2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
42 #include "transaction.h"
43 #include "btrfs_inode.h"
45 #include "print-tree.h"
47 #include "ordered-data.h"
50 #include "compression.h"
53 struct btrfs_iget_args
{
55 struct btrfs_root
*root
;
58 static struct inode_operations btrfs_dir_inode_operations
;
59 static struct inode_operations btrfs_symlink_inode_operations
;
60 static struct inode_operations btrfs_dir_ro_inode_operations
;
61 static struct inode_operations btrfs_special_inode_operations
;
62 static struct inode_operations btrfs_file_inode_operations
;
63 static struct address_space_operations btrfs_aops
;
64 static struct address_space_operations btrfs_symlink_aops
;
65 static struct file_operations btrfs_dir_file_operations
;
66 static struct extent_io_ops btrfs_extent_io_ops
;
68 static struct kmem_cache
*btrfs_inode_cachep
;
69 struct kmem_cache
*btrfs_trans_handle_cachep
;
70 struct kmem_cache
*btrfs_transaction_cachep
;
71 struct kmem_cache
*btrfs_path_cachep
;
74 static unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
75 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
76 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
77 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
78 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
79 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
80 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
81 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
84 static void btrfs_truncate(struct inode
*inode
);
85 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
);
86 static noinline
int cow_file_range(struct inode
*inode
,
87 struct page
*locked_page
,
88 u64 start
, u64 end
, int *page_started
,
89 unsigned long *nr_written
, int unlock
);
91 static int btrfs_init_inode_security(struct inode
*inode
, struct inode
*dir
)
95 err
= btrfs_init_acl(inode
, dir
);
97 err
= btrfs_xattr_security_init(inode
, dir
);
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
106 static noinline
int insert_inline_extent(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
, struct inode
*inode
,
108 u64 start
, size_t size
, size_t compressed_size
,
109 struct page
**compressed_pages
)
111 struct btrfs_key key
;
112 struct btrfs_path
*path
;
113 struct extent_buffer
*leaf
;
114 struct page
*page
= NULL
;
117 struct btrfs_file_extent_item
*ei
;
120 size_t cur_size
= size
;
122 unsigned long offset
;
123 int use_compress
= 0;
125 if (compressed_size
&& compressed_pages
) {
127 cur_size
= compressed_size
;
130 path
= btrfs_alloc_path();
134 path
->leave_spinning
= 1;
135 btrfs_set_trans_block_group(trans
, inode
);
137 key
.objectid
= inode
->i_ino
;
139 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
140 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
142 inode_add_bytes(inode
, size
);
143 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
150 leaf
= path
->nodes
[0];
151 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
152 struct btrfs_file_extent_item
);
153 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
154 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
155 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
156 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
157 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
158 ptr
= btrfs_file_extent_inline_start(ei
);
163 while (compressed_size
> 0) {
164 cpage
= compressed_pages
[i
];
165 cur_size
= min_t(unsigned long, compressed_size
,
168 kaddr
= kmap_atomic(cpage
, KM_USER0
);
169 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
170 kunmap_atomic(kaddr
, KM_USER0
);
174 compressed_size
-= cur_size
;
176 btrfs_set_file_extent_compression(leaf
, ei
,
177 BTRFS_COMPRESS_ZLIB
);
179 page
= find_get_page(inode
->i_mapping
,
180 start
>> PAGE_CACHE_SHIFT
);
181 btrfs_set_file_extent_compression(leaf
, ei
, 0);
182 kaddr
= kmap_atomic(page
, KM_USER0
);
183 offset
= start
& (PAGE_CACHE_SIZE
- 1);
184 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
185 kunmap_atomic(kaddr
, KM_USER0
);
186 page_cache_release(page
);
188 btrfs_mark_buffer_dirty(leaf
);
189 btrfs_free_path(path
);
191 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
192 btrfs_update_inode(trans
, root
, inode
);
195 btrfs_free_path(path
);
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
205 static noinline
int cow_file_range_inline(struct btrfs_trans_handle
*trans
,
206 struct btrfs_root
*root
,
207 struct inode
*inode
, u64 start
, u64 end
,
208 size_t compressed_size
,
209 struct page
**compressed_pages
)
211 u64 isize
= i_size_read(inode
);
212 u64 actual_end
= min(end
+ 1, isize
);
213 u64 inline_len
= actual_end
- start
;
214 u64 aligned_end
= (end
+ root
->sectorsize
- 1) &
215 ~((u64
)root
->sectorsize
- 1);
217 u64 data_len
= inline_len
;
221 data_len
= compressed_size
;
224 actual_end
>= PAGE_CACHE_SIZE
||
225 data_len
>= BTRFS_MAX_INLINE_DATA_SIZE(root
) ||
227 (actual_end
& (root
->sectorsize
- 1)) == 0) ||
229 data_len
> root
->fs_info
->max_inline
) {
233 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
234 aligned_end
, aligned_end
, start
, &hint_byte
);
237 if (isize
> actual_end
)
238 inline_len
= min_t(u64
, isize
, actual_end
);
239 ret
= insert_inline_extent(trans
, root
, inode
, start
,
240 inline_len
, compressed_size
,
243 btrfs_drop_extent_cache(inode
, start
, aligned_end
, 0);
247 struct async_extent
{
252 unsigned long nr_pages
;
253 struct list_head list
;
258 struct btrfs_root
*root
;
259 struct page
*locked_page
;
262 struct list_head extents
;
263 struct btrfs_work work
;
266 static noinline
int add_async_extent(struct async_cow
*cow
,
267 u64 start
, u64 ram_size
,
270 unsigned long nr_pages
)
272 struct async_extent
*async_extent
;
274 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
275 async_extent
->start
= start
;
276 async_extent
->ram_size
= ram_size
;
277 async_extent
->compressed_size
= compressed_size
;
278 async_extent
->pages
= pages
;
279 async_extent
->nr_pages
= nr_pages
;
280 list_add_tail(&async_extent
->list
, &cow
->extents
);
285 * we create compressed extents in two phases. The first
286 * phase compresses a range of pages that have already been
287 * locked (both pages and state bits are locked).
289 * This is done inside an ordered work queue, and the compression
290 * is spread across many cpus. The actual IO submission is step
291 * two, and the ordered work queue takes care of making sure that
292 * happens in the same order things were put onto the queue by
293 * writepages and friends.
295 * If this code finds it can't get good compression, it puts an
296 * entry onto the work queue to write the uncompressed bytes. This
297 * makes sure that both compressed inodes and uncompressed inodes
298 * are written in the same order that pdflush sent them down.
300 static noinline
int compress_file_range(struct inode
*inode
,
301 struct page
*locked_page
,
303 struct async_cow
*async_cow
,
306 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
307 struct btrfs_trans_handle
*trans
;
311 u64 blocksize
= root
->sectorsize
;
313 u64 isize
= i_size_read(inode
);
315 struct page
**pages
= NULL
;
316 unsigned long nr_pages
;
317 unsigned long nr_pages_ret
= 0;
318 unsigned long total_compressed
= 0;
319 unsigned long total_in
= 0;
320 unsigned long max_compressed
= 128 * 1024;
321 unsigned long max_uncompressed
= 128 * 1024;
327 actual_end
= min_t(u64
, isize
, end
+ 1);
330 nr_pages
= (end
>> PAGE_CACHE_SHIFT
) - (start
>> PAGE_CACHE_SHIFT
) + 1;
331 nr_pages
= min(nr_pages
, (128 * 1024UL) / PAGE_CACHE_SIZE
);
334 * we don't want to send crud past the end of i_size through
335 * compression, that's just a waste of CPU time. So, if the
336 * end of the file is before the start of our current
337 * requested range of bytes, we bail out to the uncompressed
338 * cleanup code that can deal with all of this.
340 * It isn't really the fastest way to fix things, but this is a
341 * very uncommon corner.
343 if (actual_end
<= start
)
344 goto cleanup_and_bail_uncompressed
;
346 total_compressed
= actual_end
- start
;
348 /* we want to make sure that amount of ram required to uncompress
349 * an extent is reasonable, so we limit the total size in ram
350 * of a compressed extent to 128k. This is a crucial number
351 * because it also controls how easily we can spread reads across
352 * cpus for decompression.
354 * We also want to make sure the amount of IO required to do
355 * a random read is reasonably small, so we limit the size of
356 * a compressed extent to 128k.
358 total_compressed
= min(total_compressed
, max_uncompressed
);
359 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
360 num_bytes
= max(blocksize
, num_bytes
);
361 disk_num_bytes
= num_bytes
;
366 * we do compression for mount -o compress and when the
367 * inode has not been flagged as nocompress. This flag can
368 * change at any time if we discover bad compression ratios.
370 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
) &&
371 btrfs_test_opt(root
, COMPRESS
)) {
373 pages
= kzalloc(sizeof(struct page
*) * nr_pages
, GFP_NOFS
);
375 ret
= btrfs_zlib_compress_pages(inode
->i_mapping
, start
,
376 total_compressed
, pages
,
377 nr_pages
, &nr_pages_ret
,
383 unsigned long offset
= total_compressed
&
384 (PAGE_CACHE_SIZE
- 1);
385 struct page
*page
= pages
[nr_pages_ret
- 1];
388 /* zero the tail end of the last page, we might be
389 * sending it down to disk
392 kaddr
= kmap_atomic(page
, KM_USER0
);
393 memset(kaddr
+ offset
, 0,
394 PAGE_CACHE_SIZE
- offset
);
395 kunmap_atomic(kaddr
, KM_USER0
);
401 trans
= btrfs_join_transaction(root
, 1);
403 btrfs_set_trans_block_group(trans
, inode
);
405 /* lets try to make an inline extent */
406 if (ret
|| total_in
< (actual_end
- start
)) {
407 /* we didn't compress the entire range, try
408 * to make an uncompressed inline extent.
410 ret
= cow_file_range_inline(trans
, root
, inode
,
411 start
, end
, 0, NULL
);
413 /* try making a compressed inline extent */
414 ret
= cow_file_range_inline(trans
, root
, inode
,
416 total_compressed
, pages
);
418 btrfs_end_transaction(trans
, root
);
421 * inline extent creation worked, we don't need
422 * to create any more async work items. Unlock
423 * and free up our temp pages.
425 extent_clear_unlock_delalloc(inode
,
426 &BTRFS_I(inode
)->io_tree
,
427 start
, end
, NULL
, 1, 0,
436 * we aren't doing an inline extent round the compressed size
437 * up to a block size boundary so the allocator does sane
440 total_compressed
= (total_compressed
+ blocksize
- 1) &
444 * one last check to make sure the compression is really a
445 * win, compare the page count read with the blocks on disk
447 total_in
= (total_in
+ PAGE_CACHE_SIZE
- 1) &
448 ~(PAGE_CACHE_SIZE
- 1);
449 if (total_compressed
>= total_in
) {
452 disk_num_bytes
= total_compressed
;
453 num_bytes
= total_in
;
456 if (!will_compress
&& pages
) {
458 * the compression code ran but failed to make things smaller,
459 * free any pages it allocated and our page pointer array
461 for (i
= 0; i
< nr_pages_ret
; i
++) {
462 WARN_ON(pages
[i
]->mapping
);
463 page_cache_release(pages
[i
]);
467 total_compressed
= 0;
470 /* flag the file so we don't compress in the future */
471 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
476 /* the async work queues will take care of doing actual
477 * allocation on disk for these compressed pages,
478 * and will submit them to the elevator.
480 add_async_extent(async_cow
, start
, num_bytes
,
481 total_compressed
, pages
, nr_pages_ret
);
483 if (start
+ num_bytes
< end
&& start
+ num_bytes
< actual_end
) {
490 cleanup_and_bail_uncompressed
:
492 * No compression, but we still need to write the pages in
493 * the file we've been given so far. redirty the locked
494 * page if it corresponds to our extent and set things up
495 * for the async work queue to run cow_file_range to do
496 * the normal delalloc dance
498 if (page_offset(locked_page
) >= start
&&
499 page_offset(locked_page
) <= end
) {
500 __set_page_dirty_nobuffers(locked_page
);
501 /* unlocked later on in the async handlers */
503 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0);
511 for (i
= 0; i
< nr_pages_ret
; i
++) {
512 WARN_ON(pages
[i
]->mapping
);
513 page_cache_release(pages
[i
]);
521 * phase two of compressed writeback. This is the ordered portion
522 * of the code, which only gets called in the order the work was
523 * queued. We walk all the async extents created by compress_file_range
524 * and send them down to the disk.
526 static noinline
int submit_compressed_extents(struct inode
*inode
,
527 struct async_cow
*async_cow
)
529 struct async_extent
*async_extent
;
531 struct btrfs_trans_handle
*trans
;
532 struct btrfs_key ins
;
533 struct extent_map
*em
;
534 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
535 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
536 struct extent_io_tree
*io_tree
;
539 if (list_empty(&async_cow
->extents
))
542 trans
= btrfs_join_transaction(root
, 1);
544 while (!list_empty(&async_cow
->extents
)) {
545 async_extent
= list_entry(async_cow
->extents
.next
,
546 struct async_extent
, list
);
547 list_del(&async_extent
->list
);
549 io_tree
= &BTRFS_I(inode
)->io_tree
;
551 /* did the compression code fall back to uncompressed IO? */
552 if (!async_extent
->pages
) {
553 int page_started
= 0;
554 unsigned long nr_written
= 0;
556 lock_extent(io_tree
, async_extent
->start
,
557 async_extent
->start
+
558 async_extent
->ram_size
- 1, GFP_NOFS
);
560 /* allocate blocks */
561 cow_file_range(inode
, async_cow
->locked_page
,
563 async_extent
->start
+
564 async_extent
->ram_size
- 1,
565 &page_started
, &nr_written
, 0);
568 * if page_started, cow_file_range inserted an
569 * inline extent and took care of all the unlocking
570 * and IO for us. Otherwise, we need to submit
571 * all those pages down to the drive.
