2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
41 #include <asm/cmpxchg.h>
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
52 bool tdp_enabled
= false;
56 AUDIT_POST_PAGE_FAULT
,
63 char *audit_point_name
[] = {
76 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
81 #define pgprintk(x...) do { } while (0)
82 #define rmap_printk(x...) do { } while (0)
88 module_param(dbg
, bool, 0644);
91 static int oos_shadow
= 1;
92 module_param(oos_shadow
, bool, 0644);
95 #define ASSERT(x) do { } while (0)
99 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
100 __FILE__, __LINE__, #x); \
104 #define PTE_PREFETCH_NUM 8
106 #define PT_FIRST_AVAIL_BITS_SHIFT 9
107 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
109 #define PT64_LEVEL_BITS 9
111 #define PT64_LEVEL_SHIFT(level) \
112 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
114 #define PT64_LEVEL_MASK(level) \
115 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
117 #define PT64_INDEX(address, level)\
118 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
121 #define PT32_LEVEL_BITS 10
123 #define PT32_LEVEL_SHIFT(level) \
124 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
126 #define PT32_LEVEL_MASK(level) \
127 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
128 #define PT32_LVL_OFFSET_MASK(level) \
129 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
130 * PT32_LEVEL_BITS))) - 1))
132 #define PT32_INDEX(address, level)\
133 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
136 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
137 #define PT64_DIR_BASE_ADDR_MASK \
138 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
139 #define PT64_LVL_ADDR_MASK(level) \
140 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
141 * PT64_LEVEL_BITS))) - 1))
142 #define PT64_LVL_OFFSET_MASK(level) \
143 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
144 * PT64_LEVEL_BITS))) - 1))
146 #define PT32_BASE_ADDR_MASK PAGE_MASK
147 #define PT32_DIR_BASE_ADDR_MASK \
148 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
149 #define PT32_LVL_ADDR_MASK(level) \
150 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
151 * PT32_LEVEL_BITS))) - 1))
153 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
158 #define ACC_EXEC_MASK 1
159 #define ACC_WRITE_MASK PT_WRITABLE_MASK
160 #define ACC_USER_MASK PT_USER_MASK
161 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
163 #include <trace/events/kvm.h>
165 #define CREATE_TRACE_POINTS
166 #include "mmutrace.h"
168 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
170 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
172 struct kvm_rmap_desc
{
173 u64
*sptes
[RMAP_EXT
];
174 struct kvm_rmap_desc
*more
;
177 struct kvm_shadow_walk_iterator
{
185 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
186 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
187 shadow_walk_okay(&(_walker)); \
188 shadow_walk_next(&(_walker)))
190 typedef void (*mmu_parent_walk_fn
) (struct kvm_mmu_page
*sp
, u64
*spte
);
192 static struct kmem_cache
*pte_chain_cache
;
193 static struct kmem_cache
*rmap_desc_cache
;
194 static struct kmem_cache
*mmu_page_header_cache
;
195 static struct percpu_counter kvm_total_used_mmu_pages
;
197 static u64 __read_mostly shadow_trap_nonpresent_pte
;
198 static u64 __read_mostly shadow_notrap_nonpresent_pte
;
199 static u64 __read_mostly shadow_nx_mask
;
200 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
201 static u64 __read_mostly shadow_user_mask
;
202 static u64 __read_mostly shadow_accessed_mask
;
203 static u64 __read_mostly shadow_dirty_mask
;
205 static inline u64
rsvd_bits(int s
, int e
)
207 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
210 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte
, u64 notrap_pte
)
212 shadow_trap_nonpresent_pte
= trap_pte
;
213 shadow_notrap_nonpresent_pte
= notrap_pte
;
215 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes
);
217 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
218 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
220 shadow_user_mask
= user_mask
;
221 shadow_accessed_mask
= accessed_mask
;
222 shadow_dirty_mask
= dirty_mask
;
223 shadow_nx_mask
= nx_mask
;
224 shadow_x_mask
= x_mask
;
226 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
228 static bool is_write_protection(struct kvm_vcpu
*vcpu
)
230 return kvm_read_cr0_bits(vcpu
, X86_CR0_WP
);
233 static int is_cpuid_PSE36(void)
238 static int is_nx(struct kvm_vcpu
*vcpu
)
240 return vcpu
->arch
.efer
& EFER_NX
;
243 static int is_shadow_present_pte(u64 pte
)
245 return pte
!= shadow_trap_nonpresent_pte
246 && pte
!= shadow_notrap_nonpresent_pte
;
249 static int is_large_pte(u64 pte
)
251 return pte
& PT_PAGE_SIZE_MASK
;
254 static int is_writable_pte(unsigned long pte
)
256 return pte
& PT_WRITABLE_MASK
;
259 static int is_dirty_gpte(unsigned long pte
)
261 return pte
& PT_DIRTY_MASK
;
264 static int is_rmap_spte(u64 pte
)
266 return is_shadow_present_pte(pte
);
269 static int is_last_spte(u64 pte
, int level
)
271 if (level
== PT_PAGE_TABLE_LEVEL
)
273 if (is_large_pte(pte
))
278 static pfn_t
spte_to_pfn(u64 pte
)
280 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
283 static gfn_t
pse36_gfn_delta(u32 gpte
)
285 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
287 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
290 static void __set_spte(u64
*sptep
, u64 spte
)
292 set_64bit(sptep
, spte
);
295 static u64
__xchg_spte(u64
*sptep
, u64 new_spte
)
298 return xchg(sptep
, new_spte
);
304 } while (cmpxchg64(sptep
, old_spte
, new_spte
) != old_spte
);
310 static bool spte_has_volatile_bits(u64 spte
)
312 if (!shadow_accessed_mask
)
315 if (!is_shadow_present_pte(spte
))
318 if ((spte
& shadow_accessed_mask
) &&
319 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
325 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
327 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
330 static void update_spte(u64
*sptep
, u64 new_spte
)
332 u64 mask
, old_spte
= *sptep
;
334 WARN_ON(!is_rmap_spte(new_spte
));
336 new_spte
|= old_spte
& shadow_dirty_mask
;
338 mask
= shadow_accessed_mask
;
339 if (is_writable_pte(old_spte
))
340 mask
|= shadow_dirty_mask
;
342 if (!spte_has_volatile_bits(old_spte
) || (new_spte
& mask
) == mask
)
343 __set_spte(sptep
, new_spte
);
345 old_spte
= __xchg_spte(sptep
, new_spte
);
347 if (!shadow_accessed_mask
)
350 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
351 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
352 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
353 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
356 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
357 struct kmem_cache
*base_cache
, int min
)
361 if (cache
->nobjs
>= min
)
363 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
364 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
367 cache
->objects
[cache
->nobjs
++] = obj
;
372 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
373 struct kmem_cache
*cache
)
376 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
379 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
384 if (cache
->nobjs
>= min
)
386 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
387 page
= alloc_page(GFP_KERNEL
);
390 cache
->objects
[cache
->nobjs
++] = page_address(page
);
395 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
398 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
401 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
405 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
,
409 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
,
410 rmap_desc_cache
, 4 + PTE_PREFETCH_NUM
);
413 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
416 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
417 mmu_page_header_cache
, 4);
422 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
424 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_chain_cache
, pte_chain_cache
);
425 mmu_free_memory_cache(&vcpu
->arch
.mmu_rmap_desc_cache
, rmap_desc_cache
);
426 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
427 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
428 mmu_page_header_cache
);
431 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
,
437 p
= mc
->objects
[--mc
->nobjs
];
441 static struct kvm_pte_chain
*mmu_alloc_pte_chain(struct kvm_vcpu
*vcpu
)
443 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_chain_cache
,
444 sizeof(struct kvm_pte_chain
));
447 static void mmu_free_pte_chain(struct kvm_pte_chain
*pc
)
449 kmem_cache_free(pte_chain_cache
, pc
);
452 static struct kvm_rmap_desc
*mmu_alloc_rmap_desc(struct kvm_vcpu
*vcpu
)
454 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_rmap_desc_cache
,
455 sizeof(struct kvm_rmap_desc
));
458 static void mmu_free_rmap_desc(struct kvm_rmap_desc
*rd
)
460 kmem_cache_free(rmap_desc_cache
, rd
);
463 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
465 if (!sp
->role
.direct
)
466 return sp
->gfns
[index
];
468 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
471 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
474 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
476 sp
->gfns
[index
] = gfn
;
480 * Return the pointer to the large page information for a given gfn,
481 * handling slots that are not large page aligned.
483 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
484 struct kvm_memory_slot
*slot
,
489 idx
= (gfn
>> KVM_HPAGE_GFN_SHIFT(level
)) -
490 (slot
->base_gfn
>> KVM_HPAGE_GFN_SHIFT(level
));
491 return &slot
->lpage_info
[level
- 2][idx
];
494 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
496 struct kvm_memory_slot
*slot
;
497 struct kvm_lpage_info
*linfo
;
500 slot
= gfn_to_memslot(kvm
, gfn
);
501 for (i
= PT_DIRECTORY_LEVEL
;
502 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
503 linfo
= lpage_info_slot(gfn
, slot
, i
);
504 linfo
->write_count
+= 1;
508 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
510 struct kvm_memory_slot
*slot
;
511 struct kvm_lpage_info
*linfo
;
514 slot
= gfn_to_memslot(kvm
, gfn
);
515 for (i
= PT_DIRECTORY_LEVEL
;
516 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
517 linfo
= lpage_info_slot(gfn
, slot
, i
);
518 linfo
->write_count
-= 1;
519 WARN_ON(linfo
->write_count
< 0);
523 static int has_wrprotected_page(struct kvm
*kvm
,
527 struct kvm_memory_slot
*slot
;
528 struct kvm_lpage_info
*linfo
;
530 slot
= gfn_to_memslot(kvm
, gfn
);
532 linfo
= lpage_info_slot(gfn
, slot
, level
);
533 return linfo
->write_count
;
539 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
541 unsigned long page_size
;
544 page_size
= kvm_host_page_size(kvm
, gfn
);
546 for (i
= PT_PAGE_TABLE_LEVEL
;
547 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
548 if (page_size
>= KVM_HPAGE_SIZE(i
))
557 static bool mapping_level_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
559 struct kvm_memory_slot
*slot
;
560 slot
= gfn_to_memslot(vcpu
->kvm
, large_gfn
);
561 if (slot
&& slot
->dirty_bitmap
)
566 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
568 int host_level
, level
, max_level
;
570 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
572 if (host_level
== PT_PAGE_TABLE_LEVEL
)
575 max_level
= kvm_x86_ops
->get_lpage_level() < host_level
?
576 kvm_x86_ops
->get_lpage_level() : host_level
;
578 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
579 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
586 * Take gfn and return the reverse mapping to it.
