NAPI: kconfig prompt and deleted doc file
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobed90be46fb31a3a3a98fb0ef92e4fff8a1dedcfc
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
66 #include <asm/tlb.h>
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
73 unsigned long long __attribute__((weak)) sched_clock(void)
75 return (unsigned long long)jiffies * (1000000000 / HZ);
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97 * Some helpers for converting nanosecond timing to jiffy resolution
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106 * These are the 'tuning knobs' of the scheduler:
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
111 #define DEF_TIMESLICE (100 * HZ / 1000)
113 #ifdef CONFIG_SMP
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 #endif
134 static inline int rt_policy(int policy)
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
141 static inline int task_has_rt_policy(struct task_struct *p)
143 return rt_policy(p->policy);
147 * This is the priority-queue data structure of the RT scheduling class:
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
154 #ifdef CONFIG_FAIR_GROUP_SCHED
156 struct cfs_rq;
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
196 struct task_group *tg;
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
204 return tg;
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
214 #else
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
225 u64 exec_clock;
226 u64 min_vruntime;
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
234 struct sched_entity *curr;
236 unsigned long nr_spread_over;
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
262 * This is the main, per-CPU runqueue data structure.
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
268 struct rq {
269 /* runqueue lock: */
270 spinlock_t lock;
273 * nr_running and cpu_load should be in the same cacheline because
274 * remote CPUs use both these fields when doing load calculation.
276 unsigned long nr_running;
277 #define CPU_LOAD_IDX_MAX 5
278 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
279 unsigned char idle_at_tick;
280 #ifdef CONFIG_NO_HZ
281 unsigned char in_nohz_recently;
282 #endif
283 /* capture load from *all* tasks on this cpu: */
284 struct load_weight load;
285 unsigned long nr_load_updates;
286 u64 nr_switches;
288 struct cfs_rq cfs;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 /* list of leaf cfs_rq on this cpu: */
291 struct list_head leaf_cfs_rq_list;
292 #endif
293 struct rt_rq rt;
296 * This is part of a global counter where only the total sum
297 * over all CPUs matters. A task can increase this counter on
298 * one CPU and if it got migrated afterwards it may decrease
299 * it on another CPU. Always updated under the runqueue lock:
301 unsigned long nr_uninterruptible;
303 struct task_struct *curr, *idle;
304 unsigned long next_balance;
305 struct mm_struct *prev_mm;
307 u64 clock, prev_clock_raw;
308 s64 clock_max_delta;
310 unsigned int clock_warps, clock_overflows;
311 u64 idle_clock;
312 unsigned int clock_deep_idle_events;
313 u64 tick_timestamp;
315 atomic_t nr_iowait;
317 #ifdef CONFIG_SMP
318 struct sched_domain *sd;
320 /* For active balancing */
321 int active_balance;
322 int push_cpu;
323 /* cpu of this runqueue: */
324 int cpu;
326 struct task_struct *migration_thread;
327 struct list_head migration_queue;
328 #endif
330 #ifdef CONFIG_SCHEDSTATS
331 /* latency stats */
332 struct sched_info rq_sched_info;
334 /* sys_sched_yield() stats */
335 unsigned int yld_exp_empty;
336 unsigned int yld_act_empty;
337 unsigned int yld_both_empty;
338 unsigned int yld_count;
340 /* schedule() stats */
341 unsigned int sched_switch;
342 unsigned int sched_count;
343 unsigned int sched_goidle;
345 /* try_to_wake_up() stats */
346 unsigned int ttwu_count;
347 unsigned int ttwu_local;
349 /* BKL stats */
350 unsigned int bkl_count;
351 #endif
352 struct lock_class_key rq_lock_key;
355 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
356 static DEFINE_MUTEX(sched_hotcpu_mutex);
358 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
360 rq->curr->sched_class->check_preempt_curr(rq, p);
363 static inline int cpu_of(struct rq *rq)
365 #ifdef CONFIG_SMP
366 return rq->cpu;
367 #else
368 return 0;
369 #endif
373 * Update the per-runqueue clock, as finegrained as the platform can give
374 * us, but without assuming monotonicity, etc.:
376 static void __update_rq_clock(struct rq *rq)
378 u64 prev_raw = rq->prev_clock_raw;
379 u64 now = sched_clock();
380 s64 delta = now - prev_raw;
381 u64 clock = rq->clock;
383 #ifdef CONFIG_SCHED_DEBUG
384 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
385 #endif
387 * Protect against sched_clock() occasionally going backwards:
389 if (unlikely(delta < 0)) {
390 clock++;
391 rq->clock_warps++;
392 } else {
394 * Catch too large forward jumps too:
396 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
397 if (clock < rq->tick_timestamp + TICK_NSEC)
398 clock = rq->tick_timestamp + TICK_NSEC;
399 else
400 clock++;
401 rq->clock_overflows++;
402 } else {
403 if (unlikely(delta > rq->clock_max_delta))
404 rq->clock_max_delta = delta;
405 clock += delta;
409 rq->prev_clock_raw = now;
410 rq->clock = clock;
413 static void update_rq_clock(struct rq *rq)
415 if (likely(smp_processor_id() == cpu_of(rq)))
416 __update_rq_clock(rq);
420 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
421 * See detach_destroy_domains: synchronize_sched for details.
423 * The domain tree of any CPU may only be accessed from within
424 * preempt-disabled sections.
426 #define for_each_domain(cpu, __sd) \
427 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
429 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
430 #define this_rq() (&__get_cpu_var(runqueues))
431 #define task_rq(p) cpu_rq(task_cpu(p))
432 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
435 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
437 #ifdef CONFIG_SCHED_DEBUG
438 # define const_debug __read_mostly
439 #else
440 # define const_debug static const
441 #endif
444 * Debugging: various feature bits
446 enum {
447 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
448 SCHED_FEAT_START_DEBIT = 2,
449 SCHED_FEAT_TREE_AVG = 4,
450 SCHED_FEAT_APPROX_AVG = 8,
451 SCHED_FEAT_WAKEUP_PREEMPT = 16,
452 SCHED_FEAT_PREEMPT_RESTRICT = 32,
455 const_debug unsigned int sysctl_sched_features =
456 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
457 SCHED_FEAT_START_DEBIT * 1 |
458 SCHED_FEAT_TREE_AVG * 0 |
459 SCHED_FEAT_APPROX_AVG * 0 |
460 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
461 SCHED_FEAT_PREEMPT_RESTRICT * 1;
463 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
466 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
467 * clock constructed from sched_clock():
469 unsigned long long cpu_clock(int cpu)
471 unsigned long long now;
472 unsigned long flags;
473 struct rq *rq;
475 local_irq_save(flags);
476 rq = cpu_rq(cpu);
477 update_rq_clock(rq);
478 now = rq->clock;
479 local_irq_restore(flags);
481 return now;
483 EXPORT_SYMBOL_GPL(cpu_clock);
485 #ifndef prepare_arch_switch
486 # define prepare_arch_switch(next) do { } while (0)
487 #endif
488 #ifndef finish_arch_switch
489 # define finish_arch_switch(prev) do { } while (0)
490 #endif
492 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
493 static inline int task_running(struct rq *rq, struct task_struct *p)
495 return rq->curr == p;
498 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
502 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
504 #ifdef CONFIG_DEBUG_SPINLOCK
505 /* this is a valid case when another task releases the spinlock */
506 rq->lock.owner = current;
507 #endif
509 * If we are tracking spinlock dependencies then we have to
510 * fix up the runqueue lock - which gets 'carried over' from
511 * prev into current:
513 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
515 spin_unlock_irq(&rq->lock);
518 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
519 static inline int task_running(struct rq *rq, struct task_struct *p)
521 #ifdef CONFIG_SMP
522 return p->oncpu;
523 #else
524 return rq->curr == p;
525 #endif
528 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
530 #ifdef CONFIG_SMP
532 * We can optimise this out completely for !SMP, because the
533 * SMP rebalancing from interrupt is the only thing that cares
534 * here.
536 next->oncpu = 1;
537 #endif
538 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
539 spin_unlock_irq(&rq->lock);
540 #else
541 spin_unlock(&rq->lock);
542 #endif
545 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
547 #ifdef CONFIG_SMP
549 * After ->oncpu is cleared, the task can be moved to a different CPU.
550 * We must ensure this doesn't happen until the switch is completely
551 * finished.
553 smp_wmb();
554 prev->oncpu = 0;
555 #endif
556 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
557 local_irq_enable();
558 #endif
560 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
563 * __task_rq_lock - lock the runqueue a given task resides on.
564 * Must be called interrupts disabled.
566 static inline struct rq *__task_rq_lock(struct task_struct *p)
567 __acquires(rq->lock)
569 for (;;) {
570 struct rq *rq = task_rq(p);
571 spin_lock(&rq->lock);
572 if (likely(rq == task_rq(p)))
573 return rq;
574 spin_unlock(&rq->lock);
579 * task_rq_lock - lock the runqueue a given task resides on and disable
580 * interrupts. Note the ordering: we can safely lookup the task_rq without
581 * explicitly disabling preemption.
583 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
584 __acquires(rq->lock)
586 struct rq *rq;
588 for (;;) {
589 local_irq_save(*flags);
590 rq = task_rq(p);
591 spin_lock(&rq->lock);
592 if (likely(rq == task_rq(p)))
593 return rq;
594 spin_unlock_irqrestore(&rq->lock, *flags);
598 static void __task_rq_unlock(struct rq *rq)
599 __releases(rq->lock)
601 spin_unlock(&rq->lock);
604 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
605 __releases(rq->lock)
607 spin_unlock_irqrestore(&rq->lock, *flags);
611 * this_rq_lock - lock this runqueue and disable interrupts.
613 static struct rq *this_rq_lock(void)
614 __acquires(rq->lock)
616 struct rq *rq;
618 local_irq_disable();
619 rq = this_rq();
620 spin_lock(&rq->lock);
622 return rq;
626 * We are going deep-idle (irqs are disabled):
628 void sched_clock_idle_sleep_event(void)
630 struct rq *rq = cpu_rq(smp_processor_id());
632 spin_lock(&rq->lock);
633 __update_rq_clock(rq);
634 spin_unlock(&rq->lock);
635 rq->clock_deep_idle_events++;
637 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
640 * We just idled delta nanoseconds (called with irqs disabled):
642 void sched_clock_idle_wakeup_event(u64 delta_ns)
644 struct rq *rq = cpu_rq(smp_processor_id());
645 u64 now = sched_clock();
647 rq->idle_clock += delta_ns;
649 * Override the previous timestamp and ignore all
650 * sched_clock() deltas that occured while we idled,
651 * and use the PM-provided delta_ns to advance the
652 * rq clock:
654 spin_lock(&rq->lock);
655 rq->prev_clock_raw = now;
656 rq->clock += delta_ns;
657 spin_unlock(&rq->lock);
659 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
662 * resched_task - mark a task 'to be rescheduled now'.
664 * On UP this means the setting of the need_resched flag, on SMP it
665 * might also involve a cross-CPU call to trigger the scheduler on
666 * the target CPU.
668 #ifdef CONFIG_SMP
670 #ifndef tsk_is_polling
671 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
672 #endif
674 static void resched_task(struct task_struct *p)
676 int cpu;
678 assert_spin_locked(&task_rq(p)->lock);
680 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
681 return;
683 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
685 cpu = task_cpu(p);
686 if (cpu == smp_processor_id())
687 return;
689 /* NEED_RESCHED must be visible before we test polling */
690 smp_mb();
691 if (!tsk_is_polling(p))
692 smp_send_reschedule(cpu);
695 static void resched_cpu(int cpu)
697 struct rq *rq = cpu_rq(cpu);
698 unsigned long flags;
700 if (!spin_trylock_irqsave(&rq->lock, flags))
701 return;
702 resched_task(cpu_curr(cpu));
703 spin_unlock_irqrestore(&rq->lock, flags);
705 #else
706 static inline void resched_task(struct task_struct *p)
708 assert_spin_locked(&task_rq(p)->lock);
709 set_tsk_need_resched(p);
711 #endif
713 #if BITS_PER_LONG == 32
714 # define WMULT_CONST (~0UL)
715 #else
716 # define WMULT_CONST (1UL << 32)
717 #endif
719 #define WMULT_SHIFT 32
722 * Shift right and round:
724 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
726 static unsigned long
727 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
728 struct load_weight *lw)
730 u64 tmp;
732 if (unlikely(!lw->inv_weight))
733 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
735 tmp = (u64)delta_exec * weight;
737 * Check whether we'd overflow the 64-bit multiplication:
739 if (unlikely(tmp > WMULT_CONST))
740 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
741 WMULT_SHIFT/2);
742 else
743 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
745 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
748 static inline unsigned long
749 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
751 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
754 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
756 lw->weight += inc;
759 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
761 lw->weight -= dec;
765 * To aid in avoiding the subversion of "niceness" due to uneven distribution
766 * of tasks with abnormal "nice" values across CPUs the contribution that
767 * each task makes to its run queue's load is weighted according to its
768 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
769 * scaled version of the new time slice allocation that they receive on time
770 * slice expiry etc.
773 #define WEIGHT_IDLEPRIO 2
774 #define WMULT_IDLEPRIO (1 << 31)
777 * Nice levels are multiplicative, with a gentle 10% change for every
778 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
779 * nice 1, it will get ~10% less CPU time than another CPU-bound task
780 * that remained on nice 0.
782 * The "10% effect" is relative and cumulative: from _any_ nice level,
783 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
784 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
785 * If a task goes up by ~10% and another task goes down by ~10% then
786 * the relative distance between them is ~25%.)
788 static const int prio_to_weight[40] = {
789 /* -20 */ 88761, 71755, 56483, 46273, 36291,
790 /* -15 */ 29154, 23254, 18705, 14949, 11916,
791 /* -10 */ 9548, 7620, 6100, 4904, 3906,
792 /* -5 */ 3121, 2501, 1991, 1586, 1277,
793 /* 0 */ 1024, 820, 655, 526, 423,
794 /* 5 */ 335, 272, 215, 172, 137,
795 /* 10 */ 110, 87, 70, 56, 45,
796 /* 15 */ 36, 29, 23, 18, 15,
800 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
802 * In cases where the weight does not change often, we can use the
803 * precalculated inverse to speed up arithmetics by turning divisions
804 * into multiplications:
806 static const u32 prio_to_wmult[40] = {
807 /* -20 */ 48388, 59856, 76040, 92818, 118348,
808 /* -15 */ 147320, 184698, 229616, 287308, 360437,
809 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
810 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
811 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
812 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
813 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
814 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
817 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
820 * runqueue iterator, to support SMP load-balancing between different
821 * scheduling classes, without having to expose their internal data
822 * structures to the load-balancing proper:
824 struct rq_iterator {
825 void *arg;
826 struct task_struct *(*start)(void *);
827 struct task_struct *(*next)(void *);
830 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
831 unsigned long max_nr_move, unsigned long max_load_move,
832 struct sched_domain *sd, enum cpu_idle_type idle,
833 int *all_pinned, unsigned long *load_moved,
834 int *this_best_prio, struct rq_iterator *iterator);
836 #include "sched_stats.h"
837 #include "sched_idletask.c"
838 #include "sched_fair.c"
839 #include "sched_rt.c"
840 #ifdef CONFIG_SCHED_DEBUG
841 # include "sched_debug.c"
842 #endif
844 #define sched_class_highest (&rt_sched_class)
847 * Update delta_exec, delta_fair fields for rq.
849 * delta_fair clock advances at a rate inversely proportional to
850 * total load (rq->load.weight) on the runqueue, while
851 * delta_exec advances at the same rate as wall-clock (provided
852 * cpu is not idle).
854 * delta_exec / delta_fair is a measure of the (smoothened) load on this
855 * runqueue over any given interval. This (smoothened) load is used
856 * during load balance.
858 * This function is called /before/ updating rq->load
859 * and when switching tasks.
861 static inline void inc_load(struct rq *rq, const struct task_struct *p)
863 update_load_add(&rq->load, p->se.load.weight);
866 static inline void dec_load(struct rq *rq, const struct task_struct *p)
868 update_load_sub(&rq->load, p->se.load.weight);
871 static void inc_nr_running(struct task_struct *p, struct rq *rq)
873 rq->nr_running++;
874 inc_load(rq, p);
877 static void dec_nr_running(struct task_struct *p, struct rq *rq)
879 rq->nr_running--;
880 dec_load(rq, p);
883 static void set_load_weight(struct task_struct *p)
885 if (task_has_rt_policy(p)) {
886 p->se.load.weight = prio_to_weight[0] * 2;
887 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
888 return;
892 * SCHED_IDLE tasks get minimal weight:
894 if (p->policy == SCHED_IDLE) {
895 p->se.load.weight = WEIGHT_IDLEPRIO;
896 p->se.load.inv_weight = WMULT_IDLEPRIO;
897 return;
900 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
901 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
904 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
906 sched_info_queued(p);
907 p->sched_class->enqueue_task(rq, p, wakeup);
908 p->se.on_rq = 1;
911 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
913 p->sched_class->dequeue_task(rq, p, sleep);
914 p->se.on_rq = 0;
918 * __normal_prio - return the priority that is based on the static prio
920 static inline int __normal_prio(struct task_struct *p)
922 return p->static_prio;
926 * Calculate the expected normal priority: i.e. priority
927 * without taking RT-inheritance into account. Might be
928 * boosted by interactivity modifiers. Changes upon fork,
929 * setprio syscalls, and whenever the interactivity
930 * estimator recalculates.
932 static inline int normal_prio(struct task_struct *p)
934 int prio;
936 if (task_has_rt_policy(p))
937 prio = MAX_RT_PRIO-1 - p->rt_priority;
938 else
939 prio = __normal_prio(p);
940 return prio;
944 * Calculate the current priority, i.e. the priority
945 * taken into account by the scheduler. This value might
946 * be boosted by RT tasks, or might be boosted by
947 * interactivity modifiers. Will be RT if the task got
948 * RT-boosted. If not then it returns p->normal_prio.
950 static int effective_prio(struct task_struct *p)
952 p->normal_prio = normal_prio(p);
954 * If we are RT tasks or we were boosted to RT priority,
955 * keep the priority unchanged. Otherwise, update priority
956 * to the normal priority:
958 if (!rt_prio(p->prio))
959 return p->normal_prio;
960 return p->prio;
964 * activate_task - move a task to the runqueue.
966 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
968 if (p->state == TASK_UNINTERRUPTIBLE)
969 rq->nr_uninterruptible--;
971 enqueue_task(rq, p, wakeup);
972 inc_nr_running(p, rq);
976 * deactivate_task - remove a task from the runqueue.
978 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
980 if (p->state == TASK_UNINTERRUPTIBLE)
981 rq->nr_uninterruptible++;
983 dequeue_task(rq, p, sleep);
984 dec_nr_running(p, rq);
988 * task_curr - is this task currently executing on a CPU?
989 * @p: the task in question.
991 inline int task_curr(const struct task_struct *p)
993 return cpu_curr(task_cpu(p)) == p;
996 /* Used instead of source_load when we know the type == 0 */
997 unsigned long weighted_cpuload(const int cpu)
999 return cpu_rq(cpu)->load.weight;
1002 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1004 #ifdef CONFIG_SMP
1005 task_thread_info(p)->cpu = cpu;
1006 #endif
1007 set_task_cfs_rq(p);
1010 #ifdef CONFIG_SMP
1013 * Is this task likely cache-hot:
1015 static inline int
1016 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1018 s64 delta;
1020 if (p->sched_class != &fair_sched_class)
1021 return 0;
1023 if (sysctl_sched_migration_cost == -1)
1024 return 1;
1025 if (sysctl_sched_migration_cost == 0)
1026 return 0;
1028 delta = now - p->se.exec_start;
1030 return delta < (s64)sysctl_sched_migration_cost;
1034 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1036 int old_cpu = task_cpu(p);
1037 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1038 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1039 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1040 u64 clock_offset;
1042 clock_offset = old_rq->clock - new_rq->clock;
1044 #ifdef CONFIG_SCHEDSTATS
1045 if (p->se.wait_start)
1046 p->se.wait_start -= clock_offset;
1047 if (p->se.sleep_start)
1048 p->se.sleep_start -= clock_offset;
1049 if (p->se.block_start)
1050 p->se.block_start -= clock_offset;
1051 if (old_cpu != new_cpu) {
1052 schedstat_inc(p, se.nr_migrations);
1053 if (task_hot(p, old_rq->clock, NULL))
1054 schedstat_inc(p, se.nr_forced2_migrations);
1056 #endif
1057 p->se.vruntime -= old_cfsrq->min_vruntime -
1058 new_cfsrq->min_vruntime;
1060 __set_task_cpu(p, new_cpu);
1063 struct migration_req {
1064 struct list_head list;
1066 struct task_struct *task;
1067 int dest_cpu;
1069 struct completion done;
1073 * The task's runqueue lock must be held.
1074 * Returns true if you have to wait for migration thread.
1076 static int
1077 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1079 struct rq *rq = task_rq(p);
1082 * If the task is not on a runqueue (and not running), then
1083 * it is sufficient to simply update the task's cpu field.
1085 if (!p->se.on_rq && !task_running(rq, p)) {
1086 set_task_cpu(p, dest_cpu);
1087 return 0;
1090 init_completion(&req->done);
1091 req->task = p;
1092 req->dest_cpu = dest_cpu;
1093 list_add(&req->list, &rq->migration_queue);
1095 return 1;
1099 * wait_task_inactive - wait for a thread to unschedule.
1101 * The caller must ensure that the task *will* unschedule sometime soon,
1102 * else this function might spin for a *long* time. This function can't
1103 * be called with interrupts off, or it may introduce deadlock with
1104 * smp_call_function() if an IPI is sent by the same process we are
1105 * waiting to become inactive.
1107 void wait_task_inactive(struct task_struct *p)
1109 unsigned long flags;
1110 int running, on_rq;
1111 struct rq *rq;
1113 for (;;) {
1115 * We do the initial early heuristics without holding
1116 * any task-queue locks at all. We'll only try to get
1117 * the runqueue lock when things look like they will
1118 * work out!
1120 rq = task_rq(p);
1123 * If the task is actively running on another CPU
1124 * still, just relax and busy-wait without holding
1125 * any locks.
1127 * NOTE! Since we don't hold any locks, it's not
1128 * even sure that "rq" stays as the right runqueue!
1129 * But we don't care, since "task_running()" will
1130 * return false if the runqueue has changed and p
1131 * is actually now running somewhere else!
1133 while (task_running(rq, p))
1134 cpu_relax();
1137 * Ok, time to look more closely! We need the rq
1138 * lock now, to be *sure*. If we're wrong, we'll
1139 * just go back and repeat.