574 extent_write_locked_range(io_tree
,
575 inode
, async_extent
->start
,
576 async_extent
->start
+
577 async_extent
->ram_size
- 1,
585 lock_extent(io_tree
, async_extent
->start
,
586 async_extent
->start
+ async_extent
->ram_size
- 1,
589 * here we're doing allocation and writeback of the
592 btrfs_drop_extent_cache(inode
, async_extent
->start
,
593 async_extent
->start
+
594 async_extent
->ram_size
- 1, 0);
596 ret
= btrfs_reserve_extent(trans
, root
,
597 async_extent
->compressed_size
,
598 async_extent
->compressed_size
,
602 em
= alloc_extent_map(GFP_NOFS
);
603 em
->start
= async_extent
->start
;
604 em
->len
= async_extent
->ram_size
;
605 em
->orig_start
= em
->start
;
607 em
->block_start
= ins
.objectid
;
608 em
->block_len
= ins
.offset
;
609 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
610 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
611 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
614 spin_lock(&em_tree
->lock
);
615 ret
= add_extent_mapping(em_tree
, em
);
616 spin_unlock(&em_tree
->lock
);
617 if (ret
!= -EEXIST
) {
621 btrfs_drop_extent_cache(inode
, async_extent
->start
,
622 async_extent
->start
+
623 async_extent
->ram_size
- 1, 0);
626 ret
= btrfs_add_ordered_extent(inode
, async_extent
->start
,
628 async_extent
->ram_size
,
630 BTRFS_ORDERED_COMPRESSED
);
633 btrfs_end_transaction(trans
, root
);
636 * clear dirty, set writeback and unlock the pages.
638 extent_clear_unlock_delalloc(inode
,
639 &BTRFS_I(inode
)->io_tree
,
641 async_extent
->start
+
642 async_extent
->ram_size
- 1,
643 NULL
, 1, 1, 0, 1, 1, 0);
645 ret
= btrfs_submit_compressed_write(inode
,
647 async_extent
->ram_size
,
649 ins
.offset
, async_extent
->pages
,
650 async_extent
->nr_pages
);
653 trans
= btrfs_join_transaction(root
, 1);
654 alloc_hint
= ins
.objectid
+ ins
.offset
;
659 btrfs_end_transaction(trans
, root
);
664 * when extent_io.c finds a delayed allocation range in the file,
665 * the call backs end up in this code. The basic idea is to
666 * allocate extents on disk for the range, and create ordered data structs
667 * in ram to track those extents.
669 * locked_page is the page that writepage had locked already. We use
670 * it to make sure we don't do extra locks or unlocks.
672 * *page_started is set to one if we unlock locked_page and do everything
673 * required to start IO on it. It may be clean and already done with
676 static noinline
int cow_file_range(struct inode
*inode
,
677 struct page
*locked_page
,
678 u64 start
, u64 end
, int *page_started
,
679 unsigned long *nr_written
,
682 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
683 struct btrfs_trans_handle
*trans
;
686 unsigned long ram_size
;
689 u64 blocksize
= root
->sectorsize
;
691 u64 isize
= i_size_read(inode
);
692 struct btrfs_key ins
;
693 struct extent_map
*em
;
694 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
697 trans
= btrfs_join_transaction(root
, 1);
699 btrfs_set_trans_block_group(trans
, inode
);
701 actual_end
= min_t(u64
, isize
, end
+ 1);
703 num_bytes
= (end
- start
+ blocksize
) & ~(blocksize
- 1);
704 num_bytes
= max(blocksize
, num_bytes
);
705 disk_num_bytes
= num_bytes
;
709 /* lets try to make an inline extent */
710 ret
= cow_file_range_inline(trans
, root
, inode
,
711 start
, end
, 0, NULL
);
713 extent_clear_unlock_delalloc(inode
,
714 &BTRFS_I(inode
)->io_tree
,
715 start
, end
, NULL
, 1, 1,
717 *nr_written
= *nr_written
+
718 (end
- start
+ PAGE_CACHE_SIZE
) / PAGE_CACHE_SIZE
;
725 BUG_ON(disk_num_bytes
>
726 btrfs_super_total_bytes(&root
->fs_info
->super_copy
));
728 btrfs_drop_extent_cache(inode
, start
, start
+ num_bytes
- 1, 0);
730 while (disk_num_bytes
> 0) {
731 cur_alloc_size
= min(disk_num_bytes
, root
->fs_info
->max_extent
);
732 ret
= btrfs_reserve_extent(trans
, root
, cur_alloc_size
,
733 root
->sectorsize
, 0, alloc_hint
,
737 em
= alloc_extent_map(GFP_NOFS
);
739 em
->orig_start
= em
->start
;
741 ram_size
= ins
.offset
;
742 em
->len
= ins
.offset
;
744 em
->block_start
= ins
.objectid
;
745 em
->block_len
= ins
.offset
;
746 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
747 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
750 spin_lock(&em_tree
->lock
);
751 ret
= add_extent_mapping(em_tree
, em
);
752 spin_unlock(&em_tree
->lock
);
753 if (ret
!= -EEXIST
) {
757 btrfs_drop_extent_cache(inode
, start
,
758 start
+ ram_size
- 1, 0);
761 cur_alloc_size
= ins
.offset
;
762 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
763 ram_size
, cur_alloc_size
, 0);
766 if (root
->root_key
.objectid
==
767 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
768 ret
= btrfs_reloc_clone_csums(inode
, start
,
773 if (disk_num_bytes
< cur_alloc_size
)
776 /* we're not doing compressed IO, don't unlock the first
777 * page (which the caller expects to stay locked), don't
778 * clear any dirty bits and don't set any writeback bits
780 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
781 start
, start
+ ram_size
- 1,
782 locked_page
, unlock
, 1,
784 disk_num_bytes
-= cur_alloc_size
;
785 num_bytes
-= cur_alloc_size
;
786 alloc_hint
= ins
.objectid
+ ins
.offset
;
787 start
+= cur_alloc_size
;
791 btrfs_end_transaction(trans
, root
);
797 * work queue call back to started compression on a file and pages
799 static noinline
void async_cow_start(struct btrfs_work
*work
)
801 struct async_cow
*async_cow
;
803 async_cow
= container_of(work
, struct async_cow
, work
);
805 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
806 async_cow
->start
, async_cow
->end
, async_cow
,
809 async_cow
->inode
= NULL
;
813 * work queue call back to submit previously compressed pages
815 static noinline
void async_cow_submit(struct btrfs_work
*work
)
817 struct async_cow
*async_cow
;
818 struct btrfs_root
*root
;
819 unsigned long nr_pages
;
821 async_cow
= container_of(work
, struct async_cow
, work
);
823 root
= async_cow
->root
;
824 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_CACHE_SIZE
) >>
827 atomic_sub(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
829 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
831 waitqueue_active(&root
->fs_info
->async_submit_wait
))
832 wake_up(&root
->fs_info
->async_submit_wait
);
834 if (async_cow
->inode
)
835 submit_compressed_extents(async_cow
->inode
, async_cow
);
838 static noinline
void async_cow_free(struct btrfs_work
*work
)
840 struct async_cow
*async_cow
;
841 async_cow
= container_of(work
, struct async_cow
, work
);
845 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
846 u64 start
, u64 end
, int *page_started
,
847 unsigned long *nr_written
)
849 struct async_cow
*async_cow
;
850 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
851 unsigned long nr_pages
;
853 int limit
= 10 * 1024 * 1042;
855 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
|
856 EXTENT_DELALLOC
, 1, 0, GFP_NOFS
);
857 while (start
< end
) {
858 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
859 async_cow
->inode
= inode
;
860 async_cow
->root
= root
;
861 async_cow
->locked_page
= locked_page
;
862 async_cow
->start
= start
;
864 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
867 cur_end
= min(end
, start
+ 512 * 1024 - 1);
869 async_cow
->end
= cur_end
;
870 INIT_LIST_HEAD(&async_cow
->extents
);
872 async_cow
->work
.func
= async_cow_start
;
873 async_cow
->work
.ordered_func
= async_cow_submit
;
874 async_cow
->work
.ordered_free
= async_cow_free
;
875 async_cow
->work
.flags
= 0;
877 nr_pages
= (cur_end
- start
+ PAGE_CACHE_SIZE
) >>
879 atomic_add(nr_pages
, &root
->fs_info
->async_delalloc_pages
);
881 btrfs_queue_worker(&root
->fs_info
->delalloc_workers
,
884 if (atomic_read(&root
->fs_info
->async_delalloc_pages
) > limit
) {
885 wait_event(root
->fs_info
->async_submit_wait
,
886 (atomic_read(&root
->fs_info
->async_delalloc_pages
) <
890 while (atomic_read(&root
->fs_info
->async_submit_draining
) &&
891 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
892 wait_event(root
->fs_info
->async_submit_wait
,
893 (atomic_read(&root
->fs_info
->async_delalloc_pages
) ==
897 *nr_written
+= nr_pages
;
904 static noinline
int csum_exist_in_range(struct btrfs_root
*root
,
905 u64 bytenr
, u64 num_bytes
)
908 struct btrfs_ordered_sum
*sums
;
911 ret
= btrfs_lookup_csums_range(root
->fs_info
->csum_root
, bytenr
,
912 bytenr
+ num_bytes
- 1, &list
);
913 if (ret
== 0 && list_empty(&list
))
916 while (!list_empty(&list
)) {
917 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
918 list_del(&sums
->list
);
925 * when nowcow writeback call back. This checks for snapshots or COW copies
926 * of the extents that exist in the file, and COWs the file as required.
928 * If no cow copies or snapshots exist, we write directly to the existing
931 static noinline
int run_delalloc_nocow(struct inode
*inode
,
932 struct page
*locked_page
,
933 u64 start
, u64 end
, int *page_started
, int force
,
934 unsigned long *nr_written
)
936 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
937 struct btrfs_trans_handle
*trans
;
938 struct extent_buffer
*leaf
;
939 struct btrfs_path
*path
;
940 struct btrfs_file_extent_item
*fi
;
941 struct btrfs_key found_key
;
954 path
= btrfs_alloc_path();
956 trans
= btrfs_join_transaction(root
, 1);
962 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
965 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
966 leaf
= path
->nodes
[0];
967 btrfs_item_key_to_cpu(leaf
, &found_key
,
969 if (found_key
.objectid
== inode
->i_ino
&&
970 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
975 leaf
= path
->nodes
[0];
976 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
977 ret
= btrfs_next_leaf(root
, path
);
982 leaf
= path
->nodes
[0];
988 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
990 if (found_key
.objectid
> inode
->i_ino
||
991 found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
992 found_key
.offset
> end
)
995 if (found_key
.offset
> cur_offset
) {
996 extent_end
= found_key
.offset
;
1000 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1001 struct btrfs_file_extent_item
);
1002 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1004 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1005 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1006 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1007 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1008 extent_end
= found_key
.offset
+
1009 btrfs_file_extent_num_bytes(leaf
, fi
);
1010 if (extent_end
<= start
) {
1014 if (disk_bytenr
== 0)
1016 if (btrfs_file_extent_compression(leaf
, fi
) ||
1017 btrfs_file_extent_encryption(leaf
, fi
) ||
1018 btrfs_file_extent_other_encoding(leaf
, fi
))
1020 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1022 if (btrfs_extent_readonly(root
, disk_bytenr
))
1024 if (btrfs_cross_ref_exist(trans
, root
, inode
->i_ino
,
1026 extent_offset
, disk_bytenr
))
1028 disk_bytenr
+= extent_offset
;
1029 disk_bytenr
+= cur_offset
- found_key
.offset
;
1030 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1032 * force cow if csum exists in the range.
1033 * this ensure that csum for a given extent are
1034 * either valid or do not exist.
1036 if (csum_exist_in_range(root
, disk_bytenr
, num_bytes
))
1039 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1040 extent_end
= found_key
.offset
+
1041 btrfs_file_extent_inline_len(leaf
, fi
);
1042 extent_end
= ALIGN(extent_end
, root
->sectorsize
);
1047 if (extent_end
<= start
) {
1052 if (cow_start
== (u64
)-1)
1053 cow_start
= cur_offset
;
1054 cur_offset
= extent_end
;
1055 if (cur_offset
> end
)
1061 btrfs_release_path(root
, path
);
1062 if (cow_start
!= (u64
)-1) {
1063 ret
= cow_file_range(inode
, locked_page
, cow_start
,
1064 found_key
.offset
- 1, page_started
,
1067 cow_start
= (u64
)-1;
1070 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1071 struct extent_map
*em
;
1072 struct extent_map_tree
*em_tree
;
1073 em_tree
= &BTRFS_I(inode
)->extent_tree
;
1074 em
= alloc_extent_map(GFP_NOFS
);
1075 em
->start
= cur_offset
;
1076 em
->orig_start
= em
->start
;
1077 em
->len
= num_bytes
;
1078 em
->block_len
= num_bytes
;
1079 em
->block_start
= disk_bytenr
;
1080 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
1081 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
1083 spin_lock(&em_tree
->lock
);
1084 ret
= add_extent_mapping(em_tree
, em
);
1085 spin_unlock(&em_tree
->lock
);
1086 if (ret
!= -EEXIST
) {
1087 free_extent_map(em
);
1090 btrfs_drop_extent_cache(inode
, em
->start
,
1091 em
->start
+ em
->len
- 1, 0);
1093 type
= BTRFS_ORDERED_PREALLOC
;
1095 type
= BTRFS_ORDERED_NOCOW
;
1098 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1099 num_bytes
, num_bytes
, type
);
1102 extent_clear_unlock_delalloc(inode
, &BTRFS_I(inode
)->io_tree
,
1103 cur_offset
, cur_offset
+ num_bytes
- 1,
1104 locked_page
, 1, 1, 1, 0, 0, 0);
1105 cur_offset
= extent_end
;
1106 if (cur_offset
> end
)
1109 btrfs_release_path(root
, path
);
1111 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1112 cow_start
= cur_offset
;
1113 if (cow_start
!= (u64
)-1) {
1114 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
,
1115 page_started
, nr_written
, 1);
1119 ret
= btrfs_end_transaction(trans
, root
);
1121 btrfs_free_path(path
);
1126 * extent_io.c call back to do delayed allocation processing
1128 static int run_delalloc_range(struct inode
*inode
, struct page
*locked_page
,
1129 u64 start
, u64 end
, int *page_started
,
1130 unsigned long *nr_written
)
1133 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1135 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
)
1136 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1137 page_started
, 1, nr_written
);
1138 else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)
1139 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1140 page_started
, 0, nr_written
);
1141 else if (!btrfs_test_opt(root
, COMPRESS
))
1142 ret
= cow_file_range(inode
, locked_page
, start
, end
,
1143 page_started
, nr_written
, 1);
1145 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1146 page_started
, nr_written
);
1151 * extent_io.c set_bit_hook, used to track delayed allocation
1152 * bytes in this file, and to maintain the list of inodes that
1153 * have pending delalloc work to be done.
