm_sizes(0, pvt);
886 return;
889 /* Only if NOT ganged does dclr1 have valid info */
890 if (!dct_ganging_enabled(pvt))
891 amd64_dump_dramcfg_low(pvt->dclr1, 1);
894 * Determine if ganged and then dump memory sizes for first controller,
895 * and if NOT ganged dump info for 2nd controller.
897 ganged = dct_ganging_enabled(pvt);
899 amd64_debug_display_dimm_sizes(0, pvt);
901 if (!ganged)
902 amd64_debug_display_dimm_sizes(1, pvt);
905 /* Read in both of DBAM registers */
906 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
908 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
910 if (boot_cpu_data.x86 >= 0x10)
911 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
915 * NOTE: CPU Revision Dependent code: Rev E and Rev F
917 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
918 * set the shift factor for the DCSB and DCSM values.
920 * ->dcs_mask_notused, RevE:
922 * To find the max InputAddr for the csrow, start with the base address and set
923 * all bits that are "don't care" bits in the test at the start of section
924 * 3.5.4 (p. 84).
926 * The "don't care" bits are all set bits in the mask and all bits in the gaps
927 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
928 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
929 * gaps.
931 * ->dcs_mask_notused, RevF and later:
933 * To find the max InputAddr for the csrow, start with the base address and set
934 * all bits that are "don't care" bits in the test at the start of NPT section
935 * 4.5.4 (p. 87).
937 * The "don't care" bits are all set bits in the mask and all bits in the gaps
938 * between bit ranges [36:27] and [21:13].
940 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
941 * which are all bits in the above-mentioned gaps.
943 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
946 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
947 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
948 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
949 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
950 pvt->dcs_shift = REV_E_DCS_SHIFT;
951 pvt->cs_count = 8;
952 pvt->num_dcsm = 8;
953 } else {
954 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
955 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
956 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
957 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
959 if (boot_cpu_data.x86 == 0x11) {
960 pvt->cs_count = 4;
961 pvt->num_dcsm = 2;
962 } else {
963 pvt->cs_count = 8;
964 pvt->num_dcsm = 4;
970 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
972 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
974 int cs, reg;
976 amd64_set_dct_base_and_mask(pvt);
978 for (cs = 0; cs < pvt->cs_count; cs++) {
979 reg = K8_DCSB0 + (cs * 4);
980 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
981 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
982 cs, pvt->dcsb0[cs], reg);
984 /* If DCT are NOT ganged, then read in DCT1's base */
985 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
986 reg = F10_DCSB1 + (cs * 4);
987 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
988 &pvt->dcsb1[cs]))
989 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
990 cs, pvt->dcsb1[cs], reg);
991 } else {
992 pvt->dcsb1[cs] = 0;
996 for (cs = 0; cs < pvt->num_dcsm; cs++) {
997 reg = K8_DCSM0 + (cs * 4);
998 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
999 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1000 cs, pvt->dcsm0[cs], reg);
1002 /* If DCT are NOT ganged, then read in DCT1's mask */
1003 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1004 reg = F10_DCSM1 + (cs * 4);
1005 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1006 &pvt->dcsm1[cs]))
1007 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1008 cs, pvt->dcsm1[cs], reg);
1009 } else {
1010 pvt->dcsm1[cs] = 0;
1015 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1017 enum mem_type type;
1019 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1020 if (pvt->dchr0 & DDR3_MODE)
1021 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1022 else
1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1024 } else {
1025 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1028 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
1030 return type;
1034 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1035 * and the later RevF memory controllers (DDR vs DDR2)
1037 * Return:
1038 * number of memory channels in operation
1039 * Pass back:
1040 * contents of the DCL0_LOW register
1042 static int k8_early_channel_count(struct amd64_pvt *pvt)
1044 int flag, err = 0;
1046 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1047 if (err)
1048 return err;
1050 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1051 /* RevF (NPT) and later */
1052 flag = pvt->dclr0 & F10_WIDTH_128;
1053 } else {
1054 /* RevE and earlier */
1055 flag = pvt->dclr0 & REVE_WIDTH_128;
1058 /* not used */
1059 pvt->dclr1 = 0;
1061 return (flag) ? 2 : 1;
1064 /* extract the ERROR ADDRESS for the K8 CPUs */
1065 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1066 struct err_regs *info)
1068 return (((u64) (info->nbeah & 0xff)) << 32) +
1069 (info->nbeal & ~0x03);
1073 * Read the Base and Limit registers for K8 based Memory controllers; extract
1074 * fields from the 'raw' reg into separate data fields
1076 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1078 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1080 u32 low;
1081 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1083 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1085 /* Extract parts into separate data entries */
1086 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1087 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1088 pvt->dram_rw_en[dram] = (low & 0x3);
1090 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1093 * Extract parts into separate data entries. Limit is the HIGHEST memory
1094 * location of the region, so lower 24 bits need to be all ones
1096 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1097 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1098 pvt->dram_DstNode[dram] = (low & 0x7);
1101 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1102 struct err_regs *info,
1103 u64 sys_addr)
1105 struct mem_ctl_info *src_mci;
1106 unsigned short syndrome;
1107 int channel, csrow;
1108 u32 page, offset;
1110 /* Extract the syndrome parts and form a 16-bit syndrome */
1111 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1112 syndrome |= LOW_SYNDROME(info->nbsh);
1114 /* CHIPKILL enabled */
1115 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1116 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1117 if (channel < 0) {
1119 * Syndrome didn't map, so we don't know which of the
1120 * 2 DIMMs is in error. So we need to ID 'both' of them
1121 * as suspect.
1123 amd64_mc_printk(mci, KERN_WARNING,
1124 "unknown syndrome 0x%x - possible error "
1125 "reporting race\n", syndrome);
1126 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1127 return;
1129 } else {
1131 * non-chipkill ecc mode
1133 * The k8 documentation is unclear about how to determine the
1134 * channel number when using non-chipkill memory. This method
1135 * was obtained from email communication with someone at AMD.
1136 * (Wish the email was placed in this comment - norsk)
1138 channel = ((sys_addr & BIT(3)) != 0);
1142 * Find out which node the error address belongs to. This may be
1143 * different from the node that detected the error.
1145 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1146 if (!src_mci) {
1147 amd64_mc_printk(mci, KERN_ERR,
1148 "failed to map error address 0x%lx to a node\n",
1149 (unsigned long)sys_addr);
1150 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1151 return;
1154 /* Now map the sys_addr to a CSROW */
1155 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1156 if (csrow < 0) {
1157 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1158 } else {
1159 error_address_to_page_and_offset(sys_addr, &page, &offset);
1161 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1162 channel, EDAC_MOD_STR);
1166 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1168 int *dbam_map;
1170 if (pvt->ext_model >= K8_REV_F)
1171 dbam_map = ddr2_dbam;
1172 else if (pvt->ext_model >= K8_REV_D)
1173 dbam_map = ddr2_dbam_revD;
1174 else
1175 dbam_map = ddr2_dbam_revCG;
1177 return dbam_map[cs_mode];
1181 * Get the number of DCT channels in use.