1141 rq = task_rq_lock(p, &flags);
1142 running = task_running(rq, p);
1143 on_rq = p->se.on_rq;
1144 task_rq_unlock(rq, &flags);
1147 * Was it really running after all now that we
1148 * checked with the proper locks actually held?
1150 * Oops. Go back and try again..
1152 if (unlikely(running)) {
1153 cpu_relax();
1154 continue;
1158 * It's not enough that it's not actively running,
1159 * it must be off the runqueue _entirely_, and not
1160 * preempted!
1162 * So if it wa still runnable (but just not actively
1163 * running right now), it's preempted, and we should
1164 * yield - it could be a while.
1166 if (unlikely(on_rq)) {
1167 schedule_timeout_uninterruptible(1);
1168 continue;
1172 * Ahh, all good. It wasn't running, and it wasn't
1173 * runnable, which means that it will never become
1174 * running in the future either. We're all done!
1176 break;
1180 /***
1181 * kick_process - kick a running thread to enter/exit the kernel
1182 * @p: the to-be-kicked thread
1184 * Cause a process which is running on another CPU to enter
1185 * kernel-mode, without any delay. (to get signals handled.)
1187 * NOTE: this function doesnt have to take the runqueue lock,
1188 * because all it wants to ensure is that the remote task enters
1189 * the kernel. If the IPI races and the task has been migrated
1190 * to another CPU then no harm is done and the purpose has been
1191 * achieved as well.
1193 void kick_process(struct task_struct *p)
1195 int cpu;
1197 preempt_disable();
1198 cpu = task_cpu(p);
1199 if ((cpu != smp_processor_id()) && task_curr(p))
1200 smp_send_reschedule(cpu);
1201 preempt_enable();
1205 * Return a low guess at the load of a migration-source cpu weighted
1206 * according to the scheduling class and "nice" value.
1208 * We want to under-estimate the load of migration sources, to
1209 * balance conservatively.
1211 static unsigned long source_load(int cpu, int type)
1213 struct rq *rq = cpu_rq(cpu);
1214 unsigned long total = weighted_cpuload(cpu);
1216 if (type == 0)
1217 return total;
1219 return min(rq->cpu_load[type-1], total);
1223 * Return a high guess at the load of a migration-target cpu weighted
1224 * according to the scheduling class and "nice" value.
1226 static unsigned long target_load(int cpu, int type)
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long total = weighted_cpuload(cpu);
1231 if (type == 0)
1232 return total;
1234 return max(rq->cpu_load[type-1], total);
1238 * Return the average load per task on the cpu's run queue
1240 static inline unsigned long cpu_avg_load_per_task(int cpu)
1242 struct rq *rq = cpu_rq(cpu);
1243 unsigned long total = weighted_cpuload(cpu);
1244 unsigned long n = rq->nr_running;
1246 return n ? total / n : SCHED_LOAD_SCALE;
1250 * find_idlest_group finds and returns the least busy CPU group within the
1251 * domain.
1253 static struct sched_group *
1254 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1256 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1257 unsigned long min_load = ULONG_MAX, this_load = 0;
1258 int load_idx = sd->forkexec_idx;
1259 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1261 do {
1262 unsigned long load, avg_load;
1263 int local_group;
1264 int i;
1266 /* Skip over this group if it has no CPUs allowed */
1267 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1268 continue;
1270 local_group = cpu_isset(this_cpu, group->cpumask);
1272 /* Tally up the load of all CPUs in the group */
1273 avg_load = 0;
1275 for_each_cpu_mask(i, group->cpumask) {
1276 /* Bias balancing toward cpus of our domain */
1277 if (local_group)
1278 load = source_load(i, load_idx);
1279 else
1280 load = target_load(i, load_idx);
1282 avg_load += load;
1285 /* Adjust by relative CPU power of the group */
1286 avg_load = sg_div_cpu_power(group,
1287 avg_load * SCHED_LOAD_SCALE);
1289 if (local_group) {
1290 this_load = avg_load;
1291 this = group;
1292 } else if (avg_load < min_load) {
1293 min_load = avg_load;
1294 idlest = group;
1296 } while (group = group->next, group != sd->groups);
1298 if (!idlest || 100*this_load < imbalance*min_load)
1299 return NULL;
1300 return idlest;
1304 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1306 static int
1307 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1309 cpumask_t tmp;
1310 unsigned long load, min_load = ULONG_MAX;
1311 int idlest = -1;
1312 int i;
1314 /* Traverse only the allowed CPUs */
1315 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1317 for_each_cpu_mask(i, tmp) {
1318 load = weighted_cpuload(i);
1320 if (load < min_load || (load == min_load && i == this_cpu)) {
1321 min_load = load;
1322 idlest = i;
1326 return idlest;
1330 * sched_balance_self: balance the current task (running on cpu) in domains
1331 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1332 * SD_BALANCE_EXEC.
1334 * Balance, ie. select the least loaded group.
1336 * Returns the target CPU number, or the same CPU if no balancing is needed.
1338 * preempt must be disabled.
1340 static int sched_balance_self(int cpu, int flag)
1342 struct task_struct *t = current;
1343 struct sched_domain *tmp, *sd = NULL;
1345 for_each_domain(cpu, tmp) {
1347 * If power savings logic is enabled for a domain, stop there.
1349 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1350 break;
1351 if (tmp->flags & flag)
1352 sd = tmp;
1355 while (sd) {
1356 cpumask_t span;
1357 struct sched_group *group;
1358 int new_cpu, weight;
1360 if (!(sd->flags & flag)) {
1361 sd = sd->child;
1362 continue;
1365 span = sd->span;
1366 group = find_idlest_group(sd, t, cpu);
1367 if (!group) {
1368 sd = sd->child;
1369 continue;
1372 new_cpu = find_idlest_cpu(group, t, cpu);
1373 if (new_cpu == -1 || new_cpu == cpu) {
1374 /* Now try balancing at a lower domain level of cpu */
1375 sd = sd->child;
1376 continue;
1379 /* Now try balancing at a lower domain level of new_cpu */
1380 cpu = new_cpu;
1381 sd = NULL;
1382 weight = cpus_weight(span);
1383 for_each_domain(cpu, tmp) {
1384 if (weight <= cpus_weight(tmp->span))
1385 break;
1386 if (tmp->flags & flag)
1387 sd = tmp;
1389 /* while loop will break here if sd == NULL */
1392 return cpu;
1395 #endif /* CONFIG_SMP */
1398 * wake_idle() will wake a task on an idle cpu if task->cpu is
1399 * not idle and an idle cpu is available. The span of cpus to
1400 * search starts with cpus closest then further out as needed,
1401 * so we always favor a closer, idle cpu.
1403 * Returns the CPU we should wake onto.
1405 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1406 static int wake_idle(int cpu, struct task_struct *p)
1408 cpumask_t tmp;
1409 struct sched_domain *sd;
1410 int i;
1413 * If it is idle, then it is the best cpu to run this task.
1415 * This cpu is also the best, if it has more than one task already.
1416 * Siblings must be also busy(in most cases) as they didn't already
1417 * pickup the extra load from this cpu and hence we need not check
1418 * sibling runqueue info. This will avoid the checks and cache miss
1419 * penalities associated with that.
1421 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1422 return cpu;
1424 for_each_domain(cpu, sd) {
1425 if (sd->flags & SD_WAKE_IDLE) {
1426 cpus_and(tmp, sd->span, p->cpus_allowed);
1427 for_each_cpu_mask(i, tmp) {
1428 if (idle_cpu(i)) {
1429 if (i != task_cpu(p)) {
1430 schedstat_inc(p,
1431 se.nr_wakeups_idle);
1433 return i;
1436 } else {
1437 break;
1440 return cpu;
1442 #else
1443 static inline int wake_idle(int cpu, struct task_struct *p)
1445 return cpu;
1447 #endif
1449 /***
1450 * try_to_wake_up - wake up a thread
1451 * @p: the to-be-woken-up thread
1452 * @state: the mask of task states that can be woken
1453 * @sync: do a synchronous wakeup?
1455 * Put it on the run-queue if it's not already there. The "current"
1456 * thread is always on the run-queue (except when the actual
1457 * re-schedule is in progress), and as such you're allowed to do
1458 * the simpler "current->state = TASK_RUNNING" to mark yourself
1459 * runnable without the overhead of this.
1461 * returns failure only if the task is already active.
1463 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1465 int cpu, orig_cpu, this_cpu, success = 0;
1466 unsigned long flags;
1467 long old_state;
1468 struct rq *rq;
1469 #ifdef CONFIG_SMP
1470 struct sched_domain *sd, *this_sd = NULL;
1471 unsigned long load, this_load;
1472 int new_cpu;
1473 #endif
1475 rq = task_rq_lock(p, &flags);
1476 old_state = p->state;
1477 if (!(old_state & state))
1478 goto out;
1480 if (p->se.on_rq)
1481 goto out_running;
1483 cpu = task_cpu(p);
1484 orig_cpu = cpu;
1485 this_cpu = smp_processor_id();
1487 #ifdef CONFIG_SMP
1488 if (unlikely(task_running(rq, p)))
1489 goto out_activate;
1491 new_cpu = cpu;
1493 schedstat_inc(rq, ttwu_count);
1494 if (cpu == this_cpu) {
1495 schedstat_inc(rq, ttwu_local);
1496 goto out_set_cpu;
1499 for_each_domain(this_cpu, sd) {
1500 if (cpu_isset(cpu, sd->span)) {
1501 schedstat_inc(sd, ttwu_wake_remote);
1502 this_sd = sd;
1503 break;
1507 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1508 goto out_set_cpu;
1511 * Check for affine wakeup and passive balancing possibilities.
1513 if (this_sd) {
1514 int idx = this_sd->wake_idx;
1515 unsigned int imbalance;
1517 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1519 load = source_load(cpu, idx);
1520 this_load = target_load(this_cpu, idx);
1522 new_cpu = this_cpu; /* Wake to this CPU if we can */
1524 if (this_sd->flags & SD_WAKE_AFFINE) {
1525 unsigned long tl = this_load;
1526 unsigned long tl_per_task;
1529 * Attract cache-cold tasks on sync wakeups:
1531 if (sync && !task_hot(p, rq->clock, this_sd))
1532 goto out_set_cpu;
1534 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1535 tl_per_task = cpu_avg_load_per_task(this_cpu);
1538 * If sync wakeup then subtract the (maximum possible)
1539 * effect of the currently running task from the load
1540 * of the current CPU:
1542 if (sync)
1543 tl -= current->se.load.weight;
1545 if ((tl <= load &&
1546 tl + target_load(cpu, idx) <= tl_per_task) ||
1547 100*(tl + p->se.load.weight) <= imbalance*load) {
1549 * This domain has SD_WAKE_AFFINE and
1550 * p is cache cold in this domain, and
1551 * there is no bad imbalance.
1553 schedstat_inc(this_sd, ttwu_move_affine);
1554 schedstat_inc(p, se.nr_wakeups_affine);
1555 goto out_set_cpu;
1560 * Start passive balancing when half the imbalance_pct
1561 * limit is reached.
1563 if (this_sd->flags & SD_WAKE_BALANCE) {
1564 if (imbalance*this_load <= 100*load) {
1565 schedstat_inc(this_sd, ttwu_move_balance);
1566 schedstat_inc(p, se.nr_wakeups_passive);
1567 goto out_set_cpu;
1572 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1573 out_set_cpu:
1574 new_cpu = wake_idle(new_cpu, p);
1575 if (new_cpu != cpu) {
1576 set_task_cpu(p, new_cpu);
1577 task_rq_unlock(rq, &flags);
1578 /* might preempt at this point */
1579 rq = task_rq_lock(p, &flags);
1580 old_state = p->state;
1581 if (!(old_state & state))
1582 goto out;
1583 if (p->se.on_rq)
1584 goto out_running;
1586 this_cpu = smp_processor_id();
1587 cpu = task_cpu(p);
1590 out_activate:
1591 #endif /* CONFIG_SMP */
1592 schedstat_inc(p, se.nr_wakeups);
1593 if (sync)
1594 schedstat_inc(p, se.nr_wakeups_sync);
1595 if (orig_cpu != cpu)
1596 schedstat_inc(p, se.nr_wakeups_migrate);
1597 if (cpu == this_cpu)
1598 schedstat_inc(p, se.nr_wakeups_local);
1599 else
1600 schedstat_inc(p, se.nr_wakeups_remote);
1601 update_rq_clock(rq);
1602 activate_task(rq, p, 1);
1603 check_preempt_curr(rq, p);
1604 success = 1;
1606 out_running:
1607 p->state = TASK_RUNNING;
1608 out:
1609 task_rq_unlock(rq, &flags);
1611 return success;
1614 int fastcall wake_up_process(struct task_struct *p)
1616 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1617 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1619 EXPORT_SYMBOL(wake_up_process);
1621 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1623 return try_to_wake_up(p, state, 0);
1627 * Perform scheduler related setup for a newly forked process p.
1628 * p is forked by current.
1630 * __sched_fork() is basic setup used by init_idle() too:
1632 static void __sched_fork(struct task_struct *p)
1634 p->se.exec_start = 0;
1635 p->se.sum_exec_runtime = 0;
1636 p->se.prev_sum_exec_runtime = 0;
1638 #ifdef CONFIG_SCHEDSTATS
1639 p->se.wait_start = 0;
1640 p->se.sum_sleep_runtime = 0;
1641 p->se.sleep_start = 0;
1642 p->se.block_start = 0;
1643 p->se.sleep_max = 0;
1644 p->se.block_max = 0;
1645 p->se.exec_max = 0;
1646 p->se.slice_max = 0;
1647 p->se.wait_max = 0;
1648 #endif
1650 INIT_LIST_HEAD(&p->run_list);
1651 p->se.on_rq = 0;
1653 #ifdef CONFIG_PREEMPT_NOTIFIERS
1654 INIT_HLIST_HEAD(&p->preempt_notifiers);
1655 #endif
1658 * We mark the process as running here, but have not actually
1659 * inserted it onto the runqueue yet. This guarantees that
1660 * nobody will actually run it, and a signal or other external
1661 * event cannot wake it up and insert it on the runqueue either.
1663 p->state = TASK_RUNNING;
1667 * fork()/clone()-time setup:
1669 void sched_fork(struct task_struct *p, int clone_flags)
1671 int cpu = get_cpu();
1673 __sched_fork(p);
1675 #ifdef CONFIG_SMP
1676 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1677 #endif
1678 set_task_cpu(p, cpu);
1681 * Make sure we do not leak PI boosting priority to the child:
1683 p->prio = current->normal_prio;
1684 if (!rt_prio(p->prio))
1685 p->sched_class = &fair_sched_class;
1687 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1688 if (likely(sched_info_on()))
1689 memset(&p->sched_info, 0, sizeof(p->sched_info));
1690 #endif
1691 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1692 p->oncpu = 0;
1693 #endif
1694 #ifdef CONFIG_PREEMPT
1695 /* Want to start with kernel preemption disabled. */
1696 task_thread_info(p)->preempt_count = 1;
1697 #endif
1698 put_cpu();
1702 * wake_up_new_task - wake up a newly created task for the first time.
1704 * This function will do some initial scheduler statistics housekeeping
1705 * that must be done for every newly created context, then puts the task
1706 * on the runqueue and wakes it.
1708 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1710 unsigned long flags;
1711 struct rq *rq;
1713 rq = task_rq_lock(p, &flags);
1714 BUG_ON(p->state != TASK_RUNNING);
1715 update_rq_clock(rq);
1717 p->prio = effective_prio(p);
1719 if (!p->sched_class->task_new || !current->se.on_rq) {
1720 activate_task(rq, p, 0);
1721 } else {
1723 * Let the scheduling class do new task startup
1724 * management (if any):
1726 p->sched_class->task_new(rq, p);
1727 inc_nr_running(p, rq);
1729 check_preempt_curr(rq, p);
1730 task_rq_unlock(rq, &flags);
1733 #ifdef CONFIG_PREEMPT_NOTIFIERS
1736 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1737 * @notifier: notifier struct to register
1739 void preempt_notifier_register(struct preempt_notifier *notifier)
1741 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1743 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1746 * preempt_notifier_unregister - no longer interested in preemption notifications
1747 * @notifier: notifier struct to unregister
1749 * This is safe to call from within a preemption notifier.
1751 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1753 hlist_del(&notifier->link);
1755 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1757 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1759 struct preempt_notifier *notifier;
1760 struct hlist_node *node;
1762 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1763 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1766 static void
1767 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1768 struct task_struct *next)
1770 struct preempt_notifier *notifier;
1771 struct hlist_node *node;
1773 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1774 notifier->ops->sched_out(notifier, next);
1777 #else
1779 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1783 static void
1784 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1785 struct task_struct *next)
1789 #endif
1792 * prepare_task_switch - prepare to switch tasks
1793 * @rq: the runqueue preparing to switch
1794 * @prev: the current task that is being switched out
1795 * @next: the task we are going to switch to.
1797 * This is called with the rq lock held and interrupts off. It must
1798 * be paired with a subsequent finish_task_switch after the context
1799 * switch.
1801 * prepare_task_switch sets up locking and calls architecture specific
1802 * hooks.
1804 static inline void
1805 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1806 struct task_struct *next)
1808 fire_sched_out_preempt_notifiers(prev, next);
1809 prepare_lock_switch(rq, next);
1810 prepare_arch_switch(next);
1814 * finish_task_switch - clean up after a task-switch
1815 * @rq: runqueue associated with task-switch
1816 * @prev: the thread we just switched away from.
1818 * finish_task_switch must be called after the context switch, paired
1819 * with a prepare_task_switch call before the context switch.
1820 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1821 * and do any other architecture-specific cleanup actions.
1823 * Note that we may have delayed dropping an mm in context_switch(). If
1824 * so, we finish that here outside of the runqueue lock. (Doing it
1825 * with the lock held can cause deadlocks; see schedule() for
1826 * details.)
1828 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1829 __releases(rq->lock)
1831 struct mm_struct *mm = rq->prev_mm;
1832 long prev_state;
1834 rq->prev_mm = NULL;
1837 * A task struct has one reference for the use as "current".
1838 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1839 * schedule one last time. The schedule call will never return, and
1840 * the scheduled task must drop that reference.
1841 * The test for TASK_DEAD must occur while the runqueue locks are
1842 * still held, otherwise prev could be scheduled on another cpu, die
1843 * there before we look at prev->state, and then the reference would
1844 * be dropped twice.
1845 * Manfred Spraul <manfred@colorfullife.com>
1847 prev_state = prev->state;
1848 finish_arch_switch(prev);
1849 finish_lock_switch(rq, prev);
1850 fire_sched_in_preempt_notifiers(current);
1851 if (mm)
1852 mmdrop(mm);
1853 if (unlikely(prev_state == TASK_DEAD)) {
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
1858 kprobe_flush_task(prev);
1859 put_task_struct(prev);
1864 * schedule_tail - first thing a freshly forked thread must call.
1865 * @prev: the thread we just switched away from.
1867 asmlinkage void schedule_tail(struct task_struct *prev)
1868 __releases(rq->lock)
1870 struct rq *rq = this_rq();
1872 finish_task_switch(rq, prev);
1873 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1874 /* In this case, finish_task_switch does not reenable preemption */
1875 preempt_enable();
1876 #endif
1877 if (current->set_child_tid)
1878 put_user(current->pid, current->set_child_tid);
1882 * context_switch - switch to the new MM and the new
1883 * thread's register state.
1885 static inline void
1886 context_switch(struct rq *rq, struct task_struct *prev,
1887 struct task_struct *next)
1889 struct mm_struct *mm, *oldmm;
1891 prepare_task_switch(rq, prev, next);
1892 mm = next->mm;
1893 oldmm = prev->active_mm;
1895 * For paravirt, this is coupled with an exit in switch_to to
1896 * combine the page table reload and the switch backend into
1897 * one hypercall.
1899 arch_enter_lazy_cpu_mode();
1901 if (unlikely(!mm)) {
1902 next->active_mm = oldmm;
1903 atomic_inc(&oldmm->mm_count);
1904 enter_lazy_tlb(oldmm, next);
1905 } else
1906 switch_mm(oldmm, mm, next);
1908 if (unlikely(!prev->mm)) {
1909 prev->active_mm = NULL;
1910 rq->prev_mm = oldmm;
1913 * Since the runqueue lock will be released by the next
1914 * task (which is an invalid locking op but in the case
1915 * of the scheduler it's an obvious special-case), so we
1916 * do an early lockdep release here:
1918 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1919 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1920 #endif
1922 /* Here we just switch the register state and the stack. */
1923 switch_to(prev, next, prev);
1925 barrier();
1927 * this_rq must be evaluated again because prev may have moved
1928 * CPUs since it called schedule(), thus the 'rq' on its stack
1929 * frame will be invalid.
1931 finish_task_switch(this_rq(), prev);
1935 * nr_running, nr_uninterruptible and nr_context_switches:
1937 * externally visible scheduler statistics: current number of runnable
1938 * threads, current number of uninterruptible-sleeping threads, total
1939 * number of context switches performed since bootup.
1941 unsigned long nr_running(void)
1943 unsigned long i, sum = 0;
1945 for_each_online_cpu(i)
1946 sum += cpu_rq(i)->nr_running;
1948 return sum;
1951 unsigned long nr_uninterruptible(void)
1953 unsigned long i, sum = 0;
1955 for_each_possible_cpu(i)
1956 sum += cpu_rq(i)->nr_uninterruptible;
1959 * Since we read the counters lockless, it might be slightly
1960 * inaccurate. Do not allow it to go below zero though:
1962 if (unlikely((long)sum < 0))
1963 sum = 0;
1965 return sum;
1968 unsigned long long nr_context_switches(void)
1970 int i;
1971 unsigned long long sum = 0;
1973 for_each_possible_cpu(i)
1974 sum += cpu_rq(i)->nr_switches;
1976 return sum;
1979 unsigned long nr_iowait(void)
1981 unsigned long i, sum = 0;
1983 for_each_possible_cpu(i)
1984 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1986 return sum;
1989 unsigned long nr_active(void)
1991 unsigned long i, running = 0, uninterruptible = 0;
1993 for_each_online_cpu(i) {
1994 running += cpu_rq(i)->nr_running;
1995 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1998 if (unlikely((long)uninterruptible < 0))
1999 uninterruptible = 0;
2001 return running + uninterruptible;
2005 * Update rq->cpu_load[] statistics. This function is usually called every
2006 * scheduler tick (TICK_NSEC).
2008 static void update_cpu_load(struct rq *this_rq)
2010 unsigned long this_load = this_rq->load.weight;
2011 int i, scale;
2013 this_rq->nr_load_updates++;
2015 /* Update our load: */
2016 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2017 unsigned long old_load, new_load;
2019 /* scale is effectively 1 << i now, and >> i divides by scale */
2021 old_load = this_rq->cpu_load[i];
2022 new_load = this_load;
2024 * Round up the averaging division if load is increasing. This
2025 * prevents us from getting stuck on 9 if the load is 10, for
2026 * example.