589 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
591 struct kvm_memory_slot
*slot
;
592 struct kvm_lpage_info
*linfo
;
594 slot
= gfn_to_memslot(kvm
, gfn
);
595 if (likely(level
== PT_PAGE_TABLE_LEVEL
))
596 return &slot
->rmap
[gfn
- slot
->base_gfn
];
598 linfo
= lpage_info_slot(gfn
, slot
, level
);
600 return &linfo
->rmap_pde
;
604 * Reverse mapping data structures:
606 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
607 * that points to page_address(page).
609 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
610 * containing more mappings.
612 * Returns the number of rmap entries before the spte was added or zero if
613 * the spte was not added.
616 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
618 struct kvm_mmu_page
*sp
;
619 struct kvm_rmap_desc
*desc
;
620 unsigned long *rmapp
;
623 if (!is_rmap_spte(*spte
))
625 sp
= page_header(__pa(spte
));
626 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
627 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
629 rmap_printk("rmap_add: %p %llx 0->1\n", spte
, *spte
);
630 *rmapp
= (unsigned long)spte
;
631 } else if (!(*rmapp
& 1)) {
632 rmap_printk("rmap_add: %p %llx 1->many\n", spte
, *spte
);
633 desc
= mmu_alloc_rmap_desc(vcpu
);
634 desc
->sptes
[0] = (u64
*)*rmapp
;
635 desc
->sptes
[1] = spte
;
636 *rmapp
= (unsigned long)desc
| 1;
639 rmap_printk("rmap_add: %p %llx many->many\n", spte
, *spte
);
640 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
641 while (desc
->sptes
[RMAP_EXT
-1] && desc
->more
) {
645 if (desc
->sptes
[RMAP_EXT
-1]) {
646 desc
->more
= mmu_alloc_rmap_desc(vcpu
);
649 for (i
= 0; desc
->sptes
[i
]; ++i
)
651 desc
->sptes
[i
] = spte
;
656 static void rmap_desc_remove_entry(unsigned long *rmapp
,
657 struct kvm_rmap_desc
*desc
,
659 struct kvm_rmap_desc
*prev_desc
)
663 for (j
= RMAP_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
665 desc
->sptes
[i
] = desc
->sptes
[j
];
666 desc
->sptes
[j
] = NULL
;
669 if (!prev_desc
&& !desc
->more
)
670 *rmapp
= (unsigned long)desc
->sptes
[0];
673 prev_desc
->more
= desc
->more
;
675 *rmapp
= (unsigned long)desc
->more
| 1;
676 mmu_free_rmap_desc(desc
);
679 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
681 struct kvm_rmap_desc
*desc
;
682 struct kvm_rmap_desc
*prev_desc
;
683 struct kvm_mmu_page
*sp
;
685 unsigned long *rmapp
;
688 sp
= page_header(__pa(spte
));
689 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
690 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
->role
.level
);
692 printk(KERN_ERR
"rmap_remove: %p 0->BUG\n", spte
);
694 } else if (!(*rmapp
& 1)) {
695 rmap_printk("rmap_remove: %p 1->0\n", spte
);
696 if ((u64
*)*rmapp
!= spte
) {
697 printk(KERN_ERR
"rmap_remove: %p 1->BUG\n", spte
);
702 rmap_printk("rmap_remove: %p many->many\n", spte
);
703 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
706 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
)
707 if (desc
->sptes
[i
] == spte
) {
708 rmap_desc_remove_entry(rmapp
,
716 pr_err("rmap_remove: %p many->many\n", spte
);
721 static int set_spte_track_bits(u64
*sptep
, u64 new_spte
)
724 u64 old_spte
= *sptep
;
726 if (!spte_has_volatile_bits(old_spte
))
727 __set_spte(sptep
, new_spte
);
729 old_spte
= __xchg_spte(sptep
, new_spte
);
731 if (!is_rmap_spte(old_spte
))
734 pfn
= spte_to_pfn(old_spte
);
735 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
736 kvm_set_pfn_accessed(pfn
);
737 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
738 kvm_set_pfn_dirty(pfn
);
742 static void drop_spte(struct kvm
*kvm
, u64
*sptep
, u64 new_spte
)
744 if (set_spte_track_bits(sptep
, new_spte
))
745 rmap_remove(kvm
, sptep
);
748 static u64
*rmap_next(struct kvm
*kvm
, unsigned long *rmapp
, u64
*spte
)
750 struct kvm_rmap_desc
*desc
;
756 else if (!(*rmapp
& 1)) {
758 return (u64
*)*rmapp
;
761 desc
= (struct kvm_rmap_desc
*)(*rmapp
& ~1ul);
764 for (i
= 0; i
< RMAP_EXT
&& desc
->sptes
[i
]; ++i
) {
765 if (prev_spte
== spte
)
766 return desc
->sptes
[i
];
767 prev_spte
= desc
->sptes
[i
];
774 static int rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
776 unsigned long *rmapp
;
778 int i
, write_protected
= 0;
780 rmapp
= gfn_to_rmap(kvm
, gfn
, PT_PAGE_TABLE_LEVEL
);
782 spte
= rmap_next(kvm
, rmapp
, NULL
);
785 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
786 rmap_printk("rmap_write_protect: spte %p %llx\n", spte
, *spte
);
787 if (is_writable_pte(*spte
)) {
788 update_spte(spte
, *spte
& ~PT_WRITABLE_MASK
);
791 spte
= rmap_next(kvm
, rmapp
, spte
);
794 /* check for huge page mappings */
795 for (i
= PT_DIRECTORY_LEVEL
;
796 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
797 rmapp
= gfn_to_rmap(kvm
, gfn
, i
);
798 spte
= rmap_next(kvm
, rmapp
, NULL
);
801 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
802 BUG_ON((*spte
& (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
)) != (PT_PAGE_SIZE_MASK
|PT_PRESENT_MASK
));
803 pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte
, *spte
, gfn
);
804 if (is_writable_pte(*spte
)) {
806 shadow_trap_nonpresent_pte
);
811 spte
= rmap_next(kvm
, rmapp
, spte
);
815 return write_protected
;
818 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
822 int need_tlb_flush
= 0;
824 while ((spte
= rmap_next(kvm
, rmapp
, NULL
))) {
825 BUG_ON(!(*spte
& PT_PRESENT_MASK
));
826 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte
, *spte
);
827 drop_spte(kvm
, spte
, shadow_trap_nonpresent_pte
);
830 return need_tlb_flush
;
833 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
838 pte_t
*ptep
= (pte_t
*)data
;
841 WARN_ON(pte_huge(*ptep
));
842 new_pfn
= pte_pfn(*ptep
);
843 spte
= rmap_next(kvm
, rmapp
, NULL
);
845 BUG_ON(!is_shadow_present_pte(*spte
));
846 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte
, *spte
);
848 if (pte_write(*ptep
)) {
849 drop_spte(kvm
, spte
, shadow_trap_nonpresent_pte
);
850 spte
= rmap_next(kvm
, rmapp
, NULL
);
852 new_spte
= *spte
&~ (PT64_BASE_ADDR_MASK
);
853 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
855 new_spte
&= ~PT_WRITABLE_MASK
;
856 new_spte
&= ~SPTE_HOST_WRITEABLE
;
857 new_spte
&= ~shadow_accessed_mask
;
858 set_spte_track_bits(spte
, new_spte
);
859 spte
= rmap_next(kvm
, rmapp
, spte
);
863 kvm_flush_remote_tlbs(kvm
);
868 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
870 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
876 struct kvm_memslots
*slots
;
878 slots
= kvm_memslots(kvm
);
880 for (i
= 0; i
< slots
->nmemslots
; i
++) {
881 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
882 unsigned long start
= memslot
->userspace_addr
;
885 end
= start
+ (memslot
->npages
<< PAGE_SHIFT
);
886 if (hva
>= start
&& hva
< end
) {
887 gfn_t gfn_offset
= (hva
- start
) >> PAGE_SHIFT
;
888 gfn_t gfn
= memslot
->base_gfn
+ gfn_offset
;
890 ret
= handler(kvm
, &memslot
->rmap
[gfn_offset
], data
);
892 for (j
= 0; j
< KVM_NR_PAGE_SIZES
- 1; ++j
) {
893 struct kvm_lpage_info
*linfo
;
895 linfo
= lpage_info_slot(gfn
, memslot
,
896 PT_DIRECTORY_LEVEL
+ j
);
897 ret
|= handler(kvm
, &linfo
->rmap_pde
, data
);
899 trace_kvm_age_page(hva
, memslot
, ret
);
907 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
909 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
912 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
914 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
917 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
924 * Emulate the accessed bit for EPT, by checking if this page has
925 * an EPT mapping, and clearing it if it does. On the next access,
926 * a new EPT mapping will be established.
927 * This has some overhead, but not as much as the cost of swapping
928 * out actively used pages or breaking up actively used hugepages.
930 if (!shadow_accessed_mask
)
931 return kvm_unmap_rmapp(kvm
, rmapp
, data
);
933 spte
= rmap_next(kvm
, rmapp
, NULL
);
937 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
938 _young
= _spte
& PT_ACCESSED_MASK
;
941 clear_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
943 spte
= rmap_next(kvm
, rmapp
, spte
);
948 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
955 * If there's no access bit in the secondary pte set by the
956 * hardware it's up to gup-fast/gup to set the access bit in
957 * the primary pte or in the page structure.