1155 static int btrfs_set_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1156 unsigned long old
, unsigned long bits
)
1159 * set_bit and clear bit hooks normally require _irqsave/restore
1160 * but in this case, we are only testeing for the DELALLOC
1161 * bit, which is only set or cleared with irqs on
1163 if (!(old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1164 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1165 btrfs_delalloc_reserve_space(root
, inode
, end
- start
+ 1);
1166 spin_lock(&root
->fs_info
->delalloc_lock
);
1167 BTRFS_I(inode
)->delalloc_bytes
+= end
- start
+ 1;
1168 root
->fs_info
->delalloc_bytes
+= end
- start
+ 1;
1169 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1170 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1171 &root
->fs_info
->delalloc_inodes
);
1173 spin_unlock(&root
->fs_info
->delalloc_lock
);
1179 * extent_io.c clear_bit_hook, see set_bit_hook for why
1181 static int btrfs_clear_bit_hook(struct inode
*inode
, u64 start
, u64 end
,
1182 unsigned long old
, unsigned long bits
)
1185 * set_bit and clear bit hooks normally require _irqsave/restore
1186 * but in this case, we are only testeing for the DELALLOC
1187 * bit, which is only set or cleared with irqs on
1189 if ((old
& EXTENT_DELALLOC
) && (bits
& EXTENT_DELALLOC
)) {
1190 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1192 spin_lock(&root
->fs_info
->delalloc_lock
);
1193 if (end
- start
+ 1 > root
->fs_info
->delalloc_bytes
) {
1194 printk(KERN_INFO
"btrfs warning: delalloc account "
1196 (unsigned long long)end
- start
+ 1,
1197 (unsigned long long)
1198 root
->fs_info
->delalloc_bytes
);
1199 btrfs_delalloc_free_space(root
, inode
, (u64
)-1);
1200 root
->fs_info
->delalloc_bytes
= 0;
1201 BTRFS_I(inode
)->delalloc_bytes
= 0;
1203 btrfs_delalloc_free_space(root
, inode
,
1205 root
->fs_info
->delalloc_bytes
-= end
- start
+ 1;
1206 BTRFS_I(inode
)->delalloc_bytes
-= end
- start
+ 1;
1208 if (BTRFS_I(inode
)->delalloc_bytes
== 0 &&
1209 !list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1210 list_del_init(&BTRFS_I(inode
)->delalloc_inodes
);
1212 spin_unlock(&root
->fs_info
->delalloc_lock
);
1218 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1219 * we don't create bios that span stripes or chunks
1221 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1222 size_t size
, struct bio
*bio
,
1223 unsigned long bio_flags
)
1225 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
1226 struct btrfs_mapping_tree
*map_tree
;
1227 u64 logical
= (u64
)bio
->bi_sector
<< 9;
1232 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1235 length
= bio
->bi_size
;
1236 map_tree
= &root
->fs_info
->mapping_tree
;
1237 map_length
= length
;
1238 ret
= btrfs_map_block(map_tree
, READ
, logical
,
1239 &map_length
, NULL
, 0);
1241 if (map_length
< length
+ size
)
1247 * in order to insert checksums into the metadata in large chunks,
1248 * we wait until bio submission time. All the pages in the bio are
1249 * checksummed and sums are attached onto the ordered extent record.
1251 * At IO completion time the cums attached on the ordered extent record
1252 * are inserted into the btree
1254 static int __btrfs_submit_bio_start(struct inode
*inode
, int rw
,
1255 struct bio
*bio
, int mirror_num
,
1256 unsigned long bio_flags
)
1258 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1261 ret
= btrfs_csum_one_bio(root
, inode
, bio
, 0, 0);
1267 * in order to insert checksums into the metadata in large chunks,
1268 * we wait until bio submission time. All the pages in the bio are
1269 * checksummed and sums are attached onto the ordered extent record.
1271 * At IO completion time the cums attached on the ordered extent record
1272 * are inserted into the btree
1274 static int __btrfs_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
1275 int mirror_num
, unsigned long bio_flags
)
1277 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1278 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 1);
1282 * extent_io.c submission hook. This does the right thing for csum calculation
1283 * on write, or reading the csums from the tree before a read
1285 static int btrfs_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
1286 int mirror_num
, unsigned long bio_flags
)
1288 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1292 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1294 ret
= btrfs_bio_wq_end_io(root
->fs_info
, bio
, 0);
1297 if (!(rw
& (1 << BIO_RW
))) {
1298 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1299 return btrfs_submit_compressed_read(inode
, bio
,
1300 mirror_num
, bio_flags
);
1301 } else if (!skip_sum
)
1302 btrfs_lookup_bio_sums(root
, inode
, bio
, NULL
);
1304 } else if (!skip_sum
) {
1305 /* csum items have already been cloned */
1306 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1308 /* we're doing a write, do the async checksumming */
1309 return btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
1310 inode
, rw
, bio
, mirror_num
,
1311 bio_flags
, __btrfs_submit_bio_start
,
1312 __btrfs_submit_bio_done
);
1316 return btrfs_map_bio(root
, rw
, bio
, mirror_num
, 0);
1320 * given a list of ordered sums record them in the inode. This happens
1321 * at IO completion time based on sums calculated at bio submission time.
1323 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
1324 struct inode
*inode
, u64 file_offset
,
1325 struct list_head
*list
)
1327 struct btrfs_ordered_sum
*sum
;
1329 btrfs_set_trans_block_group(trans
, inode
);
1331 list_for_each_entry(sum
, list
, list
) {
1332 btrfs_csum_file_blocks(trans
,
1333 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
1338 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
)
1340 if ((end
& (PAGE_CACHE_SIZE
- 1)) == 0)
1342 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
1346 /* see btrfs_writepage_start_hook for details on why this is required */
1347 struct btrfs_writepage_fixup
{
1349 struct btrfs_work work
;
1352 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
1354 struct btrfs_writepage_fixup
*fixup
;
1355 struct btrfs_ordered_extent
*ordered
;
1357 struct inode
*inode
;
1361 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
1365 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
1366 ClearPageChecked(page
);
1370 inode
= page
->mapping
->host
;
1371 page_start
= page_offset(page
);
1372 page_end
= page_offset(page
) + PAGE_CACHE_SIZE
- 1;
1374 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1376 /* already ordered? We're done */
1377 if (test_range_bit(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
1378 EXTENT_ORDERED
, 0)) {
1382 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
1384 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
,
1385 page_end
, GFP_NOFS
);
1387 btrfs_start_ordered_extent(inode
, ordered
, 1);
1391 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
1392 ClearPageChecked(page
);
1394 unlock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
, GFP_NOFS
);
1397 page_cache_release(page
);
1401 * There are a few paths in the higher layers of the kernel that directly
1402 * set the page dirty bit without asking the filesystem if it is a
1403 * good idea. This causes problems because we want to make sure COW
1404 * properly happens and the data=ordered rules are followed.
1406 * In our case any range that doesn't have the ORDERED bit set
1407 * hasn't been properly setup for IO. We kick off an async process
1408 * to fix it up. The async helper will wait for ordered extents, set
1409 * the delalloc bit and make it safe to write the page.
1411 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
1413 struct inode
*inode
= page
->mapping
->host
;
1414 struct btrfs_writepage_fixup
*fixup
;
1415 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1418 ret
= test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1423 if (PageChecked(page
))
1426 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
1430 SetPageChecked(page
);
1431 page_cache_get(page
);
1432 fixup
->work
.func
= btrfs_writepage_fixup_worker
;
1434 btrfs_queue_worker(&root
->fs_info
->fixup_workers
, &fixup
->work
);
1438 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
1439 struct inode
*inode
, u64 file_pos
,
1440 u64 disk_bytenr
, u64 disk_num_bytes
,
1441 u64 num_bytes
, u64 ram_bytes
,
1443 u8 compression
, u8 encryption
,
1444 u16 other_encoding
, int extent_type
)
1446 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1447 struct btrfs_file_extent_item
*fi
;
1448 struct btrfs_path
*path
;
1449 struct extent_buffer
*leaf
;
1450 struct btrfs_key ins
;
1454 path
= btrfs_alloc_path();
1457 path
->leave_spinning
= 1;
1458 ret
= btrfs_drop_extents(trans
, root
, inode
, file_pos
,
1459 file_pos
+ num_bytes
, locked_end
,
1463 ins
.objectid
= inode
->i_ino
;
1464 ins
.offset
= file_pos
;
1465 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
1466 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
, sizeof(*fi
));
1468 leaf
= path
->nodes
[0];
1469 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1470 struct btrfs_file_extent_item
);
1471 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1472 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
1473 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
1474 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
1475 btrfs_set_file_extent_offset(leaf
, fi
, 0);
1476 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
1477 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
1478 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
1479 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
1480 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
1482 btrfs_unlock_up_safe(path
, 1);
1483 btrfs_set_lock_blocking(leaf
);
1485 btrfs_mark_buffer_dirty(leaf
);
1487 inode_add_bytes(inode
, num_bytes
);
1488 btrfs_drop_extent_cache(inode
, file_pos
, file_pos
+ num_bytes
- 1, 0);
1490 ins
.objectid
= disk_bytenr
;
1491 ins
.offset
= disk_num_bytes
;
1492 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1493 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
1494 root
->root_key
.objectid
,
1495 inode
->i_ino
, file_pos
, &ins
);
1497 btrfs_free_path(path
);
1503 * helper function for btrfs_finish_ordered_io, this
1504 * just reads in some of the csum leaves to prime them into ram
1505 * before we start the transaction. It limits the amount of btree
1506 * reads required while inside the transaction.
1508 static noinline
void reada_csum(struct btrfs_root
*root
,
1509 struct btrfs_path
*path
,
1510 struct btrfs_ordered_extent
*ordered_extent
)
1512 struct btrfs_ordered_sum
*sum
;
1515 sum
= list_entry(ordered_extent
->list
.next
, struct btrfs_ordered_sum
,
1517 bytenr
= sum
->sums
[0].bytenr
;
1520 * we don't care about the results, the point of this search is
1521 * just to get the btree leaves into ram
1523 btrfs_lookup_csum(NULL
, root
->fs_info
->csum_root
, path
, bytenr
, 0);
1526 /* as ordered data IO finishes, this gets called so we can finish
1527 * an ordered extent if the range of bytes in the file it covers are
1530 static int btrfs_finish_ordered_io(struct inode
*inode
, u64 start
, u64 end
)
1532 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1533 struct btrfs_trans_handle
*trans
;
1534 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
1535 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1536 struct btrfs_path
*path
;
1540 ret
= btrfs_dec_test_ordered_pending(inode
, start
, end
- start
+ 1);
1545 * before we join the transaction, try to do some of our IO.
1546 * This will limit the amount of IO that we have to do with
1547 * the transaction running. We're unlikely to need to do any
1548 * IO if the file extents are new, the disk_i_size checks
1549 * covers the most common case.
1551 if (start
< BTRFS_I(inode
)->disk_i_size
) {
1552 path
= btrfs_alloc_path();
1554 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
1557 ordered_extent
= btrfs_lookup_ordered_extent(inode
,
1559 if (!list_empty(&ordered_extent
->list
)) {
1560 btrfs_release_path(root
, path
);
1561 reada_csum(root
, path
, ordered_extent
);
1563 btrfs_free_path(path
);
1567 trans
= btrfs_join_transaction(root
, 1);
1569 if (!ordered_extent
)
1570 ordered_extent
= btrfs_lookup_ordered_extent(inode
, start
);
1571 BUG_ON(!ordered_extent
);
1572 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
))
1575 lock_extent(io_tree
, ordered_extent
->file_offset
,
1576 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1579 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
1581 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
1583 ret
= btrfs_mark_extent_written(trans
, root
, inode
,
1584 ordered_extent
->file_offset
,
1585 ordered_extent
->file_offset
+
1586 ordered_extent
->len
);
1589 ret
= insert_reserved_file_extent(trans
, inode
,
1590 ordered_extent
->file_offset
,
1591 ordered_extent
->start
,
1592 ordered_extent
->disk_len
,
1593 ordered_extent
->len
,
1594 ordered_extent
->len
,
1595 ordered_extent
->file_offset
+
1596 ordered_extent
->len
,
1598 BTRFS_FILE_EXTENT_REG
);
1601 unlock_extent(io_tree
, ordered_extent
->file_offset
,
1602 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
1605 add_pending_csums(trans
, inode
, ordered_extent
->file_offset
,
1606 &ordered_extent
->list
);
1608 mutex_lock(&BTRFS_I(inode
)->extent_mutex
);
1609 btrfs_ordered_update_i_size(inode
, ordered_extent
);
1610 btrfs_update_inode(trans
, root
, inode
);
1611 btrfs_remove_ordered_extent(inode
, ordered_extent
);
1612 mutex_unlock(&BTRFS_I(inode
)->extent_mutex
);
1615 btrfs_put_ordered_extent(ordered_extent
);
1616 /* once for the tree */
1617 btrfs_put_ordered_extent(ordered_extent
);
1619 btrfs_end_transaction(trans
, root
);
1623 static int btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1624 struct extent_state
*state
, int uptodate
)
1626 return btrfs_finish_ordered_io(page
->mapping
->host
, start
, end
);
1630 * When IO fails, either with EIO or csum verification fails, we
1631 * try other mirrors that might have a good copy of the data. This
1632 * io_failure_record is used to record state as we go through all the
1633 * mirrors. If another mirror has good data, the page is set up to date
1634 * and things continue. If a good mirror can't be found, the original
1635 * bio end_io callback is called to indicate things have failed.