2028 if (new_load > old_load)
2029 new_load += scale-1;
2030 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2034 #ifdef CONFIG_SMP
2037 * double_rq_lock - safely lock two runqueues
2039 * Note this does not disable interrupts like task_rq_lock,
2040 * you need to do so manually before calling.
2042 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2043 __acquires(rq1->lock)
2044 __acquires(rq2->lock)
2046 BUG_ON(!irqs_disabled());
2047 if (rq1 == rq2) {
2048 spin_lock(&rq1->lock);
2049 __acquire(rq2->lock); /* Fake it out ;) */
2050 } else {
2051 if (rq1 < rq2) {
2052 spin_lock(&rq1->lock);
2053 spin_lock(&rq2->lock);
2054 } else {
2055 spin_lock(&rq2->lock);
2056 spin_lock(&rq1->lock);
2059 update_rq_clock(rq1);
2060 update_rq_clock(rq2);
2064 * double_rq_unlock - safely unlock two runqueues
2066 * Note this does not restore interrupts like task_rq_unlock,
2067 * you need to do so manually after calling.
2069 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2070 __releases(rq1->lock)
2071 __releases(rq2->lock)
2073 spin_unlock(&rq1->lock);
2074 if (rq1 != rq2)
2075 spin_unlock(&rq2->lock);
2076 else
2077 __release(rq2->lock);
2081 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2083 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2084 __releases(this_rq->lock)
2085 __acquires(busiest->lock)
2086 __acquires(this_rq->lock)
2088 if (unlikely(!irqs_disabled())) {
2089 /* printk() doesn't work good under rq->lock */
2090 spin_unlock(&this_rq->lock);
2091 BUG_ON(1);
2093 if (unlikely(!spin_trylock(&busiest->lock))) {
2094 if (busiest < this_rq) {
2095 spin_unlock(&this_rq->lock);
2096 spin_lock(&busiest->lock);
2097 spin_lock(&this_rq->lock);
2098 } else
2099 spin_lock(&busiest->lock);
2104 * If dest_cpu is allowed for this process, migrate the task to it.
2105 * This is accomplished by forcing the cpu_allowed mask to only
2106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2107 * the cpu_allowed mask is restored.
2109 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2111 struct migration_req req;
2112 unsigned long flags;
2113 struct rq *rq;
2115 rq = task_rq_lock(p, &flags);
2116 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2117 || unlikely(cpu_is_offline(dest_cpu)))
2118 goto out;
2120 /* force the process onto the specified CPU */
2121 if (migrate_task(p, dest_cpu, &req)) {
2122 /* Need to wait for migration thread (might exit: take ref). */
2123 struct task_struct *mt = rq->migration_thread;
2125 get_task_struct(mt);
2126 task_rq_unlock(rq, &flags);
2127 wake_up_process(mt);
2128 put_task_struct(mt);
2129 wait_for_completion(&req.done);
2131 return;
2133 out:
2134 task_rq_unlock(rq, &flags);
2138 * sched_exec - execve() is a valuable balancing opportunity, because at
2139 * this point the task has the smallest effective memory and cache footprint.
2141 void sched_exec(void)
2143 int new_cpu, this_cpu = get_cpu();
2144 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2145 put_cpu();
2146 if (new_cpu != this_cpu)
2147 sched_migrate_task(current, new_cpu);
2151 * pull_task - move a task from a remote runqueue to the local runqueue.
2152 * Both runqueues must be locked.
2154 static void pull_task(struct rq *src_rq, struct task_struct *p,
2155 struct rq *this_rq, int this_cpu)
2157 deactivate_task(src_rq, p, 0);
2158 set_task_cpu(p, this_cpu);
2159 activate_task(this_rq, p, 0);
2161 * Note that idle threads have a prio of MAX_PRIO, for this test
2162 * to be always true for them.
2164 check_preempt_curr(this_rq, p);
2168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2170 static
2171 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2172 struct sched_domain *sd, enum cpu_idle_type idle,
2173 int *all_pinned)
2176 * We do not migrate tasks that are:
2177 * 1) running (obviously), or
2178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2179 * 3) are cache-hot on their current CPU.
2181 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2182 schedstat_inc(p, se.nr_failed_migrations_affine);
2183 return 0;
2185 *all_pinned = 0;
2187 if (task_running(rq, p)) {
2188 schedstat_inc(p, se.nr_failed_migrations_running);
2189 return 0;
2193 * Aggressive migration if:
2194 * 1) task is cache cold, or
2195 * 2) too many balance attempts have failed.
2198 if (!task_hot(p, rq->clock, sd) ||
2199 sd->nr_balance_failed > sd->cache_nice_tries) {
2200 #ifdef CONFIG_SCHEDSTATS
2201 if (task_hot(p, rq->clock, sd)) {
2202 schedstat_inc(sd, lb_hot_gained[idle]);
2203 schedstat_inc(p, se.nr_forced_migrations);
2205 #endif
2206 return 1;
2209 if (task_hot(p, rq->clock, sd)) {
2210 schedstat_inc(p, se.nr_failed_migrations_hot);
2211 return 0;
2213 return 1;
2216 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2217 unsigned long max_nr_move, unsigned long max_load_move,
2218 struct sched_domain *sd, enum cpu_idle_type idle,
2219 int *all_pinned, unsigned long *load_moved,
2220 int *this_best_prio, struct rq_iterator *iterator)
2222 int pulled = 0, pinned = 0, skip_for_load;
2223 struct task_struct *p;
2224 long rem_load_move = max_load_move;
2226 if (max_nr_move == 0 || max_load_move == 0)
2227 goto out;
2229 pinned = 1;
2232 * Start the load-balancing iterator:
2234 p = iterator->start(iterator->arg);
2235 next:
2236 if (!p)
2237 goto out;
2239 * To help distribute high priority tasks accross CPUs we don't
2240 * skip a task if it will be the highest priority task (i.e. smallest
2241 * prio value) on its new queue regardless of its load weight
2243 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2244 SCHED_LOAD_SCALE_FUZZ;
2245 if ((skip_for_load && p->prio >= *this_best_prio) ||
2246 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2247 p = iterator->next(iterator->arg);
2248 goto next;
2251 pull_task(busiest, p, this_rq, this_cpu);
2252 pulled++;
2253 rem_load_move -= p->se.load.weight;
2256 * We only want to steal up to the prescribed number of tasks
2257 * and the prescribed amount of weighted load.
2259 if (pulled < max_nr_move && rem_load_move > 0) {
2260 if (p->prio < *this_best_prio)
2261 *this_best_prio = p->prio;
2262 p = iterator->next(iterator->arg);
2263 goto next;
2265 out:
2267 * Right now, this is the only place pull_task() is called,
2268 * so we can safely collect pull_task() stats here rather than
2269 * inside pull_task().
2271 schedstat_add(sd, lb_gained[idle], pulled);
2273 if (all_pinned)
2274 *all_pinned = pinned;
2275 *load_moved = max_load_move - rem_load_move;
2276 return pulled;
2280 * move_tasks tries to move up to max_load_move weighted load from busiest to
2281 * this_rq, as part of a balancing operation within domain "sd".
2282 * Returns 1 if successful and 0 otherwise.
2284 * Called with both runqueues locked.
2286 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2287 unsigned long max_load_move,
2288 struct sched_domain *sd, enum cpu_idle_type idle,
2289 int *all_pinned)
2291 const struct sched_class *class = sched_class_highest;
2292 unsigned long total_load_moved = 0;
2293 int this_best_prio = this_rq->curr->prio;
2295 do {
2296 total_load_moved +=
2297 class->load_balance(this_rq, this_cpu, busiest,
2298 ULONG_MAX, max_load_move - total_load_moved,
2299 sd, idle, all_pinned, &this_best_prio);
2300 class = class->next;
2301 } while (class && max_load_move > total_load_moved);
2303 return total_load_moved > 0;
2307 * move_one_task tries to move exactly one task from busiest to this_rq, as
2308 * part of active balancing operations within "domain".
2309 * Returns 1 if successful and 0 otherwise.
2311 * Called with both runqueues locked.
2313 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2314 struct sched_domain *sd, enum cpu_idle_type idle)
2316 const struct sched_class *class;
2317 int this_best_prio = MAX_PRIO;
2319 for (class = sched_class_highest; class; class = class->next)
2320 if (class->load_balance(this_rq, this_cpu, busiest,
2321 1, ULONG_MAX, sd, idle, NULL,
2322 &this_best_prio))
2323 return 1;
2325 return 0;
2329 * find_busiest_group finds and returns the busiest CPU group within the
2330 * domain. It calculates and returns the amount of weighted load which
2331 * should be moved to restore balance via the imbalance parameter.
2333 static struct sched_group *
2334 find_busiest_group(struct sched_domain *sd, int this_cpu,
2335 unsigned long *imbalance, enum cpu_idle_type idle,
2336 int *sd_idle, cpumask_t *cpus, int *balance)
2338 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2339 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2340 unsigned long max_pull;
2341 unsigned long busiest_load_per_task, busiest_nr_running;
2342 unsigned long this_load_per_task, this_nr_running;
2343 int load_idx, group_imb = 0;
2344 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2345 int power_savings_balance = 1;
2346 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2347 unsigned long min_nr_running = ULONG_MAX;
2348 struct sched_group *group_min = NULL, *group_leader = NULL;
2349 #endif
2351 max_load = this_load = total_load = total_pwr = 0;
2352 busiest_load_per_task = busiest_nr_running = 0;
2353 this_load_per_task = this_nr_running = 0;
2354 if (idle == CPU_NOT_IDLE)
2355 load_idx = sd->busy_idx;
2356 else if (idle == CPU_NEWLY_IDLE)
2357 load_idx = sd->newidle_idx;
2358 else
2359 load_idx = sd->idle_idx;
2361 do {
2362 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2363 int local_group;
2364 int i;
2365 int __group_imb = 0;
2366 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2367 unsigned long sum_nr_running, sum_weighted_load;
2369 local_group = cpu_isset(this_cpu, group->cpumask);
2371 if (local_group)
2372 balance_cpu = first_cpu(group->cpumask);
2374 /* Tally up the load of all CPUs in the group */
2375 sum_weighted_load = sum_nr_running = avg_load = 0;
2376 max_cpu_load = 0;
2377 min_cpu_load = ~0UL;
2379 for_each_cpu_mask(i, group->cpumask) {
2380 struct rq *rq;
2382 if (!cpu_isset(i, *cpus))
2383 continue;
2385 rq = cpu_rq(i);
2387 if (*sd_idle && rq->nr_running)
2388 *sd_idle = 0;
2390 /* Bias balancing toward cpus of our domain */
2391 if (local_group) {
2392 if (idle_cpu(i) && !first_idle_cpu) {
2393 first_idle_cpu = 1;
2394 balance_cpu = i;
2397 load = target_load(i, load_idx);
2398 } else {
2399 load = source_load(i, load_idx);
2400 if (load > max_cpu_load)
2401 max_cpu_load = load;
2402 if (min_cpu_load > load)
2403 min_cpu_load = load;
2406 avg_load += load;
2407 sum_nr_running += rq->nr_running;
2408 sum_weighted_load += weighted_cpuload(i);
2412 * First idle cpu or the first cpu(busiest) in this sched group
2413 * is eligible for doing load balancing at this and above
2414 * domains. In the newly idle case, we will allow all the cpu's
2415 * to do the newly idle load balance.
2417 if (idle != CPU_NEWLY_IDLE && local_group &&
2418 balance_cpu != this_cpu && balance) {
2419 *balance = 0;
2420 goto ret;
2423 total_load += avg_load;
2424 total_pwr += group->__cpu_power;
2426 /* Adjust by relative CPU power of the group */
2427 avg_load = sg_div_cpu_power(group,
2428 avg_load * SCHED_LOAD_SCALE);
2430 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2431 __group_imb = 1;
2433 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2435 if (local_group) {
2436 this_load = avg_load;
2437 this = group;
2438 this_nr_running = sum_nr_running;
2439 this_load_per_task = sum_weighted_load;
2440 } else if (avg_load > max_load &&
2441 (sum_nr_running > group_capacity || __group_imb)) {
2442 max_load = avg_load;
2443 busiest = group;
2444 busiest_nr_running = sum_nr_running;
2445 busiest_load_per_task = sum_weighted_load;
2446 group_imb = __group_imb;
2449 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2451 * Busy processors will not participate in power savings
2452 * balance.
2454 if (idle == CPU_NOT_IDLE ||
2455 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2456 goto group_next;
2459 * If the local group is idle or completely loaded
2460 * no need to do power savings balance at this domain
2462 if (local_group && (this_nr_running >= group_capacity ||
2463 !this_nr_running))
2464 power_savings_balance = 0;
2467 * If a group is already running at full capacity or idle,
2468 * don't include that group in power savings calculations
2470 if (!power_savings_balance || sum_nr_running >= group_capacity
2471 || !sum_nr_running)
2472 goto group_next;
2475 * Calculate the group which has the least non-idle load.
2476 * This is the group from where we need to pick up the load
2477 * for saving power
2479 if ((sum_nr_running < min_nr_running) ||
2480 (sum_nr_running == min_nr_running &&
2481 first_cpu(group->cpumask) <
2482 first_cpu(group_min->cpumask))) {
2483 group_min = group;
2484 min_nr_running = sum_nr_running;
2485 min_load_per_task = sum_weighted_load /
2486 sum_nr_running;
2490 * Calculate the group which is almost near its
2491 * capacity but still has some space to pick up some load
2492 * from other group and save more power
2494 if (sum_nr_running <= group_capacity - 1) {
2495 if (sum_nr_running > leader_nr_running ||
2496 (sum_nr_running == leader_nr_running &&
2497 first_cpu(group->cpumask) >
2498 first_cpu(group_leader->cpumask))) {
2499 group_leader = group;
2500 leader_nr_running = sum_nr_running;
2503 group_next:
2504 #endif
2505 group = group->next;
2506 } while (group != sd->groups);
2508 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2509 goto out_balanced;
2511 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2513 if (this_load >= avg_load ||
2514 100*max_load <= sd->imbalance_pct*this_load)
2515 goto out_balanced;
2517 busiest_load_per_task /= busiest_nr_running;
2518 if (group_imb)
2519 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2522 * We're trying to get all the cpus to the average_load, so we don't
2523 * want to push ourselves above the average load, nor do we wish to
2524 * reduce the max loaded cpu below the average load, as either of these
2525 * actions would just result in more rebalancing later, and ping-pong
2526 * tasks around. Thus we look for the minimum possible imbalance.
2527 * Negative imbalances (*we* are more loaded than anyone else) will
2528 * be counted as no imbalance for these purposes -- we can't fix that
2529 * by pulling tasks to us. Be careful of negative numbers as they'll
2530 * appear as very large values with unsigned longs.
2532 if (max_load <= busiest_load_per_task)
2533 goto out_balanced;
2536 * In the presence of smp nice balancing, certain scenarios can have
2537 * max load less than avg load(as we skip the groups at or below
2538 * its cpu_power, while calculating max_load..)
2540 if (max_load < avg_load) {
2541 *imbalance = 0;
2542 goto small_imbalance;
2545 /* Don't want to pull so many tasks that a group would go idle */
2546 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2548 /* How much load to actually move to equalise the imbalance */
2549 *imbalance = min(max_pull * busiest->__cpu_power,
2550 (avg_load - this_load) * this->__cpu_power)
2551 / SCHED_LOAD_SCALE;
2554 * if *imbalance is less than the average load per runnable task
2555 * there is no gaurantee that any tasks will be moved so we'll have
2556 * a think about bumping its value to force at least one task to be
2557 * moved
2559 if (*imbalance < busiest_load_per_task) {
2560 unsigned long tmp, pwr_now, pwr_move;
2561 unsigned int imbn;
2563 small_imbalance:
2564 pwr_move = pwr_now = 0;
2565 imbn = 2;
2566 if (this_nr_running) {
2567 this_load_per_task /= this_nr_running;
2568 if (busiest_load_per_task > this_load_per_task)
2569 imbn = 1;
2570 } else
2571 this_load_per_task = SCHED_LOAD_SCALE;
2573 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2574 busiest_load_per_task * imbn) {
2575 *imbalance = busiest_load_per_task;
2576 return busiest;
2580 * OK, we don't have enough imbalance to justify moving tasks,
2581 * however we may be able to increase total CPU power used by
2582 * moving them.
2585 pwr_now += busiest->__cpu_power *
2586 min(busiest_load_per_task, max_load);
2587 pwr_now += this->__cpu_power *
2588 min(this_load_per_task, this_load);
2589 pwr_now /= SCHED_LOAD_SCALE;
2591 /* Amount of load we'd subtract */
2592 tmp = sg_div_cpu_power(busiest,
2593 busiest_load_per_task * SCHED_LOAD_SCALE);
2594 if (max_load > tmp)
2595 pwr_move += busiest->__cpu_power *
2596 min(busiest_load_per_task, max_load - tmp);
2598 /* Amount of load we'd add */
2599 if (max_load * busiest->__cpu_power <
2600 busiest_load_per_task * SCHED_LOAD_SCALE)
2601 tmp = sg_div_cpu_power(this,
2602 max_load * busiest->__cpu_power);
2603 else
2604 tmp = sg_div_cpu_power(this,
2605 busiest_load_per_task * SCHED_LOAD_SCALE);
2606 pwr_move += this->__cpu_power *
2607 min(this_load_per_task, this_load + tmp);
2608 pwr_move /= SCHED_LOAD_SCALE;
2610 /* Move if we gain throughput */
2611 if (pwr_move > pwr_now)
2612 *imbalance = busiest_load_per_task;
2615 return busiest;
2617 out_balanced:
2618 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2619 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2620 goto ret;
2622 if (this == group_leader && group_leader != group_min) {
2623 *imbalance = min_load_per_task;
2624 return group_min;
2626 #endif
2627 ret:
2628 *imbalance = 0;
2629 return NULL;
2633 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2635 static struct rq *
2636 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2637 unsigned long imbalance, cpumask_t *cpus)
2639 struct rq *busiest = NULL, *rq;
2640 unsigned long max_load = 0;
2641 int i;
2643 for_each_cpu_mask(i, group->cpumask) {
2644 unsigned long wl;
2646 if (!cpu_isset(i, *cpus))
2647 continue;
2649 rq = cpu_rq(i);
2650 wl = weighted_cpuload(i);
2652 if (rq->nr_running == 1 && wl > imbalance)
2653 continue;
2655 if (wl > max_load) {
2656 max_load = wl;
2657 busiest = rq;
2661 return busiest;
2665 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2666 * so long as it is large enough.
2668 #define MAX_PINNED_INTERVAL 512
2671 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2672 * tasks if there is an imbalance.
2674 static int load_balance(int this_cpu, struct rq *this_rq,
2675 struct sched_domain *sd, enum cpu_idle_type idle,
2676 int *balance)
2678 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2679 struct sched_group *group;
2680 unsigned long imbalance;
2681 struct rq *busiest;
2682 cpumask_t cpus = CPU_MASK_ALL;
2683 unsigned long flags;
2686 * When power savings policy is enabled for the parent domain, idle
2687 * sibling can pick up load irrespective of busy siblings. In this case,
2688 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2689 * portraying it as CPU_NOT_IDLE.
2691 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2692 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2693 sd_idle = 1;
2695 schedstat_inc(sd, lb_count[idle]);
2697 redo:
2698 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2699 &cpus, balance);
2701 if (*balance == 0)
2702 goto out_balanced;
2704 if (!group) {
2705 schedstat_inc(sd, lb_nobusyg[idle]);
2706 goto out_balanced;
2709 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2710 if (!busiest) {
2711 schedstat_inc(sd, lb_nobusyq[idle]);
2712 goto out_balanced;
2715 BUG_ON(busiest == this_rq);
2717 schedstat_add(sd, lb_imbalance[idle], imbalance);
2719 ld_moved = 0;
2720 if (busiest->nr_running > 1) {
2722 * Attempt to move tasks. If find_busiest_group has found
2723 * an imbalance but busiest->nr_running <= 1, the group is
2724 * still unbalanced. ld_moved simply stays zero, so it is
2725 * correctly treated as an imbalance.
2727 local_irq_save(flags);
2728 double_rq_lock(this_rq, busiest);
2729 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2730 imbalance, sd, idle, &all_pinned);
2731 double_rq_unlock(this_rq, busiest);
2732 local_irq_restore(flags);
2735 * some other cpu did the load balance for us.
2737 if (ld_moved && this_cpu != smp_processor_id())
2738 resched_cpu(this_cpu);
2740 /* All tasks on this runqueue were pinned by CPU affinity */
2741 if (unlikely(all_pinned)) {
2742 cpu_clear(cpu_of(busiest), cpus);
2743 if (!cpus_empty(cpus))
2744 goto redo;
2745 goto out_balanced;
2749 if (!ld_moved) {
2750 schedstat_inc(sd, lb_failed[idle]);
2751 sd->nr_balance_failed++;
2753 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2755 spin_lock_irqsave(&busiest->lock, flags);
2757 /* don't kick the migration_thread, if the curr
2758 * task on busiest cpu can't be moved to this_cpu
2760 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2761 spin_unlock_irqrestore(&busiest->lock, flags);
2762 all_pinned = 1;
2763 goto out_one_pinned;
2766 if (!busiest->active_balance) {
2767 busiest->active_balance = 1;
2768 busiest->push_cpu = this_cpu;
2769 active_balance = 1;
2771 spin_unlock_irqrestore(&busiest->lock, flags);
2772 if (active_balance)
2773 wake_up_process(busiest->migration_thread);
2776 * We've kicked active balancing, reset the failure
2777 * counter.
2779 sd->nr_balance_failed = sd->cache_nice_tries+1;
2781 } else
2782 sd->nr_balance_failed = 0;
2784 if (likely(!active_balance)) {
2785 /* We were unbalanced, so reset the balancing interval */
2786 sd->balance_interval = sd->min_interval;
2787 } else {
2789 * If we've begun active balancing, start to back off. This
2790 * case may not be covered by the all_pinned logic if there
2791 * is only 1 task on the busy runqueue (because we don't call
2792 * move_tasks).
2794 if (sd->balance_interval < sd->max_interval)
2795 sd->balance_interval *= 2;
2798 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2800 return -1;
2801 return ld_moved;
2803 out_balanced:
2804 schedstat_inc(sd, lb_balanced[idle]);
2806 sd->nr_balance_failed = 0;
2808 out_one_pinned:
2809 /* tune up the balancing interval */
2810 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2811 (sd->balance_interval < sd->max_interval))
2812 sd->balance_interval *= 2;
2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2816 return -1;
2817 return 0;
2821 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2822 * tasks if there is an imbalance.