959 if (!shadow_accessed_mask
)
962 spte
= rmap_next(kvm
, rmapp
, NULL
);
965 BUG_ON(!(_spte
& PT_PRESENT_MASK
));
966 young
= _spte
& PT_ACCESSED_MASK
;
971 spte
= rmap_next(kvm
, rmapp
, spte
);
977 #define RMAP_RECYCLE_THRESHOLD 1000
979 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
981 unsigned long *rmapp
;
982 struct kvm_mmu_page
*sp
;
984 sp
= page_header(__pa(spte
));
986 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
988 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, 0);
989 kvm_flush_remote_tlbs(vcpu
->kvm
);
992 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
994 return kvm_handle_hva(kvm
, hva
, 0, kvm_age_rmapp
);
997 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
999 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1003 static int is_empty_shadow_page(u64
*spt
)
1008 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1009 if (is_shadow_present_pte(*pos
)) {
1010 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1019 * This value is the sum of all of the kvm instances's
1020 * kvm->arch.n_used_mmu_pages values. We need a global,
1021 * aggregate version in order to make the slab shrinker
1024 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1026 kvm
->arch
.n_used_mmu_pages
+= nr
;
1027 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1030 static void kvm_mmu_free_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1032 ASSERT(is_empty_shadow_page(sp
->spt
));
1033 hlist_del(&sp
->hash_link
);
1034 list_del(&sp
->link
);
1035 __free_page(virt_to_page(sp
->spt
));
1036 if (!sp
->role
.direct
)
1037 __free_page(virt_to_page(sp
->gfns
));
1038 kmem_cache_free(mmu_page_header_cache
, sp
);
1039 kvm_mod_used_mmu_pages(kvm
, -1);
1042 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1044 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1047 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1048 u64
*parent_pte
, int direct
)
1050 struct kvm_mmu_page
*sp
;
1052 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
, sizeof *sp
);
1053 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
, PAGE_SIZE
);
1055 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
,
1057 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1058 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1059 bitmap_zero(sp
->slot_bitmap
, KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
);
1060 sp
->multimapped
= 0;
1061 sp
->parent_pte
= parent_pte
;
1062 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1066 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1067 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1069 struct kvm_pte_chain
*pte_chain
;
1070 struct hlist_node
*node
;
1075 if (!sp
->multimapped
) {
1076 u64
*old
= sp
->parent_pte
;
1079 sp
->parent_pte
= parent_pte
;
1082 sp
->multimapped
= 1;
1083 pte_chain
= mmu_alloc_pte_chain(vcpu
);
1084 INIT_HLIST_HEAD(&sp
->parent_ptes
);
1085 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
1086 pte_chain
->parent_ptes
[0] = old
;
1088 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
) {
1089 if (pte_chain
->parent_ptes
[NR_PTE_CHAIN_ENTRIES
-1])
1091 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
)
1092 if (!pte_chain
->parent_ptes
[i
]) {
1093 pte_chain
->parent_ptes
[i
] = parent_pte
;
1097 pte_chain
= mmu_alloc_pte_chain(vcpu
);
1099 hlist_add_head(&pte_chain
->link
, &sp
->parent_ptes
);
1100 pte_chain
->parent_ptes
[0] = parent_pte
;
1103 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1106 struct kvm_pte_chain
*pte_chain
;
1107 struct hlist_node
*node
;
1110 if (!sp
->multimapped
) {
1111 BUG_ON(sp
->parent_pte
!= parent_pte
);
1112 sp
->parent_pte
= NULL
;
1115 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1116 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1117 if (!pte_chain
->parent_ptes
[i
])
1119 if (pte_chain
->parent_ptes
[i
] != parent_pte
)
1121 while (i
+ 1 < NR_PTE_CHAIN_ENTRIES
1122 && pte_chain
->parent_ptes
[i
+ 1]) {
1123 pte_chain
->parent_ptes
[i
]
1124 = pte_chain
->parent_ptes
[i
+ 1];
1127 pte_chain
->parent_ptes
[i
] = NULL
;
1129 hlist_del(&pte_chain
->link
);
1130 mmu_free_pte_chain(pte_chain
);
1131 if (hlist_empty(&sp
->parent_ptes
)) {
1132 sp
->multimapped
= 0;
1133 sp
->parent_pte
= NULL
;
1141 static void mmu_parent_walk(struct kvm_mmu_page
*sp
, mmu_parent_walk_fn fn
)
1143 struct kvm_pte_chain
*pte_chain
;
1144 struct hlist_node
*node
;
1145 struct kvm_mmu_page
*parent_sp
;
1148 if (!sp
->multimapped
&& sp
->parent_pte
) {
1149 parent_sp
= page_header(__pa(sp
->parent_pte
));
1150 fn(parent_sp
, sp
->parent_pte
);
1154 hlist_for_each_entry(pte_chain
, node
, &sp
->parent_ptes
, link
)
1155 for (i
= 0; i
< NR_PTE_CHAIN_ENTRIES
; ++i
) {
1156 u64
*spte
= pte_chain
->parent_ptes
[i
];
1160 parent_sp
= page_header(__pa(spte
));
1161 fn(parent_sp
, spte
);
1165 static void mark_unsync(struct kvm_mmu_page
*sp
, u64
*spte
);
1166 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1168 mmu_parent_walk(sp
, mark_unsync
);
1171 static void mark_unsync(struct kvm_mmu_page
*sp
, u64
*spte
)
1175 index
= spte
- sp
->spt
;
1176 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1178 if (sp
->unsync_children
++)
1180 kvm_mmu_mark_parents_unsync(sp
);
1183 static void nonpaging_prefetch_page(struct kvm_vcpu
*vcpu
,
1184 struct kvm_mmu_page
*sp
)
1188 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1189 sp
->spt
[i
] = shadow_trap_nonpresent_pte
;
1192 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1193 struct kvm_mmu_page
*sp
)
1198 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1202 #define KVM_PAGE_ARRAY_NR 16
1204 struct kvm_mmu_pages
{
1205 struct mmu_page_and_offset
{
1206 struct kvm_mmu_page
*sp
;
1208 } page
[KVM_PAGE_ARRAY_NR
];
1212 #define for_each_unsync_children(bitmap, idx) \
1213 for (idx = find_first_bit(bitmap, 512); \
1215 idx = find_next_bit(bitmap, 512, idx+1))
1217 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1223 for (i
=0; i
< pvec
->nr
; i
++)
1224 if (pvec
->page
[i
].sp
== sp
)
1227 pvec
->page
[pvec
->nr
].sp
= sp
;
1228 pvec
->page
[pvec
->nr
].idx
= idx
;
1230 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1233 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1234 struct kvm_mmu_pages
*pvec
)
1236 int i
, ret
, nr_unsync_leaf
= 0;
1238 for_each_unsync_children(sp
->unsync_child_bitmap
, i
) {
1239 struct kvm_mmu_page
*child
;
1240 u64 ent
= sp
->spt
[i
];
1242 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1243 goto clear_child_bitmap
;
1245 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1247 if (child
->unsync_children
) {
1248 if (mmu_pages_add(pvec
, child
, i
))
1251 ret
= __mmu_unsync_walk(child
, pvec
);
1253 goto clear_child_bitmap
;
1255 nr_unsync_leaf
+= ret
;
1258 } else if (child
->unsync
) {
1260 if (mmu_pages_add(pvec
, child
, i
))
1263 goto clear_child_bitmap
;
1268 __clear_bit(i
, sp
->unsync_child_bitmap
);
1269 sp
->unsync_children
--;
1270 WARN_ON((int)sp
->unsync_children
< 0);
1274 return nr_unsync_leaf
;
1277 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1278 struct kvm_mmu_pages
*pvec
)
1280 if (!sp
->unsync_children
)
1283 mmu_pages_add(pvec
, sp
, 0);
1284 return __mmu_unsync_walk(sp
, pvec
);
1287 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1289 WARN_ON(!sp
->unsync
);
1290 trace_kvm_mmu_sync_page(sp
);
1292 --kvm
->stat
.mmu_unsync
;
1295 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1296 struct list_head
*invalid_list
);
1297 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1298 struct list_head
*invalid_list
);
1300 #define for_each_gfn_sp(kvm, sp, gfn, pos) \
1301 hlist_for_each_entry(sp, pos, \
1302 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1303 if ((sp)->gfn != (gfn)) {} else
1305 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1306 hlist_for_each_entry(sp, pos, \
1307 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1308 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1309 (sp)->role.invalid) {} else
1311 /* @sp->gfn should be write-protected at the call site */
1312 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1313 struct list_head
*invalid_list
, bool clear_unsync
)
1315 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1316 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1321 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1323 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1324 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1328 kvm_mmu_flush_tlb(vcpu
);
1332 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1333 struct kvm_mmu_page
*sp
)
1335 LIST_HEAD(invalid_list
);
1338 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1340 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1345 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1346 struct list_head
*invalid_list
)
1348 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1351 /* @gfn should be write-protected at the call site */
1352 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1354 struct kvm_mmu_page
*s
;
1355 struct hlist_node
*node
;
1356 LIST_HEAD(invalid_list
);
1359 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
1363 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1364 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1365 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1366 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1367 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1373 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1375 kvm_mmu_flush_tlb(vcpu
);
1378 struct mmu_page_path
{
1379 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1380 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1383 #define for_each_sp(pvec, sp, parents, i) \
1384 for (i = mmu_pages_next(&pvec, &parents, -1), \
1385 sp = pvec.page[i].sp; \
1386 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1387 i = mmu_pages_next(&pvec, &parents, i))
1389 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1390 struct mmu_page_path
*parents
,
1395 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1396 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1398 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1399 parents
->idx
[0] = pvec
->page
[n
].idx
;
1403 parents
->parent
[sp
->role
.level
-2] = sp
;
1404 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1410 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1412 struct kvm_mmu_page
*sp
;
1413 unsigned int level
= 0;
1416 unsigned int idx
= parents
->idx
[level
];
1418 sp
= parents
->parent
[level
];
1422 --sp
->unsync_children
;
1423 WARN_ON((int)sp
->unsync_children
< 0);
1424 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1426 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1429 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1430 struct mmu_page_path
*parents
,
1431 struct kvm_mmu_pages
*pvec
)
1433 parents
->parent
[parent
->role
.level
-1] = NULL
;
1437 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1438 struct kvm_mmu_page
*parent
)
1441 struct kvm_mmu_page
*sp
;
1442 struct mmu_page_path parents
;
1443 struct kvm_mmu_pages pages
;
1444 LIST_HEAD(invalid_list
);
1446 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1447 while (mmu_unsync_walk(parent
, &pages
)) {
1450 for_each_sp(pages
, sp
, parents
, i
)
1451 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1454 kvm_flush_remote_tlbs(vcpu
->kvm
);
1456 for_each_sp(pages
, sp
, parents
, i
) {
1457 kvm_sync_page(vcpu
, sp
, &invalid_list
);
1458 mmu_pages_clear_parents(&parents
);
1460 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1461 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1462 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1466 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1474 union kvm_mmu_page_role role
;
1476 struct kvm_mmu_page
*sp
;
1477 struct hlist_node
*node
;
1478 bool need_sync
= false;
1480 role
= vcpu
->arch
.mmu
.base_role
;
1482 role
.direct
= direct
;
1485 role
.access
= access
;
1486 if (!vcpu
->arch
.mmu
.direct_map
1487 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1488 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1489 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1490 role
.quadrant
= quadrant
;
1492 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
, node
) {
1493 if (!need_sync
&& sp
->unsync
)
1496 if (sp
->role
.word
!= role
.word
)
1499 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
1502 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1503 if (sp
->unsync_children
) {
1504 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
1505 kvm_mmu_mark_parents_unsync(sp
);
1506 } else if (sp
->unsync
)
1507 kvm_mmu_mark_parents_unsync(sp
);
1509 trace_kvm_mmu_get_page(sp
, false);
1512 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1513 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
1518 hlist_add_head(&sp
->hash_link
,
1519 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
1521 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1522 kvm_flush_remote_tlbs(vcpu
->kvm
);
1523 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
1524 kvm_sync_pages(vcpu
, gfn
);
1526 account_shadowed(vcpu
->kvm
, gfn
);
1528 if (shadow_trap_nonpresent_pte
!= shadow_notrap_nonpresent_pte
)
1529 vcpu
->arch
.mmu
.prefetch_page(vcpu
, sp
);
1531 nonpaging_prefetch_page(vcpu
, sp
);
1532 trace_kvm_mmu_get_page(sp
, true);
1536 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1537 struct kvm_vcpu
*vcpu
, u64 addr
)
1539 iterator
->addr
= addr
;
1540 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1541 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1543 if (iterator
->level
== PT64_ROOT_LEVEL
&&
1544 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
1545 !vcpu
->arch
.mmu
.direct_map
)
1548 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
1549 iterator
->shadow_addr
1550 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
1551 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
1553 if (!iterator
->shadow_addr
)
1554 iterator
->level
= 0;
1558 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
1560 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
1563 if (iterator
->level
== PT_PAGE_TABLE_LEVEL
)
1564 if (is_large_pte(*iterator
->sptep
))
1567 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
1568 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
1572 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
1574 iterator
->shadow_addr
= *iterator
->sptep
& PT64_BASE_ADDR_MASK
;
1578 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
)
1582 spte
= __pa(sp
->spt
)
1583 | PT_PRESENT_MASK
| PT_ACCESSED_MASK
1584 | PT_WRITABLE_MASK
| PT_USER_MASK
;
1585 __set_spte(sptep
, spte
);
1588 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1590 if (is_large_pte(*sptep
)) {
1591 drop_spte(vcpu
->kvm
, sptep
, shadow_trap_nonpresent_pte
);
1592 kvm_flush_remote_tlbs(vcpu
->kvm
);
1596 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1597 unsigned direct_access
)
1599 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
1600 struct kvm_mmu_page
*child
;
1603 * For the direct sp, if the guest pte's dirty bit
1604 * changed form clean to dirty, it will corrupt the
1605 * sp's access: allow writable in the read-only sp,
1606 * so we should update the spte at this point to get
1607 * a new sp with the correct access.
