2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/memory.h>
31 * The slab_lock protects operations on the object of a particular
32 * slab and its metadata in the page struct. If the slab lock
33 * has been taken then no allocations nor frees can be performed
34 * on the objects in the slab nor can the slab be added or removed
35 * from the partial or full lists since this would mean modifying
36 * the page_struct of the slab.
38 * The list_lock protects the partial and full list on each node and
39 * the partial slab counter. If taken then no new slabs may be added or
40 * removed from the lists nor make the number of partial slabs be modified.
41 * (Note that the total number of slabs is an atomic value that may be
42 * modified without taking the list lock).
44 * The list_lock is a centralized lock and thus we avoid taking it as
45 * much as possible. As long as SLUB does not have to handle partial
46 * slabs, operations can continue without any centralized lock. F.e.
47 * allocating a long series of objects that fill up slabs does not require
50 * The lock order is sometimes inverted when we are trying to get a slab
51 * off a list. We take the list_lock and then look for a page on the list
52 * to use. While we do that objects in the slabs may be freed. We can
53 * only operate on the slab if we have also taken the slab_lock. So we use
54 * a slab_trylock() on the slab. If trylock was successful then no frees
55 * can occur anymore and we can use the slab for allocations etc. If the
56 * slab_trylock() does not succeed then frees are in progress in the slab and
57 * we must stay away from it for a while since we may cause a bouncing
58 * cacheline if we try to acquire the lock. So go onto the next slab.
59 * If all pages are busy then we may allocate a new slab instead of reusing
60 * a partial slab. A new slab has noone operating on it and thus there is
61 * no danger of cacheline contention.
63 * Interrupts are disabled during allocation and deallocation in order to
64 * make the slab allocator safe to use in the context of an irq. In addition
65 * interrupts are disabled to ensure that the processor does not change
66 * while handling per_cpu slabs, due to kernel preemption.
68 * SLUB assigns one slab for allocation to each processor.
69 * Allocations only occur from these slabs called cpu slabs.
71 * Slabs with free elements are kept on a partial list and during regular
72 * operations no list for full slabs is used. If an object in a full slab is
73 * freed then the slab will show up again on the partial lists.
74 * We track full slabs for debugging purposes though because otherwise we
75 * cannot scan all objects.
77 * Slabs are freed when they become empty. Teardown and setup is
78 * minimal so we rely on the page allocators per cpu caches for
79 * fast frees and allocs.
81 * Overloading of page flags that are otherwise used for LRU management.
83 * PageActive The slab is frozen and exempt from list processing.
84 * This means that the slab is dedicated to a purpose
85 * such as satisfying allocations for a specific
86 * processor. Objects may be freed in the slab while
87 * it is frozen but slab_free will then skip the usual
88 * list operations. It is up to the processor holding
89 * the slab to integrate the slab into the slab lists
90 * when the slab is no longer needed.
92 * One use of this flag is to mark slabs that are
93 * used for allocations. Then such a slab becomes a cpu
94 * slab. The cpu slab may be equipped with an additional
95 * freelist that allows lockless access to
96 * free objects in addition to the regular freelist
97 * that requires the slab lock.
99 * PageError Slab requires special handling due to debug
100 * options set. This moves slab handling out of
101 * the fast path and disables lockless freelists.
104 #define FROZEN (1 << PG_active)
106 #ifdef CONFIG_SLUB_DEBUG
107 #define SLABDEBUG (1 << PG_error)
112 static inline int SlabFrozen(struct page
*page
)
114 return page
->flags
& FROZEN
;
117 static inline void SetSlabFrozen(struct page
*page
)
119 page
->flags
|= FROZEN
;
122 static inline void ClearSlabFrozen(struct page
*page
)
124 page
->flags
&= ~FROZEN
;
127 static inline int SlabDebug(struct page
*page
)
129 return page
->flags
& SLABDEBUG
;
132 static inline void SetSlabDebug(struct page
*page
)
134 page
->flags
|= SLABDEBUG
;
137 static inline void ClearSlabDebug(struct page
*page
)
139 page
->flags
&= ~SLABDEBUG
;
143 * Issues still to be resolved:
145 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
147 * - Variable sizing of the per node arrays
150 /* Enable to test recovery from slab corruption on boot */
151 #undef SLUB_RESILIENCY_TEST
154 * Mininum number of partial slabs. These will be left on the partial
155 * lists even if they are empty. kmem_cache_shrink may reclaim them.
157 #define MIN_PARTIAL 5
160 * Maximum number of desirable partial slabs.
161 * The existence of more partial slabs makes kmem_cache_shrink
162 * sort the partial list by the number of objects in the.
164 #define MAX_PARTIAL 10
166 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
167 SLAB_POISON | SLAB_STORE_USER)
170 * Set of flags that will prevent slab merging
172 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
173 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
175 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
178 #ifndef ARCH_KMALLOC_MINALIGN
179 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
182 #ifndef ARCH_SLAB_MINALIGN
183 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
186 /* Internal SLUB flags */
187 #define __OBJECT_POISON 0x80000000 /* Poison object */
188 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
190 static int kmem_size
= sizeof(struct kmem_cache
);
193 static struct notifier_block slab_notifier
;
197 DOWN
, /* No slab functionality available */
198 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
199 UP
, /* Everything works but does not show up in sysfs */
203 /* A list of all slab caches on the system */
204 static DECLARE_RWSEM(slub_lock
);
205 static LIST_HEAD(slab_caches
);
208 * Tracking user of a slab.
211 void *addr
; /* Called from address */
212 int cpu
; /* Was running on cpu */
213 int pid
; /* Pid context */
214 unsigned long when
; /* When did the operation occur */
217 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
219 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
220 static int sysfs_slab_add(struct kmem_cache
*);
221 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
222 static void sysfs_slab_remove(struct kmem_cache
*);
225 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
226 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
228 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
235 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
237 #ifdef CONFIG_SLUB_STATS
242 /********************************************************************
243 * Core slab cache functions
244 *******************************************************************/
246 int slab_is_available(void)
248 return slab_state
>= UP
;
251 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
254 return s
->node
[node
];
256 return &s
->local_node
;
260 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
263 return s
->cpu_slab
[cpu
];
269 /* Verify that a pointer has an address that is valid within a slab page */
270 static inline int check_valid_pointer(struct kmem_cache
*s
,
271 struct page
*page
, const void *object
)
278 base
= page_address(page
);
279 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
280 (object
- base
) % s
->size
) {
288 * Slow version of get and set free pointer.
290 * This version requires touching the cache lines of kmem_cache which
291 * we avoid to do in the fast alloc free paths. There we obtain the offset
292 * from the page struct.
294 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
296 return *(void **)(object
+ s
->offset
);
299 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
301 *(void **)(object
+ s
->offset
) = fp
;
304 /* Loop over all objects in a slab */
305 #define for_each_object(__p, __s, __addr, __objects) \
306 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
310 #define for_each_free_object(__p, __s, __free) \
311 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
316 return (p
- addr
) / s
->size
;
319 static inline struct kmem_cache_order_objects
oo_make(int order
,
322 struct kmem_cache_order_objects x
= {
323 (order
<< 16) + (PAGE_SIZE
<< order
) / size
329 static inline int oo_order(struct kmem_cache_order_objects x
)
334 static inline int oo_objects(struct kmem_cache_order_objects x
)
336 return x
.x
& ((1 << 16) - 1);
339 #ifdef CONFIG_SLUB_DEBUG
343 #ifdef CONFIG_SLUB_DEBUG_ON
344 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
346 static int slub_debug
;
349 static char *slub_debug_slabs
;
354 static void print_section(char *text
, u8
*addr
, unsigned int length
)
362 for (i
= 0; i
< length
; i
++) {
364 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
367 printk(KERN_CONT
" %02x", addr
[i
]);
369 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
371 printk(KERN_CONT
" %s\n", ascii
);
378 printk(KERN_CONT
" ");
382 printk(KERN_CONT
" %s\n", ascii
);
386 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
387 enum track_item alloc
)
392 p
= object
+ s
->offset
+ sizeof(void *);
394 p
= object
+ s
->inuse
;
399 static void set_track(struct kmem_cache
*s
, void *object
,
400 enum track_item alloc
, void *addr
)
405 p
= object
+ s
->offset
+ sizeof(void *);
407 p
= object
+ s
->inuse
;
412 p
->cpu
= smp_processor_id();
413 p
->pid
= current
? current
->pid
: -1;
416 memset(p
, 0, sizeof(struct track
));
419 static void init_tracking(struct kmem_cache
*s
, void *object
)
421 if (!(s
->flags
& SLAB_STORE_USER
))
424 set_track(s
, object
, TRACK_FREE
, NULL
);
425 set_track(s
, object
, TRACK_ALLOC
, NULL
);
428 static void print_track(const char *s
, struct track
*t
)
433 printk(KERN_ERR
"INFO: %s in ", s
);
434 __print_symbol("%s", (unsigned long)t
->addr
);
435 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
438 static void print_tracking(struct kmem_cache
*s
, void *object
)
440 if (!(s
->flags
& SLAB_STORE_USER
))
443 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
444 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
447 static void print_page_info(struct page
*page
)
449 printk(KERN_ERR
"INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
450 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
454 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
460 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
462 printk(KERN_ERR
"========================================"
463 "=====================================\n");
464 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
465 printk(KERN_ERR
"----------------------------------------"
466 "-------------------------------------\n\n");
469 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
475 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
477 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
480 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
482 unsigned int off
; /* Offset of last byte */
483 u8
*addr
= page_address(page
);
485 print_tracking(s
, p
);
487 print_page_info(page
);
489 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
490 p
, p
- addr
, get_freepointer(s
, p
));
493 print_section("Bytes b4", p
- 16, 16);
495 print_section("Object", p
, min(s
->objsize
, 128));
497 if (s
->flags
& SLAB_RED_ZONE
)
498 print_section("Redzone", p
+ s
->objsize
,
499 s
->inuse
- s
->objsize
);
502 off
= s
->offset
+ sizeof(void *);
506 if (s
->flags
& SLAB_STORE_USER
)
507 off
+= 2 * sizeof(struct track
);
510 /* Beginning of the filler is the free pointer */
511 print_section("Padding", p
+ off
, s
->size
- off
);
516 static void object_err(struct kmem_cache
*s
, struct page
*page
,
517 u8
*object
, char *reason
)
519 slab_bug(s
, "%s", reason
);
520 print_trailer(s
, page
, object
);
523 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
529 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
531 slab_bug(s
, "%s", buf
);
532 print_page_info(page
);
536 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
540 if (s
->flags
& __OBJECT_POISON
) {
541 memset(p
, POISON_FREE
, s
->objsize
- 1);
542 p
[s
->objsize
- 1] = POISON_END
;
545 if (s
->flags
& SLAB_RED_ZONE
)
546 memset(p
+ s
->objsize
,
547 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
548 s
->inuse
- s
->objsize
);
551 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
554 if (*start
!= (u8
)value
)
562 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
563 void *from
, void *to
)
565 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
566 memset(from
, data
, to
- from
);
569 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
570 u8
*object
, char *what
,
571 u8
*start
, unsigned int value
, unsigned int bytes
)
576 fault
= check_bytes(start
, value
, bytes
);
581 while (end
> fault
&& end
[-1] == value
)
584 slab_bug(s
, "%s overwritten", what
);
585 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
586 fault
, end
- 1, fault
[0], value
);
587 print_trailer(s
, page
, object
);
589 restore_bytes(s
, what
, value
, fault
, end
);
597 * Bytes of the object to be managed.