2824 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2825 * this_rq is locked.
2827 static int
2828 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2830 struct sched_group *group;
2831 struct rq *busiest = NULL;
2832 unsigned long imbalance;
2833 int ld_moved = 0;
2834 int sd_idle = 0;
2835 int all_pinned = 0;
2836 cpumask_t cpus = CPU_MASK_ALL;
2839 * When power savings policy is enabled for the parent domain, idle
2840 * sibling can pick up load irrespective of busy siblings. In this case,
2841 * let the state of idle sibling percolate up as IDLE, instead of
2842 * portraying it as CPU_NOT_IDLE.
2844 if (sd->flags & SD_SHARE_CPUPOWER &&
2845 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2846 sd_idle = 1;
2848 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2849 redo:
2850 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2851 &sd_idle, &cpus, NULL);
2852 if (!group) {
2853 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2854 goto out_balanced;
2857 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2858 &cpus);
2859 if (!busiest) {
2860 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2861 goto out_balanced;
2864 BUG_ON(busiest == this_rq);
2866 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2868 ld_moved = 0;
2869 if (busiest->nr_running > 1) {
2870 /* Attempt to move tasks */
2871 double_lock_balance(this_rq, busiest);
2872 /* this_rq->clock is already updated */
2873 update_rq_clock(busiest);
2874 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2875 imbalance, sd, CPU_NEWLY_IDLE,
2876 &all_pinned);
2877 spin_unlock(&busiest->lock);
2879 if (unlikely(all_pinned)) {
2880 cpu_clear(cpu_of(busiest), cpus);
2881 if (!cpus_empty(cpus))
2882 goto redo;
2886 if (!ld_moved) {
2887 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2888 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2889 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2890 return -1;
2891 } else
2892 sd->nr_balance_failed = 0;
2894 return ld_moved;
2896 out_balanced:
2897 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2898 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2899 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2900 return -1;
2901 sd->nr_balance_failed = 0;
2903 return 0;
2907 * idle_balance is called by schedule() if this_cpu is about to become
2908 * idle. Attempts to pull tasks from other CPUs.
2910 static void idle_balance(int this_cpu, struct rq *this_rq)
2912 struct sched_domain *sd;
2913 int pulled_task = -1;
2914 unsigned long next_balance = jiffies + HZ;
2916 for_each_domain(this_cpu, sd) {
2917 unsigned long interval;
2919 if (!(sd->flags & SD_LOAD_BALANCE))
2920 continue;
2922 if (sd->flags & SD_BALANCE_NEWIDLE)
2923 /* If we've pulled tasks over stop searching: */
2924 pulled_task = load_balance_newidle(this_cpu,
2925 this_rq, sd);
2927 interval = msecs_to_jiffies(sd->balance_interval);
2928 if (time_after(next_balance, sd->last_balance + interval))
2929 next_balance = sd->last_balance + interval;
2930 if (pulled_task)
2931 break;
2933 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2935 * We are going idle. next_balance may be set based on
2936 * a busy processor. So reset next_balance.
2938 this_rq->next_balance = next_balance;
2943 * active_load_balance is run by migration threads. It pushes running tasks
2944 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2945 * running on each physical CPU where possible, and avoids physical /
2946 * logical imbalances.
2948 * Called with busiest_rq locked.
2950 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2952 int target_cpu = busiest_rq->push_cpu;
2953 struct sched_domain *sd;
2954 struct rq *target_rq;
2956 /* Is there any task to move? */
2957 if (busiest_rq->nr_running <= 1)
2958 return;
2960 target_rq = cpu_rq(target_cpu);
2963 * This condition is "impossible", if it occurs
2964 * we need to fix it. Originally reported by
2965 * Bjorn Helgaas on a 128-cpu setup.
2967 BUG_ON(busiest_rq == target_rq);
2969 /* move a task from busiest_rq to target_rq */
2970 double_lock_balance(busiest_rq, target_rq);
2971 update_rq_clock(busiest_rq);
2972 update_rq_clock(target_rq);
2974 /* Search for an sd spanning us and the target CPU. */
2975 for_each_domain(target_cpu, sd) {
2976 if ((sd->flags & SD_LOAD_BALANCE) &&
2977 cpu_isset(busiest_cpu, sd->span))
2978 break;
2981 if (likely(sd)) {
2982 schedstat_inc(sd, alb_count);
2984 if (move_one_task(target_rq, target_cpu, busiest_rq,
2985 sd, CPU_IDLE))
2986 schedstat_inc(sd, alb_pushed);
2987 else
2988 schedstat_inc(sd, alb_failed);
2990 spin_unlock(&target_rq->lock);
2993 #ifdef CONFIG_NO_HZ
2994 static struct {
2995 atomic_t load_balancer;
2996 cpumask_t cpu_mask;
2997 } nohz ____cacheline_aligned = {
2998 .load_balancer = ATOMIC_INIT(-1),
2999 .cpu_mask = CPU_MASK_NONE,
3003 * This routine will try to nominate the ilb (idle load balancing)
3004 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3005 * load balancing on behalf of all those cpus. If all the cpus in the system
3006 * go into this tickless mode, then there will be no ilb owner (as there is
3007 * no need for one) and all the cpus will sleep till the next wakeup event
3008 * arrives...
3010 * For the ilb owner, tick is not stopped. And this tick will be used
3011 * for idle load balancing. ilb owner will still be part of
3012 * nohz.cpu_mask..
3014 * While stopping the tick, this cpu will become the ilb owner if there
3015 * is no other owner. And will be the owner till that cpu becomes busy
3016 * or if all cpus in the system stop their ticks at which point
3017 * there is no need for ilb owner.
3019 * When the ilb owner becomes busy, it nominates another owner, during the
3020 * next busy scheduler_tick()
3022 int select_nohz_load_balancer(int stop_tick)
3024 int cpu = smp_processor_id();
3026 if (stop_tick) {
3027 cpu_set(cpu, nohz.cpu_mask);
3028 cpu_rq(cpu)->in_nohz_recently = 1;
3031 * If we are going offline and still the leader, give up!
3033 if (cpu_is_offline(cpu) &&
3034 atomic_read(&nohz.load_balancer) == cpu) {
3035 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3036 BUG();
3037 return 0;
3040 /* time for ilb owner also to sleep */
3041 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3042 if (atomic_read(&nohz.load_balancer) == cpu)
3043 atomic_set(&nohz.load_balancer, -1);
3044 return 0;
3047 if (atomic_read(&nohz.load_balancer) == -1) {
3048 /* make me the ilb owner */
3049 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3050 return 1;
3051 } else if (atomic_read(&nohz.load_balancer) == cpu)
3052 return 1;
3053 } else {
3054 if (!cpu_isset(cpu, nohz.cpu_mask))
3055 return 0;
3057 cpu_clear(cpu, nohz.cpu_mask);
3059 if (atomic_read(&nohz.load_balancer) == cpu)
3060 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3061 BUG();
3063 return 0;
3065 #endif
3067 static DEFINE_SPINLOCK(balancing);
3070 * It checks each scheduling domain to see if it is due to be balanced,
3071 * and initiates a balancing operation if so.
3073 * Balancing parameters are set up in arch_init_sched_domains.
3075 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3077 int balance = 1;
3078 struct rq *rq = cpu_rq(cpu);
3079 unsigned long interval;
3080 struct sched_domain *sd;
3081 /* Earliest time when we have to do rebalance again */
3082 unsigned long next_balance = jiffies + 60*HZ;
3083 int update_next_balance = 0;
3085 for_each_domain(cpu, sd) {
3086 if (!(sd->flags & SD_LOAD_BALANCE))
3087 continue;
3089 interval = sd->balance_interval;
3090 if (idle != CPU_IDLE)
3091 interval *= sd->busy_factor;
3093 /* scale ms to jiffies */
3094 interval = msecs_to_jiffies(interval);
3095 if (unlikely(!interval))
3096 interval = 1;
3097 if (interval > HZ*NR_CPUS/10)
3098 interval = HZ*NR_CPUS/10;
3101 if (sd->flags & SD_SERIALIZE) {
3102 if (!spin_trylock(&balancing))
3103 goto out;
3106 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3107 if (load_balance(cpu, rq, sd, idle, &balance)) {
3109 * We've pulled tasks over so either we're no
3110 * longer idle, or one of our SMT siblings is
3111 * not idle.
3113 idle = CPU_NOT_IDLE;
3115 sd->last_balance = jiffies;
3117 if (sd->flags & SD_SERIALIZE)
3118 spin_unlock(&balancing);
3119 out:
3120 if (time_after(next_balance, sd->last_balance + interval)) {
3121 next_balance = sd->last_balance + interval;
3122 update_next_balance = 1;
3126 * Stop the load balance at this level. There is another
3127 * CPU in our sched group which is doing load balancing more
3128 * actively.
3130 if (!balance)
3131 break;
3135 * next_balance will be updated only when there is a need.
3136 * When the cpu is attached to null domain for ex, it will not be
3137 * updated.
3139 if (likely(update_next_balance))
3140 rq->next_balance = next_balance;
3144 * run_rebalance_domains is triggered when needed from the scheduler tick.
3145 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3146 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3148 static void run_rebalance_domains(struct softirq_action *h)
3150 int this_cpu = smp_processor_id();
3151 struct rq *this_rq = cpu_rq(this_cpu);
3152 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3153 CPU_IDLE : CPU_NOT_IDLE;
3155 rebalance_domains(this_cpu, idle);
3157 #ifdef CONFIG_NO_HZ
3159 * If this cpu is the owner for idle load balancing, then do the
3160 * balancing on behalf of the other idle cpus whose ticks are
3161 * stopped.
3163 if (this_rq->idle_at_tick &&
3164 atomic_read(&nohz.load_balancer) == this_cpu) {
3165 cpumask_t cpus = nohz.cpu_mask;
3166 struct rq *rq;
3167 int balance_cpu;
3169 cpu_clear(this_cpu, cpus);
3170 for_each_cpu_mask(balance_cpu, cpus) {
3172 * If this cpu gets work to do, stop the load balancing
3173 * work being done for other cpus. Next load
3174 * balancing owner will pick it up.
3176 if (need_resched())
3177 break;
3179 rebalance_domains(balance_cpu, CPU_IDLE);
3181 rq = cpu_rq(balance_cpu);
3182 if (time_after(this_rq->next_balance, rq->next_balance))
3183 this_rq->next_balance = rq->next_balance;
3186 #endif
3190 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3192 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3193 * idle load balancing owner or decide to stop the periodic load balancing,
3194 * if the whole system is idle.
3196 static inline void trigger_load_balance(struct rq *rq, int cpu)
3198 #ifdef CONFIG_NO_HZ
3200 * If we were in the nohz mode recently and busy at the current
3201 * scheduler tick, then check if we need to nominate new idle
3202 * load balancer.
3204 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3205 rq->in_nohz_recently = 0;
3207 if (atomic_read(&nohz.load_balancer) == cpu) {
3208 cpu_clear(cpu, nohz.cpu_mask);
3209 atomic_set(&nohz.load_balancer, -1);
3212 if (atomic_read(&nohz.load_balancer) == -1) {
3214 * simple selection for now: Nominate the
3215 * first cpu in the nohz list to be the next
3216 * ilb owner.
3218 * TBD: Traverse the sched domains and nominate
3219 * the nearest cpu in the nohz.cpu_mask.
3221 int ilb = first_cpu(nohz.cpu_mask);
3223 if (ilb != NR_CPUS)
3224 resched_cpu(ilb);
3229 * If this cpu is idle and doing idle load balancing for all the
3230 * cpus with ticks stopped, is it time for that to stop?
3232 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3233 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3234 resched_cpu(cpu);
3235 return;
3239 * If this cpu is idle and the idle load balancing is done by
3240 * someone else, then no need raise the SCHED_SOFTIRQ
3242 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3243 cpu_isset(cpu, nohz.cpu_mask))
3244 return;
3245 #endif
3246 if (time_after_eq(jiffies, rq->next_balance))
3247 raise_softirq(SCHED_SOFTIRQ);
3250 #else /* CONFIG_SMP */
3253 * on UP we do not need to balance between CPUs:
3255 static inline void idle_balance(int cpu, struct rq *rq)
3259 /* Avoid "used but not defined" warning on UP */
3260 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3261 unsigned long max_nr_move, unsigned long max_load_move,
3262 struct sched_domain *sd, enum cpu_idle_type idle,
3263 int *all_pinned, unsigned long *load_moved,
3264 int *this_best_prio, struct rq_iterator *iterator)
3266 *load_moved = 0;
3268 return 0;
3271 #endif
3273 DEFINE_PER_CPU(struct kernel_stat, kstat);
3275 EXPORT_PER_CPU_SYMBOL(kstat);
3278 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3279 * that have not yet been banked in case the task is currently running.
3281 unsigned long long task_sched_runtime(struct task_struct *p)
3283 unsigned long flags;
3284 u64 ns, delta_exec;
3285 struct rq *rq;
3287 rq = task_rq_lock(p, &flags);
3288 ns = p->se.sum_exec_runtime;
3289 if (rq->curr == p) {
3290 update_rq_clock(rq);
3291 delta_exec = rq->clock - p->se.exec_start;
3292 if ((s64)delta_exec > 0)
3293 ns += delta_exec;
3295 task_rq_unlock(rq, &flags);
3297 return ns;
3301 * Account user cpu time to a process.
3302 * @p: the process that the cpu time gets accounted to
3303 * @hardirq_offset: the offset to subtract from hardirq_count()
3304 * @cputime: the cpu time spent in user space since the last update
3306 void account_user_time(struct task_struct *p, cputime_t cputime)
3308 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3309 cputime64_t tmp;
3311 p->utime = cputime_add(p->utime, cputime);
3313 /* Add user time to cpustat. */
3314 tmp = cputime_to_cputime64(cputime);
3315 if (TASK_NICE(p) > 0)
3316 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3317 else
3318 cpustat->user = cputime64_add(cpustat->user, tmp);
3322 * Account guest cpu time to a process.
3323 * @p: the process that the cpu time gets accounted to
3324 * @cputime: the cpu time spent in virtual machine since the last update
3326 void account_guest_time(struct task_struct *p, cputime_t cputime)
3328 cputime64_t tmp;
3329 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3331 tmp = cputime_to_cputime64(cputime);
3333 p->utime = cputime_add(p->utime, cputime);
3334 p->gtime = cputime_add(p->gtime, cputime);
3336 cpustat->user = cputime64_add(cpustat->user, tmp);
3337 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3341 * Account scaled user cpu time to a process.
3342 * @p: the process that the cpu time gets accounted to
3343 * @cputime: the cpu time spent in user space since the last update
3345 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3347 p->utimescaled = cputime_add(p->utimescaled, cputime);
3351 * Account system cpu time to a process.
3352 * @p: the process that the cpu time gets accounted to
3353 * @hardirq_offset: the offset to subtract from hardirq_count()
3354 * @cputime: the cpu time spent in kernel space since the last update
3356 void account_system_time(struct task_struct *p, int hardirq_offset,
3357 cputime_t cputime)
3359 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3360 struct rq *rq = this_rq();
3361 cputime64_t tmp;
3363 if (p->flags & PF_VCPU) {
3364 account_guest_time(p, cputime);
3365 p->flags &= ~PF_VCPU;
3366 return;
3369 p->stime = cputime_add(p->stime, cputime);
3371 /* Add system time to cpustat. */
3372 tmp = cputime_to_cputime64(cputime);
3373 if (hardirq_count() - hardirq_offset)
3374 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3375 else if (softirq_count())
3376 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3377 else if (p != rq->idle)
3378 cpustat->system = cputime64_add(cpustat->system, tmp);
3379 else if (atomic_read(&rq->nr_iowait) > 0)
3380 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3381 else
3382 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3383 /* Account for system time used */
3384 acct_update_integrals(p);
3388 * Account scaled system cpu time to a process.
3389 * @p: the process that the cpu time gets accounted to
3390 * @hardirq_offset: the offset to subtract from hardirq_count()
3391 * @cputime: the cpu time spent in kernel space since the last update
3393 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3395 p->stimescaled = cputime_add(p->stimescaled, cputime);
3399 * Account for involuntary wait time.
3400 * @p: the process from which the cpu time has been stolen
3401 * @steal: the cpu time spent in involuntary wait
3403 void account_steal_time(struct task_struct *p, cputime_t steal)
3405 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3406 cputime64_t tmp = cputime_to_cputime64(steal);
3407 struct rq *rq = this_rq();
3409 if (p == rq->idle) {
3410 p->stime = cputime_add(p->stime, steal);
3411 if (atomic_read(&rq->nr_iowait) > 0)
3412 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3413 else
3414 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3415 } else
3416 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3420 * This function gets called by the timer code, with HZ frequency.
3421 * We call it with interrupts disabled.
3423 * It also gets called by the fork code, when changing the parent's
3424 * timeslices.
3426 void scheduler_tick(void)
3428 int cpu = smp_processor_id();
3429 struct rq *rq = cpu_rq(cpu);
3430 struct task_struct *curr = rq->curr;
3431 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3433 spin_lock(&rq->lock);
3434 __update_rq_clock(rq);
3436 * Let rq->clock advance by at least TICK_NSEC:
3438 if (unlikely(rq->clock < next_tick))
3439 rq->clock = next_tick;
3440 rq->tick_timestamp = rq->clock;
3441 update_cpu_load(rq);
3442 if (curr != rq->idle) /* FIXME: needed? */
3443 curr->sched_class->task_tick(rq, curr);
3444 spin_unlock(&rq->lock);
3446 #ifdef CONFIG_SMP
3447 rq->idle_at_tick = idle_cpu(cpu);
3448 trigger_load_balance(rq, cpu);
3449 #endif
3452 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3454 void fastcall add_preempt_count(int val)
3457 * Underflow?
3459 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3460 return;
3461 preempt_count() += val;
3463 * Spinlock count overflowing soon?
3465 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3466 PREEMPT_MASK - 10);
3468 EXPORT_SYMBOL(add_preempt_count);
3470 void fastcall sub_preempt_count(int val)
3473 * Underflow?
3475 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3476 return;
3478 * Is the spinlock portion underflowing?
3480 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3481 !(preempt_count() & PREEMPT_MASK)))
3482 return;
3484 preempt_count() -= val;
3486 EXPORT_SYMBOL(sub_preempt_count);
3488 #endif
3491 * Print scheduling while atomic bug:
3493 static noinline void __schedule_bug(struct task_struct *prev)
3495 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3496 prev->comm, preempt_count(), prev->pid);
3497 debug_show_held_locks(prev);
3498 if (irqs_disabled())
3499 print_irqtrace_events(prev);
3500 dump_stack();
3504 * Various schedule()-time debugging checks and statistics:
3506 static inline void schedule_debug(struct task_struct *prev)
3509 * Test if we are atomic. Since do_exit() needs to call into
3510 * schedule() atomically, we ignore that path for now.
3511 * Otherwise, whine if we are scheduling when we should not be.
3513 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3514 __schedule_bug(prev);
3516 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3518 schedstat_inc(this_rq(), sched_count);
3519 #ifdef CONFIG_SCHEDSTATS
3520 if (unlikely(prev->lock_depth >= 0)) {
3521 schedstat_inc(this_rq(), bkl_count);
3522 schedstat_inc(prev, sched_info.bkl_count);
3524 #endif
3528 * Pick up the highest-prio task:
3530 static inline struct task_struct *
3531 pick_next_task(struct rq *rq, struct task_struct *prev)
3533 const struct sched_class *class;
3534 struct task_struct *p;
3537 * Optimization: we know that if all tasks are in
3538 * the fair class we can call that function directly:
3540 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3541 p = fair_sched_class.pick_next_task(rq);
3542 if (likely(p))
3543 return p;
3546 class = sched_class_highest;
3547 for ( ; ; ) {
3548 p = class->pick_next_task(rq);
3549 if (p)
3550 return p;
3552 * Will never be NULL as the idle class always
3553 * returns a non-NULL p:
3555 class = class->next;
3560 * schedule() is the main scheduler function.
3562 asmlinkage void __sched schedule(void)
3564 struct task_struct *prev, *next;
3565 long *switch_count;
3566 struct rq *rq;
3567 int cpu;
3569 need_resched:
3570 preempt_disable();
3571 cpu = smp_processor_id();
3572 rq = cpu_rq(cpu);
3573 rcu_qsctr_inc(cpu);
3574 prev = rq->curr;
3575 switch_count = &prev->nivcsw;
3577 release_kernel_lock(prev);
3578 need_resched_nonpreemptible:
3580 schedule_debug(prev);
3583 * Do the rq-clock update outside the rq lock:
3585 local_irq_disable();
3586 __update_rq_clock(rq);
3587 spin_lock(&rq->lock);
3588 clear_tsk_need_resched(prev);
3590 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3591 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3592 unlikely(signal_pending(prev)))) {
3593 prev->state = TASK_RUNNING;
3594 } else {
3595 deactivate_task(rq, prev, 1);
3597 switch_count = &prev->nvcsw;
3600 if (unlikely(!rq->nr_running))
3601 idle_balance(cpu, rq);
3603 prev->sched_class->put_prev_task(rq, prev);
3604 next = pick_next_task(rq, prev);
3606 sched_info_switch(prev, next);
3608 if (likely(prev != next)) {
3609 rq->nr_switches++;
3610 rq->curr = next;
3611 ++*switch_count;
3613 context_switch(rq, prev, next); /* unlocks the rq */
3614 } else
3615 spin_unlock_irq(&rq->lock);
3617 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3618 cpu = smp_processor_id();
3619 rq = cpu_rq(cpu);
3620 goto need_resched_nonpreemptible;
3622 preempt_enable_no_resched();
3623 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3624 goto need_resched;
3626 EXPORT_SYMBOL(schedule);
3628 #ifdef CONFIG_PREEMPT
3630 * this is the entry point to schedule() from in-kernel preemption
3631 * off of preempt_enable. Kernel preemptions off return from interrupt
3632 * occur there and call schedule directly.
3634 asmlinkage void __sched preempt_schedule(void)
3636 struct thread_info *ti = current_thread_info();
3637 #ifdef CONFIG_PREEMPT_BKL
3638 struct task_struct *task = current;
3639 int saved_lock_depth;
3640 #endif
3642 * If there is a non-zero preempt_count or interrupts are disabled,
3643 * we do not want to preempt the current task. Just return..