1609 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
1610 if (child
->role
.access
== direct_access
)
1613 mmu_page_remove_parent_pte(child
, sptep
);
1614 __set_spte(sptep
, shadow_trap_nonpresent_pte
);
1615 kvm_flush_remote_tlbs(vcpu
->kvm
);
1619 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
1620 struct kvm_mmu_page
*sp
)
1628 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1631 if (is_shadow_present_pte(ent
)) {
1632 if (!is_last_spte(ent
, sp
->role
.level
)) {
1633 ent
&= PT64_BASE_ADDR_MASK
;
1634 mmu_page_remove_parent_pte(page_header(ent
),
1637 if (is_large_pte(ent
))
1639 drop_spte(kvm
, &pt
[i
],
1640 shadow_trap_nonpresent_pte
);
1643 pt
[i
] = shadow_trap_nonpresent_pte
;
1647 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1649 mmu_page_remove_parent_pte(sp
, parent_pte
);
1652 static void kvm_mmu_reset_last_pte_updated(struct kvm
*kvm
)
1655 struct kvm_vcpu
*vcpu
;
1657 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1658 vcpu
->arch
.last_pte_updated
= NULL
;
1661 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1665 while (sp
->multimapped
|| sp
->parent_pte
) {
1666 if (!sp
->multimapped
)
1667 parent_pte
= sp
->parent_pte
;
1669 struct kvm_pte_chain
*chain
;
1671 chain
= container_of(sp
->parent_ptes
.first
,
1672 struct kvm_pte_chain
, link
);
1673 parent_pte
= chain
->parent_ptes
[0];
1675 BUG_ON(!parent_pte
);
1676 kvm_mmu_put_page(sp
, parent_pte
);
1677 __set_spte(parent_pte
, shadow_trap_nonpresent_pte
);
1681 static int mmu_zap_unsync_children(struct kvm
*kvm
,
1682 struct kvm_mmu_page
*parent
,
1683 struct list_head
*invalid_list
)
1686 struct mmu_page_path parents
;
1687 struct kvm_mmu_pages pages
;
1689 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
1692 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1693 while (mmu_unsync_walk(parent
, &pages
)) {
1694 struct kvm_mmu_page
*sp
;
1696 for_each_sp(pages
, sp
, parents
, i
) {
1697 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
1698 mmu_pages_clear_parents(&parents
);
1701 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1707 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1708 struct list_head
*invalid_list
)
1712 trace_kvm_mmu_prepare_zap_page(sp
);
1713 ++kvm
->stat
.mmu_shadow_zapped
;
1714 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
1715 kvm_mmu_page_unlink_children(kvm
, sp
);
1716 kvm_mmu_unlink_parents(kvm
, sp
);
1717 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
1718 unaccount_shadowed(kvm
, sp
->gfn
);
1720 kvm_unlink_unsync_page(kvm
, sp
);
1721 if (!sp
->root_count
) {
1724 list_move(&sp
->link
, invalid_list
);
1726 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
1727 kvm_reload_remote_mmus(kvm
);
1730 sp
->role
.invalid
= 1;
1731 kvm_mmu_reset_last_pte_updated(kvm
);
1735 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1736 struct list_head
*invalid_list
)
1738 struct kvm_mmu_page
*sp
;
1740 if (list_empty(invalid_list
))
1743 kvm_flush_remote_tlbs(kvm
);
1746 sp
= list_first_entry(invalid_list
, struct kvm_mmu_page
, link
);
1747 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
1748 kvm_mmu_free_page(kvm
, sp
);
1749 } while (!list_empty(invalid_list
));
1754 * Changing the number of mmu pages allocated to the vm
1755 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1757 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
1759 LIST_HEAD(invalid_list
);
1761 * If we set the number of mmu pages to be smaller be than the
1762 * number of actived pages , we must to free some mmu pages before we
1766 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
1767 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
&&
1768 !list_empty(&kvm
->arch
.active_mmu_pages
)) {
1769 struct kvm_mmu_page
*page
;
1771 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
1772 struct kvm_mmu_page
, link
);
1773 kvm_mmu_prepare_zap_page(kvm
, page
, &invalid_list
);
1774 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
1776 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
1779 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
1782 static int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
1784 struct kvm_mmu_page
*sp
;
1785 struct hlist_node
*node
;
1786 LIST_HEAD(invalid_list
);
1789 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
1792 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
, node
) {
1793 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
1796 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
1798 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
1802 static void mmu_unshadow(struct kvm
*kvm
, gfn_t gfn
)
1804 struct kvm_mmu_page
*sp
;
1805 struct hlist_node
*node
;
1806 LIST_HEAD(invalid_list
);
1808 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
, node
) {
1809 pgprintk("%s: zap %llx %x\n",
1810 __func__
, gfn
, sp
->role
.word
);
1811 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
1813 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
1816 static void page_header_update_slot(struct kvm
*kvm
, void *pte
, gfn_t gfn
)
1818 int slot
= memslot_id(kvm
, gfn
);
1819 struct kvm_mmu_page
*sp
= page_header(__pa(pte
));
1821 __set_bit(slot
, sp
->slot_bitmap
);
1824 static void mmu_convert_notrap(struct kvm_mmu_page
*sp
)
1829 if (shadow_trap_nonpresent_pte
== shadow_notrap_nonpresent_pte
)
1832 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
) {
1833 if (pt
[i
] == shadow_notrap_nonpresent_pte
)
1834 __set_spte(&pt
[i
], shadow_trap_nonpresent_pte
);
1839 * The function is based on mtrr_type_lookup() in
1840 * arch/x86/kernel/cpu/mtrr/generic.c
1842 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
1847 u8 prev_match
, curr_match
;
1848 int num_var_ranges
= KVM_NR_VAR_MTRR
;
1850 if (!mtrr_state
->enabled
)
1853 /* Make end inclusive end, instead of exclusive */
1856 /* Look in fixed ranges. Just return the type as per start */
1857 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
1860 if (start
< 0x80000) {
1862 idx
+= (start
>> 16);
1863 return mtrr_state
->fixed_ranges
[idx
];
1864 } else if (start
< 0xC0000) {
1866 idx
+= ((start
- 0x80000) >> 14);
1867 return mtrr_state
->fixed_ranges
[idx
];
1868 } else if (start
< 0x1000000) {
1870 idx
+= ((start
- 0xC0000) >> 12);
1871 return mtrr_state
->fixed_ranges
[idx
];
1876 * Look in variable ranges
1877 * Look of multiple ranges matching this address and pick type
1878 * as per MTRR precedence
1880 if (!(mtrr_state
->enabled
& 2))
1881 return mtrr_state
->def_type
;
1884 for (i
= 0; i
< num_var_ranges
; ++i
) {
1885 unsigned short start_state
, end_state
;
1887 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
1890 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
1891 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
1892 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
1893 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
1895 start_state
= ((start
& mask
) == (base
& mask
));
1896 end_state
= ((end
& mask
) == (base
& mask
));
1897 if (start_state
!= end_state
)
1900 if ((start
& mask
) != (base
& mask
))
1903 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
1904 if (prev_match
== 0xFF) {
1905 prev_match
= curr_match
;
1909 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
1910 curr_match
== MTRR_TYPE_UNCACHABLE
)
1911 return MTRR_TYPE_UNCACHABLE
;
1913 if ((prev_match
== MTRR_TYPE_WRBACK
&&
1914 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
1915 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
1916 curr_match
== MTRR_TYPE_WRBACK
)) {
1917 prev_match
= MTRR_TYPE_WRTHROUGH
;
1918 curr_match
= MTRR_TYPE_WRTHROUGH
;
1921 if (prev_match
!= curr_match
)
1922 return MTRR_TYPE_UNCACHABLE
;
1925 if (prev_match
!= 0xFF)
1928 return mtrr_state
->def_type
;
1931 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1935 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
1936 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
1937 if (mtrr
== 0xfe || mtrr
== 0xff)
1938 mtrr
= MTRR_TYPE_WRBACK
;
1941 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
1943 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
1945 trace_kvm_mmu_unsync_page(sp
);
1946 ++vcpu
->kvm
->stat
.mmu_unsync
;
1949 kvm_mmu_mark_parents_unsync(sp
);
1950 mmu_convert_notrap(sp
);
1953 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1955 struct kvm_mmu_page
*s
;
1956 struct hlist_node
*node
;
1958 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
1961 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1962 __kvm_unsync_page(vcpu
, s
);
1966 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1969 struct kvm_mmu_page
*s
;
1970 struct hlist_node
*node
;
1971 bool need_unsync
= false;
1973 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
, node
) {
1977 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
1980 if (!need_unsync
&& !s
->unsync
) {
1987 kvm_unsync_pages(vcpu
, gfn
);
1991 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
1992 unsigned pte_access
, int user_fault
,
1993 int write_fault
, int dirty
, int level
,
1994 gfn_t gfn
, pfn_t pfn
, bool speculative
,
1995 bool can_unsync
, bool host_writable
)
1997 u64 spte
, entry
= *sptep
;
2001 * We don't set the accessed bit, since we sometimes want to see
2002 * whether the guest actually used the pte (in order to detect
2005 spte
= PT_PRESENT_MASK
;
2007 spte
|= shadow_accessed_mask
;
2009 pte_access
&= ~ACC_WRITE_MASK
;
2010 if (pte_access
& ACC_EXEC_MASK
)
2011 spte
|= shadow_x_mask
;
2013 spte
|= shadow_nx_mask
;
2014 if (pte_access
& ACC_USER_MASK
)
2015 spte
|= shadow_user_mask
;
2016 if (level
> PT_PAGE_TABLE_LEVEL
)
2017 spte
|= PT_PAGE_SIZE_MASK
;
2019 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2020 kvm_is_mmio_pfn(pfn
));
2023 spte
|= SPTE_HOST_WRITEABLE
;
2025 pte_access
&= ~ACC_WRITE_MASK
;
2027 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2029 if ((pte_access
& ACC_WRITE_MASK
)
2030 || (!vcpu
->arch
.mmu
.direct_map
&& write_fault
2031 && !is_write_protection(vcpu
) && !user_fault
)) {
2033 if (level
> PT_PAGE_TABLE_LEVEL
&&
2034 has_wrprotected_page(vcpu
->kvm
, gfn
, level
)) {
2036 drop_spte(vcpu
->kvm
, sptep
, shadow_trap_nonpresent_pte
);
2040 spte
|= PT_WRITABLE_MASK
;
2042 if (!vcpu
->arch
.mmu
.direct_map
2043 && !(pte_access
& ACC_WRITE_MASK
))
2044 spte
&= ~PT_USER_MASK
;
2047 * Optimization: for pte sync, if spte was writable the hash
2048 * lookup is unnecessary (and expensive). Write protection
2049 * is responsibility of mmu_get_page / kvm_sync_page.