1637 struct io_failure_record
{
1642 unsigned long bio_flags
;
1646 static int btrfs_io_failed_hook(struct bio
*failed_bio
,
1647 struct page
*page
, u64 start
, u64 end
,
1648 struct extent_state
*state
)
1650 struct io_failure_record
*failrec
= NULL
;
1652 struct extent_map
*em
;
1653 struct inode
*inode
= page
->mapping
->host
;
1654 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1655 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1662 ret
= get_state_private(failure_tree
, start
, &private);
1664 failrec
= kmalloc(sizeof(*failrec
), GFP_NOFS
);
1667 failrec
->start
= start
;
1668 failrec
->len
= end
- start
+ 1;
1669 failrec
->last_mirror
= 0;
1670 failrec
->bio_flags
= 0;
1672 spin_lock(&em_tree
->lock
);
1673 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
1674 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
1675 free_extent_map(em
);
1678 spin_unlock(&em_tree
->lock
);
1680 if (!em
|| IS_ERR(em
)) {
1684 logical
= start
- em
->start
;
1685 logical
= em
->block_start
+ logical
;
1686 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
1687 logical
= em
->block_start
;
1688 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
1690 failrec
->logical
= logical
;
1691 free_extent_map(em
);
1692 set_extent_bits(failure_tree
, start
, end
, EXTENT_LOCKED
|
1693 EXTENT_DIRTY
, GFP_NOFS
);
1694 set_state_private(failure_tree
, start
,
1695 (u64
)(unsigned long)failrec
);
1697 failrec
= (struct io_failure_record
*)(unsigned long)private;
1699 num_copies
= btrfs_num_copies(
1700 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
1701 failrec
->logical
, failrec
->len
);
1702 failrec
->last_mirror
++;
1704 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1705 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1708 if (state
&& state
->start
!= failrec
->start
)
1710 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1712 if (!state
|| failrec
->last_mirror
> num_copies
) {
1713 set_state_private(failure_tree
, failrec
->start
, 0);
1714 clear_extent_bits(failure_tree
, failrec
->start
,
1715 failrec
->start
+ failrec
->len
- 1,
1716 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1720 bio
= bio_alloc(GFP_NOFS
, 1);
1721 bio
->bi_private
= state
;
1722 bio
->bi_end_io
= failed_bio
->bi_end_io
;
1723 bio
->bi_sector
= failrec
->logical
>> 9;
1724 bio
->bi_bdev
= failed_bio
->bi_bdev
;
1727 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
1728 if (failed_bio
->bi_rw
& (1 << BIO_RW
))
1733 BTRFS_I(inode
)->io_tree
.ops
->submit_bio_hook(inode
, rw
, bio
,
1734 failrec
->last_mirror
,
1735 failrec
->bio_flags
);
1740 * each time an IO finishes, we do a fast check in the IO failure tree
1741 * to see if we need to process or clean up an io_failure_record
1743 static int btrfs_clean_io_failures(struct inode
*inode
, u64 start
)
1746 u64 private_failure
;
1747 struct io_failure_record
*failure
;
1751 if (count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1752 (u64
)-1, 1, EXTENT_DIRTY
)) {
1753 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1754 start
, &private_failure
);
1756 failure
= (struct io_failure_record
*)(unsigned long)
1758 set_state_private(&BTRFS_I(inode
)->io_failure_tree
,
1760 clear_extent_bits(&BTRFS_I(inode
)->io_failure_tree
,
1762 failure
->start
+ failure
->len
- 1,
1763 EXTENT_DIRTY
| EXTENT_LOCKED
,
1772 * when reads are done, we need to check csums to verify the data is correct
1773 * if there's a match, we allow the bio to finish. If not, we go through
1774 * the io_failure_record routines to find good copies
1776 static int btrfs_readpage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
1777 struct extent_state
*state
)
1779 size_t offset
= start
- ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
1780 struct inode
*inode
= page
->mapping
->host
;
1781 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1783 u64
private = ~(u32
)0;
1785 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1788 if (PageChecked(page
)) {
1789 ClearPageChecked(page
);
1793 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
1796 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1797 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1)) {
1798 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
,
1803 if (state
&& state
->start
== start
) {
1804 private = state
->private;
1807 ret
= get_state_private(io_tree
, start
, &private);
1809 kaddr
= kmap_atomic(page
, KM_USER0
);
1813 csum
= btrfs_csum_data(root
, kaddr
+ offset
, csum
, end
- start
+ 1);
1814 btrfs_csum_final(csum
, (char *)&csum
);
1815 if (csum
!= private)
1818 kunmap_atomic(kaddr
, KM_USER0
);
1820 /* if the io failure tree for this inode is non-empty,
1821 * check to see if we've recovered from a failed IO
1823 btrfs_clean_io_failures(inode
, start
);
1827 if (printk_ratelimit()) {
1828 printk(KERN_INFO
"btrfs csum failed ino %lu off %llu csum %u "
1829 "private %llu\n", page
->mapping
->host
->i_ino
,
1830 (unsigned long long)start
, csum
,
1831 (unsigned long long)private);
1833 memset(kaddr
+ offset
, 1, end
- start
+ 1);
1834 flush_dcache_page(page
);
1835 kunmap_atomic(kaddr
, KM_USER0
);
1842 * This creates an orphan entry for the given inode in case something goes
1843 * wrong in the middle of an unlink/truncate.
1845 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1847 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1850 spin_lock(&root
->list_lock
);
1852 /* already on the orphan list, we're good */
1853 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1854 spin_unlock(&root
->list_lock
);
1858 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1860 spin_unlock(&root
->list_lock
);
1863 * insert an orphan item to track this unlinked/truncated file
1865 ret
= btrfs_insert_orphan_item(trans
, root
, inode
->i_ino
);
1871 * We have done the truncate/delete so we can go ahead and remove the orphan
1872 * item for this particular inode.
1874 int btrfs_orphan_del(struct btrfs_trans_handle
*trans
, struct inode
*inode
)
1876 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1879 spin_lock(&root
->list_lock
);
1881 if (list_empty(&BTRFS_I(inode
)->i_orphan
)) {
1882 spin_unlock(&root
->list_lock
);
1886 list_del_init(&BTRFS_I(inode
)->i_orphan
);
1888 spin_unlock(&root
->list_lock
);
1892 spin_unlock(&root
->list_lock
);
1894 ret
= btrfs_del_orphan_item(trans
, root
, inode
->i_ino
);
1900 * this cleans up any orphans that may be left on the list from the last use
1903 void btrfs_orphan_cleanup(struct btrfs_root
*root
)
1905 struct btrfs_path
*path
;
1906 struct extent_buffer
*leaf
;
1907 struct btrfs_item
*item
;
1908 struct btrfs_key key
, found_key
;
1909 struct btrfs_trans_handle
*trans
;
1910 struct inode
*inode
;
1911 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
1913 path
= btrfs_alloc_path();
1918 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1919 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1920 key
.offset
= (u64
)-1;
1924 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1926 printk(KERN_ERR
"Error searching slot for orphan: %d"
1932 * if ret == 0 means we found what we were searching for, which
1933 * is weird, but possible, so only screw with path if we didnt
1934 * find the key and see if we have stuff that matches
1937 if (path
->slots
[0] == 0)
1942 /* pull out the item */
1943 leaf
= path
->nodes
[0];
1944 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
1945 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1947 /* make sure the item matches what we want */
1948 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
1950 if (btrfs_key_type(&found_key
) != BTRFS_ORPHAN_ITEM_KEY
)
1953 /* release the path since we're done with it */
1954 btrfs_release_path(root
, path
);
1957 * this is where we are basically btrfs_lookup, without the
1958 * crossing root thing. we store the inode number in the
1959 * offset of the orphan item.
1961 found_key
.objectid
= found_key
.offset
;
1962 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
1963 found_key
.offset
= 0;
1964 inode
= btrfs_iget(root
->fs_info
->sb
, &found_key
, root
);
1969 * add this inode to the orphan list so btrfs_orphan_del does
1970 * the proper thing when we hit it
1972 spin_lock(&root
->list_lock
);
1973 list_add(&BTRFS_I(inode
)->i_orphan
, &root
->orphan_list
);
1974 spin_unlock(&root
->list_lock
);
1977 * if this is a bad inode, means we actually succeeded in
1978 * removing the inode, but not the orphan record, which means
1979 * we need to manually delete the orphan since iput will just
1980 * do a destroy_inode
1982 if (is_bad_inode(inode
)) {
1983 trans
= btrfs_start_transaction(root
, 1);
1984 btrfs_orphan_del(trans
, inode
);
1985 btrfs_end_transaction(trans
, root
);
1990 /* if we have links, this was a truncate, lets do that */
1991 if (inode
->i_nlink
) {
1993 btrfs_truncate(inode
);
1998 /* this will do delete_inode and everything for us */
2003 printk(KERN_INFO
"btrfs: unlinked %d orphans\n", nr_unlink
);
2005 printk(KERN_INFO
"btrfs: truncated %d orphans\n", nr_truncate
);
2007 btrfs_free_path(path
);
2011 * very simple check to peek ahead in the leaf looking for xattrs. If we
2012 * don't find any xattrs, we know there can't be any acls.
2014 * slot is the slot the inode is in, objectid is the objectid of the inode
2016 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
2017 int slot
, u64 objectid
)
2019 u32 nritems
= btrfs_header_nritems(leaf
);
2020 struct btrfs_key found_key
;
2024 while (slot
< nritems
) {
2025 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
2027 /* we found a different objectid, there must not be acls */
2028 if (found_key
.objectid
!= objectid
)
2031 /* we found an xattr, assume we've got an acl */
2032 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
)
2036 * we found a key greater than an xattr key, there can't
2037 * be any acls later on
2039 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
2046 * it goes inode, inode backrefs, xattrs, extents,
2047 * so if there are a ton of hard links to an inode there can
2048 * be a lot of backrefs. Don't waste time searching too hard,
2049 * this is just an optimization
2054 /* we hit the end of the leaf before we found an xattr or
2055 * something larger than an xattr. We have to assume the inode
2062 * read an inode from the btree into the in-memory inode
2064 static void btrfs_read_locked_inode(struct inode
*inode
)
2066 struct btrfs_path
*path
;
2067 struct extent_buffer
*leaf
;
2068 struct btrfs_inode_item
*inode_item
;
2069 struct btrfs_timespec
*tspec
;
2070 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2071 struct btrfs_key location
;
2073 u64 alloc_group_block
;
2077 path
= btrfs_alloc_path();
2079 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
2081 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
2085 leaf
= path
->nodes
[0];
2086 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2087 struct btrfs_inode_item
);
2089 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
2090 inode
->i_nlink
= btrfs_inode_nlink(leaf
, inode_item
);
2091 inode
->i_uid
= btrfs_inode_uid(leaf
, inode_item
);
2092 inode
->i_gid
= btrfs_inode_gid(leaf
, inode_item
);
2093 btrfs_i_size_write(inode
, btrfs_inode_size(leaf
, inode_item
));
2095 tspec
= btrfs_inode_atime(inode_item
);
2096 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2097 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2099 tspec
= btrfs_inode_mtime(inode_item
);
2100 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2101 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2103 tspec
= btrfs_inode_ctime(inode_item
);
2104 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, tspec
);
2105 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, tspec
);
2107 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
2108 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
2109 BTRFS_I(inode
)->sequence
= btrfs_inode_sequence(leaf
, inode_item
);
2110 inode
->i_generation
= BTRFS_I(inode
)->generation
;
2112 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
2114 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
2115 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
2117 alloc_group_block
= btrfs_inode_block_group(leaf
, inode_item
);
2120 * try to precache a NULL acl entry for files that don't have
2121 * any xattrs or acls
2123 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0], inode
->i_ino
);
2125 cache_no_acl(inode
);
2127 BTRFS_I(inode
)->block_group
= btrfs_find_block_group(root
, 0,
2128 alloc_group_block
, 0);
2129 btrfs_free_path(path
);
2132 switch (inode
->i_mode
& S_IFMT
) {
2134 inode
->i_mapping
->a_ops
= &btrfs_aops
;
2135 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2136 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
2137 inode
->i_fop
= &btrfs_file_operations
;
2138 inode
->i_op
= &btrfs_file_inode_operations
;
2141 inode
->i_fop
= &btrfs_dir_file_operations
;
2142 if (root
== root
->fs_info
->tree_root
)
2143 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
2145 inode
->i_op
= &btrfs_dir_inode_operations
;
2148 inode
->i_op
= &btrfs_symlink_inode_operations
;
2149 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
2150 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
2153 inode
->i_op
= &btrfs_special_inode_operations
;
2154 init_special_inode(inode
, inode
->i_mode
, rdev
);
2158 btrfs_update_iflags(inode
);
2162 btrfs_free_path(path
);
2163 make_bad_inode(inode
);
2167 * given a leaf and an inode, copy the inode fields into the leaf
2169 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
2170 struct extent_buffer
*leaf
,
2171 struct btrfs_inode_item
*item
,
2172 struct inode
*inode
)
2174 btrfs_set_inode_uid(leaf
, item
, inode
->i_uid
);
2175 btrfs_set_inode_gid(leaf
, item
, inode
->i_gid
);
2176 btrfs_set_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
);
2177 btrfs_set_inode_mode(leaf
, item
, inode
->i_mode
);
2178 btrfs_set_inode_nlink(leaf
, item
, inode
->i_nlink
);
2180 btrfs_set_timespec_sec(leaf
, btrfs_inode_atime(item
),
2181 inode
->i_atime
.tv_sec
);
2182 btrfs_set_timespec_nsec(leaf
, btrfs_inode_atime(item
),
2183 inode
->i_atime
.tv_nsec
);
2185 btrfs_set_timespec_sec(leaf
, btrfs_inode_mtime(item
),
2186 inode
->i_mtime
.tv_sec
);
2187 btrfs_set_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
2188 inode
->i_mtime
.tv_nsec
);
2190 btrfs_set_timespec_sec(leaf
, btrfs_inode_ctime(item
),
2191 inode
->i_ctime
.tv_sec
);
2192 btrfs_set_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
2193 inode
->i_ctime
.tv_nsec
);
2195 btrfs_set_inode_nbytes(leaf
, item
, inode_get_bytes(inode
));
2196 btrfs_set_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
);
2197 btrfs_set_inode_sequence(leaf
, item
, BTRFS_I(inode
)->sequence
);
2198 btrfs_set_inode_transid(leaf
, item
, trans
->transid
);
2199 btrfs_set_inode_rdev(leaf
, item
, inode
->i_rdev
);
2200 btrfs_set_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
);
2201 btrfs_set_inode_block_group(leaf
, item
, BTRFS_I(inode
)->block_group
);
2205 * copy everything in the in-memory inode into the btree.