3645 if (likely(ti->preempt_count || irqs_disabled()))
3646 return;
3648 do {
3649 add_preempt_count(PREEMPT_ACTIVE);
3652 * We keep the big kernel semaphore locked, but we
3653 * clear ->lock_depth so that schedule() doesnt
3654 * auto-release the semaphore:
3656 #ifdef CONFIG_PREEMPT_BKL
3657 saved_lock_depth = task->lock_depth;
3658 task->lock_depth = -1;
3659 #endif
3660 schedule();
3661 #ifdef CONFIG_PREEMPT_BKL
3662 task->lock_depth = saved_lock_depth;
3663 #endif
3664 sub_preempt_count(PREEMPT_ACTIVE);
3667 * Check again in case we missed a preemption opportunity
3668 * between schedule and now.
3670 barrier();
3671 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3673 EXPORT_SYMBOL(preempt_schedule);
3676 * this is the entry point to schedule() from kernel preemption
3677 * off of irq context.
3678 * Note, that this is called and return with irqs disabled. This will
3679 * protect us against recursive calling from irq.
3681 asmlinkage void __sched preempt_schedule_irq(void)
3683 struct thread_info *ti = current_thread_info();
3684 #ifdef CONFIG_PREEMPT_BKL
3685 struct task_struct *task = current;
3686 int saved_lock_depth;
3687 #endif
3688 /* Catch callers which need to be fixed */
3689 BUG_ON(ti->preempt_count || !irqs_disabled());
3691 do {
3692 add_preempt_count(PREEMPT_ACTIVE);
3695 * We keep the big kernel semaphore locked, but we
3696 * clear ->lock_depth so that schedule() doesnt
3697 * auto-release the semaphore:
3699 #ifdef CONFIG_PREEMPT_BKL
3700 saved_lock_depth = task->lock_depth;
3701 task->lock_depth = -1;
3702 #endif
3703 local_irq_enable();
3704 schedule();
3705 local_irq_disable();
3706 #ifdef CONFIG_PREEMPT_BKL
3707 task->lock_depth = saved_lock_depth;
3708 #endif
3709 sub_preempt_count(PREEMPT_ACTIVE);
3712 * Check again in case we missed a preemption opportunity
3713 * between schedule and now.
3715 barrier();
3716 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3719 #endif /* CONFIG_PREEMPT */
3721 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3722 void *key)
3724 return try_to_wake_up(curr->private, mode, sync);
3726 EXPORT_SYMBOL(default_wake_function);
3729 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3730 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3731 * number) then we wake all the non-exclusive tasks and one exclusive task.
3733 * There are circumstances in which we can try to wake a task which has already
3734 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3735 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3737 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3738 int nr_exclusive, int sync, void *key)
3740 wait_queue_t *curr, *next;
3742 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3743 unsigned flags = curr->flags;
3745 if (curr->func(curr, mode, sync, key) &&
3746 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3747 break;
3752 * __wake_up - wake up threads blocked on a waitqueue.
3753 * @q: the waitqueue
3754 * @mode: which threads
3755 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3756 * @key: is directly passed to the wakeup function
3758 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3759 int nr_exclusive, void *key)
3761 unsigned long flags;
3763 spin_lock_irqsave(&q->lock, flags);
3764 __wake_up_common(q, mode, nr_exclusive, 0, key);
3765 spin_unlock_irqrestore(&q->lock, flags);
3767 EXPORT_SYMBOL(__wake_up);
3770 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3772 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3774 __wake_up_common(q, mode, 1, 0, NULL);
3778 * __wake_up_sync - wake up threads blocked on a waitqueue.
3779 * @q: the waitqueue
3780 * @mode: which threads
3781 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3783 * The sync wakeup differs that the waker knows that it will schedule
3784 * away soon, so while the target thread will be woken up, it will not
3785 * be migrated to another CPU - ie. the two threads are 'synchronized'
3786 * with each other. This can prevent needless bouncing between CPUs.
3788 * On UP it can prevent extra preemption.
3790 void fastcall
3791 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3793 unsigned long flags;
3794 int sync = 1;
3796 if (unlikely(!q))
3797 return;
3799 if (unlikely(!nr_exclusive))
3800 sync = 0;
3802 spin_lock_irqsave(&q->lock, flags);
3803 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3804 spin_unlock_irqrestore(&q->lock, flags);
3806 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3808 void fastcall complete(struct completion *x)
3810 unsigned long flags;
3812 spin_lock_irqsave(&x->wait.lock, flags);
3813 x->done++;
3814 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3815 1, 0, NULL);
3816 spin_unlock_irqrestore(&x->wait.lock, flags);
3818 EXPORT_SYMBOL(complete);
3820 void fastcall complete_all(struct completion *x)
3822 unsigned long flags;
3824 spin_lock_irqsave(&x->wait.lock, flags);
3825 x->done += UINT_MAX/2;
3826 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3827 0, 0, NULL);
3828 spin_unlock_irqrestore(&x->wait.lock, flags);
3830 EXPORT_SYMBOL(complete_all);
3832 static inline long __sched
3833 do_wait_for_common(struct completion *x, long timeout, int state)
3835 if (!x->done) {
3836 DECLARE_WAITQUEUE(wait, current);
3838 wait.flags |= WQ_FLAG_EXCLUSIVE;
3839 __add_wait_queue_tail(&x->wait, &wait);
3840 do {
3841 if (state == TASK_INTERRUPTIBLE &&
3842 signal_pending(current)) {
3843 __remove_wait_queue(&x->wait, &wait);
3844 return -ERESTARTSYS;
3846 __set_current_state(state);
3847 spin_unlock_irq(&x->wait.lock);
3848 timeout = schedule_timeout(timeout);
3849 spin_lock_irq(&x->wait.lock);
3850 if (!timeout) {
3851 __remove_wait_queue(&x->wait, &wait);
3852 return timeout;
3854 } while (!x->done);
3855 __remove_wait_queue(&x->wait, &wait);
3857 x->done--;
3858 return timeout;
3861 static long __sched
3862 wait_for_common(struct completion *x, long timeout, int state)
3864 might_sleep();
3866 spin_lock_irq(&x->wait.lock);
3867 timeout = do_wait_for_common(x, timeout, state);
3868 spin_unlock_irq(&x->wait.lock);
3869 return timeout;
3872 void fastcall __sched wait_for_completion(struct completion *x)
3874 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3876 EXPORT_SYMBOL(wait_for_completion);
3878 unsigned long fastcall __sched
3879 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3881 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3883 EXPORT_SYMBOL(wait_for_completion_timeout);
3885 int __sched wait_for_completion_interruptible(struct completion *x)
3887 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3888 if (t == -ERESTARTSYS)
3889 return t;
3890 return 0;
3892 EXPORT_SYMBOL(wait_for_completion_interruptible);
3894 unsigned long fastcall __sched
3895 wait_for_completion_interruptible_timeout(struct completion *x,
3896 unsigned long timeout)
3898 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3900 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3902 static long __sched
3903 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3905 unsigned long flags;
3906 wait_queue_t wait;
3908 init_waitqueue_entry(&wait, current);
3910 __set_current_state(state);
3912 spin_lock_irqsave(&q->lock, flags);
3913 __add_wait_queue(q, &wait);
3914 spin_unlock(&q->lock);
3915 timeout = schedule_timeout(timeout);
3916 spin_lock_irq(&q->lock);
3917 __remove_wait_queue(q, &wait);
3918 spin_unlock_irqrestore(&q->lock, flags);
3920 return timeout;
3923 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3925 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3927 EXPORT_SYMBOL(interruptible_sleep_on);
3929 long __sched
3930 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3932 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3934 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3936 void __sched sleep_on(wait_queue_head_t *q)
3938 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3940 EXPORT_SYMBOL(sleep_on);
3942 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3944 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3946 EXPORT_SYMBOL(sleep_on_timeout);
3948 #ifdef CONFIG_RT_MUTEXES
3951 * rt_mutex_setprio - set the current priority of a task
3952 * @p: task
3953 * @prio: prio value (kernel-internal form)
3955 * This function changes the 'effective' priority of a task. It does
3956 * not touch ->normal_prio like __setscheduler().
3958 * Used by the rt_mutex code to implement priority inheritance logic.
3960 void rt_mutex_setprio(struct task_struct *p, int prio)
3962 unsigned long flags;
3963 int oldprio, on_rq, running;
3964 struct rq *rq;
3966 BUG_ON(prio < 0 || prio > MAX_PRIO);
3968 rq = task_rq_lock(p, &flags);
3969 update_rq_clock(rq);
3971 oldprio = p->prio;
3972 on_rq = p->se.on_rq;
3973 running = task_running(rq, p);
3974 if (on_rq) {
3975 dequeue_task(rq, p, 0);
3976 if (running)
3977 p->sched_class->put_prev_task(rq, p);
3980 if (rt_prio(prio))
3981 p->sched_class = &rt_sched_class;
3982 else
3983 p->sched_class = &fair_sched_class;
3985 p->prio = prio;
3987 if (on_rq) {
3988 if (running)
3989 p->sched_class->set_curr_task(rq);
3990 enqueue_task(rq, p, 0);
3992 * Reschedule if we are currently running on this runqueue and
3993 * our priority decreased, or if we are not currently running on
3994 * this runqueue and our priority is higher than the current's
3996 if (running) {
3997 if (p->prio > oldprio)
3998 resched_task(rq->curr);
3999 } else {
4000 check_preempt_curr(rq, p);
4003 task_rq_unlock(rq, &flags);
4006 #endif
4008 void set_user_nice(struct task_struct *p, long nice)
4010 int old_prio, delta, on_rq;
4011 unsigned long flags;
4012 struct rq *rq;
4014 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4015 return;
4017 * We have to be careful, if called from sys_setpriority(),
4018 * the task might be in the middle of scheduling on another CPU.
4020 rq = task_rq_lock(p, &flags);
4021 update_rq_clock(rq);
4023 * The RT priorities are set via sched_setscheduler(), but we still
4024 * allow the 'normal' nice value to be set - but as expected
4025 * it wont have any effect on scheduling until the task is
4026 * SCHED_FIFO/SCHED_RR:
4028 if (task_has_rt_policy(p)) {
4029 p->static_prio = NICE_TO_PRIO(nice);
4030 goto out_unlock;
4032 on_rq = p->se.on_rq;
4033 if (on_rq) {
4034 dequeue_task(rq, p, 0);
4035 dec_load(rq, p);
4038 p->static_prio = NICE_TO_PRIO(nice);
4039 set_load_weight(p);
4040 old_prio = p->prio;
4041 p->prio = effective_prio(p);
4042 delta = p->prio - old_prio;
4044 if (on_rq) {
4045 enqueue_task(rq, p, 0);
4046 inc_load(rq, p);
4048 * If the task increased its priority or is running and
4049 * lowered its priority, then reschedule its CPU:
4051 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4052 resched_task(rq->curr);
4054 out_unlock:
4055 task_rq_unlock(rq, &flags);
4057 EXPORT_SYMBOL(set_user_nice);
4060 * can_nice - check if a task can reduce its nice value
4061 * @p: task
4062 * @nice: nice value
4064 int can_nice(const struct task_struct *p, const int nice)
4066 /* convert nice value [19,-20] to rlimit style value [1,40] */
4067 int nice_rlim = 20 - nice;
4069 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4070 capable(CAP_SYS_NICE));
4073 #ifdef __ARCH_WANT_SYS_NICE
4076 * sys_nice - change the priority of the current process.
4077 * @increment: priority increment
4079 * sys_setpriority is a more generic, but much slower function that
4080 * does similar things.
4082 asmlinkage long sys_nice(int increment)
4084 long nice, retval;
4087 * Setpriority might change our priority at the same moment.
4088 * We don't have to worry. Conceptually one call occurs first
4089 * and we have a single winner.
4091 if (increment < -40)
4092 increment = -40;
4093 if (increment > 40)
4094 increment = 40;
4096 nice = PRIO_TO_NICE(current->static_prio) + increment;
4097 if (nice < -20)
4098 nice = -20;
4099 if (nice > 19)
4100 nice = 19;
4102 if (increment < 0 && !can_nice(current, nice))
4103 return -EPERM;
4105 retval = security_task_setnice(current, nice);
4106 if (retval)
4107 return retval;
4109 set_user_nice(current, nice);
4110 return 0;
4113 #endif
4116 * task_prio - return the priority value of a given task.
4117 * @p: the task in question.
4119 * This is the priority value as seen by users in /proc.
4120 * RT tasks are offset by -200. Normal tasks are centered
4121 * around 0, value goes from -16 to +15.
4123 int task_prio(const struct task_struct *p)
4125 return p->prio - MAX_RT_PRIO;
4129 * task_nice - return the nice value of a given task.
4130 * @p: the task in question.
4132 int task_nice(const struct task_struct *p)
4134 return TASK_NICE(p);
4136 EXPORT_SYMBOL_GPL(task_nice);
4139 * idle_cpu - is a given cpu idle currently?
4140 * @cpu: the processor in question.
4142 int idle_cpu(int cpu)
4144 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4148 * idle_task - return the idle task for a given cpu.
4149 * @cpu: the processor in question.
4151 struct task_struct *idle_task(int cpu)
4153 return cpu_rq(cpu)->idle;
4157 * find_process_by_pid - find a process with a matching PID value.
4158 * @pid: the pid in question.
4160 static struct task_struct *find_process_by_pid(pid_t pid)
4162 return pid ? find_task_by_pid(pid) : current;
4165 /* Actually do priority change: must hold rq lock. */
4166 static void
4167 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4169 BUG_ON(p->se.on_rq);
4171 p->policy = policy;
4172 switch (p->policy) {
4173 case SCHED_NORMAL:
4174 case SCHED_BATCH:
4175 case SCHED_IDLE:
4176 p->sched_class = &fair_sched_class;
4177 break;
4178 case SCHED_FIFO:
4179 case SCHED_RR:
4180 p->sched_class = &rt_sched_class;
4181 break;
4184 p->rt_priority = prio;
4185 p->normal_prio = normal_prio(p);
4186 /* we are holding p->pi_lock already */
4187 p->prio = rt_mutex_getprio(p);
4188 set_load_weight(p);
4192 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4193 * @p: the task in question.
4194 * @policy: new policy.
4195 * @param: structure containing the new RT priority.
4197 * NOTE that the task may be already dead.
4199 int sched_setscheduler(struct task_struct *p, int policy,
4200 struct sched_param *param)
4202 int retval, oldprio, oldpolicy = -1, on_rq, running;
4203 unsigned long flags;
4204 struct rq *rq;
4206 /* may grab non-irq protected spin_locks */
4207 BUG_ON(in_interrupt());
4208 recheck:
4209 /* double check policy once rq lock held */
4210 if (policy < 0)
4211 policy = oldpolicy = p->policy;
4212 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4213 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4214 policy != SCHED_IDLE)
4215 return -EINVAL;
4217 * Valid priorities for SCHED_FIFO and SCHED_RR are
4218 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4219 * SCHED_BATCH and SCHED_IDLE is 0.
4221 if (param->sched_priority < 0 ||
4222 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4223 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4224 return -EINVAL;
4225 if (rt_policy(policy) != (param->sched_priority != 0))
4226 return -EINVAL;
4229 * Allow unprivileged RT tasks to decrease priority:
4231 if (!capable(CAP_SYS_NICE)) {
4232 if (rt_policy(policy)) {
4233 unsigned long rlim_rtprio;
4235 if (!lock_task_sighand(p, &flags))
4236 return -ESRCH;
4237 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4238 unlock_task_sighand(p, &flags);
4240 /* can't set/change the rt policy */
4241 if (policy != p->policy && !rlim_rtprio)
4242 return -EPERM;
4244 /* can't increase priority */
4245 if (param->sched_priority > p->rt_priority &&
4246 param->sched_priority > rlim_rtprio)
4247 return -EPERM;
4250 * Like positive nice levels, dont allow tasks to
4251 * move out of SCHED_IDLE either:
4253 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4254 return -EPERM;
4256 /* can't change other user's priorities */
4257 if ((current->euid != p->euid) &&
4258 (current->euid != p->uid))
4259 return -EPERM;
4262 retval = security_task_setscheduler(p, policy, param);
4263 if (retval)
4264 return retval;
4266 * make sure no PI-waiters arrive (or leave) while we are
4267 * changing the priority of the task:
4269 spin_lock_irqsave(&p->pi_lock, flags);
4271 * To be able to change p->policy safely, the apropriate
4272 * runqueue lock must be held.
4274 rq = __task_rq_lock(p);
4275 /* recheck policy now with rq lock held */
4276 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4277 policy = oldpolicy = -1;
4278 __task_rq_unlock(rq);
4279 spin_unlock_irqrestore(&p->pi_lock, flags);
4280 goto recheck;
4282 update_rq_clock(rq);
4283 on_rq = p->se.on_rq;
4284 running = task_running(rq, p);
4285 if (on_rq) {
4286 deactivate_task(rq, p, 0);
4287 if (running)
4288 p->sched_class->put_prev_task(rq, p);
4291 oldprio = p->prio;
4292 __setscheduler(rq, p, policy, param->sched_priority);
4294 if (on_rq) {
4295 if (running)
4296 p->sched_class->set_curr_task(rq);
4297 activate_task(rq, p, 0);
4299 * Reschedule if we are currently running on this runqueue and
4300 * our priority decreased, or if we are not currently running on
4301 * this runqueue and our priority is higher than the current's
4303 if (running) {
4304 if (p->prio > oldprio)
4305 resched_task(rq->curr);
4306 } else {
4307 check_preempt_curr(rq, p);
4310 __task_rq_unlock(rq);
4311 spin_unlock_irqrestore(&p->pi_lock, flags);
4313 rt_mutex_adjust_pi(p);
4315 return 0;
4317 EXPORT_SYMBOL_GPL(sched_setscheduler);
4319 static int
4320 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4322 struct sched_param lparam;
4323 struct task_struct *p;
4324 int retval;
4326 if (!param || pid < 0)
4327 return -EINVAL;
4328 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4329 return -EFAULT;
4331 rcu_read_lock();
4332 retval = -ESRCH;
4333 p = find_process_by_pid(pid);
4334 if (p != NULL)
4335 retval = sched_setscheduler(p, policy, &lparam);
4336 rcu_read_unlock();
4338 return retval;
4342 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4343 * @pid: the pid in question.
4344 * @policy: new policy.
4345 * @param: structure containing the new RT priority.
4347 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4348 struct sched_param __user *param)
4350 /* negative values for policy are not valid */
4351 if (policy < 0)
4352 return -EINVAL;
4354 return do_sched_setscheduler(pid, policy, param);
4358 * sys_sched_setparam - set/change the RT priority of a thread
4359 * @pid: the pid in question.
4360 * @param: structure containing the new RT priority.
4362 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4364 return do_sched_setscheduler(pid, -1, param);
4368 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4369 * @pid: the pid in question.
4371 asmlinkage long sys_sched_getscheduler(pid_t pid)
4373 struct task_struct *p;
4374 int retval;
4376 if (pid < 0)
4377 return -EINVAL;
4379 retval = -ESRCH;
4380 read_lock(&tasklist_lock);
4381 p = find_process_by_pid(pid);
4382 if (p) {
4383 retval = security_task_getscheduler(p);
4384 if (!retval)
4385 retval = p->policy;
4387 read_unlock(&tasklist_lock);
4388 return retval;
4392 * sys_sched_getscheduler - get the RT priority of a thread
4393 * @pid: the pid in question.
4394 * @param: structure containing the RT priority.
4396 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4398 struct sched_param lp;
4399 struct task_struct *p;
4400 int retval;
4402 if (!param || pid < 0)
4403 return -EINVAL;
4405 read_lock(&tasklist_lock);
4406 p = find_process_by_pid(pid);
4407 retval = -ESRCH;
4408 if (!p)
4409 goto out_unlock;
4411 retval = security_task_getscheduler(p);
4412 if (retval)
4413 goto out_unlock;
4415 lp.sched_priority = p->rt_priority;
4416 read_unlock(&tasklist_lock);
4419 * This one might sleep, we cannot do it with a spinlock held ...
4421 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4423 return retval;
4425 out_unlock:
4426 read_unlock(&tasklist_lock);
4427 return retval;
4430 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4432 cpumask_t cpus_allowed;
4433 struct task_struct *p;
4434 int retval;
4436 mutex_lock(&sched_hotcpu_mutex);
4437 read_lock(&tasklist_lock);
4439 p = find_process_by_pid(pid);
4440 if (!p) {
4441 read_unlock(&tasklist_lock);
4442 mutex_unlock(&sched_hotcpu_mutex);
4443 return -ESRCH;
4447 * It is not safe to call set_cpus_allowed with the
4448 * tasklist_lock held. We will bump the task_struct's
4449 * usage count and then drop tasklist_lock.
4451 get_task_struct(p);
4452 read_unlock(&tasklist_lock);
4454 retval = -EPERM;
4455 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4456 !capable(CAP_SYS_NICE))
4457 goto out_unlock;
4459 retval = security_task_setscheduler(p, 0, NULL);
4460 if (retval)
4461 goto out_unlock;
4463 cpus_allowed = cpuset_cpus_allowed(p);
4464 cpus_and(new_mask, new_mask, cpus_allowed);
4465 retval = set_cpus_allowed(p, new_mask);
4467 out_unlock:
4468 put_task_struct(p);
4469 mutex_unlock(&sched_hotcpu_mutex);
4470 return retval;
4473 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4474 cpumask_t *new_mask)
4476 if (len < sizeof(cpumask_t)) {
4477 memset(new_mask, 0, sizeof(cpumask_t));
4478 } else if (len > sizeof(cpumask_t)) {
4479 len = sizeof(cpumask_t);
4481 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4485 * sys_sched_setaffinity - set the cpu affinity of a process
4486 * @pid: pid of the process
4487 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4488 * @user_mask_ptr: user-space pointer to the new cpu mask
4490 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4491 unsigned long __user *user_mask_ptr)
4493 cpumask_t new_mask;
4494 int retval;
4496 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4497 if (retval)
4498 return retval;
4500 return sched_setaffinity(pid, new_mask);
4504 * Represents all cpu's present in the system
4505 * In systems capable of hotplug, this map could dynamically grow
4506 * as new cpu's are detected in the system via any platform specific
4507 * method, such as ACPI for e.g.