2050 * Same reasoning can be applied to dirty page accounting.
2052 if (!can_unsync
&& is_writable_pte(*sptep
))
2055 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2056 pgprintk("%s: found shadow page for %llx, marking ro\n",
2059 pte_access
&= ~ACC_WRITE_MASK
;
2060 if (is_writable_pte(spte
))
2061 spte
&= ~PT_WRITABLE_MASK
;
2065 if (pte_access
& ACC_WRITE_MASK
)
2066 mark_page_dirty(vcpu
->kvm
, gfn
);
2069 update_spte(sptep
, spte
);
2071 * If we overwrite a writable spte with a read-only one we
2072 * should flush remote TLBs. Otherwise rmap_write_protect
2073 * will find a read-only spte, even though the writable spte
2074 * might be cached on a CPU's TLB.
2076 if (is_writable_pte(entry
) && !is_writable_pte(*sptep
))
2077 kvm_flush_remote_tlbs(vcpu
->kvm
);
2082 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2083 unsigned pt_access
, unsigned pte_access
,
2084 int user_fault
, int write_fault
, int dirty
,
2085 int *ptwrite
, int level
, gfn_t gfn
,
2086 pfn_t pfn
, bool speculative
,
2089 int was_rmapped
= 0;
2092 pgprintk("%s: spte %llx access %x write_fault %d"
2093 " user_fault %d gfn %llx\n",
2094 __func__
, *sptep
, pt_access
,
2095 write_fault
, user_fault
, gfn
);
2097 if (is_rmap_spte(*sptep
)) {
2099 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2100 * the parent of the now unreachable PTE.
2102 if (level
> PT_PAGE_TABLE_LEVEL
&&
2103 !is_large_pte(*sptep
)) {
2104 struct kvm_mmu_page
*child
;
2107 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2108 mmu_page_remove_parent_pte(child
, sptep
);
2109 __set_spte(sptep
, shadow_trap_nonpresent_pte
);
2110 kvm_flush_remote_tlbs(vcpu
->kvm
);
2111 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2112 pgprintk("hfn old %llx new %llx\n",
2113 spte_to_pfn(*sptep
), pfn
);
2114 drop_spte(vcpu
->kvm
, sptep
, shadow_trap_nonpresent_pte
);
2115 kvm_flush_remote_tlbs(vcpu
->kvm
);
2120 if (set_spte(vcpu
, sptep
, pte_access
, user_fault
, write_fault
,
2121 dirty
, level
, gfn
, pfn
, speculative
, true,
2125 kvm_mmu_flush_tlb(vcpu
);
2128 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2129 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2130 is_large_pte(*sptep
)? "2MB" : "4kB",
2131 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2133 if (!was_rmapped
&& is_large_pte(*sptep
))
2134 ++vcpu
->kvm
->stat
.lpages
;
2136 page_header_update_slot(vcpu
->kvm
, sptep
, gfn
);
2138 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2139 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2140 rmap_recycle(vcpu
, sptep
, gfn
);
2142 kvm_release_pfn_clean(pfn
);
2144 vcpu
->arch
.last_pte_updated
= sptep
;
2145 vcpu
->arch
.last_pte_gfn
= gfn
;
2149 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
2153 static struct kvm_memory_slot
*
2154 pte_prefetch_gfn_to_memslot(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool no_dirty_log
)
2156 struct kvm_memory_slot
*slot
;
2158 slot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
2159 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
||
2160 (no_dirty_log
&& slot
->dirty_bitmap
))
2166 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2169 struct kvm_memory_slot
*slot
;
2172 slot
= pte_prefetch_gfn_to_memslot(vcpu
, gfn
, no_dirty_log
);
2175 return page_to_pfn(bad_page
);
2178 hva
= gfn_to_hva_memslot(slot
, gfn
);
2180 return hva_to_pfn_atomic(vcpu
->kvm
, hva
);
2183 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2184 struct kvm_mmu_page
*sp
,
2185 u64
*start
, u64
*end
)
2187 struct page
*pages
[PTE_PREFETCH_NUM
];
2188 unsigned access
= sp
->role
.access
;
2192 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2193 if (!pte_prefetch_gfn_to_memslot(vcpu
, gfn
, access
& ACC_WRITE_MASK
))
2196 ret
= gfn_to_page_many_atomic(vcpu
->kvm
, gfn
, pages
, end
- start
);
2200 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2201 mmu_set_spte(vcpu
, start
, ACC_ALL
,
2202 access
, 0, 0, 1, NULL
,
2203 sp
->role
.level
, gfn
,
2204 page_to_pfn(pages
[i
]), true, true);
2209 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2210 struct kvm_mmu_page
*sp
, u64
*sptep
)
2212 u64
*spte
, *start
= NULL
;
2215 WARN_ON(!sp
->role
.direct
);
2217 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2220 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2221 if (*spte
!= shadow_trap_nonpresent_pte
|| spte
== sptep
) {
2224 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2232 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2234 struct kvm_mmu_page
*sp
;
2237 * Since it's no accessed bit on EPT, it's no way to
2238 * distinguish between actually accessed translations
2239 * and prefetched, so disable pte prefetch if EPT is
2242 if (!shadow_accessed_mask
)
2245 sp
= page_header(__pa(sptep
));
2246 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2249 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2252 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2253 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2256 struct kvm_shadow_walk_iterator iterator
;
2257 struct kvm_mmu_page
*sp
;
2261 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2262 if (iterator
.level
== level
) {
2263 unsigned pte_access
= ACC_ALL
;
2265 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
, pte_access
,
2266 0, write
, 1, &pt_write
,
2267 level
, gfn
, pfn
, prefault
, map_writable
);
2268 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2269 ++vcpu
->stat
.pf_fixed
;
2273 if (*iterator
.sptep
== shadow_trap_nonpresent_pte
) {
2274 u64 base_addr
= iterator
.addr
;
2276 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2277 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2278 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2280 1, ACC_ALL
, iterator
.sptep
);
2282 pgprintk("nonpaging_map: ENOMEM\n");
2283 kvm_release_pfn_clean(pfn
);
2287 __set_spte(iterator
.sptep
,
2289 | PT_PRESENT_MASK
| PT_WRITABLE_MASK
2290 | shadow_user_mask
| shadow_x_mask
2291 | shadow_accessed_mask
);
2297 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2301 info
.si_signo
= SIGBUS
;
2303 info
.si_code
= BUS_MCEERR_AR
;
2304 info
.si_addr
= (void __user
*)address
;
2305 info
.si_addr_lsb
= PAGE_SHIFT
;
2307 send_sig_info(SIGBUS
, &info
, tsk
);
2310 static int kvm_handle_bad_page(struct kvm
*kvm
, gfn_t gfn
, pfn_t pfn
)
2312 kvm_release_pfn_clean(pfn
);
2313 if (is_hwpoison_pfn(pfn
)) {
2314 kvm_send_hwpoison_signal(gfn_to_hva(kvm
, gfn
), current
);
2316 } else if (is_fault_pfn(pfn
))
2322 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2323 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2327 int level
= *levelp
;
2330 * Check if it's a transparent hugepage. If this would be an
2331 * hugetlbfs page, level wouldn't be set to
2332 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2335 if (!is_error_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
) &&
2336 level
== PT_PAGE_TABLE_LEVEL
&&
2337 PageTransCompound(pfn_to_page(pfn
)) &&
2338 !has_wrprotected_page(vcpu
->kvm
, gfn
, PT_DIRECTORY_LEVEL
)) {
2341 * mmu_notifier_retry was successful and we hold the
2342 * mmu_lock here, so the pmd can't become splitting
2343 * from under us, and in turn
2344 * __split_huge_page_refcount() can't run from under
2345 * us and we can safely transfer the refcount from
2346 * PG_tail to PG_head as we switch the pfn to tail to
2349 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2350 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2351 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2355 kvm_release_pfn_clean(pfn
);
2357 if (!get_page_unless_zero(pfn_to_page(pfn
)))
2364 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2365 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2367 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, int write
, gfn_t gfn
,
2374 unsigned long mmu_seq
;
2377 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2378 if (likely(!force_pt_level
)) {
2379 level
= mapping_level(vcpu
, gfn
);
2381 * This path builds a PAE pagetable - so we can map
2382 * 2mb pages at maximum. Therefore check if the level
2383 * is larger than that.
2385 if (level
> PT_DIRECTORY_LEVEL
)
2386 level
= PT_DIRECTORY_LEVEL
;
2388 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2390 level
= PT_PAGE_TABLE_LEVEL
;
2392 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2395 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
2399 if (is_error_pfn(pfn
))
2400 return kvm_handle_bad_page(vcpu
->kvm
, gfn
, pfn
);
2402 spin_lock(&vcpu
->kvm
->mmu_lock
);
2403 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2405 kvm_mmu_free_some_pages(vcpu
);
2406 if (likely(!force_pt_level
))
2407 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
2408 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
2410 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2416 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2417 kvm_release_pfn_clean(pfn
);
2422 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2425 struct kvm_mmu_page
*sp
;
2426 LIST_HEAD(invalid_list
);
2428 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2430 spin_lock(&vcpu
->kvm
->mmu_lock
);
2431 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
2432 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
2433 vcpu
->arch
.mmu
.direct_map
)) {
2434 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2436 sp
= page_header(root
);
2438 if (!sp
->root_count
&& sp
->role
.invalid
) {
2439 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
2440 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2442 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2443 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2446 for (i
= 0; i
< 4; ++i
) {
2447 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2450 root
&= PT64_BASE_ADDR_MASK
;
2451 sp
= page_header(root
);
2453 if (!sp
->root_count
&& sp
->role
.invalid
)
2454 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
2457 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2459 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2460 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2461 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2464 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
2468 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
2469 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2476 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
2478 struct kvm_mmu_page
*sp
;
2481 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2482 spin_lock(&vcpu
->kvm
->mmu_lock
);
2483 kvm_mmu_free_some_pages(vcpu
);
2484 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
2487 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2488 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
2489 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
2490 for (i
= 0; i
< 4; ++i
) {
2491 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2493 ASSERT(!VALID_PAGE(root
));
2494 spin_lock(&vcpu
->kvm
->mmu_lock
);
2495 kvm_mmu_free_some_pages(vcpu
);
2496 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
2498 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
2500 root
= __pa(sp
->spt
);
2502 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2503 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
2505 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
2512 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
2514 struct kvm_mmu_page
*sp
;
2519 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
2521 if (mmu_check_root(vcpu
, root_gfn
))
2525 * Do we shadow a long mode page table? If so we need to
2526 * write-protect the guests page table root.