1183 * Return:
1184 * number of Memory Channels in operation
1185 * Pass back:
1186 * contents of the DCL0_LOW register
1188 static int f10_early_channel_count(struct amd64_pvt *pvt)
1190 int dbams[] = { DBAM0, DBAM1 };
1191 int i, j, channels = 0;
1192 u32 dbam;
1194 /* If we are in 128 bit mode, then we are using 2 channels */
1195 if (pvt->dclr0 & F10_WIDTH_128) {
1196 channels = 2;
1197 return channels;
1201 * Need to check if in unganged mode: In such, there are 2 channels,
1202 * but they are not in 128 bit mode and thus the above 'dclr0' status
1203 * bit will be OFF.
1205 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1206 * their CSEnable bit on. If so, then SINGLE DIMM case.
1208 debugf0("Data width is not 128 bits - need more decoding\n");
1211 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1212 * is more than just one DIMM present in unganged mode. Need to check
1213 * both controllers since DIMMs can be placed in either one.
1215 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1216 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1217 goto err_reg;
1219 for (j = 0; j < 4; j++) {
1220 if (DBAM_DIMM(j, dbam) > 0) {
1221 channels++;
1222 break;
1227 if (channels > 2)
1228 channels = 2;
1230 debugf0("MCT channel count: %d\n", channels);
1232 return channels;
1234 err_reg:
1235 return -1;
1239 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1241 int *dbam_map;
1243 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1244 dbam_map = ddr3_dbam;
1245 else
1246 dbam_map = ddr2_dbam;
1248 return dbam_map[cs_mode];
1251 /* Enable extended configuration access via 0xCF8 feature */
1252 static void amd64_setup(struct amd64_pvt *pvt)
1254 u32 reg;
1256 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1258 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1259 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1260 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1263 /* Restore the extended configuration access via 0xCF8 feature */
1264 static void amd64_teardown(struct amd64_pvt *pvt)
1266 u32 reg;
1268 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1270 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1271 if (pvt->flags.cf8_extcfg)
1272 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1276 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1277 struct err_regs *info)
1279 return (((u64) (info->nbeah & 0xffff)) << 32) +
1280 (info->nbeal & ~0x01);
1284 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1285 * fields from the 'raw' reg into separate data fields.
1287 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1289 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1291 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1293 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1294 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1296 /* read the 'raw' DRAM BASE Address register */
1297 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1299 /* Read from the ECS data register */
1300 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1302 /* Extract parts into separate data entries */
1303 pvt->dram_rw_en[dram] = (low_base & 0x3);
1305 if (pvt->dram_rw_en[dram] == 0)
1306 return;
1308 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1310 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1311 (((u64)low_base & 0xFFFF0000) << 8);
1313 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1314 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1316 /* read the 'raw' LIMIT registers */
1317 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1319 /* Read from the ECS data register for the HIGH portion */
1320 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1322 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1323 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1326 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1327 * memory location of the region, so low 24 bits need to be all ones.
1329 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1330 (((u64) low_limit & 0xFFFF0000) << 8) |
1331 0x00FFFFFF;
1334 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1337 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1338 &pvt->dram_ctl_select_low)) {
1339 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1340 "High range addresses at: 0x%x\n",
1341 pvt->dram_ctl_select_low,
1342 dct_sel_baseaddr(pvt));
1344 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1345 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1346 (dct_dram_enabled(pvt) ? "yes" : "no"));
1348 if (!dct_ganging_enabled(pvt))
1349 debugf0(" Address range split per DCT: %s\n",
1350 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1352 debugf0(" DCT data interleave for ECC: %s, "
1353 "DRAM cleared since last warm reset: %s\n",
1354 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1355 (dct_memory_cleared(pvt) ? "yes" : "no"));
1357 debugf0(" DCT channel interleave: %s, "
1358 "DCT interleave bits selector: 0x%x\n",
1359 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1360 dct_sel_interleave_addr(pvt));
1363 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1364 &pvt->dram_ctl_select_high);
1368 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1369 * Interleaving Modes.
1371 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1372 int hi_range_sel, u32 intlv_en)
1374 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1376 if (dct_ganging_enabled(pvt))
1377 cs = 0;
1378 else if (hi_range_sel)
1379 cs = dct_sel_high;
1380 else if (dct_interleave_enabled(pvt)) {
1382 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1384 if (dct_sel_interleave_addr(pvt) == 0)
1385 cs = sys_addr >> 6 & 1;
1386 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1387 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1389 if (dct_sel_interleave_addr(pvt) & 1)
1390 cs = (sys_addr >> 9 & 1) ^ temp;
1391 else
1392 cs = (sys_addr >> 6 & 1) ^ temp;
1393 } else if (intlv_en & 4)
1394 cs = sys_addr >> 15 & 1;
1395 else if (intlv_en & 2)
1396 cs = sys_addr >> 14 & 1;
1397 else if (intlv_en & 1)
1398 cs = sys_addr >> 13 & 1;
1399 else
1400 cs = sys_addr >> 12 & 1;
1401 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1402 cs = ~dct_sel_high & 1;
1403 else
1404 cs = 0;
1406 return cs;
1409 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1411 if (intlv_en == 1)
1412 return 1;
1413 else if (intlv_en == 3)
1414 return 2;
1415 else if (intlv_en == 7)
1416 return 3;
1418 return 0;
1421 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1422 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1423 u32 dct_sel_base_addr,
1424 u64 dct_sel_base_off,
1425 u32 hole_valid, u32 hole_off,
1426 u64 dram_base)
1428 u64 chan_off;
1430 if (hi_range_sel) {
1431 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1432 hole_valid && (sys_addr >= 0x100000000ULL))
1433 chan_off = hole_off << 16;
1434 else
1435 chan_off = dct_sel_base_off;
1436 } else {
1437 if (hole_valid && (sys_addr >= 0x100000000ULL))
1438 chan_off = hole_off << 16;
1439 else
1440 chan_off = dram_base & 0xFFFFF8000000ULL;
1443 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1444 (chan_off & 0x0000FFFFFF800000ULL);
1447 /* Hack for the time being - Can we get this from BIOS?? */
1448 #define CH0SPARE_RANK 0
1449 #define CH1SPARE_RANK 1
1452 * checks if the csrow passed in is marked as SPARED, if so returns the new
1453 * spare row
1455 static inline int f10_process_possible_spare(int csrow,
1456 u32 cs, struct amd64_pvt *pvt)
1458 u32 swap_done;
1459 u32 bad_dram_cs;
1461 /* Depending on channel, isolate respective SPARING info */
1462 if (cs) {
1463 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1464 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1465 if (swap_done && (csrow == bad_dram_cs))
1466 csrow = CH1SPARE_RANK;
1467 } else {
1468 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1469 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1470 if (swap_done && (csrow == bad_dram_cs))
1471 csrow = CH0SPARE_RANK;
1473 return csrow;
1477 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1478 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1480 * Return:
1481 * -EINVAL: NOT FOUND
1482 * 0..csrow = Chip-Select Row
1484 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1486 struct mem_ctl_info *mci;
1487 struct amd64_pvt *pvt;
1488 u32 cs_base, cs_mask;
1489 int cs_found = -EINVAL;
1490 int csrow;
1492 mci = mci_lookup[nid];
1493 if (!mci)
1494 return cs_found;
1496 pvt = mci->pvt_info;
1498 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1500 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1502 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1503 if (!(cs_base & K8_DCSB_CS_ENABLE))
1504 continue;
1507 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1508 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1509 * of the actual address.