4510 cpumask_t cpu_present_map __read_mostly;
4511 EXPORT_SYMBOL(cpu_present_map);
4513 #ifndef CONFIG_SMP
4514 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4515 EXPORT_SYMBOL(cpu_online_map);
4517 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4518 EXPORT_SYMBOL(cpu_possible_map);
4519 #endif
4521 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4523 struct task_struct *p;
4524 int retval;
4526 mutex_lock(&sched_hotcpu_mutex);
4527 read_lock(&tasklist_lock);
4529 retval = -ESRCH;
4530 p = find_process_by_pid(pid);
4531 if (!p)
4532 goto out_unlock;
4534 retval = security_task_getscheduler(p);
4535 if (retval)
4536 goto out_unlock;
4538 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4540 out_unlock:
4541 read_unlock(&tasklist_lock);
4542 mutex_unlock(&sched_hotcpu_mutex);
4544 return retval;
4548 * sys_sched_getaffinity - get the cpu affinity of a process
4549 * @pid: pid of the process
4550 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4551 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4553 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4554 unsigned long __user *user_mask_ptr)
4556 int ret;
4557 cpumask_t mask;
4559 if (len < sizeof(cpumask_t))
4560 return -EINVAL;
4562 ret = sched_getaffinity(pid, &mask);
4563 if (ret < 0)
4564 return ret;
4566 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4567 return -EFAULT;
4569 return sizeof(cpumask_t);
4573 * sys_sched_yield - yield the current processor to other threads.
4575 * This function yields the current CPU to other tasks. If there are no
4576 * other threads running on this CPU then this function will return.
4578 asmlinkage long sys_sched_yield(void)
4580 struct rq *rq = this_rq_lock();
4582 schedstat_inc(rq, yld_count);
4583 current->sched_class->yield_task(rq);
4586 * Since we are going to call schedule() anyway, there's
4587 * no need to preempt or enable interrupts:
4589 __release(rq->lock);
4590 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4591 _raw_spin_unlock(&rq->lock);
4592 preempt_enable_no_resched();
4594 schedule();
4596 return 0;
4599 static void __cond_resched(void)
4601 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4602 __might_sleep(__FILE__, __LINE__);
4603 #endif
4605 * The BKS might be reacquired before we have dropped
4606 * PREEMPT_ACTIVE, which could trigger a second
4607 * cond_resched() call.
4609 do {
4610 add_preempt_count(PREEMPT_ACTIVE);
4611 schedule();
4612 sub_preempt_count(PREEMPT_ACTIVE);
4613 } while (need_resched());
4616 int __sched cond_resched(void)
4618 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4619 system_state == SYSTEM_RUNNING) {
4620 __cond_resched();
4621 return 1;
4623 return 0;
4625 EXPORT_SYMBOL(cond_resched);
4628 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4629 * call schedule, and on return reacquire the lock.
4631 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4632 * operations here to prevent schedule() from being called twice (once via
4633 * spin_unlock(), once by hand).
4635 int cond_resched_lock(spinlock_t *lock)
4637 int ret = 0;
4639 if (need_lockbreak(lock)) {
4640 spin_unlock(lock);
4641 cpu_relax();
4642 ret = 1;
4643 spin_lock(lock);
4645 if (need_resched() && system_state == SYSTEM_RUNNING) {
4646 spin_release(&lock->dep_map, 1, _THIS_IP_);
4647 _raw_spin_unlock(lock);
4648 preempt_enable_no_resched();
4649 __cond_resched();
4650 ret = 1;
4651 spin_lock(lock);
4653 return ret;
4655 EXPORT_SYMBOL(cond_resched_lock);
4657 int __sched cond_resched_softirq(void)
4659 BUG_ON(!in_softirq());
4661 if (need_resched() && system_state == SYSTEM_RUNNING) {
4662 local_bh_enable();
4663 __cond_resched();
4664 local_bh_disable();
4665 return 1;
4667 return 0;
4669 EXPORT_SYMBOL(cond_resched_softirq);
4672 * yield - yield the current processor to other threads.
4674 * This is a shortcut for kernel-space yielding - it marks the
4675 * thread runnable and calls sys_sched_yield().
4677 void __sched yield(void)
4679 set_current_state(TASK_RUNNING);
4680 sys_sched_yield();
4682 EXPORT_SYMBOL(yield);
4685 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4686 * that process accounting knows that this is a task in IO wait state.
4688 * But don't do that if it is a deliberate, throttling IO wait (this task
4689 * has set its backing_dev_info: the queue against which it should throttle)
4691 void __sched io_schedule(void)
4693 struct rq *rq = &__raw_get_cpu_var(runqueues);
4695 delayacct_blkio_start();
4696 atomic_inc(&rq->nr_iowait);
4697 schedule();
4698 atomic_dec(&rq->nr_iowait);
4699 delayacct_blkio_end();
4701 EXPORT_SYMBOL(io_schedule);
4703 long __sched io_schedule_timeout(long timeout)
4705 struct rq *rq = &__raw_get_cpu_var(runqueues);
4706 long ret;
4708 delayacct_blkio_start();
4709 atomic_inc(&rq->nr_iowait);
4710 ret = schedule_timeout(timeout);
4711 atomic_dec(&rq->nr_iowait);
4712 delayacct_blkio_end();
4713 return ret;
4717 * sys_sched_get_priority_max - return maximum RT priority.
4718 * @policy: scheduling class.
4720 * this syscall returns the maximum rt_priority that can be used
4721 * by a given scheduling class.
4723 asmlinkage long sys_sched_get_priority_max(int policy)
4725 int ret = -EINVAL;
4727 switch (policy) {
4728 case SCHED_FIFO:
4729 case SCHED_RR:
4730 ret = MAX_USER_RT_PRIO-1;
4731 break;
4732 case SCHED_NORMAL:
4733 case SCHED_BATCH:
4734 case SCHED_IDLE:
4735 ret = 0;
4736 break;
4738 return ret;
4742 * sys_sched_get_priority_min - return minimum RT priority.
4743 * @policy: scheduling class.
4745 * this syscall returns the minimum rt_priority that can be used
4746 * by a given scheduling class.
4748 asmlinkage long sys_sched_get_priority_min(int policy)
4750 int ret = -EINVAL;
4752 switch (policy) {
4753 case SCHED_FIFO:
4754 case SCHED_RR:
4755 ret = 1;
4756 break;
4757 case SCHED_NORMAL:
4758 case SCHED_BATCH:
4759 case SCHED_IDLE:
4760 ret = 0;
4762 return ret;
4766 * sys_sched_rr_get_interval - return the default timeslice of a process.
4767 * @pid: pid of the process.
4768 * @interval: userspace pointer to the timeslice value.
4770 * this syscall writes the default timeslice value of a given process
4771 * into the user-space timespec buffer. A value of '0' means infinity.
4773 asmlinkage
4774 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4776 struct task_struct *p;
4777 unsigned int time_slice;
4778 int retval;
4779 struct timespec t;
4781 if (pid < 0)
4782 return -EINVAL;
4784 retval = -ESRCH;
4785 read_lock(&tasklist_lock);
4786 p = find_process_by_pid(pid);
4787 if (!p)
4788 goto out_unlock;
4790 retval = security_task_getscheduler(p);
4791 if (retval)
4792 goto out_unlock;
4794 if (p->policy == SCHED_FIFO)
4795 time_slice = 0;
4796 else if (p->policy == SCHED_RR)
4797 time_slice = DEF_TIMESLICE;
4798 else {
4799 struct sched_entity *se = &p->se;
4800 unsigned long flags;
4801 struct rq *rq;
4803 rq = task_rq_lock(p, &flags);
4804 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4805 task_rq_unlock(rq, &flags);
4807 read_unlock(&tasklist_lock);
4808 jiffies_to_timespec(time_slice, &t);
4809 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4810 return retval;
4812 out_unlock:
4813 read_unlock(&tasklist_lock);
4814 return retval;
4817 static const char stat_nam[] = "RSDTtZX";
4819 static void show_task(struct task_struct *p)
4821 unsigned long free = 0;
4822 unsigned state;
4824 state = p->state ? __ffs(p->state) + 1 : 0;
4825 printk(KERN_INFO "%-13.13s %c", p->comm,
4826 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4827 #if BITS_PER_LONG == 32
4828 if (state == TASK_RUNNING)
4829 printk(KERN_CONT " running ");
4830 else
4831 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4832 #else
4833 if (state == TASK_RUNNING)
4834 printk(KERN_CONT " running task ");
4835 else
4836 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4837 #endif
4838 #ifdef CONFIG_DEBUG_STACK_USAGE
4840 unsigned long *n = end_of_stack(p);
4841 while (!*n)
4842 n++;
4843 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4845 #endif
4846 printk(KERN_CONT "%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4848 if (state != TASK_RUNNING)
4849 show_stack(p, NULL);
4852 void show_state_filter(unsigned long state_filter)
4854 struct task_struct *g, *p;
4856 #if BITS_PER_LONG == 32
4857 printk(KERN_INFO
4858 " task PC stack pid father\n");
4859 #else
4860 printk(KERN_INFO
4861 " task PC stack pid father\n");
4862 #endif
4863 read_lock(&tasklist_lock);
4864 do_each_thread(g, p) {
4866 * reset the NMI-timeout, listing all files on a slow
4867 * console might take alot of time:
4869 touch_nmi_watchdog();
4870 if (!state_filter || (p->state & state_filter))
4871 show_task(p);
4872 } while_each_thread(g, p);
4874 touch_all_softlockup_watchdogs();
4876 #ifdef CONFIG_SCHED_DEBUG
4877 sysrq_sched_debug_show();
4878 #endif
4879 read_unlock(&tasklist_lock);
4881 * Only show locks if all tasks are dumped:
4883 if (state_filter == -1)
4884 debug_show_all_locks();
4887 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4889 idle->sched_class = &idle_sched_class;
4893 * init_idle - set up an idle thread for a given CPU
4894 * @idle: task in question
4895 * @cpu: cpu the idle task belongs to
4897 * NOTE: this function does not set the idle thread's NEED_RESCHED
4898 * flag, to make booting more robust.
4900 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4902 struct rq *rq = cpu_rq(cpu);
4903 unsigned long flags;
4905 __sched_fork(idle);
4906 idle->se.exec_start = sched_clock();
4908 idle->prio = idle->normal_prio = MAX_PRIO;
4909 idle->cpus_allowed = cpumask_of_cpu(cpu);
4910 __set_task_cpu(idle, cpu);
4912 spin_lock_irqsave(&rq->lock, flags);
4913 rq->curr = rq->idle = idle;
4914 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4915 idle->oncpu = 1;
4916 #endif
4917 spin_unlock_irqrestore(&rq->lock, flags);
4919 /* Set the preempt count _outside_ the spinlocks! */
4920 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4921 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4922 #else
4923 task_thread_info(idle)->preempt_count = 0;
4924 #endif
4926 * The idle tasks have their own, simple scheduling class:
4928 idle->sched_class = &idle_sched_class;
4932 * In a system that switches off the HZ timer nohz_cpu_mask
4933 * indicates which cpus entered this state. This is used
4934 * in the rcu update to wait only for active cpus. For system
4935 * which do not switch off the HZ timer nohz_cpu_mask should
4936 * always be CPU_MASK_NONE.
4938 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4940 #ifdef CONFIG_SMP
4942 * This is how migration works:
4944 * 1) we queue a struct migration_req structure in the source CPU's
4945 * runqueue and wake up that CPU's migration thread.
4946 * 2) we down() the locked semaphore => thread blocks.
4947 * 3) migration thread wakes up (implicitly it forces the migrated
4948 * thread off the CPU)
4949 * 4) it gets the migration request and checks whether the migrated
4950 * task is still in the wrong runqueue.
4951 * 5) if it's in the wrong runqueue then the migration thread removes
4952 * it and puts it into the right queue.
4953 * 6) migration thread up()s the semaphore.
4954 * 7) we wake up and the migration is done.
4958 * Change a given task's CPU affinity. Migrate the thread to a
4959 * proper CPU and schedule it away if the CPU it's executing on
4960 * is removed from the allowed bitmask.
4962 * NOTE: the caller must have a valid reference to the task, the
4963 * task must not exit() & deallocate itself prematurely. The
4964 * call is not atomic; no spinlocks may be held.
4966 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4968 struct migration_req req;
4969 unsigned long flags;
4970 struct rq *rq;
4971 int ret = 0;
4973 rq = task_rq_lock(p, &flags);
4974 if (!cpus_intersects(new_mask, cpu_online_map)) {
4975 ret = -EINVAL;
4976 goto out;
4979 p->cpus_allowed = new_mask;
4980 /* Can the task run on the task's current CPU? If so, we're done */
4981 if (cpu_isset(task_cpu(p), new_mask))
4982 goto out;
4984 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4985 /* Need help from migration thread: drop lock and wait. */
4986 task_rq_unlock(rq, &flags);
4987 wake_up_process(rq->migration_thread);
4988 wait_for_completion(&req.done);
4989 tlb_migrate_finish(p->mm);
4990 return 0;
4992 out:
4993 task_rq_unlock(rq, &flags);
4995 return ret;
4997 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5000 * Move (not current) task off this cpu, onto dest cpu. We're doing
5001 * this because either it can't run here any more (set_cpus_allowed()
5002 * away from this CPU, or CPU going down), or because we're
5003 * attempting to rebalance this task on exec (sched_exec).
5005 * So we race with normal scheduler movements, but that's OK, as long
5006 * as the task is no longer on this CPU.
5008 * Returns non-zero if task was successfully migrated.
5010 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5012 struct rq *rq_dest, *rq_src;
5013 int ret = 0, on_rq;
5015 if (unlikely(cpu_is_offline(dest_cpu)))
5016 return ret;
5018 rq_src = cpu_rq(src_cpu);
5019 rq_dest = cpu_rq(dest_cpu);
5021 double_rq_lock(rq_src, rq_dest);
5022 /* Already moved. */
5023 if (task_cpu(p) != src_cpu)
5024 goto out;
5025 /* Affinity changed (again). */
5026 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5027 goto out;
5029 on_rq = p->se.on_rq;
5030 if (on_rq)
5031 deactivate_task(rq_src, p, 0);
5033 set_task_cpu(p, dest_cpu);
5034 if (on_rq) {
5035 activate_task(rq_dest, p, 0);
5036 check_preempt_curr(rq_dest, p);
5038 ret = 1;
5039 out:
5040 double_rq_unlock(rq_src, rq_dest);
5041 return ret;
5045 * migration_thread - this is a highprio system thread that performs
5046 * thread migration by bumping thread off CPU then 'pushing' onto
5047 * another runqueue.
5049 static int migration_thread(void *data)
5051 int cpu = (long)data;
5052 struct rq *rq;
5054 rq = cpu_rq(cpu);
5055 BUG_ON(rq->migration_thread != current);
5057 set_current_state(TASK_INTERRUPTIBLE);
5058 while (!kthread_should_stop()) {
5059 struct migration_req *req;
5060 struct list_head *head;
5062 spin_lock_irq(&rq->lock);
5064 if (cpu_is_offline(cpu)) {
5065 spin_unlock_irq(&rq->lock);
5066 goto wait_to_die;
5069 if (rq->active_balance) {
5070 active_load_balance(rq, cpu);
5071 rq->active_balance = 0;
5074 head = &rq->migration_queue;
5076 if (list_empty(head)) {
5077 spin_unlock_irq(&rq->lock);
5078 schedule();
5079 set_current_state(TASK_INTERRUPTIBLE);
5080 continue;
5082 req = list_entry(head->next, struct migration_req, list);
5083 list_del_init(head->next);
5085 spin_unlock(&rq->lock);
5086 __migrate_task(req->task, cpu, req->dest_cpu);
5087 local_irq_enable();
5089 complete(&req->done);
5091 __set_current_state(TASK_RUNNING);
5092 return 0;
5094 wait_to_die:
5095 /* Wait for kthread_stop */
5096 set_current_state(TASK_INTERRUPTIBLE);
5097 while (!kthread_should_stop()) {
5098 schedule();
5099 set_current_state(TASK_INTERRUPTIBLE);
5101 __set_current_state(TASK_RUNNING);
5102 return 0;
5105 #ifdef CONFIG_HOTPLUG_CPU
5107 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5109 int ret;
5111 local_irq_disable();
5112 ret = __migrate_task(p, src_cpu, dest_cpu);
5113 local_irq_enable();
5114 return ret;
5118 * Figure out where task on dead CPU should go, use force if neccessary.
5119 * NOTE: interrupts should be disabled by the caller
5121 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5123 unsigned long flags;
5124 cpumask_t mask;
5125 struct rq *rq;
5126 int dest_cpu;
5128 do {
5129 /* On same node? */
5130 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5131 cpus_and(mask, mask, p->cpus_allowed);
5132 dest_cpu = any_online_cpu(mask);
5134 /* On any allowed CPU? */
5135 if (dest_cpu == NR_CPUS)
5136 dest_cpu = any_online_cpu(p->cpus_allowed);
5138 /* No more Mr. Nice Guy. */
5139 if (dest_cpu == NR_CPUS) {
5140 rq = task_rq_lock(p, &flags);
5141 cpus_setall(p->cpus_allowed);
5142 dest_cpu = any_online_cpu(p->cpus_allowed);
5143 task_rq_unlock(rq, &flags);
5146 * Don't tell them about moving exiting tasks or
5147 * kernel threads (both mm NULL), since they never
5148 * leave kernel.
5150 if (p->mm && printk_ratelimit())
5151 printk(KERN_INFO "process %d (%s) no "
5152 "longer affine to cpu%d\n",
5153 p->pid, p->comm, dead_cpu);
5155 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5159 * While a dead CPU has no uninterruptible tasks queued at this point,
5160 * it might still have a nonzero ->nr_uninterruptible counter, because
5161 * for performance reasons the counter is not stricly tracking tasks to
5162 * their home CPUs. So we just add the counter to another CPU's counter,
5163 * to keep the global sum constant after CPU-down:
5165 static void migrate_nr_uninterruptible(struct rq *rq_src)
5167 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5168 unsigned long flags;
5170 local_irq_save(flags);
5171 double_rq_lock(rq_src, rq_dest);
5172 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5173 rq_src->nr_uninterruptible = 0;
5174 double_rq_unlock(rq_src, rq_dest);
5175 local_irq_restore(flags);
5178 /* Run through task list and migrate tasks from the dead cpu. */
5179 static void migrate_live_tasks(int src_cpu)
5181 struct task_struct *p, *t;
5183 read_lock(&tasklist_lock);
5185 do_each_thread(t, p) {
5186 if (p == current)
5187 continue;
5189 if (task_cpu(p) == src_cpu)
5190 move_task_off_dead_cpu(src_cpu, p);
5191 } while_each_thread(t, p);
5193 read_unlock(&tasklist_lock);
5197 * activate_idle_task - move idle task to the _front_ of runqueue.
5199 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5201 update_rq_clock(rq);
5203 if (p->state == TASK_UNINTERRUPTIBLE)
5204 rq->nr_uninterruptible--;
5206 enqueue_task(rq, p, 0);
5207 inc_nr_running(p, rq);
5211 * Schedules idle task to be the next runnable task on current CPU.
5212 * It does so by boosting its priority to highest possible and adding it to
5213 * the _front_ of the runqueue. Used by CPU offline code.
5215 void sched_idle_next(void)
5217 int this_cpu = smp_processor_id();
5218 struct rq *rq = cpu_rq(this_cpu);
5219 struct task_struct *p = rq->idle;
5220 unsigned long flags;
5222 /* cpu has to be offline */
5223 BUG_ON(cpu_online(this_cpu));
5226 * Strictly not necessary since rest of the CPUs are stopped by now
5227 * and interrupts disabled on the current cpu.
5229 spin_lock_irqsave(&rq->lock, flags);
5231 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5233 /* Add idle task to the _front_ of its priority queue: */
5234 activate_idle_task(p, rq);
5236 spin_unlock_irqrestore(&rq->lock, flags);
5240 * Ensures that the idle task is using init_mm right before its cpu goes
5241 * offline.
5243 void idle_task_exit(void)
5245 struct mm_struct *mm = current->active_mm;
5247 BUG_ON(cpu_online(smp_processor_id()));
5249 if (mm != &init_mm)
5250 switch_mm(mm, &init_mm, current);
5251 mmdrop(mm);
5254 /* called under rq->lock with disabled interrupts */
5255 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5257 struct rq *rq = cpu_rq(dead_cpu);
5259 /* Must be exiting, otherwise would be on tasklist. */
5260 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5262 /* Cannot have done final schedule yet: would have vanished. */
5263 BUG_ON(p->state == TASK_DEAD);
5265 get_task_struct(p);
5268 * Drop lock around migration; if someone else moves it,
5269 * that's OK. No task can be added to this CPU, so iteration is
5270 * fine.
5272 spin_unlock_irq(&rq->lock);
5273 move_task_off_dead_cpu(dead_cpu, p);
5274 spin_lock_irq(&rq->lock);
5276 put_task_struct(p);
5279 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5280 static void migrate_dead_tasks(unsigned int dead_cpu)
5282 struct rq *rq = cpu_rq(dead_cpu);
5283 struct task_struct *next;
5285 for ( ; ; ) {
5286 if (!rq->nr_running)
5287 break;
5288 update_rq_clock(rq);
5289 next = pick_next_task(rq, rq->curr);
5290 if (!next)
5291 break;
5292 migrate_dead(dead_cpu, next);
5296 #endif /* CONFIG_HOTPLUG_CPU */
5298 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5300 static struct ctl_table sd_ctl_dir[] = {
5302 .procname = "sched_domain",
5303 .mode = 0555,
5305 {0,},
5308 static struct ctl_table sd_ctl_root[] = {
5310 .ctl_name = CTL_KERN,
5311 .procname = "kernel",
5312 .mode = 0555,
5313 .child = sd_ctl_dir,
5315 {0,},
5318 static struct ctl_table *sd_alloc_ctl_entry(int n)
5320 struct ctl_table *entry =
5321 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5323 return entry;
5326 static void sd_free_ctl_entry(struct ctl_table **tablep)
5328 struct ctl_table *entry;
5331 * In the intermediate directories, both the child directory and
5332 * procname are dynamically allocated and could fail but the mode
5333 * will always be set. In the lowest directory the names are
5334 * static strings and all have proc handlers.