2528 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
2529 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2531 ASSERT(!VALID_PAGE(root
));
2533 spin_lock(&vcpu
->kvm
->mmu_lock
);
2534 kvm_mmu_free_some_pages(vcpu
);
2535 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
2537 root
= __pa(sp
->spt
);
2539 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2540 vcpu
->arch
.mmu
.root_hpa
= root
;
2545 * We shadow a 32 bit page table. This may be a legacy 2-level
2546 * or a PAE 3-level page table. In either case we need to be aware that
2547 * the shadow page table may be a PAE or a long mode page table.
2549 pm_mask
= PT_PRESENT_MASK
;
2550 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
2551 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
2553 for (i
= 0; i
< 4; ++i
) {
2554 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2556 ASSERT(!VALID_PAGE(root
));
2557 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
2558 pdptr
= kvm_pdptr_read_mmu(vcpu
, &vcpu
->arch
.mmu
, i
);
2559 if (!is_present_gpte(pdptr
)) {
2560 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
2563 root_gfn
= pdptr
>> PAGE_SHIFT
;
2564 if (mmu_check_root(vcpu
, root_gfn
))
2567 spin_lock(&vcpu
->kvm
->mmu_lock
);
2568 kvm_mmu_free_some_pages(vcpu
);
2569 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
2572 root
= __pa(sp
->spt
);
2574 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2576 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
2578 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
2581 * If we shadow a 32 bit page table with a long mode page
2582 * table we enter this path.
2584 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
2585 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
2587 * The additional page necessary for this is only
2588 * allocated on demand.
2593 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
2594 if (lm_root
== NULL
)
2597 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
2599 vcpu
->arch
.mmu
.lm_root
= lm_root
;
2602 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
2608 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
2610 if (vcpu
->arch
.mmu
.direct_map
)
2611 return mmu_alloc_direct_roots(vcpu
);
2613 return mmu_alloc_shadow_roots(vcpu
);
2616 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2619 struct kvm_mmu_page
*sp
;
2621 if (vcpu
->arch
.mmu
.direct_map
)
2624 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2627 trace_kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
2628 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
2629 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2630 sp
= page_header(root
);
2631 mmu_sync_children(vcpu
, sp
);
2632 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
2635 for (i
= 0; i
< 4; ++i
) {
2636 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2638 if (root
&& VALID_PAGE(root
)) {
2639 root
&= PT64_BASE_ADDR_MASK
;
2640 sp
= page_header(root
);
2641 mmu_sync_children(vcpu
, sp
);
2644 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
2647 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
2649 spin_lock(&vcpu
->kvm
->mmu_lock
);
2650 mmu_sync_roots(vcpu
);
2651 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2654 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
2655 u32 access
, struct x86_exception
*exception
)
2658 exception
->error_code
= 0;
2662 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
2664 struct x86_exception
*exception
)
2667 exception
->error_code
= 0;
2668 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
);
2671 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
2672 u32 error_code
, bool prefault
)
2677 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
2678 r
= mmu_topup_memory_caches(vcpu
);
2683 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2685 gfn
= gva
>> PAGE_SHIFT
;
2687 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
2688 error_code
& PFERR_WRITE_MASK
, gfn
, prefault
);
2691 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
2693 struct kvm_arch_async_pf arch
;
2695 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
2697 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
2698 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
2700 return kvm_setup_async_pf(vcpu
, gva
, gfn
, &arch
);
2703 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
2705 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
) ||
2706 kvm_event_needs_reinjection(vcpu
)))
2709 return kvm_x86_ops
->interrupt_allowed(vcpu
);
2712 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2713 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
2717 *pfn
= gfn_to_pfn_async(vcpu
->kvm
, gfn
, &async
, write
, writable
);
2720 return false; /* *pfn has correct page already */
2722 put_page(pfn_to_page(*pfn
));
2724 if (!prefault
&& can_do_async_pf(vcpu
)) {
2725 trace_kvm_try_async_get_page(gva
, gfn
);
2726 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
2727 trace_kvm_async_pf_doublefault(gva
, gfn
);
2728 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
2730 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
2734 *pfn
= gfn_to_pfn_prot(vcpu
->kvm
, gfn
, write
, writable
);
2739 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
2746 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
2747 unsigned long mmu_seq
;
2748 int write
= error_code
& PFERR_WRITE_MASK
;
2752 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
2754 r
= mmu_topup_memory_caches(vcpu
);
2758 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2759 if (likely(!force_pt_level
)) {
2760 level
= mapping_level(vcpu
, gfn
);
2761 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2763 level
= PT_PAGE_TABLE_LEVEL
;
2765 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2768 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
2772 if (is_error_pfn(pfn
))
2773 return kvm_handle_bad_page(vcpu
->kvm
, gfn
, pfn
);
2774 spin_lock(&vcpu
->kvm
->mmu_lock
);
2775 if (mmu_notifier_retry(vcpu
, mmu_seq
))
2777 kvm_mmu_free_some_pages(vcpu
);
2778 if (likely(!force_pt_level
))
2779 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
2780 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
2781 level
, gfn
, pfn
, prefault
);
2782 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2787 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2788 kvm_release_pfn_clean(pfn
);
2792 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
2794 mmu_free_roots(vcpu
);
2797 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
,
2798 struct kvm_mmu
*context
)
2800 context
->new_cr3
= nonpaging_new_cr3
;
2801 context
->page_fault
= nonpaging_page_fault
;
2802 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2803 context
->free
= nonpaging_free
;
2804 context
->prefetch_page
= nonpaging_prefetch_page
;
2805 context
->sync_page
= nonpaging_sync_page
;
2806 context
->invlpg
= nonpaging_invlpg
;
2807 context
->root_level
= 0;
2808 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2809 context
->root_hpa
= INVALID_PAGE
;
2810 context
->direct_map
= true;
2811 context
->nx
= false;
2815 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
2817 ++vcpu
->stat
.tlb_flush
;
2818 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2821 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
2823 pgprintk("%s: cr3 %lx\n", __func__
, kvm_read_cr3(vcpu
));
2824 mmu_free_roots(vcpu
);
2827 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
2829 return kvm_read_cr3(vcpu
);
2832 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
2833 struct x86_exception
*fault
)
2835 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
2838 static void paging_free(struct kvm_vcpu
*vcpu
)
2840 nonpaging_free(vcpu
);
2843 static bool is_rsvd_bits_set(struct kvm_mmu
*mmu
, u64 gpte
, int level
)
2847 bit7
= (gpte
>> 7) & 1;
2848 return (gpte
& mmu
->rsvd_bits_mask
[bit7
][level
-1]) != 0;
2852 #include "paging_tmpl.h"
2856 #include "paging_tmpl.h"
2859 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
2860 struct kvm_mmu
*context
,
2863 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
2864 u64 exb_bit_rsvd
= 0;
2867 exb_bit_rsvd
= rsvd_bits(63, 63);
2869 case PT32_ROOT_LEVEL
:
2870 /* no rsvd bits for 2 level 4K page table entries */
2871 context
->rsvd_bits_mask
[0][1] = 0;
2872 context
->rsvd_bits_mask
[0][0] = 0;
2873 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
2875 if (!is_pse(vcpu
)) {
2876 context
->rsvd_bits_mask
[1][1] = 0;
2880 if (is_cpuid_PSE36())
2881 /* 36bits PSE 4MB page */
2882 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
2884 /* 32 bits PSE 4MB page */
2885 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
2887 case PT32E_ROOT_LEVEL
:
2888 context
->rsvd_bits_mask
[0][2] =
2889 rsvd_bits(maxphyaddr
, 63) |
2890 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
2891 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2892 rsvd_bits(maxphyaddr
, 62); /* PDE */
2893 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2894 rsvd_bits(maxphyaddr
, 62); /* PTE */
2895 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2896 rsvd_bits(maxphyaddr
, 62) |
2897 rsvd_bits(13, 20); /* large page */
2898 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
2900 case PT64_ROOT_LEVEL
:
2901 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
2902 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2903 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
2904 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
2905 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
2906 rsvd_bits(maxphyaddr
, 51);
2907 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
2908 rsvd_bits(maxphyaddr
, 51);
2909 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
2910 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
2911 rsvd_bits(maxphyaddr
, 51) |
2913 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
2914 rsvd_bits(maxphyaddr
, 51) |
2915 rsvd_bits(13, 20); /* large page */
2916 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
2921 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
,
2922 struct kvm_mmu
*context
,
2925 context
->nx
= is_nx(vcpu
);
2927 reset_rsvds_bits_mask(vcpu
, context
, level
);
2929 ASSERT(is_pae(vcpu
));
2930 context
->new_cr3
= paging_new_cr3
;
2931 context
->page_fault
= paging64_page_fault
;
2932 context
->gva_to_gpa
= paging64_gva_to_gpa
;
2933 context
->prefetch_page
= paging64_prefetch_page
;
2934 context
->sync_page
= paging64_sync_page
;
2935 context
->invlpg
= paging64_invlpg
;
2936 context
->free
= paging_free
;
2937 context
->root_level
= level
;
2938 context
->shadow_root_level
= level
;
2939 context
->root_hpa
= INVALID_PAGE
;
2940 context
->direct_map
= false;
2944 static int paging64_init_context(struct kvm_vcpu
*vcpu
,
2945 struct kvm_mmu
*context
)
2947 return paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
2950 static int paging32_init_context(struct kvm_vcpu
*vcpu
,
2951 struct kvm_mmu
*context
)
2953 context
->nx
= false;
2955 reset_rsvds_bits_mask(vcpu
, context
, PT32_ROOT_LEVEL
);
2957 context
->new_cr3
= paging_new_cr3
;
2958 context
->page_fault
= paging32_page_fault
;
2959 context
->gva_to_gpa
= paging32_gva_to_gpa
;
2960 context
->free
= paging_free
;
2961 context
->prefetch_page
= paging32_prefetch_page
;
2962 context
->sync_page
= paging32_sync_page
;
2963 context
->invlpg
= paging32_invlpg
;
2964 context
->root_level
= PT32_ROOT_LEVEL
;
2965 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
2966 context
->root_hpa
= INVALID_PAGE
;
2967 context
->direct_map
= false;
2971 static int paging32E_init_context(struct kvm_vcpu
*vcpu
,
2972 struct kvm_mmu
*context
)
2974 return paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
2977 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
2979 struct kvm_mmu
*context
= vcpu
->arch
.walk_mmu
;
2981 context
->base_role
.word
= 0;
2982 context
->new_cr3
= nonpaging_new_cr3
;
2983 context
->page_fault
= tdp_page_fault
;
2984 context
->free
= nonpaging_free
;
2985 context
->prefetch_page
= nonpaging_prefetch_page
;
2986 context
->sync_page
= nonpaging_sync_page
;
2987 context
->invlpg
= nonpaging_invlpg
;
2988 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
2989 context
->root_hpa
= INVALID_PAGE
;
2990 context
->direct_map
= true;
2991 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
2992 context
->get_cr3
= get_cr3
;
2993 context
->inject_page_fault
= kvm_inject_page_fault
;
2994 context
->nx
= is_nx(vcpu
);
2996 if (!is_paging(vcpu
)) {
2997 context
->nx
= false;
2998 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
2999 context
->root_level
= 0;
3000 } else if (is_long_mode(vcpu
)) {
3001 context
->nx
= is_nx(vcpu
);
3002 reset_rsvds_bits_mask(vcpu
, context
, PT64_ROOT_LEVEL
);
3003 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3004 context
->root_level
= PT64_ROOT_LEVEL
;
3005 } else if (is_pae(vcpu
)) {
3006 context
->nx
= is_nx(vcpu
);
3007 reset_rsvds_bits_mask(vcpu
, context
, PT32E_ROOT_LEVEL
);
3008 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3009 context
->root_level
= PT32E_ROOT_LEVEL
;
3011 context
->nx
= false;
3012 reset_rsvds_bits_mask(vcpu
, context
, PT32_ROOT_LEVEL
);
3013 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3014 context
->root_level
= PT32_ROOT_LEVEL
;
3020 int kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3024 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3026 if (!is_paging(vcpu
))
3027 r
= nonpaging_init_context(vcpu
, context
);
3028 else if (is_long_mode(vcpu
))
3029 r
= paging64_init_context(vcpu
, context
);
3030 else if (is_pae(vcpu
))
3031 r
= paging32E_init_context(vcpu
, context
);
3033 r
= paging32_init_context(vcpu
, context
);
3035 vcpu
->arch
.mmu
.base_role
.cr4_pae
= !!is_pae(vcpu
);
3036 vcpu
->arch
.mmu
.base_role
.cr0_wp
= is_write_protection(vcpu
);
3040 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
3042 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
3044 int r
= kvm_init_shadow_mmu(vcpu
, vcpu
->arch
.walk_mmu
);
3046 vcpu
->arch
.walk_mmu
->set_cr3
= kvm_x86_ops
->set_cr3
;
3047 vcpu
->arch
.walk_mmu
->get_cr3
= get_cr3
;
3048 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
3053 static int init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
3055 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
3057 g_context
->get_cr3
= get_cr3
;
3058 g_context
->inject_page_fault
= kvm_inject_page_fault
;
3061 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3062 * translation of l2_gpa to l1_gpa addresses is done using the
3063 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3064 * functions between mmu and nested_mmu are swapped.