2207 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
2208 struct btrfs_root
*root
, struct inode
*inode
)
2210 struct btrfs_inode_item
*inode_item
;
2211 struct btrfs_path
*path
;
2212 struct extent_buffer
*leaf
;
2215 path
= btrfs_alloc_path();
2217 path
->leave_spinning
= 1;
2218 ret
= btrfs_lookup_inode(trans
, root
, path
,
2219 &BTRFS_I(inode
)->location
, 1);
2226 btrfs_unlock_up_safe(path
, 1);
2227 leaf
= path
->nodes
[0];
2228 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2229 struct btrfs_inode_item
);
2231 fill_inode_item(trans
, leaf
, inode_item
, inode
);
2232 btrfs_mark_buffer_dirty(leaf
);
2233 btrfs_set_inode_last_trans(trans
, inode
);
2236 btrfs_free_path(path
);
2242 * unlink helper that gets used here in inode.c and in the tree logging
2243 * recovery code. It remove a link in a directory with a given name, and
2244 * also drops the back refs in the inode to the directory
2246 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
2247 struct btrfs_root
*root
,
2248 struct inode
*dir
, struct inode
*inode
,
2249 const char *name
, int name_len
)
2251 struct btrfs_path
*path
;
2253 struct extent_buffer
*leaf
;
2254 struct btrfs_dir_item
*di
;
2255 struct btrfs_key key
;
2258 path
= btrfs_alloc_path();
2264 path
->leave_spinning
= 1;
2265 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir
->i_ino
,
2266 name
, name_len
, -1);
2275 leaf
= path
->nodes
[0];
2276 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
2277 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2280 btrfs_release_path(root
, path
);
2282 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
2284 dir
->i_ino
, &index
);
2286 printk(KERN_INFO
"btrfs failed to delete reference to %.*s, "
2287 "inode %lu parent %lu\n", name_len
, name
,
2288 inode
->i_ino
, dir
->i_ino
);
2292 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, dir
->i_ino
,
2293 index
, name
, name_len
, -1);
2302 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
2303 btrfs_release_path(root
, path
);
2305 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
,
2307 BUG_ON(ret
!= 0 && ret
!= -ENOENT
);
2309 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
,
2313 btrfs_free_path(path
);
2317 btrfs_i_size_write(dir
, dir
->i_size
- name_len
* 2);
2318 inode
->i_ctime
= dir
->i_mtime
= dir
->i_ctime
= CURRENT_TIME
;
2319 btrfs_update_inode(trans
, root
, dir
);
2320 btrfs_drop_nlink(inode
);
2321 ret
= btrfs_update_inode(trans
, root
, inode
);
2326 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
2328 struct btrfs_root
*root
;
2329 struct btrfs_trans_handle
*trans
;
2330 struct inode
*inode
= dentry
->d_inode
;
2332 unsigned long nr
= 0;
2334 root
= BTRFS_I(dir
)->root
;
2336 trans
= btrfs_start_transaction(root
, 1);
2338 btrfs_set_trans_block_group(trans
, dir
);
2340 btrfs_record_unlink_dir(trans
, dir
, dentry
->d_inode
, 0);
2342 ret
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2343 dentry
->d_name
.name
, dentry
->d_name
.len
);
2345 if (inode
->i_nlink
== 0)
2346 ret
= btrfs_orphan_add(trans
, inode
);
2348 nr
= trans
->blocks_used
;
2350 btrfs_end_transaction_throttle(trans
, root
);
2351 btrfs_btree_balance_dirty(root
, nr
);
2355 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
2357 struct inode
*inode
= dentry
->d_inode
;
2360 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2361 struct btrfs_trans_handle
*trans
;
2362 unsigned long nr
= 0;
2365 * the FIRST_FREE_OBJECTID check makes sure we don't try to rmdir
2366 * the root of a subvolume or snapshot
2368 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
||
2369 inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
2373 trans
= btrfs_start_transaction(root
, 1);
2374 btrfs_set_trans_block_group(trans
, dir
);
2376 err
= btrfs_orphan_add(trans
, inode
);
2380 /* now the directory is empty */
2381 err
= btrfs_unlink_inode(trans
, root
, dir
, dentry
->d_inode
,
2382 dentry
->d_name
.name
, dentry
->d_name
.len
);
2384 btrfs_i_size_write(inode
, 0);
2387 nr
= trans
->blocks_used
;
2388 ret
= btrfs_end_transaction_throttle(trans
, root
);
2389 btrfs_btree_balance_dirty(root
, nr
);
2398 * when truncating bytes in a file, it is possible to avoid reading
2399 * the leaves that contain only checksum items. This can be the
2400 * majority of the IO required to delete a large file, but it must
2401 * be done carefully.
2403 * The keys in the level just above the leaves are checked to make sure
2404 * the lowest key in a given leaf is a csum key, and starts at an offset
2405 * after the new size.
2407 * Then the key for the next leaf is checked to make sure it also has
2408 * a checksum item for the same file. If it does, we know our target leaf
2409 * contains only checksum items, and it can be safely freed without reading
2412 * This is just an optimization targeted at large files. It may do
2413 * nothing. It will return 0 unless things went badly.
2415 static noinline
int drop_csum_leaves(struct btrfs_trans_handle
*trans
,
2416 struct btrfs_root
*root
,
2417 struct btrfs_path
*path
,
2418 struct inode
*inode
, u64 new_size
)
2420 struct btrfs_key key
;
2423 struct btrfs_key found_key
;
2424 struct btrfs_key other_key
;
2425 struct btrfs_leaf_ref
*ref
;
2429 path
->lowest_level
= 1;
2430 key
.objectid
= inode
->i_ino
;
2431 key
.type
= BTRFS_CSUM_ITEM_KEY
;
2432 key
.offset
= new_size
;
2434 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2438 if (path
->nodes
[1] == NULL
) {
2443 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, path
->slots
[1]);
2444 nritems
= btrfs_header_nritems(path
->nodes
[1]);
2449 if (path
->slots
[1] >= nritems
)
2452 /* did we find a key greater than anything we want to delete? */
2453 if (found_key
.objectid
> inode
->i_ino
||
2454 (found_key
.objectid
== inode
->i_ino
&& found_key
.type
> key
.type
))
2457 /* we check the next key in the node to make sure the leave contains
2458 * only checksum items. This comparison doesn't work if our
2459 * leaf is the last one in the node
2461 if (path
->slots
[1] + 1 >= nritems
) {
2463 /* search forward from the last key in the node, this
2464 * will bring us into the next node in the tree
2466 btrfs_node_key_to_cpu(path
->nodes
[1], &found_key
, nritems
- 1);
2468 /* unlikely, but we inc below, so check to be safe */
2469 if (found_key
.offset
== (u64
)-1)
2472 /* search_forward needs a path with locks held, do the
2473 * search again for the original key. It is possible
2474 * this will race with a balance and return a path that
2475 * we could modify, but this drop is just an optimization
2476 * and is allowed to miss some leaves.
2478 btrfs_release_path(root
, path
);
2481 /* setup a max key for search_forward */
2482 other_key
.offset
= (u64
)-1;
2483 other_key
.type
= key
.type
;
2484 other_key
.objectid
= key
.objectid
;
2486 path
->keep_locks
= 1;
2487 ret
= btrfs_search_forward(root
, &found_key
, &other_key
,
2489 path
->keep_locks
= 0;
2490 if (ret
|| found_key
.objectid
!= key
.objectid
||
2491 found_key
.type
!= key
.type
) {
2496 key
.offset
= found_key
.offset
;
2497 btrfs_release_path(root
, path
);
2502 /* we know there's one more slot after us in the tree,
2503 * read that key so we can verify it is also a checksum item
2505 btrfs_node_key_to_cpu(path
->nodes
[1], &other_key
, path
->slots
[1] + 1);
2507 if (found_key
.objectid
< inode
->i_ino
)
2510 if (found_key
.type
!= key
.type
|| found_key
.offset
< new_size
)
2514 * if the key for the next leaf isn't a csum key from this objectid,
2515 * we can't be sure there aren't good items inside this leaf.
2518 if (other_key
.objectid
!= inode
->i_ino
|| other_key
.type
!= key
.type
)
2521 leaf_start
= btrfs_node_blockptr(path
->nodes
[1], path
->slots
[1]);
2522 leaf_gen
= btrfs_node_ptr_generation(path
->nodes
[1], path
->slots
[1]);
2524 * it is safe to delete this leaf, it contains only
2525 * csum items from this inode at an offset >= new_size
2527 ret
= btrfs_del_leaf(trans
, root
, path
, leaf_start
);
2530 if (root
->ref_cows
&& leaf_gen
< trans
->transid
) {
2531 ref
= btrfs_alloc_leaf_ref(root
, 0);
2533 ref
->root_gen
= root
->root_key
.offset
;
2534 ref
->bytenr
= leaf_start
;
2536 ref
->generation
= leaf_gen
;
2539 btrfs_sort_leaf_ref(ref
);
2541 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
2543 btrfs_free_leaf_ref(root
, ref
);
2549 btrfs_release_path(root
, path
);
2551 if (other_key
.objectid
== inode
->i_ino
&&
2552 other_key
.type
== key
.type
&& other_key
.offset
> key
.offset
) {
2553 key
.offset
= other_key
.offset
;
2559 /* fixup any changes we've made to the path */
2560 path
->lowest_level
= 0;
2561 path
->keep_locks
= 0;
2562 btrfs_release_path(root
, path
);
2569 * this can truncate away extent items, csum items and directory items.
2570 * It starts at a high offset and removes keys until it can't find
2571 * any higher than new_size
2573 * csum items that cross the new i_size are truncated to the new size
2576 * min_type is the minimum key type to truncate down to. If set to 0, this
2577 * will kill all the items on this inode, including the INODE_ITEM_KEY.
2579 noinline
int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
2580 struct btrfs_root
*root
,
2581 struct inode
*inode
,
2582 u64 new_size
, u32 min_type
)
2585 struct btrfs_path
*path
;
2586 struct btrfs_key key
;
2587 struct btrfs_key found_key
;
2588 u32 found_type
= (u8
)-1;
2589 struct extent_buffer
*leaf
;
2590 struct btrfs_file_extent_item
*fi
;
2591 u64 extent_start
= 0;
2592 u64 extent_num_bytes
= 0;
2593 u64 extent_offset
= 0;
2597 int pending_del_nr
= 0;
2598 int pending_del_slot
= 0;
2599 int extent_type
= -1;
2601 u64 mask
= root
->sectorsize
- 1;
2604 btrfs_drop_extent_cache(inode
, new_size
& (~mask
), (u64
)-1, 0);
2605 path
= btrfs_alloc_path();
2609 /* FIXME, add redo link to tree so we don't leak on crash */
2610 key
.objectid
= inode
->i_ino
;
2611 key
.offset
= (u64
)-1;
2615 path
->leave_spinning
= 1;
2616 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2621 /* there are no items in the tree for us to truncate, we're
2624 if (path
->slots
[0] == 0) {
2633 leaf
= path
->nodes
[0];
2634 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2635 found_type
= btrfs_key_type(&found_key
);
2638 if (found_key
.objectid
!= inode
->i_ino
)
2641 if (found_type
< min_type
)
2644 item_end
= found_key
.offset
;
2645 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
2646 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2647 struct btrfs_file_extent_item
);
2648 extent_type
= btrfs_file_extent_type(leaf
, fi
);
2649 encoding
= btrfs_file_extent_compression(leaf
, fi
);
2650 encoding
|= btrfs_file_extent_encryption(leaf
, fi
);
2651 encoding
|= btrfs_file_extent_other_encoding(leaf
, fi
);
2653 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2655 btrfs_file_extent_num_bytes(leaf
, fi
);
2656 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2657 item_end
+= btrfs_file_extent_inline_len(leaf
,
2662 if (item_end
< new_size
) {
2663 if (found_type
== BTRFS_DIR_ITEM_KEY
)
2664 found_type
= BTRFS_INODE_ITEM_KEY
;
2665 else if (found_type
== BTRFS_EXTENT_ITEM_KEY
)
2666 found_type
= BTRFS_EXTENT_DATA_KEY
;
2667 else if (found_type
== BTRFS_EXTENT_DATA_KEY
)
2668 found_type
= BTRFS_XATTR_ITEM_KEY
;
2669 else if (found_type
== BTRFS_XATTR_ITEM_KEY
)
2670 found_type
= BTRFS_INODE_REF_KEY
;
2671 else if (found_type
)
2675 btrfs_set_key_type(&key
, found_type
);
2678 if (found_key
.offset
>= new_size
)
2684 /* FIXME, shrink the extent if the ref count is only 1 */
2685 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
2688 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
2690 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
2691 if (!del_item
&& !encoding
) {
2692 u64 orig_num_bytes
=
2693 btrfs_file_extent_num_bytes(leaf
, fi
);
2694 extent_num_bytes
= new_size
-
2695 found_key
.offset
+ root
->sectorsize
- 1;
2696 extent_num_bytes
= extent_num_bytes
&
2697 ~((u64
)root
->sectorsize
- 1);
2698 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2700 num_dec
= (orig_num_bytes
-
2702 if (root
->ref_cows
&& extent_start
!= 0)
2703 inode_sub_bytes(inode
, num_dec
);
2704 btrfs_mark_buffer_dirty(leaf
);
2707 btrfs_file_extent_disk_num_bytes(leaf
,
2709 extent_offset
= found_key
.offset
-
2710 btrfs_file_extent_offset(leaf
, fi
);
2712 /* FIXME blocksize != 4096 */
2713 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
2714 if (extent_start
!= 0) {
2717 inode_sub_bytes(inode
, num_dec
);
2720 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
2722 * we can't truncate inline items that have had
2726 btrfs_file_extent_compression(leaf
, fi
) == 0 &&
2727 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
2728 btrfs_file_extent_other_encoding(leaf
, fi
) == 0) {
2729 u32 size
= new_size
- found_key
.offset
;
2731 if (root
->ref_cows
) {
2732 inode_sub_bytes(inode
, item_end
+ 1 -
2736 btrfs_file_extent_calc_inline_size(size
);
2737 ret
= btrfs_truncate_item(trans
, root
, path
,
2740 } else if (root
->ref_cows
) {
2741 inode_sub_bytes(inode
, item_end
+ 1 -
2747 if (!pending_del_nr
) {
2748 /* no pending yet, add ourselves */
2749 pending_del_slot
= path
->slots
[0];
2751 } else if (pending_del_nr
&&
2752 path
->slots
[0] + 1 == pending_del_slot
) {
2753 /* hop on the pending chunk */
2755 pending_del_slot
= path
->slots
[0];
2762 if (found_extent
&& root
->ref_cows
) {
2763 btrfs_set_path_blocking(path
);
2764 ret
= btrfs_free_extent(trans
, root
, extent_start
,
2765 extent_num_bytes
, 0,
2766 btrfs_header_owner(leaf
),
2767 inode
->i_ino
, extent_offset
);
2771 if (path
->slots
[0] == 0) {
2774 btrfs_release_path(root
, path
);
2775 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2781 if (pending_del_nr
&&
2782 path
->slots
[0] + 1 != pending_del_slot
) {
2783 struct btrfs_key debug
;
2785 btrfs_item_key_to_cpu(path
->nodes
[0], &debug
,
2787 ret
= btrfs_del_items(trans
, root
, path
,
2792 btrfs_release_path(root
, path
);
2793 if (found_type
== BTRFS_INODE_ITEM_KEY
)
2800 if (pending_del_nr
) {
2801 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
2804 btrfs_free_path(path
);
2809 * taken from block_truncate_page, but does cow as it zeros out
2810 * any bytes left in the last page in the file.