598 * If the freepointer may overlay the object then the free
599 * pointer is the first word of the object.
601 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
604 * object + s->objsize
605 * Padding to reach word boundary. This is also used for Redzoning.
606 * Padding is extended by another word if Redzoning is enabled and
609 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
610 * 0xcc (RED_ACTIVE) for objects in use.
613 * Meta data starts here.
615 * A. Free pointer (if we cannot overwrite object on free)
616 * B. Tracking data for SLAB_STORE_USER
617 * C. Padding to reach required alignment boundary or at mininum
618 * one word if debugging is on to be able to detect writes
619 * before the word boundary.
621 * Padding is done using 0x5a (POISON_INUSE)
624 * Nothing is used beyond s->size.
626 * If slabcaches are merged then the objsize and inuse boundaries are mostly
627 * ignored. And therefore no slab options that rely on these boundaries
628 * may be used with merged slabcaches.
631 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
633 unsigned long off
= s
->inuse
; /* The end of info */
636 /* Freepointer is placed after the object. */
637 off
+= sizeof(void *);
639 if (s
->flags
& SLAB_STORE_USER
)
640 /* We also have user information there */
641 off
+= 2 * sizeof(struct track
);
646 return check_bytes_and_report(s
, page
, p
, "Object padding",
647 p
+ off
, POISON_INUSE
, s
->size
- off
);
650 /* Check the pad bytes at the end of a slab page */
651 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
659 if (!(s
->flags
& SLAB_POISON
))
662 start
= page_address(page
);
663 length
= (PAGE_SIZE
<< compound_order(page
));
664 end
= start
+ length
;
665 remainder
= length
% s
->size
;
669 fault
= check_bytes(end
- remainder
, POISON_INUSE
, remainder
);
672 while (end
> fault
&& end
[-1] == POISON_INUSE
)
675 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
676 print_section("Padding", end
- remainder
, remainder
);
678 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
682 static int check_object(struct kmem_cache
*s
, struct page
*page
,
683 void *object
, int active
)
686 u8
*endobject
= object
+ s
->objsize
;
688 if (s
->flags
& SLAB_RED_ZONE
) {
690 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
692 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
693 endobject
, red
, s
->inuse
- s
->objsize
))
696 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
697 check_bytes_and_report(s
, page
, p
, "Alignment padding",
698 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
702 if (s
->flags
& SLAB_POISON
) {
703 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
704 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
705 POISON_FREE
, s
->objsize
- 1) ||
706 !check_bytes_and_report(s
, page
, p
, "Poison",
707 p
+ s
->objsize
- 1, POISON_END
, 1)))
710 * check_pad_bytes cleans up on its own.
712 check_pad_bytes(s
, page
, p
);
715 if (!s
->offset
&& active
)
717 * Object and freepointer overlap. Cannot check
718 * freepointer while object is allocated.
722 /* Check free pointer validity */
723 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
724 object_err(s
, page
, p
, "Freepointer corrupt");
726 * No choice but to zap it and thus loose the remainder
727 * of the free objects in this slab. May cause
728 * another error because the object count is now wrong.
730 set_freepointer(s
, p
, NULL
);
736 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
740 VM_BUG_ON(!irqs_disabled());
742 if (!PageSlab(page
)) {
743 slab_err(s
, page
, "Not a valid slab page");
747 maxobj
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
748 if (page
->objects
> maxobj
) {
749 slab_err(s
, page
, "objects %u > max %u",
750 s
->name
, page
->objects
, maxobj
);
753 if (page
->inuse
> page
->objects
) {
754 slab_err(s
, page
, "inuse %u > max %u",
755 s
->name
, page
->inuse
, page
->objects
);
758 /* Slab_pad_check fixes things up after itself */
759 slab_pad_check(s
, page
);
764 * Determine if a certain object on a page is on the freelist. Must hold the
765 * slab lock to guarantee that the chains are in a consistent state.
767 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
770 void *fp
= page
->freelist
;
772 unsigned long max_objects
;
774 while (fp
&& nr
<= page
->objects
) {
777 if (!check_valid_pointer(s
, page
, fp
)) {
779 object_err(s
, page
, object
,
780 "Freechain corrupt");
781 set_freepointer(s
, object
, NULL
);
784 slab_err(s
, page
, "Freepointer corrupt");
785 page
->freelist
= NULL
;
786 page
->inuse
= page
->objects
;
787 slab_fix(s
, "Freelist cleared");
793 fp
= get_freepointer(s
, object
);
797 max_objects
= (PAGE_SIZE
<< compound_order(page
)) / s
->size
;
798 if (max_objects
> 65535)
801 if (page
->objects
!= max_objects
) {
802 slab_err(s
, page
, "Wrong number of objects. Found %d but "
803 "should be %d", page
->objects
, max_objects
);
804 page
->objects
= max_objects
;
805 slab_fix(s
, "Number of objects adjusted.");
807 if (page
->inuse
!= page
->objects
- nr
) {
808 slab_err(s
, page
, "Wrong object count. Counter is %d but "
809 "counted were %d", page
->inuse
, page
->objects
- nr
);
810 page
->inuse
= page
->objects
- nr
;
811 slab_fix(s
, "Object count adjusted.");
813 return search
== NULL
;
816 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
818 if (s
->flags
& SLAB_TRACE
) {
819 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
821 alloc
? "alloc" : "free",
826 print_section("Object", (void *)object
, s
->objsize
);
833 * Tracking of fully allocated slabs for debugging purposes.
835 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
837 spin_lock(&n
->list_lock
);
838 list_add(&page
->lru
, &n
->full
);
839 spin_unlock(&n
->list_lock
);
842 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
844 struct kmem_cache_node
*n
;
846 if (!(s
->flags
& SLAB_STORE_USER
))
849 n
= get_node(s
, page_to_nid(page
));
851 spin_lock(&n
->list_lock
);
852 list_del(&page
->lru
);
853 spin_unlock(&n
->list_lock
);
856 /* Tracking of the number of slabs for debugging purposes */
857 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
859 struct kmem_cache_node
*n
= get_node(s
, node
);
861 return atomic_long_read(&n
->nr_slabs
);
864 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
866 struct kmem_cache_node
*n
= get_node(s
, node
);
869 * May be called early in order to allocate a slab for the
870 * kmem_cache_node structure. Solve the chicken-egg
871 * dilemma by deferring the increment of the count during
872 * bootstrap (see early_kmem_cache_node_alloc).
874 if (!NUMA_BUILD
|| n
) {
875 atomic_long_inc(&n
->nr_slabs
);
876 atomic_long_add(objects
, &n
->total_objects
);
879 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
881 struct kmem_cache_node
*n
= get_node(s
, node
);
883 atomic_long_dec(&n
->nr_slabs
);
884 atomic_long_sub(objects
, &n
->total_objects
);
887 /* Object debug checks for alloc/free paths */
888 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
891 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
894 init_object(s
, object
, 0);
895 init_tracking(s
, object
);
898 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
899 void *object
, void *addr
)
901 if (!check_slab(s
, page
))
904 if (!on_freelist(s
, page
, object
)) {
905 object_err(s
, page
, object
, "Object already allocated");
909 if (!check_valid_pointer(s
, page
, object
)) {
910 object_err(s
, page
, object
, "Freelist Pointer check fails");
914 if (!check_object(s
, page
, object
, 0))
917 /* Success perform special debug activities for allocs */
918 if (s
->flags
& SLAB_STORE_USER
)
919 set_track(s
, object
, TRACK_ALLOC
, addr
);
920 trace(s
, page
, object
, 1);
921 init_object(s
, object
, 1);
925 if (PageSlab(page
)) {
927 * If this is a slab page then lets do the best we can
928 * to avoid issues in the future. Marking all objects
929 * as used avoids touching the remaining objects.
931 slab_fix(s
, "Marking all objects used");
932 page
->inuse
= page
->objects
;
933 page
->freelist
= NULL
;
938 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
939 void *object
, void *addr
)
941 if (!check_slab(s
, page
))
944 if (!check_valid_pointer(s
, page
, object
)) {
945 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
949 if (on_freelist(s
, page
, object
)) {
950 object_err(s
, page
, object
, "Object already free");
954 if (!check_object(s
, page
, object
, 1))
957 if (unlikely(s
!= page
->slab
)) {
958 if (!PageSlab(page
)) {
959 slab_err(s
, page
, "Attempt to free object(0x%p) "
960 "outside of slab", object
);
961 } else if (!page
->slab
) {
963 "SLUB <none>: no slab for object 0x%p.\n",
967 object_err(s
, page
, object
,
968 "page slab pointer corrupt.");
972 /* Special debug activities for freeing objects */
973 if (!SlabFrozen(page
) && !page
->freelist
)
974 remove_full(s
, page
);
975 if (s
->flags
& SLAB_STORE_USER
)
976 set_track(s
, object
, TRACK_FREE
, addr
);
977 trace(s
, page
, object
, 0);
978 init_object(s
, object
, 0);
982 slab_fix(s
, "Object at 0x%p not freed", object
);
986 static int __init
setup_slub_debug(char *str
)
988 slub_debug
= DEBUG_DEFAULT_FLAGS
;
989 if (*str
++ != '=' || !*str
)
991 * No options specified. Switch on full debugging.
997 * No options but restriction on slabs. This means full
998 * debugging for slabs matching a pattern.
1005 * Switch off all debugging measures.
1010 * Determine which debug features should be switched on
1012 for (; *str
&& *str
!= ','; str
++) {
1013 switch (tolower(*str
)) {
1015 slub_debug
|= SLAB_DEBUG_FREE
;
1018 slub_debug
|= SLAB_RED_ZONE
;
1021 slub_debug
|= SLAB_POISON
;
1024 slub_debug
|= SLAB_STORE_USER
;
1027 slub_debug
|= SLAB_TRACE
;
1030 printk(KERN_ERR
"slub_debug option '%c' "
1031 "unknown. skipped\n", *str
);
1037 slub_debug_slabs
= str
+ 1;
1042 __setup("slub_debug", setup_slub_debug
);
1044 static unsigned long kmem_cache_flags(unsigned long objsize
,
1045 unsigned long flags
, const char *name
,
1046 void (*ctor
)(struct kmem_cache
*, void *))
1049 * Enable debugging if selected on the kernel commandline.
1051 if (slub_debug
&& (!slub_debug_slabs
||
1052 strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)) == 0))
1053 flags
|= slub_debug
;
1058 static inline void setup_object_debug(struct kmem_cache
*s
,
1059 struct page
*page
, void *object
) {}
1061 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1062 struct page
*page
, void *object
, void *addr
) { return 0; }
1064 static inline int free_debug_processing(struct kmem_cache
*s
,
1065 struct page
*page
, void *object
, void *addr
) { return 0; }
1067 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1069 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1070 void *object
, int active
) { return 1; }
1071 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1072 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1073 unsigned long flags
, const char *name
,
1074 void (*ctor
)(struct kmem_cache
*, void *))
1078 #define slub_debug 0
1080 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1082 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1084 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1089 * Slab allocation and freeing
1091 static inline struct page
*alloc_slab_page(gfp_t flags
, int node
,
1092 struct kmem_cache_order_objects oo
)
1094 int order
= oo_order(oo
);
1097 return alloc_pages(flags
, order
);
1099 return alloc_pages_node(node
, flags
, order
);
1102 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1105 struct kmem_cache_order_objects oo
= s
->oo
;
1107 flags
|= s
->allocflags
;
1109 page
= alloc_slab_page(flags
| __GFP_NOWARN
| __GFP_NORETRY
, node
,
1111 if (unlikely(!page
)) {
1114 * Allocation may have failed due to fragmentation.