3066 if (!is_paging(vcpu
)) {
3067 g_context
->nx
= false;
3068 g_context
->root_level
= 0;
3069 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
3070 } else if (is_long_mode(vcpu
)) {
3071 g_context
->nx
= is_nx(vcpu
);
3072 reset_rsvds_bits_mask(vcpu
, g_context
, PT64_ROOT_LEVEL
);
3073 g_context
->root_level
= PT64_ROOT_LEVEL
;
3074 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3075 } else if (is_pae(vcpu
)) {
3076 g_context
->nx
= is_nx(vcpu
);
3077 reset_rsvds_bits_mask(vcpu
, g_context
, PT32E_ROOT_LEVEL
);
3078 g_context
->root_level
= PT32E_ROOT_LEVEL
;
3079 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3081 g_context
->nx
= false;
3082 reset_rsvds_bits_mask(vcpu
, g_context
, PT32_ROOT_LEVEL
);
3083 g_context
->root_level
= PT32_ROOT_LEVEL
;
3084 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
3090 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
3092 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
3094 if (mmu_is_nested(vcpu
))
3095 return init_kvm_nested_mmu(vcpu
);
3096 else if (tdp_enabled
)
3097 return init_kvm_tdp_mmu(vcpu
);
3099 return init_kvm_softmmu(vcpu
);
3102 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
3105 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3106 /* mmu.free() should set root_hpa = INVALID_PAGE */
3107 vcpu
->arch
.mmu
.free(vcpu
);
3110 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
3112 destroy_kvm_mmu(vcpu
);
3113 return init_kvm_mmu(vcpu
);
3115 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
3117 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
3121 r
= mmu_topup_memory_caches(vcpu
);
3124 r
= mmu_alloc_roots(vcpu
);
3125 spin_lock(&vcpu
->kvm
->mmu_lock
);
3126 mmu_sync_roots(vcpu
);
3127 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3130 /* set_cr3() should ensure TLB has been flushed */
3131 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
3135 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
3137 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
3139 mmu_free_roots(vcpu
);
3141 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
3143 static void mmu_pte_write_zap_pte(struct kvm_vcpu
*vcpu
,
3144 struct kvm_mmu_page
*sp
,
3148 struct kvm_mmu_page
*child
;
3151 if (is_shadow_present_pte(pte
)) {
3152 if (is_last_spte(pte
, sp
->role
.level
))
3153 drop_spte(vcpu
->kvm
, spte
, shadow_trap_nonpresent_pte
);
3155 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
3156 mmu_page_remove_parent_pte(child
, spte
);
3159 __set_spte(spte
, shadow_trap_nonpresent_pte
);
3160 if (is_large_pte(pte
))
3161 --vcpu
->kvm
->stat
.lpages
;
3164 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
3165 struct kvm_mmu_page
*sp
,
3169 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
3170 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
3174 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
3175 if (!sp
->role
.cr4_pae
)
3176 paging32_update_pte(vcpu
, sp
, spte
, new);
3178 paging64_update_pte(vcpu
, sp
, spte
, new);
3181 static bool need_remote_flush(u64 old
, u64
new)
3183 if (!is_shadow_present_pte(old
))
3185 if (!is_shadow_present_pte(new))
3187 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
3189 old
^= PT64_NX_MASK
;
3190 new ^= PT64_NX_MASK
;
3191 return (old
& ~new & PT64_PERM_MASK
) != 0;
3194 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
3195 bool remote_flush
, bool local_flush
)
3201 kvm_flush_remote_tlbs(vcpu
->kvm
);
3202 else if (local_flush
)
3203 kvm_mmu_flush_tlb(vcpu
);
3206 static bool last_updated_pte_accessed(struct kvm_vcpu
*vcpu
)
3208 u64
*spte
= vcpu
->arch
.last_pte_updated
;
3210 return !!(spte
&& (*spte
& shadow_accessed_mask
));
3213 static void mmu_guess_page_from_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3219 if (!is_present_gpte(gpte
))
3221 gfn
= (gpte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
3223 vcpu
->arch
.update_pte
.mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3225 pfn
= gfn_to_pfn(vcpu
->kvm
, gfn
);
3227 if (is_error_pfn(pfn
)) {
3228 kvm_release_pfn_clean(pfn
);
3231 vcpu
->arch
.update_pte
.gfn
= gfn
;
3232 vcpu
->arch
.update_pte
.pfn
= pfn
;
3235 static void kvm_mmu_access_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
3237 u64
*spte
= vcpu
->arch
.last_pte_updated
;
3240 && vcpu
->arch
.last_pte_gfn
== gfn
3241 && shadow_accessed_mask
3242 && !(*spte
& shadow_accessed_mask
)
3243 && is_shadow_present_pte(*spte
))
3244 set_bit(PT_ACCESSED_SHIFT
, (unsigned long *)spte
);
3247 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
3248 const u8
*new, int bytes
,
3249 bool guest_initiated
)
3251 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3252 union kvm_mmu_page_role mask
= { .word
= 0 };
3253 struct kvm_mmu_page
*sp
;
3254 struct hlist_node
*node
;
3255 LIST_HEAD(invalid_list
);
3258 unsigned offset
= offset_in_page(gpa
);
3260 unsigned page_offset
;
3261 unsigned misaligned
;
3268 bool remote_flush
, local_flush
, zap_page
;
3270 zap_page
= remote_flush
= local_flush
= false;
3272 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
3274 invlpg_counter
= atomic_read(&vcpu
->kvm
->arch
.invlpg_counter
);
3277 * Assume that the pte write on a page table of the same type
3278 * as the current vcpu paging mode. This is nearly always true
3279 * (might be false while changing modes). Note it is verified later
3282 if ((is_pae(vcpu
) && bytes
== 4) || !new) {
3283 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3288 r
= kvm_read_guest(vcpu
->kvm
, gpa
, &gentry
, min(bytes
, 8));
3291 new = (const u8
*)&gentry
;
3296 gentry
= *(const u32
*)new;
3299 gentry
= *(const u64
*)new;
3306 mmu_guess_page_from_pte_write(vcpu
, gpa
, gentry
);
3307 spin_lock(&vcpu
->kvm
->mmu_lock
);
3308 if (atomic_read(&vcpu
->kvm
->arch
.invlpg_counter
) != invlpg_counter
)
3310 kvm_mmu_access_page(vcpu
, gfn
);
3311 kvm_mmu_free_some_pages(vcpu
);
3312 ++vcpu
->kvm
->stat
.mmu_pte_write
;
3313 trace_kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
3314 if (guest_initiated
) {
3315 if (gfn
== vcpu
->arch
.last_pt_write_gfn
3316 && !last_updated_pte_accessed(vcpu
)) {
3317 ++vcpu
->arch
.last_pt_write_count
;
3318 if (vcpu
->arch
.last_pt_write_count
>= 3)
3321 vcpu
->arch
.last_pt_write_gfn
= gfn
;
3322 vcpu
->arch
.last_pt_write_count
= 1;
3323 vcpu
->arch
.last_pte_updated
= NULL
;
3327 mask
.cr0_wp
= mask
.cr4_pae
= mask
.nxe
= 1;
3328 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
, node
) {
3329 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
3330 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
3331 misaligned
|= bytes
< 4;
3332 if (misaligned
|| flooded
) {
3334 * Misaligned accesses are too much trouble to fix
3335 * up; also, they usually indicate a page is not used
3338 * If we're seeing too many writes to a page,
3339 * it may no longer be a page table, or we may be
3340 * forking, in which case it is better to unmap the
3343 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3344 gpa
, bytes
, sp
->role
.word
);
3345 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
3347 ++vcpu
->kvm
->stat
.mmu_flooded
;
3350 page_offset
= offset
;
3351 level
= sp
->role
.level
;
3353 if (!sp
->role
.cr4_pae
) {
3354 page_offset
<<= 1; /* 32->64 */
3356 * A 32-bit pde maps 4MB while the shadow pdes map
3357 * only 2MB. So we need to double the offset again
3358 * and zap two pdes instead of one.