2812 static int btrfs_truncate_page(struct address_space
*mapping
, loff_t from
)
2814 struct inode
*inode
= mapping
->host
;
2815 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2816 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2817 struct btrfs_ordered_extent
*ordered
;
2819 u32 blocksize
= root
->sectorsize
;
2820 pgoff_t index
= from
>> PAGE_CACHE_SHIFT
;
2821 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
2827 if ((offset
& (blocksize
- 1)) == 0)
2832 page
= grab_cache_page(mapping
, index
);
2836 page_start
= page_offset(page
);
2837 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
2839 if (!PageUptodate(page
)) {
2840 ret
= btrfs_readpage(NULL
, page
);
2842 if (page
->mapping
!= mapping
) {
2844 page_cache_release(page
);
2847 if (!PageUptodate(page
)) {
2852 wait_on_page_writeback(page
);
2854 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2855 set_page_extent_mapped(page
);
2857 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
2859 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2861 page_cache_release(page
);
2862 btrfs_start_ordered_extent(inode
, ordered
, 1);
2863 btrfs_put_ordered_extent(ordered
);
2867 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
2869 if (offset
!= PAGE_CACHE_SIZE
) {
2871 memset(kaddr
+ offset
, 0, PAGE_CACHE_SIZE
- offset
);
2872 flush_dcache_page(page
);
2875 ClearPageChecked(page
);
2876 set_page_dirty(page
);
2877 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
2881 page_cache_release(page
);
2886 int btrfs_cont_expand(struct inode
*inode
, loff_t size
)
2888 struct btrfs_trans_handle
*trans
;
2889 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2890 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2891 struct extent_map
*em
;
2892 u64 mask
= root
->sectorsize
- 1;
2893 u64 hole_start
= (inode
->i_size
+ mask
) & ~mask
;
2894 u64 block_end
= (size
+ mask
) & ~mask
;
2900 if (size
<= hole_start
)
2903 err
= btrfs_check_metadata_free_space(root
);
2907 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
2910 struct btrfs_ordered_extent
*ordered
;
2911 btrfs_wait_ordered_range(inode
, hole_start
,
2912 block_end
- hole_start
);
2913 lock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2914 ordered
= btrfs_lookup_ordered_extent(inode
, hole_start
);
2917 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2918 btrfs_put_ordered_extent(ordered
);
2921 trans
= btrfs_start_transaction(root
, 1);
2922 btrfs_set_trans_block_group(trans
, inode
);
2924 cur_offset
= hole_start
;
2926 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
2927 block_end
- cur_offset
, 0);
2928 BUG_ON(IS_ERR(em
) || !em
);
2929 last_byte
= min(extent_map_end(em
), block_end
);
2930 last_byte
= (last_byte
+ mask
) & ~mask
;
2931 if (test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
)) {
2933 hole_size
= last_byte
- cur_offset
;
2934 err
= btrfs_drop_extents(trans
, root
, inode
,
2936 cur_offset
+ hole_size
,
2938 cur_offset
, &hint_byte
);
2941 err
= btrfs_insert_file_extent(trans
, root
,
2942 inode
->i_ino
, cur_offset
, 0,
2943 0, hole_size
, 0, hole_size
,
2945 btrfs_drop_extent_cache(inode
, hole_start
,
2948 free_extent_map(em
);
2949 cur_offset
= last_byte
;
2950 if (err
|| cur_offset
>= block_end
)
2954 btrfs_end_transaction(trans
, root
);
2955 unlock_extent(io_tree
, hole_start
, block_end
- 1, GFP_NOFS
);
2959 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
2961 struct inode
*inode
= dentry
->d_inode
;
2964 err
= inode_change_ok(inode
, attr
);
2968 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
2969 if (attr
->ia_size
> inode
->i_size
) {
2970 err
= btrfs_cont_expand(inode
, attr
->ia_size
);
2973 } else if (inode
->i_size
> 0 &&
2974 attr
->ia_size
== 0) {
2976 /* we're truncating a file that used to have good
2977 * data down to zero. Make sure it gets into
2978 * the ordered flush list so that any new writes
2979 * get down to disk quickly.
2981 BTRFS_I(inode
)->ordered_data_close
= 1;
2985 err
= inode_setattr(inode
, attr
);
2987 if (!err
&& ((attr
->ia_valid
& ATTR_MODE
)))
2988 err
= btrfs_acl_chmod(inode
);
2992 void btrfs_delete_inode(struct inode
*inode
)
2994 struct btrfs_trans_handle
*trans
;
2995 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2999 truncate_inode_pages(&inode
->i_data
, 0);
3000 if (is_bad_inode(inode
)) {
3001 btrfs_orphan_del(NULL
, inode
);
3004 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
3006 btrfs_i_size_write(inode
, 0);
3007 trans
= btrfs_join_transaction(root
, 1);
3009 btrfs_set_trans_block_group(trans
, inode
);
3010 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
, 0);
3012 btrfs_orphan_del(NULL
, inode
);
3013 goto no_delete_lock
;
3016 btrfs_orphan_del(trans
, inode
);
3018 nr
= trans
->blocks_used
;
3021 btrfs_end_transaction(trans
, root
);
3022 btrfs_btree_balance_dirty(root
, nr
);
3026 nr
= trans
->blocks_used
;
3027 btrfs_end_transaction(trans
, root
);
3028 btrfs_btree_balance_dirty(root
, nr
);
3034 * this returns the key found in the dir entry in the location pointer.
3035 * If no dir entries were found, location->objectid is 0.
3037 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
3038 struct btrfs_key
*location
)
3040 const char *name
= dentry
->d_name
.name
;
3041 int namelen
= dentry
->d_name
.len
;
3042 struct btrfs_dir_item
*di
;
3043 struct btrfs_path
*path
;
3044 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3047 path
= btrfs_alloc_path();
3050 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir
->i_ino
, name
,
3055 if (!di
|| IS_ERR(di
))
3058 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
3060 btrfs_free_path(path
);
3063 location
->objectid
= 0;
3068 * when we hit a tree root in a directory, the btrfs part of the inode
3069 * needs to be changed to reflect the root directory of the tree root. This
3070 * is kind of like crossing a mount point.
3072 static int fixup_tree_root_location(struct btrfs_root
*root
,
3073 struct btrfs_key
*location
,
3074 struct btrfs_root
**sub_root
,
3075 struct dentry
*dentry
)
3077 struct btrfs_root_item
*ri
;
3079 if (btrfs_key_type(location
) != BTRFS_ROOT_ITEM_KEY
)
3081 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
3084 *sub_root
= btrfs_read_fs_root(root
->fs_info
, location
,
3085 dentry
->d_name
.name
,
3086 dentry
->d_name
.len
);
3087 if (IS_ERR(*sub_root
))
3088 return PTR_ERR(*sub_root
);
3090 ri
= &(*sub_root
)->root_item
;
3091 location
->objectid
= btrfs_root_dirid(ri
);
3092 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3093 location
->offset
= 0;
3098 static void inode_tree_add(struct inode
*inode
)
3100 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3101 struct btrfs_inode
*entry
;
3102 struct rb_node
**p
= &root
->inode_tree
.rb_node
;
3103 struct rb_node
*parent
= NULL
;
3105 spin_lock(&root
->inode_lock
);
3108 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
3110 if (inode
->i_ino
< entry
->vfs_inode
.i_ino
)
3112 else if (inode
->i_ino
> entry
->vfs_inode
.i_ino
)
3113 p
= &(*p
)->rb_right
;
3115 WARN_ON(!(entry
->vfs_inode
.i_state
&
3116 (I_WILL_FREE
| I_FREEING
| I_CLEAR
)));
3120 rb_link_node(&BTRFS_I(inode
)->rb_node
, parent
, p
);
3121 rb_insert_color(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3122 spin_unlock(&root
->inode_lock
);
3125 static void inode_tree_del(struct inode
*inode
)
3127 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3129 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
3130 spin_lock(&root
->inode_lock
);
3131 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
3132 spin_unlock(&root
->inode_lock
);
3133 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3137 static noinline
void init_btrfs_i(struct inode
*inode
)
3139 struct btrfs_inode
*bi
= BTRFS_I(inode
);
3144 bi
->logged_trans
= 0;
3145 bi
->delalloc_bytes
= 0;
3146 bi
->reserved_bytes
= 0;
3147 bi
->disk_i_size
= 0;
3149 bi
->index_cnt
= (u64
)-1;
3150 bi
->last_unlink_trans
= 0;
3151 bi
->ordered_data_close
= 0;
3152 extent_map_tree_init(&BTRFS_I(inode
)->extent_tree
, GFP_NOFS
);
3153 extent_io_tree_init(&BTRFS_I(inode
)->io_tree
,
3154 inode
->i_mapping
, GFP_NOFS
);
3155 extent_io_tree_init(&BTRFS_I(inode
)->io_failure_tree
,
3156 inode
->i_mapping
, GFP_NOFS
);
3157 INIT_LIST_HEAD(&BTRFS_I(inode
)->delalloc_inodes
);
3158 INIT_LIST_HEAD(&BTRFS_I(inode
)->ordered_operations
);
3159 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
3160 btrfs_ordered_inode_tree_init(&BTRFS_I(inode
)->ordered_tree
);
3161 mutex_init(&BTRFS_I(inode
)->extent_mutex
);
3162 mutex_init(&BTRFS_I(inode
)->log_mutex
);
3165 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
3167 struct btrfs_iget_args
*args
= p
;
3168 inode
->i_ino
= args
->ino
;
3169 init_btrfs_i(inode
);
3170 BTRFS_I(inode
)->root
= args
->root
;
3171 btrfs_set_inode_space_info(args
->root
, inode
);
3175 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
3177 struct btrfs_iget_args
*args
= opaque
;
3178 return args
->ino
== inode
->i_ino
&&
3179 args
->root
== BTRFS_I(inode
)->root
;
3182 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
3184 struct btrfs_root
*root
)
3186 struct inode
*inode
;
3187 struct btrfs_iget_args args
;
3188 args
.ino
= objectid
;
3191 inode
= iget5_locked(s
, objectid
, btrfs_find_actor
,
3192 btrfs_init_locked_inode
,
3197 /* Get an inode object given its location and corresponding root.