5336 for (entry = *tablep; entry->mode; entry++) {
5337 if (entry->child)
5338 sd_free_ctl_entry(&entry->child);
5339 if (entry->proc_handler == NULL)
5340 kfree(entry->procname);
5343 kfree(*tablep);
5344 *tablep = NULL;
5347 static void
5348 set_table_entry(struct ctl_table *entry,
5349 const char *procname, void *data, int maxlen,
5350 mode_t mode, proc_handler *proc_handler)
5352 entry->procname = procname;
5353 entry->data = data;
5354 entry->maxlen = maxlen;
5355 entry->mode = mode;
5356 entry->proc_handler = proc_handler;
5359 static struct ctl_table *
5360 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5362 struct ctl_table *table = sd_alloc_ctl_entry(12);
5364 if (table == NULL)
5365 return NULL;
5367 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5368 sizeof(long), 0644, proc_doulongvec_minmax);
5369 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5370 sizeof(long), 0644, proc_doulongvec_minmax);
5371 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5372 sizeof(int), 0644, proc_dointvec_minmax);
5373 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5374 sizeof(int), 0644, proc_dointvec_minmax);
5375 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5376 sizeof(int), 0644, proc_dointvec_minmax);
5377 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5378 sizeof(int), 0644, proc_dointvec_minmax);
5379 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5380 sizeof(int), 0644, proc_dointvec_minmax);
5381 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5382 sizeof(int), 0644, proc_dointvec_minmax);
5383 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5384 sizeof(int), 0644, proc_dointvec_minmax);
5385 set_table_entry(&table[9], "cache_nice_tries",
5386 &sd->cache_nice_tries,
5387 sizeof(int), 0644, proc_dointvec_minmax);
5388 set_table_entry(&table[10], "flags", &sd->flags,
5389 sizeof(int), 0644, proc_dointvec_minmax);
5390 /* &table[11] is terminator */
5392 return table;
5395 static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5397 struct ctl_table *entry, *table;
5398 struct sched_domain *sd;
5399 int domain_num = 0, i;
5400 char buf[32];
5402 for_each_domain(cpu, sd)
5403 domain_num++;
5404 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5405 if (table == NULL)
5406 return NULL;
5408 i = 0;
5409 for_each_domain(cpu, sd) {
5410 snprintf(buf, 32, "domain%d", i);
5411 entry->procname = kstrdup(buf, GFP_KERNEL);
5412 entry->mode = 0555;
5413 entry->child = sd_alloc_ctl_domain_table(sd);
5414 entry++;
5415 i++;
5417 return table;
5420 static struct ctl_table_header *sd_sysctl_header;
5421 static void register_sched_domain_sysctl(void)
5423 int i, cpu_num = num_online_cpus();
5424 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5425 char buf[32];
5427 if (entry == NULL)
5428 return;
5430 sd_ctl_dir[0].child = entry;
5432 for_each_online_cpu(i) {
5433 snprintf(buf, 32, "cpu%d", i);
5434 entry->procname = kstrdup(buf, GFP_KERNEL);
5435 entry->mode = 0555;
5436 entry->child = sd_alloc_ctl_cpu_table(i);
5437 entry++;
5439 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5442 static void unregister_sched_domain_sysctl(void)
5444 unregister_sysctl_table(sd_sysctl_header);
5445 sd_sysctl_header = NULL;
5446 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5448 #else
5449 static void register_sched_domain_sysctl(void)
5452 static void unregister_sched_domain_sysctl(void)
5455 #endif
5458 * migration_call - callback that gets triggered when a CPU is added.
5459 * Here we can start up the necessary migration thread for the new CPU.
5461 static int __cpuinit
5462 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5464 struct task_struct *p;
5465 int cpu = (long)hcpu;
5466 unsigned long flags;
5467 struct rq *rq;
5469 switch (action) {
5470 case CPU_LOCK_ACQUIRE:
5471 mutex_lock(&sched_hotcpu_mutex);
5472 break;
5474 case CPU_UP_PREPARE:
5475 case CPU_UP_PREPARE_FROZEN:
5476 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5477 if (IS_ERR(p))
5478 return NOTIFY_BAD;
5479 kthread_bind(p, cpu);
5480 /* Must be high prio: stop_machine expects to yield to it. */
5481 rq = task_rq_lock(p, &flags);
5482 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5483 task_rq_unlock(rq, &flags);
5484 cpu_rq(cpu)->migration_thread = p;
5485 break;
5487 case CPU_ONLINE:
5488 case CPU_ONLINE_FROZEN:
5489 /* Strictly unneccessary, as first user will wake it. */
5490 wake_up_process(cpu_rq(cpu)->migration_thread);
5491 break;
5493 #ifdef CONFIG_HOTPLUG_CPU
5494 case CPU_UP_CANCELED:
5495 case CPU_UP_CANCELED_FROZEN:
5496 if (!cpu_rq(cpu)->migration_thread)
5497 break;
5498 /* Unbind it from offline cpu so it can run. Fall thru. */
5499 kthread_bind(cpu_rq(cpu)->migration_thread,
5500 any_online_cpu(cpu_online_map));
5501 kthread_stop(cpu_rq(cpu)->migration_thread);
5502 cpu_rq(cpu)->migration_thread = NULL;
5503 break;
5505 case CPU_DEAD:
5506 case CPU_DEAD_FROZEN:
5507 migrate_live_tasks(cpu);
5508 rq = cpu_rq(cpu);
5509 kthread_stop(rq->migration_thread);
5510 rq->migration_thread = NULL;
5511 /* Idle task back to normal (off runqueue, low prio) */
5512 spin_lock_irq(&rq->lock);
5513 update_rq_clock(rq);
5514 deactivate_task(rq, rq->idle, 0);
5515 rq->idle->static_prio = MAX_PRIO;
5516 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5517 rq->idle->sched_class = &idle_sched_class;
5518 migrate_dead_tasks(cpu);
5519 spin_unlock_irq(&rq->lock);
5520 migrate_nr_uninterruptible(rq);
5521 BUG_ON(rq->nr_running != 0);
5523 /* No need to migrate the tasks: it was best-effort if
5524 * they didn't take sched_hotcpu_mutex. Just wake up
5525 * the requestors. */
5526 spin_lock_irq(&rq->lock);
5527 while (!list_empty(&rq->migration_queue)) {
5528 struct migration_req *req;
5530 req = list_entry(rq->migration_queue.next,
5531 struct migration_req, list);
5532 list_del_init(&req->list);
5533 complete(&req->done);
5535 spin_unlock_irq(&rq->lock);
5536 break;
5537 #endif
5538 case CPU_LOCK_RELEASE:
5539 mutex_unlock(&sched_hotcpu_mutex);
5540 break;
5542 return NOTIFY_OK;
5545 /* Register at highest priority so that task migration (migrate_all_tasks)
5546 * happens before everything else.
5548 static struct notifier_block __cpuinitdata migration_notifier = {
5549 .notifier_call = migration_call,
5550 .priority = 10
5553 int __init migration_init(void)
5555 void *cpu = (void *)(long)smp_processor_id();
5556 int err;
5558 /* Start one for the boot CPU: */
5559 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5560 BUG_ON(err == NOTIFY_BAD);
5561 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5562 register_cpu_notifier(&migration_notifier);
5564 return 0;
5566 #endif
5568 #ifdef CONFIG_SMP
5570 /* Number of possible processor ids */
5571 int nr_cpu_ids __read_mostly = NR_CPUS;
5572 EXPORT_SYMBOL(nr_cpu_ids);
5574 #ifdef CONFIG_SCHED_DEBUG
5575 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5577 int level = 0;
5579 if (!sd) {
5580 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5581 return;
5584 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5586 do {
5587 int i;
5588 char str[NR_CPUS];
5589 struct sched_group *group = sd->groups;
5590 cpumask_t groupmask;
5592 cpumask_scnprintf(str, NR_CPUS, sd->span);
5593 cpus_clear(groupmask);
5595 printk(KERN_DEBUG);
5596 for (i = 0; i < level + 1; i++)
5597 printk(" ");
5598 printk("domain %d: ", level);
5600 if (!(sd->flags & SD_LOAD_BALANCE)) {
5601 printk("does not load-balance\n");
5602 if (sd->parent)
5603 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5604 " has parent");
5605 break;
5608 printk("span %s\n", str);
5610 if (!cpu_isset(cpu, sd->span))
5611 printk(KERN_ERR "ERROR: domain->span does not contain "
5612 "CPU%d\n", cpu);
5613 if (!cpu_isset(cpu, group->cpumask))
5614 printk(KERN_ERR "ERROR: domain->groups does not contain"
5615 " CPU%d\n", cpu);
5617 printk(KERN_DEBUG);
5618 for (i = 0; i < level + 2; i++)
5619 printk(" ");
5620 printk("groups:");
5621 do {
5622 if (!group) {
5623 printk("\n");
5624 printk(KERN_ERR "ERROR: group is NULL\n");
5625 break;
5628 if (!group->__cpu_power) {
5629 printk(KERN_CONT "\n");
5630 printk(KERN_ERR "ERROR: domain->cpu_power not "
5631 "set\n");
5632 break;
5635 if (!cpus_weight(group->cpumask)) {
5636 printk(KERN_CONT "\n");
5637 printk(KERN_ERR "ERROR: empty group\n");
5638 break;
5641 if (cpus_intersects(groupmask, group->cpumask)) {
5642 printk(KERN_CONT "\n");
5643 printk(KERN_ERR "ERROR: repeated CPUs\n");
5644 break;
5647 cpus_or(groupmask, groupmask, group->cpumask);
5649 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5650 printk(KERN_CONT " %s", str);
5652 group = group->next;
5653 } while (group != sd->groups);
5654 printk(KERN_CONT "\n");
5656 if (!cpus_equal(sd->span, groupmask))
5657 printk(KERN_ERR "ERROR: groups don't span "
5658 "domain->span\n");
5660 level++;
5661 sd = sd->parent;
5662 if (!sd)
5663 continue;
5665 if (!cpus_subset(groupmask, sd->span))
5666 printk(KERN_ERR "ERROR: parent span is not a superset "
5667 "of domain->span\n");
5669 } while (sd);
5671 #else
5672 # define sched_domain_debug(sd, cpu) do { } while (0)
5673 #endif
5675 static int sd_degenerate(struct sched_domain *sd)
5677 if (cpus_weight(sd->span) == 1)
5678 return 1;
5680 /* Following flags need at least 2 groups */
5681 if (sd->flags & (SD_LOAD_BALANCE |
5682 SD_BALANCE_NEWIDLE |
5683 SD_BALANCE_FORK |
5684 SD_BALANCE_EXEC |
5685 SD_SHARE_CPUPOWER |
5686 SD_SHARE_PKG_RESOURCES)) {
5687 if (sd->groups != sd->groups->next)
5688 return 0;
5691 /* Following flags don't use groups */
5692 if (sd->flags & (SD_WAKE_IDLE |
5693 SD_WAKE_AFFINE |
5694 SD_WAKE_BALANCE))
5695 return 0;
5697 return 1;
5700 static int
5701 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5703 unsigned long cflags = sd->flags, pflags = parent->flags;
5705 if (sd_degenerate(parent))
5706 return 1;
5708 if (!cpus_equal(sd->span, parent->span))
5709 return 0;
5711 /* Does parent contain flags not in child? */
5712 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5713 if (cflags & SD_WAKE_AFFINE)
5714 pflags &= ~SD_WAKE_BALANCE;
5715 /* Flags needing groups don't count if only 1 group in parent */
5716 if (parent->groups == parent->groups->next) {
5717 pflags &= ~(SD_LOAD_BALANCE |
5718 SD_BALANCE_NEWIDLE |
5719 SD_BALANCE_FORK |
5720 SD_BALANCE_EXEC |
5721 SD_SHARE_CPUPOWER |
5722 SD_SHARE_PKG_RESOURCES);
5724 if (~cflags & pflags)
5725 return 0;
5727 return 1;
5731 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5732 * hold the hotplug lock.
5734 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5736 struct rq *rq = cpu_rq(cpu);
5737 struct sched_domain *tmp;
5739 /* Remove the sched domains which do not contribute to scheduling. */
5740 for (tmp = sd; tmp; tmp = tmp->parent) {
5741 struct sched_domain *parent = tmp->parent;
5742 if (!parent)
5743 break;
5744 if (sd_parent_degenerate(tmp, parent)) {
5745 tmp->parent = parent->parent;
5746 if (parent->parent)
5747 parent->parent->child = tmp;
5751 if (sd && sd_degenerate(sd)) {
5752 sd = sd->parent;
5753 if (sd)
5754 sd->child = NULL;
5757 sched_domain_debug(sd, cpu);
5759 rcu_assign_pointer(rq->sd, sd);
5762 /* cpus with isolated domains */
5763 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5765 /* Setup the mask of cpus configured for isolated domains */
5766 static int __init isolated_cpu_setup(char *str)
5768 int ints[NR_CPUS], i;
5770 str = get_options(str, ARRAY_SIZE(ints), ints);
5771 cpus_clear(cpu_isolated_map);
5772 for (i = 1; i <= ints[0]; i++)
5773 if (ints[i] < NR_CPUS)
5774 cpu_set(ints[i], cpu_isolated_map);
5775 return 1;
5778 __setup("isolcpus=", isolated_cpu_setup);
5781 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5782 * to a function which identifies what group(along with sched group) a CPU
5783 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5784 * (due to the fact that we keep track of groups covered with a cpumask_t).
5786 * init_sched_build_groups will build a circular linked list of the groups
5787 * covered by the given span, and will set each group's ->cpumask correctly,
5788 * and ->cpu_power to 0.
5790 static void
5791 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5792 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5793 struct sched_group **sg))
5795 struct sched_group *first = NULL, *last = NULL;
5796 cpumask_t covered = CPU_MASK_NONE;
5797 int i;
5799 for_each_cpu_mask(i, span) {
5800 struct sched_group *sg;
5801 int group = group_fn(i, cpu_map, &sg);
5802 int j;
5804 if (cpu_isset(i, covered))
5805 continue;
5807 sg->cpumask = CPU_MASK_NONE;
5808 sg->__cpu_power = 0;
5810 for_each_cpu_mask(j, span) {
5811 if (group_fn(j, cpu_map, NULL) != group)
5812 continue;
5814 cpu_set(j, covered);
5815 cpu_set(j, sg->cpumask);
5817 if (!first)
5818 first = sg;
5819 if (last)
5820 last->next = sg;
5821 last = sg;
5823 last->next = first;
5826 #define SD_NODES_PER_DOMAIN 16
5828 #ifdef CONFIG_NUMA
5831 * find_next_best_node - find the next node to include in a sched_domain
5832 * @node: node whose sched_domain we're building
5833 * @used_nodes: nodes already in the sched_domain
5835 * Find the next node to include in a given scheduling domain. Simply
5836 * finds the closest node not already in the @used_nodes map.
5838 * Should use nodemask_t.
5840 static int find_next_best_node(int node, unsigned long *used_nodes)
5842 int i, n, val, min_val, best_node = 0;
5844 min_val = INT_MAX;
5846 for (i = 0; i < MAX_NUMNODES; i++) {
5847 /* Start at @node */
5848 n = (node + i) % MAX_NUMNODES;
5850 if (!nr_cpus_node(n))
5851 continue;
5853 /* Skip already used nodes */
5854 if (test_bit(n, used_nodes))
5855 continue;
5857 /* Simple min distance search */
5858 val = node_distance(node, n);
5860 if (val < min_val) {
5861 min_val = val;
5862 best_node = n;
5866 set_bit(best_node, used_nodes);
5867 return best_node;
5871 * sched_domain_node_span - get a cpumask for a node's sched_domain
5872 * @node: node whose cpumask we're constructing
5873 * @size: number of nodes to include in this span
5875 * Given a node, construct a good cpumask for its sched_domain to span. It
5876 * should be one that prevents unnecessary balancing, but also spreads tasks
5877 * out optimally.
5879 static cpumask_t sched_domain_node_span(int node)
5881 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5882 cpumask_t span, nodemask;
5883 int i;
5885 cpus_clear(span);
5886 bitmap_zero(used_nodes, MAX_NUMNODES);
5888 nodemask = node_to_cpumask(node);
5889 cpus_or(span, span, nodemask);
5890 set_bit(node, used_nodes);
5892 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5893 int next_node = find_next_best_node(node, used_nodes);
5895 nodemask = node_to_cpumask(next_node);
5896 cpus_or(span, span, nodemask);
5899 return span;
5901 #endif
5903 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5906 * SMT sched-domains:
5908 #ifdef CONFIG_SCHED_SMT
5909 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5910 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5912 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5913 struct sched_group **sg)
5915 if (sg)
5916 *sg = &per_cpu(sched_group_cpus, cpu);
5917 return cpu;
5919 #endif
5922 * multi-core sched-domains:
5924 #ifdef CONFIG_SCHED_MC
5925 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5926 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5927 #endif
5929 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5930 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5931 struct sched_group **sg)
5933 int group;
5934 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5935 cpus_and(mask, mask, *cpu_map);
5936 group = first_cpu(mask);
5937 if (sg)
5938 *sg = &per_cpu(sched_group_core, group);
5939 return group;
5941 #elif defined(CONFIG_SCHED_MC)
5942 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5943 struct sched_group **sg)
5945 if (sg)
5946 *sg = &per_cpu(sched_group_core, cpu);
5947 return cpu;
5949 #endif
5951 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5952 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5954 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5955 struct sched_group **sg)
5957 int group;
5958 #ifdef CONFIG_SCHED_MC
5959 cpumask_t mask = cpu_coregroup_map(cpu);
5960 cpus_and(mask, mask, *cpu_map);
5961 group = first_cpu(mask);
5962 #elif defined(CONFIG_SCHED_SMT)
5963 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5964 cpus_and(mask, mask, *cpu_map);
5965 group = first_cpu(mask);
5966 #else
5967 group = cpu;
5968 #endif
5969 if (sg)
5970 *sg = &per_cpu(sched_group_phys, group);
5971 return group;
5974 #ifdef CONFIG_NUMA
5976 * The init_sched_build_groups can't handle what we want to do with node
5977 * groups, so roll our own. Now each node has its own list of groups which
5978 * gets dynamically allocated.
5980 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5981 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5983 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5984 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5986 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5987 struct sched_group **sg)
5989 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5990 int group;
5992 cpus_and(nodemask, nodemask, *cpu_map);
5993 group = first_cpu(nodemask);
5995 if (sg)
5996 *sg = &per_cpu(sched_group_allnodes, group);
5997 return group;
6000 static void init_numa_sched_groups_power(struct sched_group *group_head)
6002 struct sched_group *sg = group_head;
6003 int j;
6005 if (!sg)
6006 return;
6007 do {
6008 for_each_cpu_mask(j, sg->cpumask) {
6009 struct sched_domain *sd;
6011 sd = &per_cpu(phys_domains, j);
6012 if (j != first_cpu(sd->groups->cpumask)) {
6014 * Only add "power" once for each
6015 * physical package.
6017 continue;
6020 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6022 sg = sg->next;
6023 } while (sg != group_head);
6025 #endif
6027 #ifdef CONFIG_NUMA
6028 /* Free memory allocated for various sched_group structures */
6029 static void free_sched_groups(const cpumask_t *cpu_map)
6031 int cpu, i;
6033 for_each_cpu_mask(cpu, *cpu_map) {
6034 struct sched_group **sched_group_nodes
6035 = sched_group_nodes_bycpu[cpu];
6037 if (!sched_group_nodes)
6038 continue;
6040 for (i = 0; i < MAX_NUMNODES; i++) {
6041 cpumask_t nodemask = node_to_cpumask(i);
6042 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6044 cpus_and(nodemask, nodemask, *cpu_map);
6045 if (cpus_empty(nodemask))
6046 continue;
6048 if (sg == NULL)
6049 continue;
6050 sg = sg->next;
6051 next_sg:
6052 oldsg = sg;
6053 sg = sg->next;
6054 kfree(oldsg);
6055 if (oldsg != sched_group_nodes[i])
6056 goto next_sg;
6058 kfree(sched_group_nodes);
6059 sched_group_nodes_bycpu[cpu] = NULL;
6062 #else
6063 static void free_sched_groups(const cpumask_t *cpu_map)
6066 #endif
6069 * Initialize sched groups cpu_power.
6071 * cpu_power indicates the capacity of sched group, which is used while
6072 * distributing the load between different sched groups in a sched domain.
6073 * Typically cpu_power for all the groups in a sched domain will be same unless
6074 * there are asymmetries in the topology. If there are asymmetries, group
6075 * having more cpu_power will pickup more load compared to the group having
6076 * less cpu_power.
6078 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6079 * the maximum number of tasks a group can handle in the presence of other idle
6080 * or lightly loaded groups in the same sched domain.
6082 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6084 struct sched_domain *child;
6085 struct sched_group *group;
6087 WARN_ON(!sd || !sd->groups);
6089 if (cpu != first_cpu(sd->groups->cpumask))
6090 return;
6092 child = sd->child;
6094 sd->groups->__cpu_power = 0;
6097 * For perf policy, if the groups in child domain share resources
6098 * (for example cores sharing some portions of the cache hierarchy
6099 * or SMT), then set this domain groups cpu_power such that each group
6100 * can handle only one task, when there are other idle groups in the
6101 * same sched domain.
6103 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6104 (child->flags &
6105 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6106 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6107 return;
6111 * add cpu_power of each child group to this groups cpu_power
6113 group = child->groups;
6114 do {
6115 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6116 group = group->next;
6117 } while (group != child->groups);
6121 * Build sched domains for a given set of cpus and attach the sched domains
6122 * to the individual cpus
6124 static int build_sched_domains(const cpumask_t *cpu_map)
6126 int i;
6127 #ifdef CONFIG_NUMA
6128 struct sched_group **sched_group_nodes = NULL;
6129 int sd_allnodes = 0;
6132 * Allocate the per-node list of sched groups
6134 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6135 GFP_KERNEL);
6136 if (!sched_group_nodes) {
6137 printk(KERN_WARNING "Can not alloc sched group node list\n");
6138 return -ENOMEM;
6140 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6141 #endif
6144 * Set up domains for cpus specified by the cpu_map.