1115 * Try a lower order alloc if possible
1117 page
= alloc_slab_page(flags
, node
, oo
);
1121 stat(get_cpu_slab(s
, raw_smp_processor_id()), ORDER_FALLBACK
);
1123 page
->objects
= oo_objects(oo
);
1124 mod_zone_page_state(page_zone(page
),
1125 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1126 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1132 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1135 setup_object_debug(s
, page
, object
);
1136 if (unlikely(s
->ctor
))
1140 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1147 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1149 page
= allocate_slab(s
,
1150 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1154 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1156 page
->flags
|= 1 << PG_slab
;
1157 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1158 SLAB_STORE_USER
| SLAB_TRACE
))
1161 start
= page_address(page
);
1163 if (unlikely(s
->flags
& SLAB_POISON
))
1164 memset(start
, POISON_INUSE
, PAGE_SIZE
<< compound_order(page
));
1167 for_each_object(p
, s
, start
, page
->objects
) {
1168 setup_object(s
, page
, last
);
1169 set_freepointer(s
, last
, p
);
1172 setup_object(s
, page
, last
);
1173 set_freepointer(s
, last
, NULL
);
1175 page
->freelist
= start
;
1181 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1183 int order
= compound_order(page
);
1184 int pages
= 1 << order
;
1186 if (unlikely(SlabDebug(page
))) {
1189 slab_pad_check(s
, page
);
1190 for_each_object(p
, s
, page_address(page
),
1192 check_object(s
, page
, p
, 0);
1193 ClearSlabDebug(page
);
1196 mod_zone_page_state(page_zone(page
),
1197 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1198 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1201 __ClearPageSlab(page
);
1202 reset_page_mapcount(page
);
1203 __free_pages(page
, order
);
1206 static void rcu_free_slab(struct rcu_head
*h
)
1210 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1211 __free_slab(page
->slab
, page
);
1214 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1216 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1218 * RCU free overloads the RCU head over the LRU
1220 struct rcu_head
*head
= (void *)&page
->lru
;
1222 call_rcu(head
, rcu_free_slab
);
1224 __free_slab(s
, page
);
1227 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1229 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1234 * Per slab locking using the pagelock
1236 static __always_inline
void slab_lock(struct page
*page
)
1238 bit_spin_lock(PG_locked
, &page
->flags
);
1241 static __always_inline
void slab_unlock(struct page
*page
)
1243 __bit_spin_unlock(PG_locked
, &page
->flags
);
1246 static __always_inline
int slab_trylock(struct page
*page
)
1250 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1255 * Management of partially allocated slabs
1257 static void add_partial(struct kmem_cache_node
*n
,
1258 struct page
*page
, int tail
)
1260 spin_lock(&n
->list_lock
);
1263 list_add_tail(&page
->lru
, &n
->partial
);
1265 list_add(&page
->lru
, &n
->partial
);
1266 spin_unlock(&n
->list_lock
);
1269 static void remove_partial(struct kmem_cache
*s
,
1272 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1274 spin_lock(&n
->list_lock
);
1275 list_del(&page
->lru
);
1277 spin_unlock(&n
->list_lock
);
1281 * Lock slab and remove from the partial list.
1283 * Must hold list_lock.
1285 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1287 if (slab_trylock(page
)) {
1288 list_del(&page
->lru
);
1290 SetSlabFrozen(page
);
1297 * Try to allocate a partial slab from a specific node.
1299 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1304 * Racy check. If we mistakenly see no partial slabs then we
1305 * just allocate an empty slab. If we mistakenly try to get a
1306 * partial slab and there is none available then get_partials()
1309 if (!n
|| !n
->nr_partial
)
1312 spin_lock(&n
->list_lock
);
1313 list_for_each_entry(page
, &n
->partial
, lru
)
1314 if (lock_and_freeze_slab(n
, page
))
1318 spin_unlock(&n
->list_lock
);
1323 * Get a page from somewhere. Search in increasing NUMA distances.
1325 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1328 struct zonelist
*zonelist
;
1331 enum zone_type high_zoneidx
= gfp_zone(flags
);
1335 * The defrag ratio allows a configuration of the tradeoffs between
1336 * inter node defragmentation and node local allocations. A lower
1337 * defrag_ratio increases the tendency to do local allocations
1338 * instead of attempting to obtain partial slabs from other nodes.
1340 * If the defrag_ratio is set to 0 then kmalloc() always
1341 * returns node local objects. If the ratio is higher then kmalloc()
1342 * may return off node objects because partial slabs are obtained
1343 * from other nodes and filled up.
1345 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1346 * defrag_ratio = 1000) then every (well almost) allocation will
1347 * first attempt to defrag slab caches on other nodes. This means
1348 * scanning over all nodes to look for partial slabs which may be
1349 * expensive if we do it every time we are trying to find a slab
1350 * with available objects.
1352 if (!s
->remote_node_defrag_ratio
||
1353 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1356 zonelist
= node_zonelist(slab_node(current
->mempolicy
), flags
);
1357 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1358 struct kmem_cache_node
*n
;
1360 n
= get_node(s
, zone_to_nid(zone
));
1362 if (n
&& cpuset_zone_allowed_hardwall(zone
, flags
) &&
1363 n
->nr_partial
> MIN_PARTIAL
) {
1364 page
= get_partial_node(n
);
1374 * Get a partial page, lock it and return it.
1376 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1379 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1381 page
= get_partial_node(get_node(s
, searchnode
));
1382 if (page
|| (flags
& __GFP_THISNODE
))
1385 return get_any_partial(s
, flags
);
1389 * Move a page back to the lists.
1391 * Must be called with the slab lock held.
1393 * On exit the slab lock will have been dropped.
1395 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1397 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1398 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1400 ClearSlabFrozen(page
);
1403 if (page
->freelist
) {
1404 add_partial(n
, page
, tail
);
1405 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1407 stat(c
, DEACTIVATE_FULL
);
1408 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1413 stat(c
, DEACTIVATE_EMPTY
);
1414 if (n
->nr_partial
< MIN_PARTIAL
) {
1416 * Adding an empty slab to the partial slabs in order
1417 * to avoid page allocator overhead. This slab needs
1418 * to come after the other slabs with objects in
1419 * so that the others get filled first. That way the
1420 * size of the partial list stays small.
1422 * kmem_cache_shrink can reclaim any empty slabs from the
1425 add_partial(n
, page
, 1);
1429 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1430 discard_slab(s
, page
);
1436 * Remove the cpu slab
1438 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1440 struct page
*page
= c
->page
;
1444 stat(c
, DEACTIVATE_REMOTE_FREES
);
1446 * Merge cpu freelist into slab freelist. Typically we get here
1447 * because both freelists are empty. So this is unlikely
1450 while (unlikely(c
->freelist
)) {
1453 tail
= 0; /* Hot objects. Put the slab first */
1455 /* Retrieve object from cpu_freelist */
1456 object
= c
->freelist
;
1457 c
->freelist
= c
->freelist
[c
->offset
];
1459 /* And put onto the regular freelist */
1460 object
[c
->offset
] = page
->freelist
;
1461 page
->freelist
= object
;
1465 unfreeze_slab(s
, page
, tail
);
1468 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1470 stat(c
, CPUSLAB_FLUSH
);
1472 deactivate_slab(s
, c
);
1478 * Called from IPI handler with interrupts disabled.
1480 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1482 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1484 if (likely(c
&& c
->page
))
1488 static void flush_cpu_slab(void *d
)
1490 struct kmem_cache
*s
= d
;
1492 __flush_cpu_slab(s
, smp_processor_id());
1495 static void flush_all(struct kmem_cache
*s
)
1498 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1500 unsigned long flags
;
1502 local_irq_save(flags
);
1504 local_irq_restore(flags
);
1509 * Check if the objects in a per cpu structure fit numa
1510 * locality expectations.
1512 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1515 if (node
!= -1 && c
->node
!= node
)
1522 * Slow path. The lockless freelist is empty or we need to perform
1525 * Interrupts are disabled.
1527 * Processing is still very fast if new objects have been freed to the
1528 * regular freelist. In that case we simply take over the regular freelist
1529 * as the lockless freelist and zap the regular freelist.
1531 * If that is not working then we fall back to the partial lists. We take the
1532 * first element of the freelist as the object to allocate now and move the
1533 * rest of the freelist to the lockless freelist.
1535 * And if we were unable to get a new slab from the partial slab lists then
1536 * we need to allocate a new slab. This is the slowest path since it involves
1537 * a call to the page allocator and the setup of a new slab.
1539 static void *__slab_alloc(struct kmem_cache
*s
,
1540 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1545 /* We handle __GFP_ZERO in the caller */
1546 gfpflags
&= ~__GFP_ZERO
;
1552 if (unlikely(!node_match(c
, node
)))
1555 stat(c
, ALLOC_REFILL
);
1558 object
= c
->page
->freelist
;
1559 if (unlikely(!object
))
1561 if (unlikely(SlabDebug(c
->page
)))
1564 c
->freelist
= object
[c
->offset
];
1565 c
->page
->inuse
= c
->page
->objects
;
1566 c
->page
->freelist
= NULL
;
1567 c
->node
= page_to_nid(c
->page
);
1569 slab_unlock(c
->page
);
1570 stat(c
, ALLOC_SLOWPATH
);
1574 deactivate_slab(s
, c
);
1577 new = get_partial(s
, gfpflags
, node
);
1580 stat(c
, ALLOC_FROM_PARTIAL
);
1584 if (gfpflags
& __GFP_WAIT
)
1587 new = new_slab(s
, gfpflags
, node
);
1589 if (gfpflags
& __GFP_WAIT
)
1590 local_irq_disable();
1593 c
= get_cpu_slab(s
, smp_processor_id());
1594 stat(c
, ALLOC_SLAB
);
1604 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1608 c
->page
->freelist
= object
[c
->offset
];
1614 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1615 * have the fastpath folded into their functions. So no function call
1616 * overhead for requests that can be satisfied on the fastpath.
1618 * The fastpath works by first checking if the lockless freelist can be used.
1619 * If not then __slab_alloc is called for slow processing.
1621 * Otherwise we can simply pick the next object from the lockless free list.
1623 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1624 gfp_t gfpflags
, int node
, void *addr
)
1627 struct kmem_cache_cpu
*c
;
1628 unsigned long flags
;
1630 local_irq_save(flags
);
1631 c
= get_cpu_slab(s
, smp_processor_id());
1632 if (unlikely(!c
->freelist
|| !node_match(c
, node
)))
1634 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1637 object
= c
->freelist
;
1638 c
->freelist
= object
[c
->offset
];
1639 stat(c
, ALLOC_FASTPATH
);
1641 local_irq_restore(flags
);
1643 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1644 memset(object
, 0, c
->objsize
);
1649 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1651 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1653 EXPORT_SYMBOL(kmem_cache_alloc
);
1656 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1658 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1660 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1664 * Slow patch handling. This may still be called frequently since objects
1665 * have a longer lifetime than the cpu slabs in most processing loads.
1667 * So we still attempt to reduce cache line usage. Just take the slab
1668 * lock and free the item. If there is no additional partial page
1669 * handling required then we can return immediately.