3198 * Returns in *is_new if the inode was read from disk
3200 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
3201 struct btrfs_root
*root
)
3203 struct inode
*inode
;
3205 inode
= btrfs_iget_locked(s
, location
->objectid
, root
);
3207 return ERR_PTR(-ENOMEM
);
3209 if (inode
->i_state
& I_NEW
) {
3210 BTRFS_I(inode
)->root
= root
;
3211 memcpy(&BTRFS_I(inode
)->location
, location
, sizeof(*location
));
3212 btrfs_read_locked_inode(inode
);
3214 inode_tree_add(inode
);
3215 unlock_new_inode(inode
);
3221 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
3223 struct inode
*inode
;
3224 struct btrfs_inode
*bi
= BTRFS_I(dir
);
3225 struct btrfs_root
*root
= bi
->root
;
3226 struct btrfs_root
*sub_root
= root
;
3227 struct btrfs_key location
;
3230 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3231 return ERR_PTR(-ENAMETOOLONG
);
3233 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
3236 return ERR_PTR(ret
);
3239 if (location
.objectid
) {
3240 ret
= fixup_tree_root_location(root
, &location
, &sub_root
,
3243 return ERR_PTR(ret
);
3245 return ERR_PTR(-ENOENT
);
3246 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
);
3248 return ERR_CAST(inode
);
3253 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
3254 struct nameidata
*nd
)
3256 struct inode
*inode
;
3258 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
3259 return ERR_PTR(-ENAMETOOLONG
);
3261 inode
= btrfs_lookup_dentry(dir
, dentry
);
3263 return ERR_CAST(inode
);
3265 return d_splice_alias(inode
, dentry
);
3268 static unsigned char btrfs_filetype_table
[] = {
3269 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
3272 static int btrfs_real_readdir(struct file
*filp
, void *dirent
,
3275 struct inode
*inode
= filp
->f_dentry
->d_inode
;
3276 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3277 struct btrfs_item
*item
;
3278 struct btrfs_dir_item
*di
;
3279 struct btrfs_key key
;
3280 struct btrfs_key found_key
;
3281 struct btrfs_path
*path
;
3284 struct extent_buffer
*leaf
;
3287 unsigned char d_type
;
3292 int key_type
= BTRFS_DIR_INDEX_KEY
;
3297 /* FIXME, use a real flag for deciding about the key type */
3298 if (root
->fs_info
->tree_root
== root
)
3299 key_type
= BTRFS_DIR_ITEM_KEY
;
3301 /* special case for "." */
3302 if (filp
->f_pos
== 0) {
3303 over
= filldir(dirent
, ".", 1,
3310 /* special case for .., just use the back ref */
3311 if (filp
->f_pos
== 1) {
3312 u64 pino
= parent_ino(filp
->f_path
.dentry
);
3313 over
= filldir(dirent
, "..", 2,
3319 path
= btrfs_alloc_path();
3322 btrfs_set_key_type(&key
, key_type
);
3323 key
.offset
= filp
->f_pos
;
3324 key
.objectid
= inode
->i_ino
;
3326 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3332 leaf
= path
->nodes
[0];
3333 nritems
= btrfs_header_nritems(leaf
);
3334 slot
= path
->slots
[0];
3335 if (advance
|| slot
>= nritems
) {
3336 if (slot
>= nritems
- 1) {
3337 ret
= btrfs_next_leaf(root
, path
);
3340 leaf
= path
->nodes
[0];
3341 nritems
= btrfs_header_nritems(leaf
);
3342 slot
= path
->slots
[0];
3350 item
= btrfs_item_nr(leaf
, slot
);
3351 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3353 if (found_key
.objectid
!= key
.objectid
)
3355 if (btrfs_key_type(&found_key
) != key_type
)
3357 if (found_key
.offset
< filp
->f_pos
)
3360 filp
->f_pos
= found_key
.offset
;
3362 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
3364 di_total
= btrfs_item_size(leaf
, item
);
3366 while (di_cur
< di_total
) {
3367 struct btrfs_key location
;
3369 name_len
= btrfs_dir_name_len(leaf
, di
);
3370 if (name_len
<= sizeof(tmp_name
)) {
3371 name_ptr
= tmp_name
;
3373 name_ptr
= kmalloc(name_len
, GFP_NOFS
);
3379 read_extent_buffer(leaf
, name_ptr
,
3380 (unsigned long)(di
+ 1), name_len
);
3382 d_type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
3383 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
3385 /* is this a reference to our own snapshot? If so
3388 if (location
.type
== BTRFS_ROOT_ITEM_KEY
&&
3389 location
.objectid
== root
->root_key
.objectid
) {
3393 over
= filldir(dirent
, name_ptr
, name_len
,
3394 found_key
.offset
, location
.objectid
,
3398 if (name_ptr
!= tmp_name
)
3403 di_len
= btrfs_dir_name_len(leaf
, di
) +
3404 btrfs_dir_data_len(leaf
, di
) + sizeof(*di
);
3406 di
= (struct btrfs_dir_item
*)((char *)di
+ di_len
);
3410 /* Reached end of directory/root. Bump pos past the last item. */
3411 if (key_type
== BTRFS_DIR_INDEX_KEY
)
3412 filp
->f_pos
= INT_LIMIT(off_t
);
3418 btrfs_free_path(path
);
3422 int btrfs_write_inode(struct inode
*inode
, int wait
)
3424 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3425 struct btrfs_trans_handle
*trans
;
3428 if (root
->fs_info
->btree_inode
== inode
)
3432 trans
= btrfs_join_transaction(root
, 1);
3433 btrfs_set_trans_block_group(trans
, inode
);
3434 ret
= btrfs_commit_transaction(trans
, root
);
3440 * This is somewhat expensive, updating the tree every time the
3441 * inode changes. But, it is most likely to find the inode in cache.
3442 * FIXME, needs more benchmarking...there are no reasons other than performance
3443 * to keep or drop this code.
3445 void btrfs_dirty_inode(struct inode
*inode
)
3447 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3448 struct btrfs_trans_handle
*trans
;
3450 trans
= btrfs_join_transaction(root
, 1);
3451 btrfs_set_trans_block_group(trans
, inode
);
3452 btrfs_update_inode(trans
, root
, inode
);
3453 btrfs_end_transaction(trans
, root
);
3457 * find the highest existing sequence number in a directory
3458 * and then set the in-memory index_cnt variable to reflect
3459 * free sequence numbers
3461 static int btrfs_set_inode_index_count(struct inode
*inode
)
3463 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3464 struct btrfs_key key
, found_key
;
3465 struct btrfs_path
*path
;
3466 struct extent_buffer
*leaf
;
3469 key
.objectid
= inode
->i_ino
;
3470 btrfs_set_key_type(&key
, BTRFS_DIR_INDEX_KEY
);
3471 key
.offset
= (u64
)-1;
3473 path
= btrfs_alloc_path();
3477 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3480 /* FIXME: we should be able to handle this */
3486 * MAGIC NUMBER EXPLANATION:
3487 * since we search a directory based on f_pos we have to start at 2
3488 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3489 * else has to start at 2
3491 if (path
->slots
[0] == 0) {
3492 BTRFS_I(inode
)->index_cnt
= 2;
3498 leaf
= path
->nodes
[0];
3499 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3501 if (found_key
.objectid
!= inode
->i_ino
||
3502 btrfs_key_type(&found_key
) != BTRFS_DIR_INDEX_KEY
) {
3503 BTRFS_I(inode
)->index_cnt
= 2;
3507 BTRFS_I(inode
)->index_cnt
= found_key
.offset
+ 1;
3509 btrfs_free_path(path
);
3514 * helper to find a free sequence number in a given directory. This current
3515 * code is very simple, later versions will do smarter things in the btree
3517 int btrfs_set_inode_index(struct inode
*dir
, u64
*index
)
3521 if (BTRFS_I(dir
)->index_cnt
== (u64
)-1) {
3522 ret
= btrfs_set_inode_index_count(dir
);
3527 *index
= BTRFS_I(dir
)->index_cnt
;
3528 BTRFS_I(dir
)->index_cnt
++;
3533 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
3534 struct btrfs_root
*root
,
3536 const char *name
, int name_len
,
3537 u64 ref_objectid
, u64 objectid
,
3538 u64 alloc_hint
, int mode
, u64
*index
)
3540 struct inode
*inode
;
3541 struct btrfs_inode_item
*inode_item
;
3542 struct btrfs_key
*location
;
3543 struct btrfs_path
*path
;
3544 struct btrfs_inode_ref
*ref
;
3545 struct btrfs_key key
[2];
3551 path
= btrfs_alloc_path();
3554 inode
= new_inode(root
->fs_info
->sb
);
3556 return ERR_PTR(-ENOMEM
);
3559 ret
= btrfs_set_inode_index(dir
, index
);
3562 return ERR_PTR(ret
);
3566 * index_cnt is ignored for everything but a dir,
3567 * btrfs_get_inode_index_count has an explanation for the magic
3570 init_btrfs_i(inode
);
3571 BTRFS_I(inode
)->index_cnt
= 2;
3572 BTRFS_I(inode
)->root
= root
;
3573 BTRFS_I(inode
)->generation
= trans
->transid
;
3574 btrfs_set_inode_space_info(root
, inode
);
3580 BTRFS_I(inode
)->block_group
=
3581 btrfs_find_block_group(root
, 0, alloc_hint
, owner
);
3583 key
[0].objectid
= objectid
;
3584 btrfs_set_key_type(&key
[0], BTRFS_INODE_ITEM_KEY
);
3587 key
[1].objectid
= objectid
;
3588 btrfs_set_key_type(&key
[1], BTRFS_INODE_REF_KEY
);
3589 key
[1].offset
= ref_objectid
;
3591 sizes
[0] = sizeof(struct btrfs_inode_item
);
3592 sizes
[1] = name_len
+ sizeof(*ref
);
3594 path
->leave_spinning
= 1;
3595 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, 2);
3599 if (objectid
> root
->highest_inode
)
3600 root
->highest_inode
= objectid
;
3602 inode
->i_uid
= current_fsuid();
3604 if (dir
&& (dir
->i_mode
& S_ISGID
)) {
3605 inode
->i_gid
= dir
->i_gid
;
3609 inode
->i_gid
= current_fsgid();
3611 inode
->i_mode
= mode
;
3612 inode
->i_ino
= objectid
;
3613 inode_set_bytes(inode
, 0);
3614 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= CURRENT_TIME
;
3615 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3616 struct btrfs_inode_item
);
3617 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
3619 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
3620 struct btrfs_inode_ref
);
3621 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
3622 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
3623 ptr
= (unsigned long)(ref
+ 1);
3624 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
3626 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3627 btrfs_free_path(path
);
3629 location
= &BTRFS_I(inode
)->location
;
3630 location
->objectid
= objectid
;
3631 location
->offset
= 0;
3632 btrfs_set_key_type(location
, BTRFS_INODE_ITEM_KEY
);
3634 btrfs_inherit_iflags(inode
, dir
);
3636 if ((mode
& S_IFREG
)) {
3637 if (btrfs_test_opt(root
, NODATASUM
))
3638 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
3639 if (btrfs_test_opt(root
, NODATACOW
))
3640 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
3643 insert_inode_hash(inode
);
3644 inode_tree_add(inode
);
3648 BTRFS_I(dir
)->index_cnt
--;
3649 btrfs_free_path(path
);
3651 return ERR_PTR(ret
);
3654 static inline u8
btrfs_inode_type(struct inode
*inode
)
3656 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
3660 * utility function to add 'inode' into 'parent_inode' with
3661 * a give name and a given sequence number.
3662 * if 'add_backref' is true, also insert a backref from the
3663 * inode to the parent directory.
3665 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
3666 struct inode
*parent_inode
, struct inode
*inode
,
3667 const char *name
, int name_len
, int add_backref
, u64 index
)
3670 struct btrfs_key key
;
3671 struct btrfs_root
*root
= BTRFS_I(parent_inode
)->root
;
3673 key
.objectid
= inode
->i_ino
;
3674 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
3677 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
3678 parent_inode
->i_ino
,
3679 &key
, btrfs_inode_type(inode
),
3683 ret
= btrfs_insert_inode_ref(trans
, root
,
3686 parent_inode
->i_ino
,
3689 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
3691 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
3692 ret
= btrfs_update_inode(trans
, root
, parent_inode
);
3697 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
3698 struct dentry
*dentry
, struct inode
*inode
,
3699 int backref
, u64 index
)
3701 int err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3702 inode
, dentry
->d_name
.name
,
3703 dentry
->d_name
.len
, backref
, index
);
3705 d_instantiate(dentry
, inode
);
3713 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
3714 int mode
, dev_t rdev
)
3716 struct btrfs_trans_handle
*trans
;
3717 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3718 struct inode
*inode
= NULL
;
3722 unsigned long nr
= 0;
3725 if (!new_valid_dev(rdev
))
3728 err
= btrfs_check_metadata_free_space(root
);
3732 trans
= btrfs_start_transaction(root
, 1);
3733 btrfs_set_trans_block_group(trans
, dir
);
3735 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3741 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3743 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3744 BTRFS_I(dir
)->block_group
, mode
, &index
);
3745 err
= PTR_ERR(inode
);
3749 err
= btrfs_init_inode_security(inode
, dir
);
3755 btrfs_set_trans_block_group(trans
, inode
);
3756 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3760 inode
->i_op
= &btrfs_special_inode_operations
;
3761 init_special_inode(inode
, inode
->i_mode
, rdev
);
3762 btrfs_update_inode(trans
, root
, inode
);
3764 btrfs_update_inode_block_group(trans
, inode
);
3765 btrfs_update_inode_block_group(trans
, dir
);
3767 nr
= trans
->blocks_used
;
3768 btrfs_end_transaction_throttle(trans
, root
);
3771 inode_dec_link_count(inode
);
3774 btrfs_btree_balance_dirty(root
, nr
);
3778 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
3779 int mode
, struct nameidata
*nd
)
3781 struct btrfs_trans_handle
*trans
;
3782 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3783 struct inode
*inode
= NULL
;
3786 unsigned long nr
= 0;
3790 err
= btrfs_check_metadata_free_space(root
);
3793 trans
= btrfs_start_transaction(root
, 1);
3794 btrfs_set_trans_block_group(trans
, dir
);
3796 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3802 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3804 dentry
->d_parent
->d_inode
->i_ino
,
3805 objectid
, BTRFS_I(dir
)->block_group
, mode
,
3807 err
= PTR_ERR(inode
);
3811 err
= btrfs_init_inode_security(inode
, dir
);
3817 btrfs_set_trans_block_group(trans
, inode
);
3818 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
3822 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3823 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
3824 inode
->i_fop
= &btrfs_file_operations
;
3825 inode
->i_op
= &btrfs_file_inode_operations
;
3826 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3828 btrfs_update_inode_block_group(trans
, inode
);
3829 btrfs_update_inode_block_group(trans
, dir
);
3831 nr
= trans
->blocks_used
;
3832 btrfs_end_transaction_throttle(trans
, root
);
3835 inode_dec_link_count(inode
);
3838 btrfs_btree_balance_dirty(root
, nr
);
3842 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
3843 struct dentry
*dentry
)
3845 struct btrfs_trans_handle
*trans
;
3846 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3847 struct inode
*inode
= old_dentry
->d_inode
;
3849 unsigned long nr
= 0;
3853 if (inode
->i_nlink
== 0)
3856 btrfs_inc_nlink(inode
);
3857 err
= btrfs_check_metadata_free_space(root
);
3860 err
= btrfs_set_inode_index(dir
, &index
);
3864 trans
= btrfs_start_transaction(root
, 1);
3866 btrfs_set_trans_block_group(trans
, dir
);
3867 atomic_inc(&inode
->i_count
);
3869 err
= btrfs_add_nondir(trans
, dentry
, inode
, 1, index
);
3874 btrfs_update_inode_block_group(trans
, dir
);
3875 err
= btrfs_update_inode(trans
, root
, inode
);
3880 nr
= trans
->blocks_used
;
3882 btrfs_log_new_name(trans
, inode
, NULL
, dentry
->d_parent
);
3883 btrfs_end_transaction_throttle(trans
, root
);
3886 inode_dec_link_count(inode
);
3889 btrfs_btree_balance_dirty(root
, nr
);
3893 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3895 struct inode
*inode
= NULL
;
3896 struct btrfs_trans_handle
*trans
;
3897 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
3899 int drop_on_err
= 0;
3902 unsigned long nr
= 1;
3904 err
= btrfs_check_metadata_free_space(root
);
3908 trans
= btrfs_start_transaction(root
, 1);
3909 btrfs_set_trans_block_group(trans
, dir
);
3911 if (IS_ERR(trans
)) {
3912 err
= PTR_ERR(trans
);
3916 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
3922 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
3924 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
3925 BTRFS_I(dir
)->block_group
, S_IFDIR
| mode
,
3927 if (IS_ERR(inode
)) {
3928 err
= PTR_ERR(inode
);
3934 err
= btrfs_init_inode_security(inode
, dir
);
3938 inode
->i_op
= &btrfs_dir_inode_operations
;
3939 inode
->i_fop
= &btrfs_dir_file_operations
;
3940 btrfs_set_trans_block_group(trans
, inode
);
3942 btrfs_i_size_write(inode
, 0);
3943 err
= btrfs_update_inode(trans
, root
, inode
);
3947 err
= btrfs_add_link(trans
, dentry
->d_parent
->d_inode
,
3948 inode
, dentry
->d_name
.name
,
3949 dentry
->d_name
.len
, 0, index
);
3953 d_instantiate(dentry
, inode
);
3955 btrfs_update_inode_block_group(trans
, inode
);
3956 btrfs_update_inode_block_group(trans
, dir
);
3959 nr
= trans
->blocks_used
;
3960 btrfs_end_transaction_throttle(trans
, root
);
3965 btrfs_btree_balance_dirty(root
, nr
);
3969 /* helper for btfs_get_extent. Given an existing extent in the tree,
3970 * and an extent that you want to insert, deal with overlap and insert
3971 * the new extent into the tree.