1511 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1514 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1515 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1517 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1519 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1520 csrow, cs_base, cs_mask);
1522 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1524 debugf1(" Final CSMask=0x%x\n", cs_mask);
1525 debugf1(" (InputAddr & ~CSMask)=0x%x "
1526 "(CSBase & ~CSMask)=0x%x\n",
1527 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1529 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1530 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1532 debugf1(" MATCH csrow=%d\n", cs_found);
1533 break;
1536 return cs_found;
1539 /* For a given @dram_range, check if @sys_addr falls within it. */
1540 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1541 u64 sys_addr, int *nid, int *chan_sel)
1543 int node_id, cs_found = -EINVAL, high_range = 0;
1544 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1545 u32 hole_valid, tmp, dct_sel_base, channel;
1546 u64 dram_base, chan_addr, dct_sel_base_off;
1548 dram_base = pvt->dram_base[dram_range];
1549 intlv_en = pvt->dram_IntlvEn[dram_range];
1551 node_id = pvt->dram_DstNode[dram_range];
1552 intlv_sel = pvt->dram_IntlvSel[dram_range];
1554 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1555 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1558 * This assumes that one node's DHAR is the same as all the other
1559 * nodes' DHAR.
1561 hole_off = (pvt->dhar & 0x0000FF80);
1562 hole_valid = (pvt->dhar & 0x1);
1563 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1565 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1566 hole_off, hole_valid, intlv_sel);
1568 if (intlv_en ||
1569 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1570 return -EINVAL;
1572 dct_sel_base = dct_sel_baseaddr(pvt);
1575 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1576 * select between DCT0 and DCT1.
1578 if (dct_high_range_enabled(pvt) &&
1579 !dct_ganging_enabled(pvt) &&
1580 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1581 high_range = 1;
1583 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1585 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1586 dct_sel_base_off, hole_valid,
1587 hole_off, dram_base);
1589 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1591 /* remove Node ID (in case of memory interleaving) */
1592 tmp = chan_addr & 0xFC0;
1594 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1596 /* remove channel interleave and hash */
1597 if (dct_interleave_enabled(pvt) &&
1598 !dct_high_range_enabled(pvt) &&
1599 !dct_ganging_enabled(pvt)) {
1600 if (dct_sel_interleave_addr(pvt) != 1)
1601 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1602 else {
1603 tmp = chan_addr & 0xFC0;
1604 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1605 | tmp;
1609 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1610 chan_addr, (u32)(chan_addr >> 8));
1612 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1614 if (cs_found >= 0) {
1615 *nid = node_id;
1616 *chan_sel = channel;
1618 return cs_found;
1621 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1622 int *node, int *chan_sel)
1624 int dram_range, cs_found = -EINVAL;
1625 u64 dram_base, dram_limit;
1627 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1629 if (!pvt->dram_rw_en[dram_range])
1630 continue;
1632 dram_base = pvt->dram_base[dram_range];
1633 dram_limit = pvt->dram_limit[dram_range];
1635 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1637 cs_found = f10_match_to_this_node(pvt, dram_range,
1638 sys_addr, node,
1639 chan_sel);
1640 if (cs_found >= 0)
1641 break;
1644 return cs_found;
1648 * This the F10h reference code from AMD to map a @sys_addr to NodeID,
1649 * CSROW, Channel.
1651 * The @sys_addr is usually an error address received from the hardware.
1653 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1654 struct err_regs *info,
1655 u64 sys_addr)
1657 struct amd64_pvt *pvt = mci->pvt_info;
1658 u32 page, offset;
1659 unsigned short syndrome;
1660 int nid, csrow, chan = 0;
1662 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1664 if (csrow >= 0) {
1665 error_address_to_page_and_offset(sys_addr, &page, &offset);
1667 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1668 syndrome |= LOW_SYNDROME(info->nbsh);
1671 * Is CHIPKILL on? If so, then we can attempt to use the
1672 * syndrome to isolate which channel the error was on.
1674 if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
1675 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1677 if (chan >= 0) {
1678 edac_mc_handle_ce(mci, page, offset, syndrome,
1679 csrow, chan, EDAC_MOD_STR);
1680 } else {
1682 * Channel unknown, report all channels on this
1683 * CSROW as failed.
1685 for (chan = 0; chan < mci->csrows[csrow].nr_channels;
1686 chan++) {
1687 edac_mc_handle_ce(mci, page, offset,
1688 syndrome,
1689 csrow, chan,
1690 EDAC_MOD_STR);
1694 } else {
1695 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1700 * debug routine to display the memory sizes of all logical DIMMs and its
1701 * CSROWs as well
1703 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1705 int dimm, size0, size1;
1706 u32 dbam;
1707 u32 *dcsb;
1709 if (boot_cpu_data.x86 == 0xf) {
1710 /* K8 families < revF not supported yet */
1711 if (pvt->ext_model < K8_REV_F)
1712 return;
1713 else
1714 WARN_ON(ctrl != 0);
1717 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1718 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1720 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1721 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1723 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1725 /* Dump memory sizes for DIMM and its CSROWs */
1726 for (dimm = 0; dimm < 4; dimm++) {
1728 size0 = 0;
1729 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1730 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1732 size1 = 0;
1733 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1734 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1736 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1737 dimm * 2, size0, dimm * 2 + 1, size1);
1742 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1743 * (as per PCI DEVICE_IDs):
1745 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1746 * DEVICE ID, even though there is differences between the different Revisions
1747 * (CG,D,E,F).
1749 * Family F10h and F11h.