1671 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1672 void *x
, void *addr
, unsigned int offset
)
1675 void **object
= (void *)x
;
1676 struct kmem_cache_cpu
*c
;
1678 c
= get_cpu_slab(s
, raw_smp_processor_id());
1679 stat(c
, FREE_SLOWPATH
);
1682 if (unlikely(SlabDebug(page
)))
1686 prior
= object
[offset
] = page
->freelist
;
1687 page
->freelist
= object
;
1690 if (unlikely(SlabFrozen(page
))) {
1691 stat(c
, FREE_FROZEN
);
1695 if (unlikely(!page
->inuse
))
1699 * Objects left in the slab. If it was not on the partial list before
1702 if (unlikely(!prior
)) {
1703 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1704 stat(c
, FREE_ADD_PARTIAL
);
1714 * Slab still on the partial list.
1716 remove_partial(s
, page
);
1717 stat(c
, FREE_REMOVE_PARTIAL
);
1721 discard_slab(s
, page
);
1725 if (!free_debug_processing(s
, page
, x
, addr
))
1731 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1732 * can perform fastpath freeing without additional function calls.
1734 * The fastpath is only possible if we are freeing to the current cpu slab
1735 * of this processor. This typically the case if we have just allocated
1738 * If fastpath is not possible then fall back to __slab_free where we deal
1739 * with all sorts of special processing.
1741 static __always_inline
void slab_free(struct kmem_cache
*s
,
1742 struct page
*page
, void *x
, void *addr
)
1744 void **object
= (void *)x
;
1745 struct kmem_cache_cpu
*c
;
1746 unsigned long flags
;
1748 local_irq_save(flags
);
1749 c
= get_cpu_slab(s
, smp_processor_id());
1750 debug_check_no_locks_freed(object
, c
->objsize
);
1751 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1752 debug_check_no_obj_freed(object
, s
->objsize
);
1753 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1754 object
[c
->offset
] = c
->freelist
;
1755 c
->freelist
= object
;
1756 stat(c
, FREE_FASTPATH
);
1758 __slab_free(s
, page
, x
, addr
, c
->offset
);
1760 local_irq_restore(flags
);
1763 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1767 page
= virt_to_head_page(x
);
1769 slab_free(s
, page
, x
, __builtin_return_address(0));
1771 EXPORT_SYMBOL(kmem_cache_free
);
1773 /* Figure out on which slab object the object resides */
1774 static struct page
*get_object_page(const void *x
)
1776 struct page
*page
= virt_to_head_page(x
);
1778 if (!PageSlab(page
))
1785 * Object placement in a slab is made very easy because we always start at
1786 * offset 0. If we tune the size of the object to the alignment then we can
1787 * get the required alignment by putting one properly sized object after
1790 * Notice that the allocation order determines the sizes of the per cpu
1791 * caches. Each processor has always one slab available for allocations.
1792 * Increasing the allocation order reduces the number of times that slabs
1793 * must be moved on and off the partial lists and is therefore a factor in
1798 * Mininum / Maximum order of slab pages. This influences locking overhead
1799 * and slab fragmentation. A higher order reduces the number of partial slabs
1800 * and increases the number of allocations possible without having to
1801 * take the list_lock.
1803 static int slub_min_order
;
1804 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
1805 static int slub_min_objects
;
1808 * Merge control. If this is set then no merging of slab caches will occur.
1809 * (Could be removed. This was introduced to pacify the merge skeptics.)
1811 static int slub_nomerge
;
1814 * Calculate the order of allocation given an slab object size.
1816 * The order of allocation has significant impact on performance and other
1817 * system components. Generally order 0 allocations should be preferred since
1818 * order 0 does not cause fragmentation in the page allocator. Larger objects
1819 * be problematic to put into order 0 slabs because there may be too much
1820 * unused space left. We go to a higher order if more than 1/16th of the slab
1823 * In order to reach satisfactory performance we must ensure that a minimum
1824 * number of objects is in one slab. Otherwise we may generate too much
1825 * activity on the partial lists which requires taking the list_lock. This is
1826 * less a concern for large slabs though which are rarely used.
1828 * slub_max_order specifies the order where we begin to stop considering the
1829 * number of objects in a slab as critical. If we reach slub_max_order then
1830 * we try to keep the page order as low as possible. So we accept more waste
1831 * of space in favor of a small page order.
1833 * Higher order allocations also allow the placement of more objects in a
1834 * slab and thereby reduce object handling overhead. If the user has
1835 * requested a higher mininum order then we start with that one instead of
1836 * the smallest order which will fit the object.
1838 static inline int slab_order(int size
, int min_objects
,
1839 int max_order
, int fract_leftover
)
1843 int min_order
= slub_min_order
;
1845 if ((PAGE_SIZE
<< min_order
) / size
> 65535)
1846 return get_order(size
* 65535) - 1;
1848 for (order
= max(min_order
,
1849 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1850 order
<= max_order
; order
++) {
1852 unsigned long slab_size
= PAGE_SIZE
<< order
;
1854 if (slab_size
< min_objects
* size
)
1857 rem
= slab_size
% size
;
1859 if (rem
<= slab_size
/ fract_leftover
)
1867 static inline int calculate_order(int size
)
1874 * Attempt to find best configuration for a slab. This
1875 * works by first attempting to generate a layout with
1876 * the best configuration and backing off gradually.
1878 * First we reduce the acceptable waste in a slab. Then
1879 * we reduce the minimum objects required in a slab.
1881 min_objects
= slub_min_objects
;
1883 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
1884 while (min_objects
> 1) {
1886 while (fraction
>= 4) {
1887 order
= slab_order(size
, min_objects
,
1888 slub_max_order
, fraction
);
1889 if (order
<= slub_max_order
)
1897 * We were unable to place multiple objects in a slab. Now
1898 * lets see if we can place a single object there.
1900 order
= slab_order(size
, 1, slub_max_order
, 1);
1901 if (order
<= slub_max_order
)
1905 * Doh this slab cannot be placed using slub_max_order.
1907 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1908 if (order
<= MAX_ORDER
)
1914 * Figure out what the alignment of the objects will be.
1916 static unsigned long calculate_alignment(unsigned long flags
,
1917 unsigned long align
, unsigned long size
)
1920 * If the user wants hardware cache aligned objects then follow that
1921 * suggestion if the object is sufficiently large.
1923 * The hardware cache alignment cannot override the specified
1924 * alignment though. If that is greater then use it.
1926 if (flags
& SLAB_HWCACHE_ALIGN
) {
1927 unsigned long ralign
= cache_line_size();
1928 while (size
<= ralign
/ 2)
1930 align
= max(align
, ralign
);
1933 if (align
< ARCH_SLAB_MINALIGN
)
1934 align
= ARCH_SLAB_MINALIGN
;
1936 return ALIGN(align
, sizeof(void *));
1939 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1940 struct kmem_cache_cpu
*c
)
1945 c
->offset
= s
->offset
/ sizeof(void *);
1946 c
->objsize
= s
->objsize
;
1947 #ifdef CONFIG_SLUB_STATS
1948 memset(c
->stat
, 0, NR_SLUB_STAT_ITEMS
* sizeof(unsigned));
1952 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1955 spin_lock_init(&n
->list_lock
);
1956 INIT_LIST_HEAD(&n
->partial
);
1957 #ifdef CONFIG_SLUB_DEBUG
1958 atomic_long_set(&n
->nr_slabs
, 0);
1959 INIT_LIST_HEAD(&n
->full
);
1965 * Per cpu array for per cpu structures.
1967 * The per cpu array places all kmem_cache_cpu structures from one processor
1968 * close together meaning that it becomes possible that multiple per cpu
1969 * structures are contained in one cacheline. This may be particularly
1970 * beneficial for the kmalloc caches.
1972 * A desktop system typically has around 60-80 slabs. With 100 here we are
1973 * likely able to get per cpu structures for all caches from the array defined
1974 * here. We must be able to cover all kmalloc caches during bootstrap.
1976 * If the per cpu array is exhausted then fall back to kmalloc
1977 * of individual cachelines. No sharing is possible then.
1979 #define NR_KMEM_CACHE_CPU 100
1981 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1982 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1984 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1985 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1987 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1988 int cpu
, gfp_t flags
)
1990 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1993 per_cpu(kmem_cache_cpu_free
, cpu
) =
1994 (void *)c
->freelist
;
1996 /* Table overflow: So allocate ourselves */
1998 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1999 flags
, cpu_to_node(cpu
));
2004 init_kmem_cache_cpu(s
, c
);
2008 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
2010 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
2011 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
2015 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
2016 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
2019 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
2023 for_each_online_cpu(cpu
) {
2024 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2027 s
->cpu_slab
[cpu
] = NULL
;
2028 free_kmem_cache_cpu(c
, cpu
);
2033 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2037 for_each_online_cpu(cpu
) {
2038 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2043 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2045 free_kmem_cache_cpus(s
);
2048 s
->cpu_slab
[cpu
] = c
;
2054 * Initialize the per cpu array.
2056 static void init_alloc_cpu_cpu(int cpu
)
2060 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2063 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2064 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2066 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2069 static void __init
init_alloc_cpu(void)
2073 for_each_online_cpu(cpu
)
2074 init_alloc_cpu_cpu(cpu
);
2078 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2079 static inline void init_alloc_cpu(void) {}
2081 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2083 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2090 * No kmalloc_node yet so do it by hand. We know that this is the first
2091 * slab on the node for this slabcache. There are no concurrent accesses
2094 * Note that this function only works on the kmalloc_node_cache
2095 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2096 * memory on a fresh node that has no slab structures yet.
2098 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2102 struct kmem_cache_node
*n
;
2103 unsigned long flags
;
2105 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2107 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2110 if (page_to_nid(page
) != node
) {
2111 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2113 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2114 "in order to be able to continue\n");
2119 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2121 kmalloc_caches
->node
[node
] = n
;
2122 #ifdef CONFIG_SLUB_DEBUG
2123 init_object(kmalloc_caches
, n
, 1);
2124 init_tracking(kmalloc_caches
, n
);
2126 init_kmem_cache_node(n
);
2127 inc_slabs_node(kmalloc_caches
, node
, page
->objects
);
2130 * lockdep requires consistent irq usage for each lock
2131 * so even though there cannot be a race this early in
2132 * the boot sequence, we still disable irqs.
2134 local_irq_save(flags
);
2135 add_partial(n
, page
, 0);
2136 local_irq_restore(flags
);
2140 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2144 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2145 struct kmem_cache_node
*n
= s
->node
[node
];
2146 if (n
&& n
!= &s
->local_node
)
2147 kmem_cache_free(kmalloc_caches
, n
);
2148 s
->node
[node
] = NULL
;
2152 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2157 if (slab_state
>= UP
)
2158 local_node
= page_to_nid(virt_to_page(s
));
2162 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2163 struct kmem_cache_node
*n
;
2165 if (local_node
== node
)
2168 if (slab_state
== DOWN
) {
2169 n
= early_kmem_cache_node_alloc(gfpflags
,
2173 n
= kmem_cache_alloc_node(kmalloc_caches
,
2177 free_kmem_cache_nodes(s
);
2183 init_kmem_cache_node(n
);
2188 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2192 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2194 init_kmem_cache_node(&s
->local_node
);
2200 * calculate_sizes() determines the order and the distribution of data within
2203 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
2205 unsigned long flags
= s
->flags
;
2206 unsigned long size
= s
->objsize
;
2207 unsigned long align
= s
->align
;
2211 * Round up object size to the next word boundary. We can only
2212 * place the free pointer at word boundaries and this determines
2213 * the possible location of the free pointer.