3360 if (level
== PT32_ROOT_LEVEL
) {
3361 page_offset
&= ~7; /* kill rounding error */
3365 quadrant
= page_offset
>> PAGE_SHIFT
;
3366 page_offset
&= ~PAGE_MASK
;
3367 if (quadrant
!= sp
->role
.quadrant
)
3371 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
3374 mmu_pte_write_zap_pte(vcpu
, sp
, spte
);
3376 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
3378 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
3379 if (!remote_flush
&& need_remote_flush(entry
, *spte
))
3380 remote_flush
= true;
3384 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
3385 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3386 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
3387 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3388 if (!is_error_pfn(vcpu
->arch
.update_pte
.pfn
)) {
3389 kvm_release_pfn_clean(vcpu
->arch
.update_pte
.pfn
);
3390 vcpu
->arch
.update_pte
.pfn
= bad_pfn
;
3394 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
3399 if (vcpu
->arch
.mmu
.direct_map
)
3402 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
3404 spin_lock(&vcpu
->kvm
->mmu_lock
);
3405 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
3406 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3409 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
3411 void __kvm_mmu_free_some_pages(struct kvm_vcpu
*vcpu
)
3413 LIST_HEAD(invalid_list
);
3415 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
&&
3416 !list_empty(&vcpu
->kvm
->arch
.active_mmu_pages
)) {
3417 struct kvm_mmu_page
*sp
;
3419 sp
= container_of(vcpu
->kvm
->arch
.active_mmu_pages
.prev
,
3420 struct kvm_mmu_page
, link
);
3421 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
3422 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3423 ++vcpu
->kvm
->stat
.mmu_recycled
;
3427 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
3428 void *insn
, int insn_len
)
3431 enum emulation_result er
;
3433 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
3442 r
= mmu_topup_memory_caches(vcpu
);
3446 er
= x86_emulate_instruction(vcpu
, cr2
, 0, insn
, insn_len
);
3451 case EMULATE_DO_MMIO
:
3452 ++vcpu
->stat
.mmio_exits
;
3462 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
3464 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
3466 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
3467 kvm_mmu_flush_tlb(vcpu
);
3468 ++vcpu
->stat
.invlpg
;
3470 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
3472 void kvm_enable_tdp(void)
3476 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
3478 void kvm_disable_tdp(void)
3480 tdp_enabled
= false;
3482 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
3484 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
3486 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
3487 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
3488 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
3491 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
3499 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3500 * Therefore we need to allocate shadow page tables in the first
3501 * 4GB of memory, which happens to fit the DMA32 zone.
3503 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
3507 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
3508 for (i
= 0; i
< 4; ++i
)
3509 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
3514 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
3517 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3519 return alloc_mmu_pages(vcpu
);
3522 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
3525 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3527 return init_kvm_mmu(vcpu
);
3530 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
3532 struct kvm_mmu_page
*sp
;
3534 list_for_each_entry(sp
, &kvm
->arch
.active_mmu_pages
, link
) {
3538 if (!test_bit(slot
, sp
->slot_bitmap
))
3541 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
3545 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
3547 if (is_writable_pte(pt
[i
]))
3548 update_spte(&pt
[i
], pt
[i
] & ~PT_WRITABLE_MASK
);
3550 kvm_flush_remote_tlbs(kvm
);
3553 void kvm_mmu_zap_all(struct kvm
*kvm
)
3555 struct kvm_mmu_page
*sp
, *node
;
3556 LIST_HEAD(invalid_list
);
3558 spin_lock(&kvm
->mmu_lock
);
3560 list_for_each_entry_safe(sp
, node
, &kvm
->arch
.active_mmu_pages
, link
)
3561 if (kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
))
3564 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
3565 spin_unlock(&kvm
->mmu_lock
);
3568 static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm
*kvm
,
3569 struct list_head
*invalid_list
)
3571 struct kvm_mmu_page
*page
;
3573 page
= container_of(kvm
->arch
.active_mmu_pages
.prev
,
3574 struct kvm_mmu_page
, link
);
3575 return kvm_mmu_prepare_zap_page(kvm
, page
, invalid_list
);
3578 static int mmu_shrink(struct shrinker
*shrink
, int nr_to_scan
, gfp_t gfp_mask
)
3581 struct kvm
*kvm_freed
= NULL
;
3583 if (nr_to_scan
== 0)
3586 spin_lock(&kvm_lock
);
3588 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
3589 int idx
, freed_pages
;
3590 LIST_HEAD(invalid_list
);
3592 idx
= srcu_read_lock(&kvm
->srcu
);
3593 spin_lock(&kvm
->mmu_lock
);
3594 if (!kvm_freed
&& nr_to_scan
> 0 &&
3595 kvm
->arch
.n_used_mmu_pages
> 0) {
3596 freed_pages
= kvm_mmu_remove_some_alloc_mmu_pages(kvm
,
3602 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
3603 spin_unlock(&kvm
->mmu_lock
);
3604 srcu_read_unlock(&kvm
->srcu
, idx
);
3607 list_move_tail(&kvm_freed
->vm_list
, &vm_list
);
3609 spin_unlock(&kvm_lock
);
3612 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
3615 static struct shrinker mmu_shrinker
= {
3616 .shrink
= mmu_shrink
,
3617 .seeks
= DEFAULT_SEEKS
* 10,
3620 static void mmu_destroy_caches(void)
3622 if (pte_chain_cache
)
3623 kmem_cache_destroy(pte_chain_cache
);
3624 if (rmap_desc_cache
)
3625 kmem_cache_destroy(rmap_desc_cache
);
3626 if (mmu_page_header_cache
)
3627 kmem_cache_destroy(mmu_page_header_cache
);
3630 int kvm_mmu_module_init(void)
3632 pte_chain_cache
= kmem_cache_create("kvm_pte_chain",
3633 sizeof(struct kvm_pte_chain
),
3635 if (!pte_chain_cache
)
3637 rmap_desc_cache
= kmem_cache_create("kvm_rmap_desc",
3638 sizeof(struct kvm_rmap_desc
),
3640 if (!rmap_desc_cache
)
3643 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
3644 sizeof(struct kvm_mmu_page
),
3646 if (!mmu_page_header_cache
)
3649 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0))
3652 register_shrinker(&mmu_shrinker
);
3657 mmu_destroy_caches();
3662 * Caculate mmu pages needed for kvm.
3664 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
3667 unsigned int nr_mmu_pages
;
3668 unsigned int nr_pages
= 0;
3669 struct kvm_memslots
*slots
;
3671 slots
= kvm_memslots(kvm
);
3673 for (i
= 0; i
< slots
->nmemslots
; i
++)
3674 nr_pages
+= slots
->memslots
[i
].npages
;
3676 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
3677 nr_mmu_pages
= max(nr_mmu_pages
,
3678 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
3680 return nr_mmu_pages
;
3683 static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3686 if (len
> buffer
->len
)
3691 static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer
*buffer
,
3696 ret
= pv_mmu_peek_buffer(buffer
, len
);
3701 buffer
->processed
+= len
;
3705 static int kvm_pv_mmu_write(struct kvm_vcpu
*vcpu
,
3706 gpa_t addr
, gpa_t value
)
3711 if (!is_long_mode(vcpu
) && !is_pae(vcpu
))
3714 r
= mmu_topup_memory_caches(vcpu
);
3718 if (!emulator_write_phys(vcpu
, addr
, &value
, bytes
))
3724 static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3726 (void)kvm_set_cr3(vcpu
, kvm_read_cr3(vcpu
));
3730 static int kvm_pv_mmu_release_pt(struct kvm_vcpu
*vcpu
, gpa_t addr
)
3732 spin_lock(&vcpu
->kvm
->mmu_lock
);
3733 mmu_unshadow(vcpu
->kvm
, addr
>> PAGE_SHIFT
);
3734 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3738 static int kvm_pv_mmu_op_one(struct kvm_vcpu
*vcpu
,
3739 struct kvm_pv_mmu_op_buffer
*buffer
)
3741 struct kvm_mmu_op_header
*header
;
3743 header
= pv_mmu_peek_buffer(buffer
, sizeof *header
);
3746 switch (header
->op
) {
3747 case KVM_MMU_OP_WRITE_PTE
: {
3748 struct kvm_mmu_op_write_pte
*wpte
;
3750 wpte
= pv_mmu_read_buffer(buffer
, sizeof *wpte
);
3753 return kvm_pv_mmu_write(vcpu
, wpte
->pte_phys
,
3756 case KVM_MMU_OP_FLUSH_TLB
: {
3757 struct kvm_mmu_op_flush_tlb
*ftlb
;
3759 ftlb
= pv_mmu_read_buffer(buffer
, sizeof *ftlb
);
3762 return kvm_pv_mmu_flush_tlb(vcpu
);
3764 case KVM_MMU_OP_RELEASE_PT
: {
3765 struct kvm_mmu_op_release_pt
*rpt
;
3767 rpt
= pv_mmu_read_buffer(buffer
, sizeof *rpt
);
3770 return kvm_pv_mmu_release_pt(vcpu
, rpt
->pt_phys
);
3776 int kvm_pv_mmu_op(struct kvm_vcpu
*vcpu
, unsigned long bytes
,
3777 gpa_t addr
, unsigned long *ret
)
3780 struct kvm_pv_mmu_op_buffer
*buffer
= &vcpu
->arch
.mmu_op_buffer
;
3782 buffer
->ptr
= buffer
->buf
;
3783 buffer
->len
= min_t(unsigned long, bytes
, sizeof buffer
->buf
);
3784 buffer
->processed
= 0;
3786 r
= kvm_read_guest(vcpu
->kvm
, addr
, buffer
->buf
, buffer
->len
);
3790 while (buffer
->len
) {
3791 r
= kvm_pv_mmu_op_one(vcpu
, buffer
);
3800 *ret
= buffer
->processed
;
3804 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
3806 struct kvm_shadow_walk_iterator iterator
;
3809 spin_lock(&vcpu
->kvm
->mmu_lock
);
3810 for_each_shadow_entry(vcpu
, addr
, iterator
) {
3811 sptes
[iterator
.level
-1] = *iterator
.sptep
;
3813 if (!is_shadow_present_pte(*iterator
.sptep
))
3816 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3820 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
3822 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
3826 destroy_kvm_mmu(vcpu
);
3827 free_mmu_pages(vcpu
);
3828 mmu_free_memory_caches(vcpu
);
3831 #ifdef CONFIG_KVM_MMU_AUDIT
3832 #include "mmu_audit.c"
3834 static void mmu_audit_disable(void) { }
3837 void kvm_mmu_module_exit(void)
3839 mmu_destroy_caches();
3840 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
3841 unregister_shrinker(&mmu_shrinker
);
3842 mmu_audit_disable();