1752 static struct amd64_family_type amd64_family_types[] = {
1753 [K8_CPUS] = {
1754 .ctl_name = "RevF",
1755 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1756 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1757 .ops = {
1758 .early_channel_count = k8_early_channel_count,
1759 .get_error_address = k8_get_error_address,
1760 .read_dram_base_limit = k8_read_dram_base_limit,
1761 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1762 .dbam_to_cs = k8_dbam_to_chip_select,
1765 [F10_CPUS] = {
1766 .ctl_name = "Family 10h",
1767 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1768 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1769 .ops = {
1770 .early_channel_count = f10_early_channel_count,
1771 .get_error_address = f10_get_error_address,
1772 .read_dram_base_limit = f10_read_dram_base_limit,
1773 .read_dram_ctl_register = f10_read_dram_ctl_register,
1774 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1775 .dbam_to_cs = f10_dbam_to_chip_select,
1778 [F11_CPUS] = {
1779 .ctl_name = "Family 11h",
1780 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1781 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1782 .ops = {
1783 .early_channel_count = f10_early_channel_count,
1784 .get_error_address = f10_get_error_address,
1785 .read_dram_base_limit = f10_read_dram_base_limit,
1786 .read_dram_ctl_register = f10_read_dram_ctl_register,
1787 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1788 .dbam_to_cs = f10_dbam_to_chip_select,
1793 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1794 unsigned int device,
1795 struct pci_dev *related)
1797 struct pci_dev *dev = NULL;
1799 dev = pci_get_device(vendor, device, dev);
1800 while (dev) {
1801 if ((dev->bus->number == related->bus->number) &&
1802 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1803 break;
1804 dev = pci_get_device(vendor, device, dev);
1807 return dev;
1811 * These are tables of eigenvectors (one per line) which can be used for the
1812 * construction of the syndrome tables. The modified syndrome search algorithm
1813 * uses those to find the symbol in error and thus the DIMM.
1815 * Algorithm courtesy of Ross LaFetra from AMD.
1817 static u16 x4_vectors[] = {
1818 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1819 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1820 0x0001, 0x0002, 0x0004, 0x0008,
1821 0x1013, 0x3032, 0x4044, 0x8088,
1822 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1823 0x4857, 0xc4fe, 0x13cc, 0x3288,
1824 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1825 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1826 0x15c1, 0x2a42, 0x89ac, 0x4758,
1827 0x2b03, 0x1602, 0x4f0c, 0xca08,
1828 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1829 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1830 0x2b87, 0x164e, 0x642c, 0xdc18,
1831 0x40b9, 0x80de, 0x1094, 0x20e8,
1832 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1833 0x11c1, 0x2242, 0x84ac, 0x4c58,
1834 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1835 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1836 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1837 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1838 0x16b3, 0x3d62, 0x4f34, 0x8518,
1839 0x1e2f, 0x391a, 0x5cac, 0xf858,
1840 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1841 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1842 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1843 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1844 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1845 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1846 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1847 0x185d, 0x2ca6, 0x7914, 0x9e28,
1848 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1849 0x4199, 0x82ee, 0x19f4, 0x2e58,
1850 0x4807, 0xc40e, 0x130c, 0x3208,
1851 0x1905, 0x2e0a, 0x5804, 0xac08,
1852 0x213f, 0x132a, 0xadfc, 0x5ba8,
1853 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1856 static u16 x8_vectors[] = {
1857 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1858 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1859 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1860 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1861 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1862 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1863 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1864 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1865 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1866 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1867 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1868 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1869 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1870 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1871 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1872 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1873 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1874 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1875 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1878 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1879 int v_dim)
1881 unsigned int i, err_sym;
1883 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1884 u16 s = syndrome;
1885 int v_idx = err_sym * v_dim;
1886 int v_end = (err_sym + 1) * v_dim;
1888 /* walk over all 16 bits of the syndrome */
1889 for (i = 1; i < (1U << 16); i <<= 1) {
1891 /* if bit is set in that eigenvector... */
1892 if (v_idx < v_end && vectors[v_idx] & i) {
1893 u16 ev_comp = vectors[v_idx++];
1895 /* ... and bit set in the modified syndrome, */
1896 if (s & i) {
1897 /* remove it. */
1898 s ^= ev_comp;
1900 if (!s)
1901 return err_sym;
1904 } else if (s & i)
1905 /* can't get to zero, move to next symbol */
1906 break;
1910 debugf0("syndrome(%x) not found\n", syndrome);
1911 return -1;
1914 static int map_err_sym_to_channel(int err_sym, int sym_size)
1916 if (sym_size == 4)
1917 switch (err_sym) {
1918 case 0x20:
1919 case 0x21:
1920 return 0;
1921 break;
1922 case 0x22:
1923 case 0x23:
1924 return 1;
1925 break;
1926 default:
1927 return err_sym >> 4;
1928 break;
1930 /* x8 symbols */
1931 else
1932 switch (err_sym) {
1933 /* imaginary bits not in a DIMM */
1934 case 0x10:
1935 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1936 err_sym);
1937 return -1;
1938 break;
1940 case 0x11:
1941 return 0;
1942 break;
1943 case 0x12:
1944 return 1;
1945 break;
1946 default:
1947 return err_sym >> 3;
1948 break;
1950 return -1;
1953 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1955 struct amd64_pvt *pvt = mci->pvt_info;
1956 u32 value = 0;
1957 int err_sym = 0;
1959 amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
1961 /* F3x180[EccSymbolSize]=1, x8 symbols */
1962 if (boot_cpu_data.x86 == 0x10 &&
1963 boot_cpu_data.x86_model > 7 &&
1964 value & BIT(25)) {
1965 err_sym = decode_syndrome(syndrome, x8_vectors,
1966 ARRAY_SIZE(x8_vectors), 8);
1967 return map_err_sym_to_channel(err_sym, 8);
1968 } else {
1969 err_sym = decode_syndrome(syndrome, x4_vectors,
1970 ARRAY_SIZE(x4_vectors), 4);
1971 return map_err_sym_to_channel(err_sym, 4);
1976 * Check for valid error in the NB Status High register. If so, proceed to read
1977 * NB Status Low, NB Address Low and NB Address High registers and store data
1978 * into error structure.
1980 * Returns:
1981 * - 1: if hardware regs contains valid error info
1982 * - 0: if no valid error is indicated
1984 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
1985 struct err_regs *regs)
1987 struct amd64_pvt *pvt;
1988 struct pci_dev *misc_f3_ctl;
1990 pvt = mci->pvt_info;
1991 misc_f3_ctl = pvt->misc_f3_ctl;
1993 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1994 return 0;
1996 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1997 return 0;
1999 /* valid error, read remaining error information registers */
2000 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
2001 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2002 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2003 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2004 return 0;
2006 return 1;
2010 * This function is called to retrieve the error data from hardware and store it
2011 * in the info structure.