2215 size
= ALIGN(size
, sizeof(void *));
2217 #ifdef CONFIG_SLUB_DEBUG
2219 * Determine if we can poison the object itself. If the user of
2220 * the slab may touch the object after free or before allocation
2221 * then we should never poison the object itself.
2223 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2225 s
->flags
|= __OBJECT_POISON
;
2227 s
->flags
&= ~__OBJECT_POISON
;
2231 * If we are Redzoning then check if there is some space between the
2232 * end of the object and the free pointer. If not then add an
2233 * additional word to have some bytes to store Redzone information.
2235 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2236 size
+= sizeof(void *);
2240 * With that we have determined the number of bytes in actual use
2241 * by the object. This is the potential offset to the free pointer.
2245 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2248 * Relocate free pointer after the object if it is not
2249 * permitted to overwrite the first word of the object on
2252 * This is the case if we do RCU, have a constructor or
2253 * destructor or are poisoning the objects.
2256 size
+= sizeof(void *);
2259 #ifdef CONFIG_SLUB_DEBUG
2260 if (flags
& SLAB_STORE_USER
)
2262 * Need to store information about allocs and frees after
2265 size
+= 2 * sizeof(struct track
);
2267 if (flags
& SLAB_RED_ZONE
)
2269 * Add some empty padding so that we can catch
2270 * overwrites from earlier objects rather than let
2271 * tracking information or the free pointer be
2272 * corrupted if an user writes before the start
2275 size
+= sizeof(void *);
2279 * Determine the alignment based on various parameters that the
2280 * user specified and the dynamic determination of cache line size
2283 align
= calculate_alignment(flags
, align
, s
->objsize
);
2286 * SLUB stores one object immediately after another beginning from
2287 * offset 0. In order to align the objects we have to simply size
2288 * each object to conform to the alignment.
2290 size
= ALIGN(size
, align
);
2292 if (forced_order
>= 0)
2293 order
= forced_order
;
2295 order
= calculate_order(size
);
2302 s
->allocflags
|= __GFP_COMP
;
2304 if (s
->flags
& SLAB_CACHE_DMA
)
2305 s
->allocflags
|= SLUB_DMA
;
2307 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2308 s
->allocflags
|= __GFP_RECLAIMABLE
;
2311 * Determine the number of objects per slab
2313 s
->oo
= oo_make(order
, size
);
2314 s
->min
= oo_make(get_order(size
), size
);
2315 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
2318 return !!oo_objects(s
->oo
);
2322 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2323 const char *name
, size_t size
,
2324 size_t align
, unsigned long flags
,
2325 void (*ctor
)(struct kmem_cache
*, void *))
2327 memset(s
, 0, kmem_size
);
2332 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2334 if (!calculate_sizes(s
, -1))
2339 s
->remote_node_defrag_ratio
= 100;
2341 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2344 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2346 free_kmem_cache_nodes(s
);
2348 if (flags
& SLAB_PANIC
)
2349 panic("Cannot create slab %s size=%lu realsize=%u "
2350 "order=%u offset=%u flags=%lx\n",
2351 s
->name
, (unsigned long)size
, s
->size
, oo_order(s
->oo
),
2357 * Check if a given pointer is valid
2359 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2363 page
= get_object_page(object
);
2365 if (!page
|| s
!= page
->slab
)
2366 /* No slab or wrong slab */
2369 if (!check_valid_pointer(s
, page
, object
))
2373 * We could also check if the object is on the slabs freelist.
2374 * But this would be too expensive and it seems that the main
2375 * purpose of kmem_ptr_valid() is to check if the object belongs
2376 * to a certain slab.
2380 EXPORT_SYMBOL(kmem_ptr_validate
);
2383 * Determine the size of a slab object
2385 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2389 EXPORT_SYMBOL(kmem_cache_size
);
2391 const char *kmem_cache_name(struct kmem_cache
*s
)
2395 EXPORT_SYMBOL(kmem_cache_name
);
2397 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
2400 #ifdef CONFIG_SLUB_DEBUG
2401 void *addr
= page_address(page
);
2403 DECLARE_BITMAP(map
, page
->objects
);
2405 bitmap_zero(map
, page
->objects
);
2406 slab_err(s
, page
, "%s", text
);
2408 for_each_free_object(p
, s
, page
->freelist
)
2409 set_bit(slab_index(p
, s
, addr
), map
);
2411 for_each_object(p
, s
, addr
, page
->objects
) {
2413 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
2414 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu\n",
2416 print_tracking(s
, p
);
2424 * Attempt to free all partial slabs on a node.
2426 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
2428 unsigned long flags
;
2429 struct page
*page
, *h
;
2431 spin_lock_irqsave(&n
->list_lock
, flags
);
2432 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
2434 list_del(&page
->lru
);
2435 discard_slab(s
, page
);
2438 list_slab_objects(s
, page
,
2439 "Objects remaining on kmem_cache_close()");
2442 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2446 * Release all resources used by a slab cache.
2448 static inline int kmem_cache_close(struct kmem_cache
*s
)
2454 /* Attempt to free all objects */
2455 free_kmem_cache_cpus(s
);
2456 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2457 struct kmem_cache_node
*n
= get_node(s
, node
);
2460 if (n
->nr_partial
|| slabs_node(s
, node
))
2463 free_kmem_cache_nodes(s
);
2468 * Close a cache and release the kmem_cache structure
2469 * (must be used for caches created using kmem_cache_create)
2471 void kmem_cache_destroy(struct kmem_cache
*s
)
2473 down_write(&slub_lock
);
2477 up_write(&slub_lock
);
2478 if (kmem_cache_close(s
)) {
2479 printk(KERN_ERR
"SLUB %s: %s called for cache that "
2480 "still has objects.\n", s
->name
, __func__
);
2483 sysfs_slab_remove(s
);
2485 up_write(&slub_lock
);
2487 EXPORT_SYMBOL(kmem_cache_destroy
);
2489 /********************************************************************
2491 *******************************************************************/
2493 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2494 EXPORT_SYMBOL(kmalloc_caches
);
2496 static int __init
setup_slub_min_order(char *str
)
2498 get_option(&str
, &slub_min_order
);
2503 __setup("slub_min_order=", setup_slub_min_order
);
2505 static int __init
setup_slub_max_order(char *str
)
2507 get_option(&str
, &slub_max_order
);
2512 __setup("slub_max_order=", setup_slub_max_order
);
2514 static int __init
setup_slub_min_objects(char *str
)
2516 get_option(&str
, &slub_min_objects
);
2521 __setup("slub_min_objects=", setup_slub_min_objects
);
2523 static int __init
setup_slub_nomerge(char *str
)
2529 __setup("slub_nomerge", setup_slub_nomerge
);
2531 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2532 const char *name
, int size
, gfp_t gfp_flags
)
2534 unsigned int flags
= 0;
2536 if (gfp_flags
& SLUB_DMA
)
2537 flags
= SLAB_CACHE_DMA
;
2539 down_write(&slub_lock
);
2540 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2544 list_add(&s
->list
, &slab_caches
);
2545 up_write(&slub_lock
);
2546 if (sysfs_slab_add(s
))
2551 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2554 #ifdef CONFIG_ZONE_DMA
2555 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2557 static void sysfs_add_func(struct work_struct
*w
)
2559 struct kmem_cache
*s
;
2561 down_write(&slub_lock
);
2562 list_for_each_entry(s
, &slab_caches
, list
) {
2563 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2564 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2568 up_write(&slub_lock
);
2571 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2573 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2575 struct kmem_cache
*s
;
2579 s
= kmalloc_caches_dma
[index
];
2583 /* Dynamically create dma cache */
2584 if (flags
& __GFP_WAIT
)
2585 down_write(&slub_lock
);
2587 if (!down_write_trylock(&slub_lock
))
2591 if (kmalloc_caches_dma
[index
])
2594 realsize
= kmalloc_caches
[index
].objsize
;
2595 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2596 (unsigned int)realsize
);
2597 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2599 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2600 realsize
, ARCH_KMALLOC_MINALIGN
,
2601 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2607 list_add(&s
->list
, &slab_caches
);
2608 kmalloc_caches_dma
[index
] = s
;
2610 schedule_work(&sysfs_add_work
);
2613 up_write(&slub_lock
);
2615 return kmalloc_caches_dma
[index
];
2620 * Conversion table for small slabs sizes / 8 to the index in the
2621 * kmalloc array. This is necessary for slabs < 192 since we have non power
2622 * of two cache sizes there. The size of larger slabs can be determined using
2625 static s8 size_index
[24] = {
2652 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2658 return ZERO_SIZE_PTR
;
2660 index
= size_index
[(size
- 1) / 8];
2662 index
= fls(size
- 1);
2664 #ifdef CONFIG_ZONE_DMA
2665 if (unlikely((flags
& SLUB_DMA
)))
2666 return dma_kmalloc_cache(index
, flags
);
2669 return &kmalloc_caches
[index
];
2672 void *__kmalloc(size_t size
, gfp_t flags
)
2674 struct kmem_cache
*s
;
2676 if (unlikely(size
> PAGE_SIZE
))
2677 return kmalloc_large(size
, flags
);
2679 s
= get_slab(size
, flags
);
2681 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2684 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2686 EXPORT_SYMBOL(__kmalloc
);
2688 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
2690 struct page
*page
= alloc_pages_node(node
, flags
| __GFP_COMP
,
2694 return page_address(page
);
2700 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2702 struct kmem_cache
*s
;
2704 if (unlikely(size
> PAGE_SIZE
))
2705 return kmalloc_large_node(size
, flags
, node
);
2707 s
= get_slab(size
, flags
);
2709 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2712 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2714 EXPORT_SYMBOL(__kmalloc_node
);
2717 size_t ksize(const void *object
)
2720 struct kmem_cache
*s
;
2722 if (unlikely(object
== ZERO_SIZE_PTR
))
2725 page
= virt_to_head_page(object
);
2727 if (unlikely(!PageSlab(page
)))
2728 return PAGE_SIZE
<< compound_order(page
);
2732 #ifdef CONFIG_SLUB_DEBUG
2734 * Debugging requires use of the padding between object
2735 * and whatever may come after it.
2737 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2742 * If we have the need to store the freelist pointer
2743 * back there or track user information then we can
2744 * only use the space before that information.
2746 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2749 * Else we can use all the padding etc for the allocation
2753 EXPORT_SYMBOL(ksize
);
2755 void kfree(const void *x
)
2758 void *object
= (void *)x
;
2760 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2763 page
= virt_to_head_page(x
);
2764 if (unlikely(!PageSlab(page
))) {
2768 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2770 EXPORT_SYMBOL(kfree
);
2773 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2774 * the remaining slabs by the number of items in use. The slabs with the
2775 * most items in use come first. New allocations will then fill those up
2776 * and thus they can be removed from the partial lists.
2778 * The slabs with the least items are placed last. This results in them
2779 * being allocated from last increasing the chance that the last objects
2780 * are freed in them.
2782 int kmem_cache_shrink(struct kmem_cache
*s
)
2786 struct kmem_cache_node
*n
;
2789 int objects
= oo_objects(s
->max
);
2790 struct list_head
*slabs_by_inuse
=
2791 kmalloc(sizeof(struct list_head
) * objects
, GFP_KERNEL
);
2792 unsigned long flags
;
2794 if (!slabs_by_inuse
)
2798 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2799 n
= get_node(s
, node
);
2804 for (i
= 0; i
< objects
; i
++)
2805 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2807 spin_lock_irqsave(&n
->list_lock
, flags
);
2810 * Build lists indexed by the items in use in each slab.