6146 for_each_cpu_mask(i, *cpu_map) {
6147 struct sched_domain *sd = NULL, *p;
6148 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6150 cpus_and(nodemask, nodemask, *cpu_map);
6152 #ifdef CONFIG_NUMA
6153 if (cpus_weight(*cpu_map) >
6154 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6155 sd = &per_cpu(allnodes_domains, i);
6156 *sd = SD_ALLNODES_INIT;
6157 sd->span = *cpu_map;
6158 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6159 p = sd;
6160 sd_allnodes = 1;
6161 } else
6162 p = NULL;
6164 sd = &per_cpu(node_domains, i);
6165 *sd = SD_NODE_INIT;
6166 sd->span = sched_domain_node_span(cpu_to_node(i));
6167 sd->parent = p;
6168 if (p)
6169 p->child = sd;
6170 cpus_and(sd->span, sd->span, *cpu_map);
6171 #endif
6173 p = sd;
6174 sd = &per_cpu(phys_domains, i);
6175 *sd = SD_CPU_INIT;
6176 sd->span = nodemask;
6177 sd->parent = p;
6178 if (p)
6179 p->child = sd;
6180 cpu_to_phys_group(i, cpu_map, &sd->groups);
6182 #ifdef CONFIG_SCHED_MC
6183 p = sd;
6184 sd = &per_cpu(core_domains, i);
6185 *sd = SD_MC_INIT;
6186 sd->span = cpu_coregroup_map(i);
6187 cpus_and(sd->span, sd->span, *cpu_map);
6188 sd->parent = p;
6189 p->child = sd;
6190 cpu_to_core_group(i, cpu_map, &sd->groups);
6191 #endif
6193 #ifdef CONFIG_SCHED_SMT
6194 p = sd;
6195 sd = &per_cpu(cpu_domains, i);
6196 *sd = SD_SIBLING_INIT;
6197 sd->span = per_cpu(cpu_sibling_map, i);
6198 cpus_and(sd->span, sd->span, *cpu_map);
6199 sd->parent = p;
6200 p->child = sd;
6201 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6202 #endif
6205 #ifdef CONFIG_SCHED_SMT
6206 /* Set up CPU (sibling) groups */
6207 for_each_cpu_mask(i, *cpu_map) {
6208 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6209 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6210 if (i != first_cpu(this_sibling_map))
6211 continue;
6213 init_sched_build_groups(this_sibling_map, cpu_map,
6214 &cpu_to_cpu_group);
6216 #endif
6218 #ifdef CONFIG_SCHED_MC
6219 /* Set up multi-core groups */
6220 for_each_cpu_mask(i, *cpu_map) {
6221 cpumask_t this_core_map = cpu_coregroup_map(i);
6222 cpus_and(this_core_map, this_core_map, *cpu_map);
6223 if (i != first_cpu(this_core_map))
6224 continue;
6225 init_sched_build_groups(this_core_map, cpu_map,
6226 &cpu_to_core_group);
6228 #endif
6230 /* Set up physical groups */
6231 for (i = 0; i < MAX_NUMNODES; i++) {
6232 cpumask_t nodemask = node_to_cpumask(i);
6234 cpus_and(nodemask, nodemask, *cpu_map);
6235 if (cpus_empty(nodemask))
6236 continue;
6238 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6241 #ifdef CONFIG_NUMA
6242 /* Set up node groups */
6243 if (sd_allnodes)
6244 init_sched_build_groups(*cpu_map, cpu_map,
6245 &cpu_to_allnodes_group);
6247 for (i = 0; i < MAX_NUMNODES; i++) {
6248 /* Set up node groups */
6249 struct sched_group *sg, *prev;
6250 cpumask_t nodemask = node_to_cpumask(i);
6251 cpumask_t domainspan;
6252 cpumask_t covered = CPU_MASK_NONE;
6253 int j;
6255 cpus_and(nodemask, nodemask, *cpu_map);
6256 if (cpus_empty(nodemask)) {
6257 sched_group_nodes[i] = NULL;
6258 continue;
6261 domainspan = sched_domain_node_span(i);
6262 cpus_and(domainspan, domainspan, *cpu_map);
6264 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6265 if (!sg) {
6266 printk(KERN_WARNING "Can not alloc domain group for "
6267 "node %d\n", i);
6268 goto error;
6270 sched_group_nodes[i] = sg;
6271 for_each_cpu_mask(j, nodemask) {
6272 struct sched_domain *sd;
6274 sd = &per_cpu(node_domains, j);
6275 sd->groups = sg;
6277 sg->__cpu_power = 0;
6278 sg->cpumask = nodemask;
6279 sg->next = sg;
6280 cpus_or(covered, covered, nodemask);
6281 prev = sg;
6283 for (j = 0; j < MAX_NUMNODES; j++) {
6284 cpumask_t tmp, notcovered;
6285 int n = (i + j) % MAX_NUMNODES;
6287 cpus_complement(notcovered, covered);
6288 cpus_and(tmp, notcovered, *cpu_map);
6289 cpus_and(tmp, tmp, domainspan);
6290 if (cpus_empty(tmp))
6291 break;
6293 nodemask = node_to_cpumask(n);
6294 cpus_and(tmp, tmp, nodemask);
6295 if (cpus_empty(tmp))
6296 continue;
6298 sg = kmalloc_node(sizeof(struct sched_group),
6299 GFP_KERNEL, i);
6300 if (!sg) {
6301 printk(KERN_WARNING
6302 "Can not alloc domain group for node %d\n", j);
6303 goto error;
6305 sg->__cpu_power = 0;
6306 sg->cpumask = tmp;
6307 sg->next = prev->next;
6308 cpus_or(covered, covered, tmp);
6309 prev->next = sg;
6310 prev = sg;
6313 #endif
6315 /* Calculate CPU power for physical packages and nodes */
6316 #ifdef CONFIG_SCHED_SMT
6317 for_each_cpu_mask(i, *cpu_map) {
6318 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6320 init_sched_groups_power(i, sd);
6322 #endif
6323 #ifdef CONFIG_SCHED_MC
6324 for_each_cpu_mask(i, *cpu_map) {
6325 struct sched_domain *sd = &per_cpu(core_domains, i);
6327 init_sched_groups_power(i, sd);
6329 #endif
6331 for_each_cpu_mask(i, *cpu_map) {
6332 struct sched_domain *sd = &per_cpu(phys_domains, i);
6334 init_sched_groups_power(i, sd);
6337 #ifdef CONFIG_NUMA
6338 for (i = 0; i < MAX_NUMNODES; i++)
6339 init_numa_sched_groups_power(sched_group_nodes[i]);
6341 if (sd_allnodes) {
6342 struct sched_group *sg;
6344 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6345 init_numa_sched_groups_power(sg);
6347 #endif
6349 /* Attach the domains */
6350 for_each_cpu_mask(i, *cpu_map) {
6351 struct sched_domain *sd;
6352 #ifdef CONFIG_SCHED_SMT
6353 sd = &per_cpu(cpu_domains, i);
6354 #elif defined(CONFIG_SCHED_MC)
6355 sd = &per_cpu(core_domains, i);
6356 #else
6357 sd = &per_cpu(phys_domains, i);
6358 #endif
6359 cpu_attach_domain(sd, i);
6362 return 0;
6364 #ifdef CONFIG_NUMA
6365 error:
6366 free_sched_groups(cpu_map);
6367 return -ENOMEM;
6368 #endif
6371 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6373 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6375 cpumask_t cpu_default_map;
6376 int err;
6379 * Setup mask for cpus without special case scheduling requirements.
6380 * For now this just excludes isolated cpus, but could be used to
6381 * exclude other special cases in the future.
6383 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6385 err = build_sched_domains(&cpu_default_map);
6387 register_sched_domain_sysctl();
6389 return err;
6392 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6394 free_sched_groups(cpu_map);
6398 * Detach sched domains from a group of cpus specified in cpu_map
6399 * These cpus will now be attached to the NULL domain
6401 static void detach_destroy_domains(const cpumask_t *cpu_map)
6403 int i;
6405 unregister_sched_domain_sysctl();
6407 for_each_cpu_mask(i, *cpu_map)
6408 cpu_attach_domain(NULL, i);
6409 synchronize_sched();
6410 arch_destroy_sched_domains(cpu_map);
6413 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6414 static int arch_reinit_sched_domains(void)
6416 int err;
6418 mutex_lock(&sched_hotcpu_mutex);
6419 detach_destroy_domains(&cpu_online_map);
6420 err = arch_init_sched_domains(&cpu_online_map);
6421 mutex_unlock(&sched_hotcpu_mutex);
6423 return err;
6426 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6428 int ret;
6430 if (buf[0] != '0' && buf[0] != '1')
6431 return -EINVAL;
6433 if (smt)
6434 sched_smt_power_savings = (buf[0] == '1');
6435 else
6436 sched_mc_power_savings = (buf[0] == '1');
6438 ret = arch_reinit_sched_domains();
6440 return ret ? ret : count;
6443 #ifdef CONFIG_SCHED_MC
6444 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6446 return sprintf(page, "%u\n", sched_mc_power_savings);
6448 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6449 const char *buf, size_t count)
6451 return sched_power_savings_store(buf, count, 0);
6453 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6454 sched_mc_power_savings_store);
6455 #endif
6457 #ifdef CONFIG_SCHED_SMT
6458 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6460 return sprintf(page, "%u\n", sched_smt_power_savings);
6462 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6463 const char *buf, size_t count)
6465 return sched_power_savings_store(buf, count, 1);
6467 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6468 sched_smt_power_savings_store);
6469 #endif
6471 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6473 int err = 0;
6475 #ifdef CONFIG_SCHED_SMT
6476 if (smt_capable())
6477 err = sysfs_create_file(&cls->kset.kobj,
6478 &attr_sched_smt_power_savings.attr);
6479 #endif
6480 #ifdef CONFIG_SCHED_MC
6481 if (!err && mc_capable())
6482 err = sysfs_create_file(&cls->kset.kobj,
6483 &attr_sched_mc_power_savings.attr);
6484 #endif
6485 return err;
6487 #endif
6490 * Force a reinitialization of the sched domains hierarchy. The domains
6491 * and groups cannot be updated in place without racing with the balancing
6492 * code, so we temporarily attach all running cpus to the NULL domain
6493 * which will prevent rebalancing while the sched domains are recalculated.
6495 static int update_sched_domains(struct notifier_block *nfb,
6496 unsigned long action, void *hcpu)
6498 switch (action) {
6499 case CPU_UP_PREPARE:
6500 case CPU_UP_PREPARE_FROZEN:
6501 case CPU_DOWN_PREPARE:
6502 case CPU_DOWN_PREPARE_FROZEN:
6503 detach_destroy_domains(&cpu_online_map);
6504 return NOTIFY_OK;
6506 case CPU_UP_CANCELED:
6507 case CPU_UP_CANCELED_FROZEN:
6508 case CPU_DOWN_FAILED:
6509 case CPU_DOWN_FAILED_FROZEN:
6510 case CPU_ONLINE:
6511 case CPU_ONLINE_FROZEN:
6512 case CPU_DEAD:
6513 case CPU_DEAD_FROZEN:
6515 * Fall through and re-initialise the domains.
6517 break;
6518 default:
6519 return NOTIFY_DONE;
6522 /* The hotplug lock is already held by cpu_up/cpu_down */
6523 arch_init_sched_domains(&cpu_online_map);
6525 return NOTIFY_OK;
6528 void __init sched_init_smp(void)
6530 cpumask_t non_isolated_cpus;
6532 mutex_lock(&sched_hotcpu_mutex);
6533 arch_init_sched_domains(&cpu_online_map);
6534 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6535 if (cpus_empty(non_isolated_cpus))
6536 cpu_set(smp_processor_id(), non_isolated_cpus);
6537 mutex_unlock(&sched_hotcpu_mutex);
6538 /* XXX: Theoretical race here - CPU may be hotplugged now */
6539 hotcpu_notifier(update_sched_domains, 0);
6541 /* Move init over to a non-isolated CPU */
6542 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6543 BUG();
6545 #else
6546 void __init sched_init_smp(void)
6549 #endif /* CONFIG_SMP */
6551 int in_sched_functions(unsigned long addr)
6553 /* Linker adds these: start and end of __sched functions */
6554 extern char __sched_text_start[], __sched_text_end[];
6556 return in_lock_functions(addr) ||
6557 (addr >= (unsigned long)__sched_text_start
6558 && addr < (unsigned long)__sched_text_end);
6561 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6563 cfs_rq->tasks_timeline = RB_ROOT;
6564 #ifdef CONFIG_FAIR_GROUP_SCHED
6565 cfs_rq->rq = rq;
6566 #endif
6567 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6570 void __init sched_init(void)
6572 int highest_cpu = 0;
6573 int i, j;
6575 for_each_possible_cpu(i) {
6576 struct rt_prio_array *array;
6577 struct rq *rq;
6579 rq = cpu_rq(i);
6580 spin_lock_init(&rq->lock);
6581 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6582 rq->nr_running = 0;
6583 rq->clock = 1;
6584 init_cfs_rq(&rq->cfs, rq);
6585 #ifdef CONFIG_FAIR_GROUP_SCHED
6586 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6588 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6589 struct sched_entity *se =
6590 &per_cpu(init_sched_entity, i);
6592 init_cfs_rq_p[i] = cfs_rq;
6593 init_cfs_rq(cfs_rq, rq);
6594 cfs_rq->tg = &init_task_group;
6595 list_add(&cfs_rq->leaf_cfs_rq_list,
6596 &rq->leaf_cfs_rq_list);
6598 init_sched_entity_p[i] = se;
6599 se->cfs_rq = &rq->cfs;
6600 se->my_q = cfs_rq;
6601 se->load.weight = init_task_group_load;
6602 se->load.inv_weight =
6603 div64_64(1ULL<<32, init_task_group_load);
6604 se->parent = NULL;
6606 init_task_group.shares = init_task_group_load;
6607 spin_lock_init(&init_task_group.lock);
6608 #endif
6610 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6611 rq->cpu_load[j] = 0;
6612 #ifdef CONFIG_SMP
6613 rq->sd = NULL;
6614 rq->active_balance = 0;
6615 rq->next_balance = jiffies;
6616 rq->push_cpu = 0;
6617 rq->cpu = i;
6618 rq->migration_thread = NULL;
6619 INIT_LIST_HEAD(&rq->migration_queue);
6620 #endif
6621 atomic_set(&rq->nr_iowait, 0);
6623 array = &rq->rt.active;
6624 for (j = 0; j < MAX_RT_PRIO; j++) {
6625 INIT_LIST_HEAD(array->queue + j);
6626 __clear_bit(j, array->bitmap);
6628 highest_cpu = i;
6629 /* delimiter for bitsearch: */
6630 __set_bit(MAX_RT_PRIO, array->bitmap);
6633 set_load_weight(&init_task);
6635 #ifdef CONFIG_PREEMPT_NOTIFIERS
6636 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6637 #endif
6639 #ifdef CONFIG_SMP
6640 nr_cpu_ids = highest_cpu + 1;
6641 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6642 #endif
6644 #ifdef CONFIG_RT_MUTEXES
6645 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6646 #endif
6649 * The boot idle thread does lazy MMU switching as well:
6651 atomic_inc(&init_mm.mm_count);
6652 enter_lazy_tlb(&init_mm, current);
6655 * Make us the idle thread. Technically, schedule() should not be
6656 * called from this thread, however somewhere below it might be,
6657 * but because we are the idle thread, we just pick up running again
6658 * when this runqueue becomes "idle".
6660 init_idle(current, smp_processor_id());
6662 * During early bootup we pretend to be a normal task:
6664 current->sched_class = &fair_sched_class;
6667 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6668 void __might_sleep(char *file, int line)
6670 #ifdef in_atomic
6671 static unsigned long prev_jiffy; /* ratelimiting */
6673 if ((in_atomic() || irqs_disabled()) &&
6674 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6675 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6676 return;
6677 prev_jiffy = jiffies;
6678 printk(KERN_ERR "BUG: sleeping function called from invalid"
6679 " context at %s:%d\n", file, line);
6680 printk("in_atomic():%d, irqs_disabled():%d\n",
6681 in_atomic(), irqs_disabled());
6682 debug_show_held_locks(current);
6683 if (irqs_disabled())
6684 print_irqtrace_events(current);
6685 dump_stack();
6687 #endif
6689 EXPORT_SYMBOL(__might_sleep);
6690 #endif
6692 #ifdef CONFIG_MAGIC_SYSRQ
6693 static void normalize_task(struct rq *rq, struct task_struct *p)
6695 int on_rq;
6696 update_rq_clock(rq);
6697 on_rq = p->se.on_rq;
6698 if (on_rq)
6699 deactivate_task(rq, p, 0);
6700 __setscheduler(rq, p, SCHED_NORMAL, 0);
6701 if (on_rq) {
6702 activate_task(rq, p, 0);
6703 resched_task(rq->curr);
6707 void normalize_rt_tasks(void)
6709 struct task_struct *g, *p;
6710 unsigned long flags;
6711 struct rq *rq;
6713 read_lock_irq(&tasklist_lock);
6714 do_each_thread(g, p) {
6716 * Only normalize user tasks:
6718 if (!p->mm)
6719 continue;
6721 p->se.exec_start = 0;
6722 #ifdef CONFIG_SCHEDSTATS
6723 p->se.wait_start = 0;
6724 p->se.sleep_start = 0;
6725 p->se.block_start = 0;
6726 #endif
6727 task_rq(p)->clock = 0;
6729 if (!rt_task(p)) {
6731 * Renice negative nice level userspace
6732 * tasks back to 0:
6734 if (TASK_NICE(p) < 0 && p->mm)
6735 set_user_nice(p, 0);
6736 continue;
6739 spin_lock_irqsave(&p->pi_lock, flags);
6740 rq = __task_rq_lock(p);
6742 normalize_task(rq, p);
6744 __task_rq_unlock(rq);
6745 spin_unlock_irqrestore(&p->pi_lock, flags);
6746 } while_each_thread(g, p);
6748 read_unlock_irq(&tasklist_lock);
6751 #endif /* CONFIG_MAGIC_SYSRQ */
6753 #ifdef CONFIG_IA64
6755 * These functions are only useful for the IA64 MCA handling.
6757 * They can only be called when the whole system has been
6758 * stopped - every CPU needs to be quiescent, and no scheduling
6759 * activity can take place. Using them for anything else would
6760 * be a serious bug, and as a result, they aren't even visible
6761 * under any other configuration.
6765 * curr_task - return the current task for a given cpu.
6766 * @cpu: the processor in question.
6768 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6770 struct task_struct *curr_task(int cpu)
6772 return cpu_curr(cpu);
6776 * set_curr_task - set the current task for a given cpu.
6777 * @cpu: the processor in question.
6778 * @p: the task pointer to set.
6780 * Description: This function must only be used when non-maskable interrupts
6781 * are serviced on a separate stack. It allows the architecture to switch the
6782 * notion of the current task on a cpu in a non-blocking manner. This function
6783 * must be called with all CPU's synchronized, and interrupts disabled, the
6784 * and caller must save the original value of the current task (see
6785 * curr_task() above) and restore that value before reenabling interrupts and
6786 * re-starting the system.
6788 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6790 void set_curr_task(int cpu, struct task_struct *p)
6792 cpu_curr(cpu) = p;
6795 #endif
6797 #ifdef CONFIG_FAIR_GROUP_SCHED
6799 /* allocate runqueue etc for a new task group */
6800 struct task_group *sched_create_group(void)
6802 struct task_group *tg;
6803 struct cfs_rq *cfs_rq;
6804 struct sched_entity *se;
6805 struct rq *rq;
6806 int i;
6808 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6809 if (!tg)
6810 return ERR_PTR(-ENOMEM);
6812 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6813 if (!tg->cfs_rq)
6814 goto err;
6815 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6816 if (!tg->se)
6817 goto err;
6819 for_each_possible_cpu(i) {
6820 rq = cpu_rq(i);
6822 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6823 cpu_to_node(i));
6824 if (!cfs_rq)
6825 goto err;
6827 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6828 cpu_to_node(i));
6829 if (!se)
6830 goto err;
6832 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6833 memset(se, 0, sizeof(struct sched_entity));
6835 tg->cfs_rq[i] = cfs_rq;
6836 init_cfs_rq(cfs_rq, rq);
6837 cfs_rq->tg = tg;
6839 tg->se[i] = se;
6840 se->cfs_rq = &rq->cfs;
6841 se->my_q = cfs_rq;
6842 se->load.weight = NICE_0_LOAD;
6843 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6844 se->parent = NULL;
6847 for_each_possible_cpu(i) {
6848 rq = cpu_rq(i);
6849 cfs_rq = tg->cfs_rq[i];
6850 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6853 tg->shares = NICE_0_LOAD;
6854 spin_lock_init(&tg->lock);
6856 return tg;
6858 err:
6859 for_each_possible_cpu(i) {
6860 if (tg->cfs_rq)
6861 kfree(tg->cfs_rq[i]);
6862 if (tg->se)
6863 kfree(tg->se[i]);
6865 kfree(tg->cfs_rq);
6866 kfree(tg->se);
6867 kfree(tg);
6869 return ERR_PTR(-ENOMEM);
6872 /* rcu callback to free various structures associated with a task group */
6873 static void free_sched_group(struct rcu_head *rhp)
6875 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6876 struct task_group *tg = cfs_rq->tg;
6877 struct sched_entity *se;
6878 int i;
6880 /* now it should be safe to free those cfs_rqs */
6881 for_each_possible_cpu(i) {
6882 cfs_rq = tg->cfs_rq[i];
6883 kfree(cfs_rq);
6885 se = tg->se[i];
6886 kfree(se);
6889 kfree(tg->cfs_rq);
6890 kfree(tg->se);
6891 kfree(tg);
6894 /* Destroy runqueue etc associated with a task group */
6895 void sched_destroy_group(struct task_group *tg)
6897 struct cfs_rq *cfs_rq;
6898 int i;
6900 for_each_possible_cpu(i) {
6901 cfs_rq = tg->cfs_rq[i];
6902 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6905 cfs_rq = tg->cfs_rq[0];
6907 /* wait for possible concurrent references to cfs_rqs complete */
6908 call_rcu(&cfs_rq->rcu, free_sched_group);
6911 /* change task's runqueue when it moves between groups.
6912 * The caller of this function should have put the task in its new group
6913 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6914 * reflect its new group.
6916 void sched_move_task(struct task_struct *tsk)
6918 int on_rq, running;
6919 unsigned long flags;
6920 struct rq *rq;
6922 rq = task_rq_lock(tsk, &flags);
6924 if (tsk->sched_class != &fair_sched_class)
6925 goto done;
6927 update_rq_clock(rq);
6929 running = task_running(rq, tsk);
6930 on_rq = tsk->se.on_rq;
6932 if (on_rq) {
6933 dequeue_task(rq, tsk, 0);
6934 if (unlikely(running))
6935 tsk->sched_class->put_prev_task(rq, tsk);
6938 set_task_cfs_rq(tsk);
6940 if (on_rq) {
6941 if (unlikely(running))
6942 tsk->sched_class->set_curr_task(rq);
6943 enqueue_task(rq, tsk, 0);
6946 done:
6947 task_rq_unlock(rq, &flags);
6950 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6952 struct cfs_rq *cfs_rq = se->cfs_rq;
6953 struct rq *rq = cfs_rq->rq;
6954 int on_rq;
6956 spin_lock_irq(&rq->lock);
6958 on_rq = se->on_rq;
6959 if (on_rq)
6960 dequeue_entity(cfs_rq, se, 0);
6962 se->load.weight = shares;
6963 se->load.inv_weight = div64_64((1ULL<<32), shares);
6965 if (on_rq)
6966 enqueue_entity(cfs_rq, se, 0);
6968 spin_unlock_irq(&rq->lock);
6971 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6973 int i;
6975 spin_lock(&tg->lock);
6976 if (tg->shares == shares)
6977 goto done;
6979 tg->shares = shares;
6980 for_each_possible_cpu(i)
6981 set_se_shares(tg->se[i], shares);
6983 done:
6984 spin_unlock(&tg->lock);
6985 return 0;
6988 unsigned long sched_group_shares(struct task_group *tg)
6990 return tg->shares;
6993 #endif /* CONFIG_FAIR_GROUP_SCHED */