2013 * Returns:
2014 * - 1: if a valid error is found
2015 * - 0: if no error is found
2017 static int amd64_get_error_info(struct mem_ctl_info *mci,
2018 struct err_regs *info)
2020 struct amd64_pvt *pvt;
2021 struct err_regs regs;
2023 pvt = mci->pvt_info;
2025 if (!amd64_get_error_info_regs(mci, info))
2026 return 0;
2029 * Here's the problem with the K8's EDAC reporting: There are four
2030 * registers which report pieces of error information. They are shared
2031 * between CEs and UEs. Furthermore, contrary to what is stated in the
2032 * BKDG, the overflow bit is never used! Every error always updates the
2033 * reporting registers.
2035 * Can you see the race condition? All four error reporting registers
2036 * must be read before a new error updates them! There is no way to read
2037 * all four registers atomically. The best than can be done is to detect
2038 * that a race has occured and then report the error without any kind of
2039 * precision.
2041 * What is still positive is that errors are still reported and thus
2042 * problems can still be detected - just not localized because the
2043 * syndrome and address are spread out across registers.
2045 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2046 * UEs and CEs should have separate register sets with proper overflow
2047 * bits that are used! At very least the problem can be fixed by
2048 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2049 * set the overflow bit - unless the current error is CE and the new
2050 * error is UE which would be the only situation for overwriting the
2051 * current values.
2054 regs = *info;
2056 /* Use info from the second read - most current */
2057 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2058 return 0;
2060 /* clear the error bits in hardware */
2061 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2063 /* Check for the possible race condition */
2064 if ((regs.nbsh != info->nbsh) ||
2065 (regs.nbsl != info->nbsl) ||
2066 (regs.nbeah != info->nbeah) ||
2067 (regs.nbeal != info->nbeal)) {
2068 amd64_mc_printk(mci, KERN_WARNING,
2069 "hardware STATUS read access race condition "
2070 "detected!\n");
2071 return 0;
2073 return 1;
2077 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2078 * ADDRESS and process.
2080 static void amd64_handle_ce(struct mem_ctl_info *mci,
2081 struct err_regs *info)
2083 struct amd64_pvt *pvt = mci->pvt_info;
2084 u64 sys_addr;
2086 /* Ensure that the Error Address is VALID */
2087 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2088 amd64_mc_printk(mci, KERN_ERR,
2089 "HW has no ERROR_ADDRESS available\n");
2090 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2091 return;
2094 sys_addr = pvt->ops->get_error_address(mci, info);
2096 amd64_mc_printk(mci, KERN_ERR,
2097 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2099 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2102 /* Handle any Un-correctable Errors (UEs) */
2103 static void amd64_handle_ue(struct mem_ctl_info *mci,
2104 struct err_regs *info)
2106 struct amd64_pvt *pvt = mci->pvt_info;
2107 struct mem_ctl_info *log_mci, *src_mci = NULL;
2108 int csrow;
2109 u64 sys_addr;
2110 u32 page, offset;
2112 log_mci = mci;
2114 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2115 amd64_mc_printk(mci, KERN_CRIT,
2116 "HW has no ERROR_ADDRESS available\n");
2117 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2118 return;
2121 sys_addr = pvt->ops->get_error_address(mci, info);
2124 * Find out which node the error address belongs to. This may be
2125 * different from the node that detected the error.
2127 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2128 if (!src_mci) {
2129 amd64_mc_printk(mci, KERN_CRIT,
2130 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2131 (unsigned long)sys_addr);
2132 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2133 return;
2136 log_mci = src_mci;
2138 csrow = sys_addr_to_csrow(log_mci, sys_addr);
2139 if (csrow < 0) {
2140 amd64_mc_printk(mci, KERN_CRIT,
2141 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2142 (unsigned long)sys_addr);
2143 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2144 } else {
2145 error_address_to_page_and_offset(sys_addr, &page, &offset);
2146 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2150 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2151 struct err_regs *info)
2153 u32 ec = ERROR_CODE(info->nbsl);
2154 u32 xec = EXT_ERROR_CODE(info->nbsl);
2155 int ecc_type = (info->nbsh >> 13) & 0x3;
2157 /* Bail early out if this was an 'observed' error */
2158 if (PP(ec) == K8_NBSL_PP_OBS)
2159 return;
2161 /* Do only ECC errors */
2162 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2163 return;
2165 if (ecc_type == 2)
2166 amd64_handle_ce(mci, info);
2167 else if (ecc_type == 1)
2168 amd64_handle_ue(mci, info);
2171 * If main error is CE then overflow must be CE. If main error is UE
2172 * then overflow is unknown. We'll call the overflow a CE - if
2173 * panic_on_ue is set then we're already panic'ed and won't arrive
2174 * here. Else, then apparently someone doesn't think that UE's are
2175 * catastrophic.
2177 if (info->nbsh & K8_NBSH_OVERFLOW)
2178 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2181 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2183 struct mem_ctl_info *mci = mci_lookup[node_id];
2185 __amd64_decode_bus_error(mci, regs);
2188 * Check the UE bit of the NB status high register, if set generate some
2189 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2190 * If it was a GART error, skip that process.
2192 * FIXME: this should go somewhere else, if at all.
2194 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2195 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2200 * The main polling 'check' function, called FROM the edac core to perform the
2201 * error checking and if an error is encountered, error processing.
2203 static void amd64_check(struct mem_ctl_info *mci)
2205 struct err_regs regs;
2207 if (amd64_get_error_info(mci, &regs)) {
2208 struct amd64_pvt *pvt = mci->pvt_info;
2209 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2214 * Input:
2215 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2216 * 2) AMD Family index value
2218 * Ouput:
2219 * Upon return of 0, the following filled in:
2221 * struct pvt->addr_f1_ctl
2222 * struct pvt->misc_f3_ctl
2224 * Filled in with related device funcitions of 'dram_f2_ctl'
2225 * These devices are "reserved" via the pci_get_device()
2227 * Upon return of 1 (error status):
2229 * Nothing reserved
2231 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2233 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2235 /* Reserve the ADDRESS MAP Device */
2236 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2237 amd64_dev->addr_f1_ctl,
2238 pvt->dram_f2_ctl);
2240 if (!pvt->addr_f1_ctl) {
2241 amd64_printk(KERN_ERR, "error address map device not found: "
2242 "vendor %x device 0x%x (broken BIOS?)\n",
2243 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2244 return 1;
2247 /* Reserve the MISC Device */
2248 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2249 amd64_dev->misc_f3_ctl,
2250 pvt->dram_f2_ctl);
2252 if (!pvt->misc_f3_ctl) {
2253 pci_dev_put(pvt->addr_f1_ctl);
2254 pvt->addr_f1_ctl = NULL;
2256 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2257 "vendor %x device 0x%x (broken BIOS?)\n",
2258 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2259 return 1;
2262 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2263 pci_name(pvt->addr_f1_ctl));
2264 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2265 pci_name(pvt->dram_f2_ctl));
2266 debugf1(" Misc device PCI Bus ID:\t%s\n",
2267 pci_name(pvt->misc_f3_ctl));
2269 return 0;
2272 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2274 pci_dev_put(pvt->addr_f1_ctl);
2275 pci_dev_put(pvt->misc_f3_ctl);
2279 * Retrieve the hardware registers of the memory controller (this includes the
2280 * 'Address Map' and 'Misc' device regs)
2282 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2284 u64 msr_val;
2285 int dram;
2288 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2289 * those are Read-As-Zero
2291 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2292 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2294 /* check first whether TOP_MEM2 is enabled */
2295 rdmsrl(MSR_K8_SYSCFG, msr_val);
2296 if (msr_val & (1U << 21)) {
2297 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2298 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2299 } else
2300 debugf0(" TOP_MEM2 disabled.\n");
2302 amd64_cpu_display_info(pvt);
2304 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2306 if (pvt->ops->read_dram_ctl_register)
2307 pvt->ops->read_dram_ctl_register(pvt);
2309 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2311 * Call CPU specific READ function to get the DRAM Base and
2312 * Limit values from the DCT.