2812 * Note that concurrent frees may occur while we hold the
2813 * list_lock. page->inuse here is the upper limit.
2815 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2816 if (!page
->inuse
&& slab_trylock(page
)) {
2818 * Must hold slab lock here because slab_free
2819 * may have freed the last object and be
2820 * waiting to release the slab.
2822 list_del(&page
->lru
);
2825 discard_slab(s
, page
);
2827 list_move(&page
->lru
,
2828 slabs_by_inuse
+ page
->inuse
);
2833 * Rebuild the partial list with the slabs filled up most
2834 * first and the least used slabs at the end.
2836 for (i
= objects
- 1; i
>= 0; i
--)
2837 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2839 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2842 kfree(slabs_by_inuse
);
2845 EXPORT_SYMBOL(kmem_cache_shrink
);
2847 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2848 static int slab_mem_going_offline_callback(void *arg
)
2850 struct kmem_cache
*s
;
2852 down_read(&slub_lock
);
2853 list_for_each_entry(s
, &slab_caches
, list
)
2854 kmem_cache_shrink(s
);
2855 up_read(&slub_lock
);
2860 static void slab_mem_offline_callback(void *arg
)
2862 struct kmem_cache_node
*n
;
2863 struct kmem_cache
*s
;
2864 struct memory_notify
*marg
= arg
;
2867 offline_node
= marg
->status_change_nid
;
2870 * If the node still has available memory. we need kmem_cache_node
2873 if (offline_node
< 0)
2876 down_read(&slub_lock
);
2877 list_for_each_entry(s
, &slab_caches
, list
) {
2878 n
= get_node(s
, offline_node
);
2881 * if n->nr_slabs > 0, slabs still exist on the node
2882 * that is going down. We were unable to free them,
2883 * and offline_pages() function shoudn't call this
2884 * callback. So, we must fail.
2886 BUG_ON(slabs_node(s
, offline_node
));
2888 s
->node
[offline_node
] = NULL
;
2889 kmem_cache_free(kmalloc_caches
, n
);
2892 up_read(&slub_lock
);
2895 static int slab_mem_going_online_callback(void *arg
)
2897 struct kmem_cache_node
*n
;
2898 struct kmem_cache
*s
;
2899 struct memory_notify
*marg
= arg
;
2900 int nid
= marg
->status_change_nid
;
2904 * If the node's memory is already available, then kmem_cache_node is
2905 * already created. Nothing to do.
2911 * We are bringing a node online. No memory is availabe yet. We must
2912 * allocate a kmem_cache_node structure in order to bring the node
2915 down_read(&slub_lock
);
2916 list_for_each_entry(s
, &slab_caches
, list
) {
2918 * XXX: kmem_cache_alloc_node will fallback to other nodes
2919 * since memory is not yet available from the node that
2922 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2927 init_kmem_cache_node(n
);
2931 up_read(&slub_lock
);
2935 static int slab_memory_callback(struct notifier_block
*self
,
2936 unsigned long action
, void *arg
)
2941 case MEM_GOING_ONLINE
:
2942 ret
= slab_mem_going_online_callback(arg
);
2944 case MEM_GOING_OFFLINE
:
2945 ret
= slab_mem_going_offline_callback(arg
);
2948 case MEM_CANCEL_ONLINE
:
2949 slab_mem_offline_callback(arg
);
2952 case MEM_CANCEL_OFFLINE
:
2956 ret
= notifier_from_errno(ret
);
2960 #endif /* CONFIG_MEMORY_HOTPLUG */
2962 /********************************************************************
2963 * Basic setup of slabs
2964 *******************************************************************/
2966 void __init
kmem_cache_init(void)
2975 * Must first have the slab cache available for the allocations of the
2976 * struct kmem_cache_node's. There is special bootstrap code in
2977 * kmem_cache_open for slab_state == DOWN.
2979 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2980 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2981 kmalloc_caches
[0].refcount
= -1;
2984 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
2987 /* Able to allocate the per node structures */
2988 slab_state
= PARTIAL
;
2990 /* Caches that are not of the two-to-the-power-of size */
2991 if (KMALLOC_MIN_SIZE
<= 64) {
2992 create_kmalloc_cache(&kmalloc_caches
[1],
2993 "kmalloc-96", 96, GFP_KERNEL
);
2996 if (KMALLOC_MIN_SIZE
<= 128) {
2997 create_kmalloc_cache(&kmalloc_caches
[2],
2998 "kmalloc-192", 192, GFP_KERNEL
);
3002 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
3003 create_kmalloc_cache(&kmalloc_caches
[i
],
3004 "kmalloc", 1 << i
, GFP_KERNEL
);
3010 * Patch up the size_index table if we have strange large alignment
3011 * requirements for the kmalloc array. This is only the case for
3012 * MIPS it seems. The standard arches will not generate any code here.
3014 * Largest permitted alignment is 256 bytes due to the way we
3015 * handle the index determination for the smaller caches.
3017 * Make sure that nothing crazy happens if someone starts tinkering
3018 * around with ARCH_KMALLOC_MINALIGN
3020 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
3021 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
3023 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
3024 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
3028 /* Provide the correct kmalloc names now that the caches are up */
3029 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
3030 kmalloc_caches
[i
]. name
=
3031 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
3034 register_cpu_notifier(&slab_notifier
);
3035 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
3036 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
3038 kmem_size
= sizeof(struct kmem_cache
);
3042 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3043 " CPUs=%d, Nodes=%d\n",
3044 caches
, cache_line_size(),
3045 slub_min_order
, slub_max_order
, slub_min_objects
,
3046 nr_cpu_ids
, nr_node_ids
);
3050 * Find a mergeable slab cache
3052 static int slab_unmergeable(struct kmem_cache
*s
)
3054 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3061 * We may have set a slab to be unmergeable during bootstrap.
3063 if (s
->refcount
< 0)
3069 static struct kmem_cache
*find_mergeable(size_t size
,
3070 size_t align
, unsigned long flags
, const char *name
,
3071 void (*ctor
)(struct kmem_cache
*, void *))
3073 struct kmem_cache
*s
;
3075 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3081 size
= ALIGN(size
, sizeof(void *));
3082 align
= calculate_alignment(flags
, align
, size
);
3083 size
= ALIGN(size
, align
);
3084 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3086 list_for_each_entry(s
, &slab_caches
, list
) {
3087 if (slab_unmergeable(s
))
3093 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3096 * Check if alignment is compatible.
3097 * Courtesy of Adrian Drzewiecki
3099 if ((s
->size
& ~(align
- 1)) != s
->size
)
3102 if (s
->size
- size
>= sizeof(void *))
3110 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3111 size_t align
, unsigned long flags
,
3112 void (*ctor
)(struct kmem_cache
*, void *))
3114 struct kmem_cache
*s
;
3116 down_write(&slub_lock
);
3117 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3123 * Adjust the object sizes so that we clear
3124 * the complete object on kzalloc.
3126 s
->objsize
= max(s
->objsize
, (int)size
);
3129 * And then we need to update the object size in the
3130 * per cpu structures
3132 for_each_online_cpu(cpu
)
3133 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3135 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3136 up_write(&slub_lock
);
3138 if (sysfs_slab_alias(s
, name
))
3143 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3145 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3146 size
, align
, flags
, ctor
)) {
3147 list_add(&s
->list
, &slab_caches
);
3148 up_write(&slub_lock
);
3149 if (sysfs_slab_add(s
))
3155 up_write(&slub_lock
);
3158 if (flags
& SLAB_PANIC
)
3159 panic("Cannot create slabcache %s\n", name
);
3164 EXPORT_SYMBOL(kmem_cache_create
);
3168 * Use the cpu notifier to insure that the cpu slabs are flushed when
3171 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3172 unsigned long action
, void *hcpu
)
3174 long cpu
= (long)hcpu
;
3175 struct kmem_cache
*s
;
3176 unsigned long flags
;
3179 case CPU_UP_PREPARE
:
3180 case CPU_UP_PREPARE_FROZEN
:
3181 init_alloc_cpu_cpu(cpu
);
3182 down_read(&slub_lock
);
3183 list_for_each_entry(s
, &slab_caches
, list
)
3184 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3186 up_read(&slub_lock
);
3189 case CPU_UP_CANCELED
:
3190 case CPU_UP_CANCELED_FROZEN
:
3192 case CPU_DEAD_FROZEN
:
3193 down_read(&slub_lock
);
3194 list_for_each_entry(s
, &slab_caches
, list
) {
3195 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3197 local_irq_save(flags
);
3198 __flush_cpu_slab(s
, cpu
);
3199 local_irq_restore(flags
);
3200 free_kmem_cache_cpu(c
, cpu
);
3201 s
->cpu_slab
[cpu
] = NULL
;
3203 up_read(&slub_lock
);
3211 static struct notifier_block __cpuinitdata slab_notifier
= {
3212 .notifier_call
= slab_cpuup_callback
3217 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3219 struct kmem_cache
*s
;
3221 if (unlikely(size
> PAGE_SIZE
))
3222 return kmalloc_large(size
, gfpflags
);
3224 s
= get_slab(size
, gfpflags
);
3226 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3229 return slab_alloc(s
, gfpflags
, -1, caller
);
3232 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3233 int node
, void *caller
)
3235 struct kmem_cache
*s
;
3237 if (unlikely(size
> PAGE_SIZE
))
3238 return kmalloc_large_node(size
, gfpflags
, node
);
3240 s
= get_slab(size
, gfpflags
);
3242 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3245 return slab_alloc(s
, gfpflags
, node
, caller
);
3248 #if (defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)) || defined(CONFIG_SLABINFO)
3249 static unsigned long count_partial(struct kmem_cache_node
*n
,
3250 int (*get_count
)(struct page
*))
3252 unsigned long flags
;
3253 unsigned long x
= 0;
3256 spin_lock_irqsave(&n
->list_lock
, flags
);
3257 list_for_each_entry(page
, &n
->partial
, lru
)
3258 x
+= get_count(page
);
3259 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3263 static int count_inuse(struct page
*page
)
3268 static int count_total(struct page
*page
)
3270 return page
->objects
;
3273 static int count_free(struct page
*page
)
3275 return page
->objects
- page
->inuse
;
3279 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3280 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3284 void *addr
= page_address(page
);
3286 if (!check_slab(s
, page
) ||
3287 !on_freelist(s
, page
, NULL
))
3290 /* Now we know that a valid freelist exists */
3291 bitmap_zero(map
, page
->objects
);
3293 for_each_free_object(p
, s
, page
->freelist
) {
3294 set_bit(slab_index(p
, s
, addr
), map
);
3295 if (!check_object(s
, page
, p
, 0))
3299 for_each_object(p
, s
, addr
, page
->objects
)
3300 if (!test_bit(slab_index(p
, s
, addr
), map
))
3301 if (!check_object(s
, page
, p
, 1))
3306 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3309 if (slab_trylock(page
)) {
3310 validate_slab(s
, page
, map
);
3313 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3316 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3317 if (!SlabDebug(page
))
3318 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3319 "on slab 0x%p\n", s
->name
, page
);
3321 if (SlabDebug(page
))
3322 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3323 "slab 0x%p\n", s
->name
, page
);
3327 static int validate_slab_node(struct kmem_cache
*s
,
3328 struct kmem_cache_node
*n
, unsigned long *map
)
3330 unsigned long count
= 0;
3332 unsigned long flags
;
3334 spin_lock_irqsave(&n
->list_lock
, flags
);
3336 list_for_each_entry(page
, &n
->partial
, lru
) {
3337 validate_slab_slab(s
, page
, map
);
3340 if (count
!= n
->nr_partial
)
3341 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3342 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3344 if (!(s
->flags
& SLAB_STORE_USER
))
3347 list_for_each_entry(page
, &n
->full
, lru
) {
3348 validate_slab_slab(s
, page
, map
);
3351 if (count
!= atomic_long_read(&n
->nr_slabs
))
3352 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3353 "counter=%ld\n", s
->name
, count
,
3354 atomic_long_read(&n
->nr_slabs
));
3357 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3361 static long validate_slab_cache(struct kmem_cache
*s
)
3364 unsigned long count
= 0;
3365 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
3366 sizeof(unsigned long), GFP_KERNEL
);
3372 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3373 struct kmem_cache_node
*n
= get_node(s
, node
);
3375 count
+= validate_slab_node(s
, n
, map
);
3381 #ifdef SLUB_RESILIENCY_TEST
3382 static void resiliency_test(void)
3386 printk(KERN_ERR
"SLUB resiliency testing\n");
3387 printk(KERN_ERR
"-----------------------\n");
3388 printk(KERN_ERR
"A. Corruption after allocation\n");
3390 p
= kzalloc(16, GFP_KERNEL
);
3392 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3393 " 0x12->0x%p\n\n", p
+ 16);
3395 validate_slab_cache(kmalloc_caches
+ 4);
3397 /* Hmmm... The next two are dangerous */
3398 p
= kzalloc(32, GFP_KERNEL
);
3399 p
[32 + sizeof(void *)] = 0x34;
3400 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3401 " 0x34 -> -0x%p\n", p
);
3403 "If allocated object is overwritten then not detectable\n\n");
3405 validate_slab_cache(kmalloc_caches
+ 5);
3406 p
= kzalloc(64, GFP_KERNEL
);
3407 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3409 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3412 "If allocated object is overwritten then not detectable\n\n");
3413 validate_slab_cache(kmalloc_caches
+ 6);
3415 printk(KERN_ERR
"\nB. Corruption after free\n");
3416 p
= kzalloc(128, GFP_KERNEL
);
3419 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3420 validate_slab_cache(kmalloc_caches
+ 7);
3422 p
= kzalloc(256, GFP_KERNEL
);
3425 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3427 validate_slab_cache(kmalloc_caches
+ 8);
3429 p
= kzalloc(512, GFP_KERNEL
);
3432 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3433 validate_slab_cache(kmalloc_caches
+ 9);
3436 static void resiliency_test(void) {};
3440 * Generate lists of code addresses where slabcache objects are allocated
3445 unsigned long count
;
3458 unsigned long count
;
3459 struct location
*loc
;
3462 static void free_loc_track(struct loc_track
*t
)
3465 free_pages((unsigned long)t
->loc
,
3466 get_order(sizeof(struct location
) * t
->max
));
3469 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3474 order
= get_order(sizeof(struct location
) * max
);
3476 l
= (void *)__get_free_pages(flags
, order
);
3481 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3489 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3490 const struct track
*track
)
3492 long start
, end
, pos
;
3495 unsigned long age
= jiffies
- track
->when
;
3501 pos
= start
+ (end
- start
+ 1) / 2;
3504 * There is nothing at "end". If we end up there
3505 * we need to add something to before end.