2314 pvt->ops->read_dram_base_limit(pvt, dram);
2317 * Only print out debug info on rows with both R and W Enabled.
2318 * Normal processing, compiler should optimize this whole 'if'
2319 * debug output block away.
2321 if (pvt->dram_rw_en[dram] != 0) {
2322 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2323 "DRAM-LIMIT: 0x%016llx\n",
2324 dram,
2325 pvt->dram_base[dram],
2326 pvt->dram_limit[dram]);
2328 debugf1(" IntlvEn=%s %s %s "
2329 "IntlvSel=%d DstNode=%d\n",
2330 pvt->dram_IntlvEn[dram] ?
2331 "Enabled" : "Disabled",
2332 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2333 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2334 pvt->dram_IntlvSel[dram],
2335 pvt->dram_DstNode[dram]);
2339 amd64_read_dct_base_mask(pvt);
2341 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2342 amd64_read_dbam_reg(pvt);
2344 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2345 F10_ONLINE_SPARE, &pvt->online_spare);
2347 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2348 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2350 if (!dct_ganging_enabled(pvt)) {
2351 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2352 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2354 amd64_dump_misc_regs(pvt);
2358 * NOTE: CPU Revision Dependent code
2360 * Input:
2361 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2362 * k8 private pointer to -->
2363 * DRAM Bank Address mapping register
2364 * node_id
2365 * DCL register where dual_channel_active is
2367 * The DBAM register consists of 4 sets of 4 bits each definitions:
2369 * Bits: CSROWs
2370 * 0-3 CSROWs 0 and 1
2371 * 4-7 CSROWs 2 and 3
2372 * 8-11 CSROWs 4 and 5
2373 * 12-15 CSROWs 6 and 7
2375 * Values range from: 0 to 15
2376 * The meaning of the values depends on CPU revision and dual-channel state,
2377 * see relevant BKDG more info.
2379 * The memory controller provides for total of only 8 CSROWs in its current
2380 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2381 * single channel or two (2) DIMMs in dual channel mode.
2383 * The following code logic collapses the various tables for CSROW based on CPU
2384 * revision.
2386 * Returns:
2387 * The number of PAGE_SIZE pages on the specified CSROW number it
2388 * encompasses
2391 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2393 u32 cs_mode, nr_pages;
2396 * The math on this doesn't look right on the surface because x/2*4 can
2397 * be simplified to x*2 but this expression makes use of the fact that
2398 * it is integral math where 1/2=0. This intermediate value becomes the
2399 * number of bits to shift the DBAM register to extract the proper CSROW
2400 * field.
2402 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2404 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2407 * If dual channel then double the memory size of single channel.
2408 * Channel count is 1 or 2
2410 nr_pages <<= (pvt->channel_count - 1);
2412 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2413 debugf0(" nr_pages= %u channel-count = %d\n",
2414 nr_pages, pvt->channel_count);
2416 return nr_pages;
2420 * Initialize the array of csrow attribute instances, based on the values
2421 * from pci config hardware registers.
2423 static int amd64_init_csrows(struct mem_ctl_info *mci)
2425 struct csrow_info *csrow;
2426 struct amd64_pvt *pvt;
2427 u64 input_addr_min, input_addr_max, sys_addr;
2428 int i, empty = 1;
2430 pvt = mci->pvt_info;
2432 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2434 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2435 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2436 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2439 for (i = 0; i < pvt->cs_count; i++) {
2440 csrow = &mci->csrows[i];
2442 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2443 debugf1("----CSROW %d EMPTY for node %d\n", i,
2444 pvt->mc_node_id);
2445 continue;
2448 debugf1("----CSROW %d VALID for MC node %d\n",
2449 i, pvt->mc_node_id);
2451 empty = 0;
2452 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2453 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2454 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2455 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2456 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2457 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2458 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2459 /* 8 bytes of resolution */
2461 csrow->mtype = amd64_determine_memory_type(pvt);
2463 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2464 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2465 (unsigned long)input_addr_min,
2466 (unsigned long)input_addr_max);
2467 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2468 (unsigned long)sys_addr, csrow->page_mask);
2469 debugf1(" nr_pages: %u first_page: 0x%lx "
2470 "last_page: 0x%lx\n",
2471 (unsigned)csrow->nr_pages,
2472 csrow->first_page, csrow->last_page);
2475 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2477 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2478 csrow->edac_mode =
2479 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2480 EDAC_S4ECD4ED : EDAC_SECDED;
2481 else
2482 csrow->edac_mode = EDAC_NONE;
2485 return empty;
2488 /* get all cores on this DCT */
2489 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2491 int cpu;
2493 for_each_online_cpu(cpu)
2494 if (amd_get_nb_id(cpu) == nid)
2495 cpumask_set_cpu(cpu, mask);
2498 /* check MCG_CTL on all the cpus on this node */
2499 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2501 cpumask_var_t mask;
2502 struct msr *msrs;
2503 int cpu, nbe, idx = 0;
2504 bool ret = false;
2506 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2507 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2508 __func__);
2509 return false;
2512 get_cpus_on_this_dct_cpumask(mask, nid);
2514 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(mask), GFP_KERNEL);
2515 if (!msrs) {
2516 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2517 __func__);
2518 free_cpumask_var(mask);
2519 return false;
2522 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2524 for_each_cpu(cpu, mask) {
2525 nbe = msrs[idx].l & K8_MSR_MCGCTL_NBE;
2527 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2528 cpu, msrs[idx].q,
2529 (nbe ? "enabled" : "disabled"));
2531 if (!nbe)
2532 goto out;
2534 idx++;
2536 ret = true;
2538 out:
2539 kfree(msrs);
2540 free_cpumask_var(mask);
2541 return ret;
2544 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2546 cpumask_var_t cmask;
2547 struct msr *msrs = NULL;
2548 int cpu, idx = 0;
2550 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2551 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2552 __func__);
2553 return false;
2556 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2558 msrs = kzalloc(sizeof(struct msr) * cpumask_weight(cmask), GFP_KERNEL);
2559 if (!msrs) {
2560 amd64_printk(KERN_WARNING, "%s: error allocating msrs\n",
2561 __func__);
2562 return -ENOMEM;
2565 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2567 for_each_cpu(cpu, cmask) {
2569 if (on) {
2570 if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
2571 pvt->flags.ecc_report = 1;
2573 msrs[idx].l |= K8_MSR_MCGCTL_NBE;
2574 } else {
2576 * Turn off ECC reporting only when it was off before
2578 if (!pvt->flags.ecc_report)
2579 msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
2581 idx++;
2583 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2585 kfree(msrs);
2586 free_cpumask_var(cmask);
2588 return 0;
2592 * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
2593 * enable it.