3510 caddr
= t
->loc
[pos
].addr
;
3511 if (track
->addr
== caddr
) {
3517 if (age
< l
->min_time
)
3519 if (age
> l
->max_time
)
3522 if (track
->pid
< l
->min_pid
)
3523 l
->min_pid
= track
->pid
;
3524 if (track
->pid
> l
->max_pid
)
3525 l
->max_pid
= track
->pid
;
3527 cpu_set(track
->cpu
, l
->cpus
);
3529 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3533 if (track
->addr
< caddr
)
3540 * Not found. Insert new tracking element.
3542 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3548 (t
->count
- pos
) * sizeof(struct location
));
3551 l
->addr
= track
->addr
;
3555 l
->min_pid
= track
->pid
;
3556 l
->max_pid
= track
->pid
;
3557 cpus_clear(l
->cpus
);
3558 cpu_set(track
->cpu
, l
->cpus
);
3559 nodes_clear(l
->nodes
);
3560 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3564 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3565 struct page
*page
, enum track_item alloc
)
3567 void *addr
= page_address(page
);
3568 DECLARE_BITMAP(map
, page
->objects
);
3571 bitmap_zero(map
, page
->objects
);
3572 for_each_free_object(p
, s
, page
->freelist
)
3573 set_bit(slab_index(p
, s
, addr
), map
);
3575 for_each_object(p
, s
, addr
, page
->objects
)
3576 if (!test_bit(slab_index(p
, s
, addr
), map
))
3577 add_location(t
, s
, get_track(s
, p
, alloc
));
3580 static int list_locations(struct kmem_cache
*s
, char *buf
,
3581 enum track_item alloc
)
3585 struct loc_track t
= { 0, 0, NULL
};
3588 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3590 return sprintf(buf
, "Out of memory\n");
3592 /* Push back cpu slabs */
3595 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3596 struct kmem_cache_node
*n
= get_node(s
, node
);
3597 unsigned long flags
;
3600 if (!atomic_long_read(&n
->nr_slabs
))
3603 spin_lock_irqsave(&n
->list_lock
, flags
);
3604 list_for_each_entry(page
, &n
->partial
, lru
)
3605 process_slab(&t
, s
, page
, alloc
);
3606 list_for_each_entry(page
, &n
->full
, lru
)
3607 process_slab(&t
, s
, page
, alloc
);
3608 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3611 for (i
= 0; i
< t
.count
; i
++) {
3612 struct location
*l
= &t
.loc
[i
];
3614 if (len
> PAGE_SIZE
- 100)
3616 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3619 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3621 len
+= sprintf(buf
+ len
, "<not-available>");
3623 if (l
->sum_time
!= l
->min_time
) {
3624 unsigned long remainder
;
3626 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3628 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3631 len
+= sprintf(buf
+ len
, " age=%ld",
3634 if (l
->min_pid
!= l
->max_pid
)
3635 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3636 l
->min_pid
, l
->max_pid
);
3638 len
+= sprintf(buf
+ len
, " pid=%ld",
3641 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3642 len
< PAGE_SIZE
- 60) {
3643 len
+= sprintf(buf
+ len
, " cpus=");
3644 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3648 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3649 len
< PAGE_SIZE
- 60) {
3650 len
+= sprintf(buf
+ len
, " nodes=");
3651 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3655 len
+= sprintf(buf
+ len
, "\n");
3660 len
+= sprintf(buf
, "No data\n");
3664 enum slab_stat_type
{
3665 SL_ALL
, /* All slabs */
3666 SL_PARTIAL
, /* Only partially allocated slabs */
3667 SL_CPU
, /* Only slabs used for cpu caches */
3668 SL_OBJECTS
, /* Determine allocated objects not slabs */
3669 SL_TOTAL
/* Determine object capacity not slabs */
3672 #define SO_ALL (1 << SL_ALL)
3673 #define SO_PARTIAL (1 << SL_PARTIAL)
3674 #define SO_CPU (1 << SL_CPU)
3675 #define SO_OBJECTS (1 << SL_OBJECTS)
3676 #define SO_TOTAL (1 << SL_TOTAL)
3678 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
3679 char *buf
, unsigned long flags
)
3681 unsigned long total
= 0;
3684 unsigned long *nodes
;
3685 unsigned long *per_cpu
;
3687 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3690 per_cpu
= nodes
+ nr_node_ids
;
3692 if (flags
& SO_CPU
) {
3695 for_each_possible_cpu(cpu
) {
3696 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3698 if (!c
|| c
->node
< 0)
3702 if (flags
& SO_TOTAL
)
3703 x
= c
->page
->objects
;
3704 else if (flags
& SO_OBJECTS
)
3710 nodes
[c
->node
] += x
;
3716 if (flags
& SO_ALL
) {
3717 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3718 struct kmem_cache_node
*n
= get_node(s
, node
);
3720 if (flags
& SO_TOTAL
)
3721 x
= atomic_long_read(&n
->total_objects
);
3722 else if (flags
& SO_OBJECTS
)
3723 x
= atomic_long_read(&n
->total_objects
) -
3724 count_partial(n
, count_free
);
3727 x
= atomic_long_read(&n
->nr_slabs
);
3732 } else if (flags
& SO_PARTIAL
) {
3733 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3734 struct kmem_cache_node
*n
= get_node(s
, node
);
3736 if (flags
& SO_TOTAL
)
3737 x
= count_partial(n
, count_total
);
3738 else if (flags
& SO_OBJECTS
)
3739 x
= count_partial(n
, count_inuse
);
3746 x
= sprintf(buf
, "%lu", total
);
3748 for_each_node_state(node
, N_NORMAL_MEMORY
)
3750 x
+= sprintf(buf
+ x
, " N%d=%lu",
3754 return x
+ sprintf(buf
+ x
, "\n");
3757 static int any_slab_objects(struct kmem_cache
*s
)
3761 for_each_online_node(node
) {
3762 struct kmem_cache_node
*n
= get_node(s
, node
);
3767 if (atomic_read(&n
->total_objects
))
3773 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3774 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3776 struct slab_attribute
{
3777 struct attribute attr
;
3778 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3779 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3782 #define SLAB_ATTR_RO(_name) \
3783 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3785 #define SLAB_ATTR(_name) \
3786 static struct slab_attribute _name##_attr = \
3787 __ATTR(_name, 0644, _name##_show, _name##_store)
3789 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3791 return sprintf(buf
, "%d\n", s
->size
);
3793 SLAB_ATTR_RO(slab_size
);
3795 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3797 return sprintf(buf
, "%d\n", s
->align
);
3799 SLAB_ATTR_RO(align
);
3801 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3803 return sprintf(buf
, "%d\n", s
->objsize
);
3805 SLAB_ATTR_RO(object_size
);
3807 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3809 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
3811 SLAB_ATTR_RO(objs_per_slab
);
3813 static ssize_t
order_store(struct kmem_cache
*s
,
3814 const char *buf
, size_t length
)
3816 int order
= simple_strtoul(buf
, NULL
, 10);
3818 if (order
> slub_max_order
|| order
< slub_min_order
)
3821 calculate_sizes(s
, order
);
3825 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3827 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
3831 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3834 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3836 return n
+ sprintf(buf
+ n
, "\n");
3842 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3844 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3846 SLAB_ATTR_RO(aliases
);
3848 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3850 return show_slab_objects(s
, buf
, SO_ALL
);
3852 SLAB_ATTR_RO(slabs
);
3854 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3856 return show_slab_objects(s
, buf
, SO_PARTIAL
);
3858 SLAB_ATTR_RO(partial
);
3860 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3862 return show_slab_objects(s
, buf
, SO_CPU
);
3864 SLAB_ATTR_RO(cpu_slabs
);
3866 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3868 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
3870 SLAB_ATTR_RO(objects
);
3872 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
3874 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
3876 SLAB_ATTR_RO(objects_partial
);
3878 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
3880 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
3882 SLAB_ATTR_RO(total_objects
);
3884 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3886 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3889 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3890 const char *buf
, size_t length
)
3892 s
->flags
&= ~SLAB_DEBUG_FREE
;
3894 s
->flags
|= SLAB_DEBUG_FREE
;
3897 SLAB_ATTR(sanity_checks
);
3899 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3901 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3904 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3907 s
->flags
&= ~SLAB_TRACE
;
3909 s
->flags
|= SLAB_TRACE
;
3914 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3916 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3919 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3920 const char *buf
, size_t length
)
3922 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3924 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3927 SLAB_ATTR(reclaim_account
);
3929 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3931 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3933 SLAB_ATTR_RO(hwcache_align
);
3935 #ifdef CONFIG_ZONE_DMA
3936 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3938 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3940 SLAB_ATTR_RO(cache_dma
);
3943 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3945 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3947 SLAB_ATTR_RO(destroy_by_rcu
);
3949 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3951 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3954 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3955 const char *buf
, size_t length
)
3957 if (any_slab_objects(s
))
3960 s
->flags
&= ~SLAB_RED_ZONE
;
3962 s
->flags
|= SLAB_RED_ZONE
;
3963 calculate_sizes(s
, -1);
3966 SLAB_ATTR(red_zone
);
3968 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3970 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3973 static ssize_t
poison_store(struct kmem_cache
*s
,
3974 const char *buf
, size_t length
)
3976 if (any_slab_objects(s
))
3979 s
->flags
&= ~SLAB_POISON
;
3981 s
->flags
|= SLAB_POISON
;
3982 calculate_sizes(s
, -1);
3987 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3989 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3992 static ssize_t
store_user_store(struct kmem_cache
*s
,
3993 const char *buf
, size_t length
)
3995 if (any_slab_objects(s
))
3998 s
->flags