2595 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2597 struct amd64_pvt *pvt = mci->pvt_info;
2598 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2600 if (!ecc_enable_override)
2601 return;
2603 amd64_printk(KERN_WARNING,
2604 "'ecc_enable_override' parameter is active, "
2605 "Enabling AMD ECC hardware now: CAUTION\n");
2607 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2609 /* turn on UECCn and CECCEn bits */
2610 pvt->old_nbctl = value & mask;
2611 pvt->nbctl_mcgctl_saved = 1;
2613 value |= mask;
2614 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2616 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2617 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2618 "MCGCTL!\n");
2620 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2622 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2623 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2624 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2626 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2627 amd64_printk(KERN_WARNING,
2628 "This node reports that DRAM ECC is "
2629 "currently Disabled; ENABLING now\n");
2631 /* Attempt to turn on DRAM ECC Enable */
2632 value |= K8_NBCFG_ECC_ENABLE;
2633 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2635 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2637 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2638 amd64_printk(KERN_WARNING,
2639 "Hardware rejects Enabling DRAM ECC checking\n"
2640 "Check memory DIMM configuration\n");
2641 } else {
2642 amd64_printk(KERN_DEBUG,
2643 "Hardware accepted DRAM ECC Enable\n");
2646 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2647 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2648 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2650 pvt->ctl_error_info.nbcfg = value;
2653 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2655 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2657 if (!pvt->nbctl_mcgctl_saved)
2658 return;
2660 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2661 value &= ~mask;
2662 value |= pvt->old_nbctl;
2664 /* restore the NB Enable MCGCTL bit */
2665 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2667 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2668 amd64_printk(KERN_WARNING, "Error restoring ECC reporting over "
2669 "MCGCTL!\n");
2673 * EDAC requires that the BIOS have ECC enabled before taking over the
2674 * processing of ECC errors. This is because the BIOS can properly initialize
2675 * the memory system completely. A command line option allows to force-enable
2676 * hardware ECC later in amd64_enable_ecc_error_reporting().
2678 static const char *ecc_warning =
2679 "WARNING: ECC is disabled by BIOS. Module will NOT be loaded.\n"
2680 " Either Enable ECC in the BIOS, or set 'ecc_enable_override'.\n"
2681 " Also, use of the override can cause unknown side effects.\n";
2683 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2685 u32 value;
2686 u8 ecc_enabled = 0;
2687 bool nb_mce_en = false;
2689 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2691 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2692 if (!ecc_enabled)
2693 amd64_printk(KERN_WARNING, "This node reports that Memory ECC "
2694 "is currently disabled, set F3x%x[22] (%s).\n",
2695 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2696 else
2697 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2699 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2700 if (!nb_mce_en)
2701 amd64_printk(KERN_WARNING, "NB MCE bank disabled, set MSR "
2702 "0x%08x[4] on node %d to enable.\n",
2703 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2705 if (!ecc_enabled || !nb_mce_en) {
2706 if (!ecc_enable_override) {
2707 amd64_printk(KERN_WARNING, "%s", ecc_warning);
2708 return -ENODEV;
2710 } else
2711 /* CLEAR the override, since BIOS controlled it */
2712 ecc_enable_override = 0;
2714 return 0;
2717 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2718 ARRAY_SIZE(amd64_inj_attrs) +
2721 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2723 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2725 unsigned int i = 0, j = 0;
2727 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2728 sysfs_attrs[i] = amd64_dbg_attrs[i];
2730 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2731 sysfs_attrs[i] = amd64_inj_attrs[j];
2733 sysfs_attrs[i] = terminator;
2735 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2738 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2740 struct amd64_pvt *pvt = mci->pvt_info;
2742 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2743 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2745 if (pvt->nbcap & K8_NBCAP_SECDED)
2746 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2748 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2749 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2751 mci->edac_cap = amd64_determine_edac_cap(pvt);
2752 mci->mod_name = EDAC_MOD_STR;
2753 mci->mod_ver = EDAC_AMD64_VERSION;
2754 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2755 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2756 mci->ctl_page_to_phys = NULL;
2758 /* IMPORTANT: Set the polling 'check' function in this module */
2759 mci->edac_check = amd64_check;
2761 /* memory scrubber interface */
2762 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2763 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2767 * Init stuff for this DRAM Controller device.
2769 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2770 * Space feature MUST be enabled on ALL Processors prior to actually reading
2771 * from the ECS registers. Since the loading of the module can occur on any
2772 * 'core', and cores don't 'see' all the other processors ECS data when the
2773 * others are NOT enabled. Our solution is to first enable ECS access in this
2774 * routine on all processors, gather some data in a amd64_pvt structure and
2775 * later come back in a finish-setup function to perform that final
2776 * initialization. See also amd64_init_2nd_stage() for that.
2778 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2779 int mc_type_index)
2781 struct amd64_pvt *pvt = NULL;
2782 int err = 0, ret;
2784 ret = -ENOMEM;
2785 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2786 if (!pvt)
2787 goto err_exit;
2789 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2791 pvt->dram_f2_ctl = dram_f2_ctl;
2792 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2793 pvt->mc_type_index = mc_type_index;
2794 pvt->ops = family_ops(mc_type_index);
2797 * We have the dram_f2_ctl device as an argument, now go reserve its
2798 * sibling devices from the PCI system.
2800 ret = -ENODEV;
2801 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2802 if (err)
2803 goto err_free;
2805 ret = -EINVAL;
2806 err = amd64_check_ecc_enabled(pvt);
2807 if (err)
2808 goto err_put;
2811 * Key operation here: setup of HW prior to performing ops on it. Some
2812 * setup is required to access ECS data. After this is performed, the
2813 * 'teardown' function must be called upon error and normal exit paths.
2815 if (boot_cpu_data.x86 >= 0x10)
2816 amd64_setup(pvt);
2819 * Save the pointer to the private data for use in 2nd initialization
2820 * stage
2822 pvt_lookup[pvt->mc_node_id] = pvt;
2824 return 0;
2826 err_put:
2827 amd64_free_mc_sibling_devices(pvt);
2829 err_free:
2830 kfree(pvt);
2832 err_exit:
2833 return ret;
2837 * This is the finishing stage of the init code. Needs to be performed after all
2838 * MCs' hardware have been prepped for accessing extended config space.
2840 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2842 int node_id = pvt->mc_node_id;
2843 struct mem_ctl_info *mci;
2844 int ret;
2846 amd64_read_mc_registers(pvt);
2849 * We need to determine how many memory channels there are. Then use
2850 * that information for calculating the size of the dynamic instance
2851 * tables in the 'mci' structure
2853 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2854 if (pvt->channel_count < 0)
2855 goto err_exit;
2857 ret = -ENOMEM;
2858 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2859 if (!mci)
2860 goto err_exit;
2862 mci->pvt_info = pvt;
2864 mci->dev = &pvt->dram_f2_ctl->dev;
2865 amd64_setup_mci_misc_attributes(mci);
2867 if (amd64_init_csrows(mci))
2868 mci->edac_cap = EDAC_FLAG_NONE;
2870 amd64_enable_ecc_error_reporting(mci);
2871 amd64_set_mc_sysfs_attributes(mci);
2873 ret = -ENODEV;
2874 if (edac_mc_add_mc(mci)) {
2875 debugf1("failed edac_mc_add_mc()\n");
2876 goto err_add_mc;
2879 mci_lookup[node_id] = mci;
2880 pvt_lookup[node_id] = NULL;
2882 /* register stuff with EDAC MCE */
2883 if (report_gart_errors)
2884 amd_report_gart_errors(true);
2886 amd_register_ecc_decoder(amd64_decode_bus_error);
2888 return 0;
2890 err_add_mc:
2891 edac_mc_free(mci);
2893 err_exit:
2894 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2896 amd64_restore_ecc_error_reporting(pvt);
2898 if (boot_cpu_data.x86 > 0xf)
2899 amd64_teardown(pvt);
2901 amd64_free_mc_sibling_devices(pvt);
2903 kfree(pvt_lookup[pvt->mc_node_id]);
2904 pvt_lookup[node_id] = NULL;
2906 return ret;
2910 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2911 const struct pci_device_id *mc_type)
2913 int ret = 0;
2915 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2916 get_amd_family_name(mc_type->driver_data));
2918 ret = pci_enable_device(pdev);
2919 if (ret < 0)
2920 ret = -EIO;
2921 else
2922 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2924 if (ret < 0)
2925 debugf0("ret=%d\n", ret);
2927 return ret;
2930 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2932 struct mem_ctl_info *mci;
2933 struct amd64_pvt *pvt;
2935 /* Remove from EDAC CORE tracking list */
2936 mci = edac_mc_del_mc(&pdev->dev);
2937 if (!mci)
2938 return;
2940 pvt = mci->pvt_info;
2942 amd64_restore_ecc_error_reporting(pvt);
2944 if (boot_cpu_data.x86 > 0xf)
2945 amd64_teardown(pvt);
2947 amd64_free_mc_sibling_devices(pvt);
2949 kfree(pvt);
2950 mci->pvt_info = NULL;
2952 mci_lookup[pvt->mc_node_id] = NULL;
2954 /* unregister from EDAC MCE */
2955 amd_report_gart_errors(false);
2956 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2958 /* Free the EDAC CORE resources */
2959 edac_mc_free(mci);
2963 * This table is part of the interface for loading drivers for PCI devices. The
2964 * PCI core identifies what devices are on a system during boot, and then
2965 * inquiry this table to see if this driver is for a given device found.
2967 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2969 .vendor = PCI_VENDOR_ID_AMD,
2970 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2971 .subvendor = PCI_ANY_ID,
2972 .subdevice = PCI_ANY_ID,
2973 .class = 0,
2974 .class_mask = 0,
2975 .driver_data = K8_CPUS
2978 .vendor = PCI_VENDOR_ID_AMD,
2979 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2980 .subvendor = PCI_ANY_ID,
2981 .subdevice = PCI_ANY_ID,
2982 .class = 0,
2983 .class_mask = 0,
2984 .driver_data = F10_CPUS
2987 .vendor = PCI_VENDOR_ID_AMD,
2988 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2989 .subvendor = PCI_ANY_ID,
2990 .subdevice = PCI_ANY_ID,
2991 .class = 0,
2992 .class_mask = 0,
2993 .driver_data = F11_CPUS
2995 {0, }
2997 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2999 static struct pci_driver amd64_pci_driver = {
3000 .name = EDAC_MOD_STR,
3001 .probe = amd64_init_one_instance,
3002 .remove = __devexit_p(amd64_remove_one_instance),
3003 .id_table = amd64_pci_table,
3006 static void amd64_setup_pci_device(void)
3008 struct mem_ctl_info *mci;
3009 struct amd64_pvt *pvt;
3011 if (amd64_ctl_pci)
3012 return;
3014 mci = mci_lookup[0];
3015 if (mci) {
3017 pvt = mci->pvt_info;
3018 amd64_ctl_pci =
3019 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3020 EDAC_MOD_STR);
3022 if (!amd64_ctl_pci) {
3023 pr_warning("%s(): Unable to create PCI control\n",
3024 __func__);
3026 pr_warning("%s(): PCI error report via EDAC not set\n",
3027 __func__);
3032 static int __init amd64_edac_init(void)
3034 int nb, err = -ENODEV;
3036 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3038 opstate_init();
3040 if (cache_k8_northbridges() < 0)
3041 return err;
3043 err = pci_register_driver(&amd64_pci_driver);
3044 if (err)
3045 return err;
3048 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3049 * amd64_pvt structs. These will be used in the 2nd stage init function
3050 * to finish initialization of the MC instances.
3052 for (nb = 0; nb < num_k8_northbridges; nb++) {
3053 if (!pvt_lookup[nb])
3054 continue;
3056 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3057 if (err)
3058 goto err_2nd_stage;
3061 amd64_setup_pci_device();
3063 return 0;
3065 err_2nd_stage:
3066 debugf0("2nd stage failed\n");
3067 pci_unregister_driver(&amd64_pci_driver);
3069 return err;
3072 static void __exit amd64_edac_exit(void)
3074 if (amd64_ctl_pci)
3075 edac_pci_release_generic_ctl(amd64_ctl_pci);
3077 pci_unregister_driver(&amd64_pci_driver);
3080 module_init(amd64_edac_init);
3081 module_exit(amd64_edac_exit);
3083 MODULE_LICENSE("GPL");
3084 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3085 "Dave Peterson, Thayne Harbaugh");
3086 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3087 EDAC_AMD64_VERSION);
3089 module_param(edac_op_state, int, 0444);
3090 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");