&= ~SLAB_STORE_USER
;
4000 s
->flags
|= SLAB_STORE_USER
;
4001 calculate_sizes(s
, -1);
4004 SLAB_ATTR(store_user
);
4006 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
4011 static ssize_t
validate_store(struct kmem_cache
*s
,
4012 const char *buf
, size_t length
)
4016 if (buf
[0] == '1') {
4017 ret
= validate_slab_cache(s
);
4023 SLAB_ATTR(validate
);
4025 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
4030 static ssize_t
shrink_store(struct kmem_cache
*s
,
4031 const char *buf
, size_t length
)
4033 if (buf
[0] == '1') {
4034 int rc
= kmem_cache_shrink(s
);
4044 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
4046 if (!(s
->flags
& SLAB_STORE_USER
))
4048 return list_locations(s
, buf
, TRACK_ALLOC
);
4050 SLAB_ATTR_RO(alloc_calls
);
4052 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
4054 if (!(s
->flags
& SLAB_STORE_USER
))
4056 return list_locations(s
, buf
, TRACK_FREE
);
4058 SLAB_ATTR_RO(free_calls
);
4061 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
4063 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
4066 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
4067 const char *buf
, size_t length
)
4069 int n
= simple_strtoul(buf
, NULL
, 10);
4072 s
->remote_node_defrag_ratio
= n
* 10;
4075 SLAB_ATTR(remote_node_defrag_ratio
);
4078 #ifdef CONFIG_SLUB_STATS
4079 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
4081 unsigned long sum
= 0;
4084 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
4089 for_each_online_cpu(cpu
) {
4090 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
4096 len
= sprintf(buf
, "%lu", sum
);
4099 for_each_online_cpu(cpu
) {
4100 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
4101 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
4105 return len
+ sprintf(buf
+ len
, "\n");
4108 #define STAT_ATTR(si, text) \
4109 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4111 return show_stat(s, buf, si); \
4113 SLAB_ATTR_RO(text); \
4115 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4116 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4117 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4118 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4119 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4120 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4121 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4122 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4123 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4124 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4125 STAT_ATTR(FREE_SLAB
, free_slab
);
4126 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4127 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4128 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4129 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4130 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4131 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4132 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
4135 static struct attribute
*slab_attrs
[] = {
4136 &slab_size_attr
.attr
,
4137 &object_size_attr
.attr
,
4138 &objs_per_slab_attr
.attr
,
4141 &objects_partial_attr
.attr
,
4142 &total_objects_attr
.attr
,
4145 &cpu_slabs_attr
.attr
,
4149 &sanity_checks_attr
.attr
,
4151 &hwcache_align_attr
.attr
,
4152 &reclaim_account_attr
.attr
,
4153 &destroy_by_rcu_attr
.attr
,
4154 &red_zone_attr
.attr
,
4156 &store_user_attr
.attr
,
4157 &validate_attr
.attr
,
4159 &alloc_calls_attr
.attr
,
4160 &free_calls_attr
.attr
,
4161 #ifdef CONFIG_ZONE_DMA
4162 &cache_dma_attr
.attr
,
4165 &remote_node_defrag_ratio_attr
.attr
,
4167 #ifdef CONFIG_SLUB_STATS
4168 &alloc_fastpath_attr
.attr
,
4169 &alloc_slowpath_attr
.attr
,
4170 &free_fastpath_attr
.attr
,
4171 &free_slowpath_attr
.attr
,
4172 &free_frozen_attr
.attr
,
4173 &free_add_partial_attr
.attr
,
4174 &free_remove_partial_attr
.attr
,
4175 &alloc_from_partial_attr
.attr
,
4176 &alloc_slab_attr
.attr
,
4177 &alloc_refill_attr
.attr
,
4178 &free_slab_attr
.attr
,
4179 &cpuslab_flush_attr
.attr
,
4180 &deactivate_full_attr
.attr
,
4181 &deactivate_empty_attr
.attr
,
4182 &deactivate_to_head_attr
.attr
,
4183 &deactivate_to_tail_attr
.attr
,
4184 &deactivate_remote_frees_attr
.attr
,
4185 &order_fallback_attr
.attr
,
4190 static struct attribute_group slab_attr_group
= {
4191 .attrs
= slab_attrs
,
4194 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4195 struct attribute
*attr
,
4198 struct slab_attribute
*attribute
;
4199 struct kmem_cache
*s
;
4202 attribute
= to_slab_attr(attr
);
4205 if (!attribute
->show
)
4208 err
= attribute
->show(s
, buf
);
4213 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4214 struct attribute
*attr
,
4215 const char *buf
, size_t len
)
4217 struct slab_attribute
*attribute
;
4218 struct kmem_cache
*s
;
4221 attribute
= to_slab_attr(attr
);
4224 if (!attribute
->store
)
4227 err
= attribute
->store(s
, buf
, len
);
4232 static void kmem_cache_release(struct kobject
*kobj
)
4234 struct kmem_cache
*s
= to_slab(kobj
);
4239 static struct sysfs_ops slab_sysfs_ops
= {
4240 .show
= slab_attr_show
,
4241 .store
= slab_attr_store
,
4244 static struct kobj_type slab_ktype
= {
4245 .sysfs_ops
= &slab_sysfs_ops
,
4246 .release
= kmem_cache_release
4249 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4251 struct kobj_type
*ktype
= get_ktype(kobj
);
4253 if (ktype
== &slab_ktype
)
4258 static struct kset_uevent_ops slab_uevent_ops
= {
4259 .filter
= uevent_filter
,
4262 static struct kset
*slab_kset
;
4264 #define ID_STR_LENGTH 64
4266 /* Create a unique string id for a slab cache:
4268 * Format :[flags-]size
4270 static char *create_unique_id(struct kmem_cache
*s
)
4272 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4279 * First flags affecting slabcache operations. We will only
4280 * get here for aliasable slabs so we do not need to support
4281 * too many flags. The flags here must cover all flags that
4282 * are matched during merging to guarantee that the id is
4285 if (s
->flags
& SLAB_CACHE_DMA
)
4287 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4289 if (s
->flags
& SLAB_DEBUG_FREE
)
4293 p
+= sprintf(p
, "%07d", s
->size
);
4294 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4298 static int sysfs_slab_add(struct kmem_cache
*s
)
4304 if (slab_state
< SYSFS
)
4305 /* Defer until later */
4308 unmergeable
= slab_unmergeable(s
);
4311 * Slabcache can never be merged so we can use the name proper.
4312 * This is typically the case for debug situations. In that
4313 * case we can catch duplicate names easily.
4315 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4319 * Create a unique name for the slab as a target
4322 name
= create_unique_id(s
);
4325 s
->kobj
.kset
= slab_kset
;
4326 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4328 kobject_put(&s
->kobj
);
4332 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4335 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4337 /* Setup first alias */
4338 sysfs_slab_alias(s
, s
->name
);
4344 static void sysfs_slab_remove(struct kmem_cache
*s
)
4346 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4347 kobject_del(&s
->kobj
);
4348 kobject_put(&s
->kobj
);
4352 * Need to buffer aliases during bootup until sysfs becomes
4353 * available lest we loose that information.
4355 struct saved_alias
{
4356 struct kmem_cache
*s
;
4358 struct saved_alias
*next
;
4361 static struct saved_alias
*alias_list
;
4363 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4365 struct saved_alias
*al
;
4367 if (slab_state
== SYSFS
) {
4369 * If we have a leftover link then remove it.
4371 sysfs_remove_link(&slab_kset
->kobj
, name
);
4372 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4375 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4381 al
->next
= alias_list
;
4386 static int __init
slab_sysfs_init(void)
4388 struct kmem_cache
*s
;
4391 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4393 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4399 list_for_each_entry(s
, &slab_caches
, list
) {
4400 err
= sysfs_slab_add(s
);
4402 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4403 " to sysfs\n", s
->name
);
4406 while (alias_list
) {
4407 struct saved_alias
*al
= alias_list
;
4409 alias_list
= alias_list
->next
;
4410 err
= sysfs_slab_alias(al
->s
, al
->name
);
4412 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4413 " %s to sysfs\n", s
->name
);
4421 __initcall(slab_sysfs_init
);
4425 * The /proc/slabinfo ABI
4427 #ifdef CONFIG_SLABINFO
4429 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4430 size_t count
, loff_t
*ppos
)
4436 static void print_slabinfo_header(struct seq_file
*m
)
4438 seq_puts(m
, "slabinfo - version: 2.1\n");
4439 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4440 "<objperslab> <pagesperslab>");
4441 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4442 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4446 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4450 down_read(&slub_lock
);
4452 print_slabinfo_header(m
);
4454 return seq_list_start(&slab_caches
, *pos
);
4457 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4459 return seq_list_next(p
, &slab_caches
, pos
);
4462 static void s_stop(struct seq_file
*m
, void *p
)
4464 up_read(&slub_lock
);
4467 static int s_show(struct seq_file
*m
, void *p
)
4469 unsigned long nr_partials
= 0;
4470 unsigned long nr_slabs
= 0;
4471 unsigned long nr_inuse
= 0;
4472 unsigned long nr_objs
= 0;
4473 unsigned long nr_free
= 0;
4474 struct kmem_cache
*s
;
4477 s
= list_entry(p
, struct kmem_cache
, list
);
4479 for_each_online_node(node
) {
4480 struct kmem_cache_node
*n
= get_node(s
, node
);
4485 nr_partials
+= n
->nr_partial
;
4486 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4487 nr_objs
+= atomic_long_read(&n
->total_objects
);
4488 nr_free
+= count_partial(n
, count_free
);
4491 nr_inuse
= nr_objs
- nr_free
;
4493 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4494 nr_objs
, s
->size
, oo_objects(s
->oo
),
4495 (1 << oo_order(s
->oo
)));
4496 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4497 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4503 const struct seq_operations slabinfo_op
= {
4510 #endif /* CONFIG_SLABINFO */