3973 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
3974 struct extent_map
*existing
,
3975 struct extent_map
*em
,
3976 u64 map_start
, u64 map_len
)
3980 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
3981 start_diff
= map_start
- em
->start
;
3982 em
->start
= map_start
;
3984 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
3985 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
3986 em
->block_start
+= start_diff
;
3987 em
->block_len
-= start_diff
;
3989 return add_extent_mapping(em_tree
, em
);
3992 static noinline
int uncompress_inline(struct btrfs_path
*path
,
3993 struct inode
*inode
, struct page
*page
,
3994 size_t pg_offset
, u64 extent_offset
,
3995 struct btrfs_file_extent_item
*item
)
3998 struct extent_buffer
*leaf
= path
->nodes
[0];
4001 unsigned long inline_size
;
4004 WARN_ON(pg_offset
!= 0);
4005 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
4006 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
4007 btrfs_item_nr(leaf
, path
->slots
[0]));
4008 tmp
= kmalloc(inline_size
, GFP_NOFS
);
4009 ptr
= btrfs_file_extent_inline_start(item
);
4011 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
4013 max_size
= min_t(unsigned long, PAGE_CACHE_SIZE
, max_size
);
4014 ret
= btrfs_zlib_decompress(tmp
, page
, extent_offset
,
4015 inline_size
, max_size
);
4017 char *kaddr
= kmap_atomic(page
, KM_USER0
);
4018 unsigned long copy_size
= min_t(u64
,
4019 PAGE_CACHE_SIZE
- pg_offset
,
4020 max_size
- extent_offset
);
4021 memset(kaddr
+ pg_offset
, 0, copy_size
);
4022 kunmap_atomic(kaddr
, KM_USER0
);
4029 * a bit scary, this does extent mapping from logical file offset to the disk.
4030 * the ugly parts come from merging extents from the disk with the in-ram
4031 * representation. This gets more complex because of the data=ordered code,
4032 * where the in-ram extents might be locked pending data=ordered completion.
4034 * This also copies inline extents directly into the page.
4037 struct extent_map
*btrfs_get_extent(struct inode
*inode
, struct page
*page
,
4038 size_t pg_offset
, u64 start
, u64 len
,
4044 u64 extent_start
= 0;
4046 u64 objectid
= inode
->i_ino
;
4048 struct btrfs_path
*path
= NULL
;
4049 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4050 struct btrfs_file_extent_item
*item
;
4051 struct extent_buffer
*leaf
;
4052 struct btrfs_key found_key
;
4053 struct extent_map
*em
= NULL
;
4054 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4055 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4056 struct btrfs_trans_handle
*trans
= NULL
;
4060 spin_lock(&em_tree
->lock
);
4061 em
= lookup_extent_mapping(em_tree
, start
, len
);
4063 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4064 spin_unlock(&em_tree
->lock
);
4067 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
4068 free_extent_map(em
);
4069 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
4070 free_extent_map(em
);
4074 em
= alloc_extent_map(GFP_NOFS
);
4079 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
4080 em
->start
= EXTENT_MAP_HOLE
;
4081 em
->orig_start
= EXTENT_MAP_HOLE
;
4083 em
->block_len
= (u64
)-1;
4086 path
= btrfs_alloc_path();
4090 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
4091 objectid
, start
, trans
!= NULL
);
4098 if (path
->slots
[0] == 0)
4103 leaf
= path
->nodes
[0];
4104 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4105 struct btrfs_file_extent_item
);
4106 /* are we inside the extent that was found? */
4107 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4108 found_type
= btrfs_key_type(&found_key
);
4109 if (found_key
.objectid
!= objectid
||
4110 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
4114 found_type
= btrfs_file_extent_type(leaf
, item
);
4115 extent_start
= found_key
.offset
;
4116 compressed
= btrfs_file_extent_compression(leaf
, item
);
4117 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4118 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4119 extent_end
= extent_start
+
4120 btrfs_file_extent_num_bytes(leaf
, item
);
4121 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4123 size
= btrfs_file_extent_inline_len(leaf
, item
);
4124 extent_end
= (extent_start
+ size
+ root
->sectorsize
- 1) &
4125 ~((u64
)root
->sectorsize
- 1);
4128 if (start
>= extent_end
) {
4130 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
4131 ret
= btrfs_next_leaf(root
, path
);
4138 leaf
= path
->nodes
[0];
4140 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4141 if (found_key
.objectid
!= objectid
||
4142 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4144 if (start
+ len
<= found_key
.offset
)
4147 em
->len
= found_key
.offset
- start
;
4151 if (found_type
== BTRFS_FILE_EXTENT_REG
||
4152 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
4153 em
->start
= extent_start
;
4154 em
->len
= extent_end
- extent_start
;
4155 em
->orig_start
= extent_start
-
4156 btrfs_file_extent_offset(leaf
, item
);
4157 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, item
);
4159 em
->block_start
= EXTENT_MAP_HOLE
;
4163 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4164 em
->block_start
= bytenr
;
4165 em
->block_len
= btrfs_file_extent_disk_num_bytes(leaf
,
4168 bytenr
+= btrfs_file_extent_offset(leaf
, item
);
4169 em
->block_start
= bytenr
;
4170 em
->block_len
= em
->len
;
4171 if (found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
4172 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
4175 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
4179 size_t extent_offset
;
4182 em
->block_start
= EXTENT_MAP_INLINE
;
4183 if (!page
|| create
) {
4184 em
->start
= extent_start
;
4185 em
->len
= extent_end
- extent_start
;
4189 size
= btrfs_file_extent_inline_len(leaf
, item
);
4190 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
4191 copy_size
= min_t(u64
, PAGE_CACHE_SIZE
- pg_offset
,
4192 size
- extent_offset
);
4193 em
->start
= extent_start
+ extent_offset
;
4194 em
->len
= (copy_size
+ root
->sectorsize
- 1) &
4195 ~((u64
)root
->sectorsize
- 1);
4196 em
->orig_start
= EXTENT_MAP_INLINE
;
4198 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
4199 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
4200 if (create
== 0 && !PageUptodate(page
)) {
4201 if (btrfs_file_extent_compression(leaf
, item
) ==
4202 BTRFS_COMPRESS_ZLIB
) {
4203 ret
= uncompress_inline(path
, inode
, page
,
4205 extent_offset
, item
);
4209 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4213 flush_dcache_page(page
);
4214 } else if (create
&& PageUptodate(page
)) {
4217 free_extent_map(em
);
4219 btrfs_release_path(root
, path
);
4220 trans
= btrfs_join_transaction(root
, 1);
4224 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
4227 btrfs_mark_buffer_dirty(leaf
);
4229 set_extent_uptodate(io_tree
, em
->start
,
4230 extent_map_end(em
) - 1, GFP_NOFS
);
4233 printk(KERN_ERR
"btrfs unknown found_type %d\n", found_type
);
4240 em
->block_start
= EXTENT_MAP_HOLE
;
4241 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
4243 btrfs_release_path(root
, path
);
4244 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
4245 printk(KERN_ERR
"Btrfs: bad extent! em: [%llu %llu] passed "
4246 "[%llu %llu]\n", (unsigned long long)em
->start
,
4247 (unsigned long long)em
->len
,
4248 (unsigned long long)start
,
4249 (unsigned long long)len
);
4255 spin_lock(&em_tree
->lock
);
4256 ret
= add_extent_mapping(em_tree
, em
);
4257 /* it is possible that someone inserted the extent into the tree
4258 * while we had the lock dropped. It is also possible that
4259 * an overlapping map exists in the tree
4261 if (ret
== -EEXIST
) {
4262 struct extent_map
*existing
;
4266 existing
= lookup_extent_mapping(em_tree
, start
, len
);
4267 if (existing
&& (existing
->start
> start
||
4268 existing
->start
+ existing
->len
<= start
)) {
4269 free_extent_map(existing
);
4273 existing
= lookup_extent_mapping(em_tree
, em
->start
,
4276 err
= merge_extent_mapping(em_tree
, existing
,
4279 free_extent_map(existing
);
4281 free_extent_map(em
);
4286 free_extent_map(em
);
4290 free_extent_map(em
);
4295 spin_unlock(&em_tree
->lock
);
4298 btrfs_free_path(path
);
4300 ret
= btrfs_end_transaction(trans
, root
);
4305 free_extent_map(em
);
4306 return ERR_PTR(err
);
4311 static ssize_t
btrfs_direct_IO(int rw
, struct kiocb
*iocb
,
4312 const struct iovec
*iov
, loff_t offset
,
4313 unsigned long nr_segs
)
4318 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
4319 __u64 start
, __u64 len
)
4321 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent
);
4324 int btrfs_readpage(struct file
*file
, struct page
*page
)
4326 struct extent_io_tree
*tree
;
4327 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4328 return extent_read_full_page(tree
, page
, btrfs_get_extent
);
4331 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
4333 struct extent_io_tree
*tree
;
4336 if (current
->flags
& PF_MEMALLOC
) {
4337 redirty_page_for_writepage(wbc
, page
);
4341 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4342 return extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
4345 int btrfs_writepages(struct address_space
*mapping
,
4346 struct writeback_control
*wbc
)
4348 struct extent_io_tree
*tree
;
4350 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4351 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
4355 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
4356 struct list_head
*pages
, unsigned nr_pages
)
4358 struct extent_io_tree
*tree
;
4359 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
4360 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
4363 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4365 struct extent_io_tree
*tree
;
4366 struct extent_map_tree
*map
;
4369 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4370 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
4371 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
4373 ClearPagePrivate(page
);
4374 set_page_private(page
, 0);
4375 page_cache_release(page
);
4380 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
4382 if (PageWriteback(page
) || PageDirty(page
))
4384 return __btrfs_releasepage(page
, gfp_flags
& GFP_NOFS
);
4387 static void btrfs_invalidatepage(struct page
*page
, unsigned long offset
)
4389 struct extent_io_tree
*tree
;
4390 struct btrfs_ordered_extent
*ordered
;
4391 u64 page_start
= page_offset(page
);
4392 u64 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4394 wait_on_page_writeback(page
);
4395 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
4397 btrfs_releasepage(page
, GFP_NOFS
);
4401 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4402 ordered
= btrfs_lookup_ordered_extent(page
->mapping
->host
,
4406 * IO on this page will never be started, so we need
4407 * to account for any ordered extents now
4409 clear_extent_bit(tree
, page_start
, page_end
,
4410 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4411 EXTENT_LOCKED
, 1, 0, GFP_NOFS
);
4412 btrfs_finish_ordered_io(page
->mapping
->host
,
4413 page_start
, page_end
);
4414 btrfs_put_ordered_extent(ordered
);
4415 lock_extent(tree
, page_start
, page_end
, GFP_NOFS
);
4417 clear_extent_bit(tree
, page_start
, page_end
,
4418 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
4421 __btrfs_releasepage(page
, GFP_NOFS
);
4423 ClearPageChecked(page
);
4424 if (PagePrivate(page
)) {
4425 ClearPagePrivate(page
);
4426 set_page_private(page
, 0);
4427 page_cache_release(page
);
4432 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4433 * called from a page fault handler when a page is first dirtied. Hence we must
4434 * be careful to check for EOF conditions here. We set the page up correctly
4435 * for a written page which means we get ENOSPC checking when writing into
4436 * holes and correct delalloc and unwritten extent mapping on filesystems that
4437 * support these features.
4439 * We are not allowed to take the i_mutex here so we have to play games to
4440 * protect against truncate races as the page could now be beyond EOF. Because
4441 * vmtruncate() writes the inode size before removing pages, once we have the
4442 * page lock we can determine safely if the page is beyond EOF. If it is not
4443 * beyond EOF, then the page is guaranteed safe against truncation until we
4446 int btrfs_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4448 struct page
*page
= vmf
->page
;
4449 struct inode
*inode
= fdentry(vma
->vm_file
)->d_inode
;
4450 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4451 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4452 struct btrfs_ordered_extent
*ordered
;
4454 unsigned long zero_start
;
4460 ret
= btrfs_check_data_free_space(root
, inode
, PAGE_CACHE_SIZE
);
4464 else /* -ENOSPC, -EIO, etc */
4465 ret
= VM_FAULT_SIGBUS
;
4469 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
4472 size
= i_size_read(inode
);
4473 page_start
= page_offset(page
);
4474 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
4476 if ((page
->mapping
!= inode
->i_mapping
) ||
4477 (page_start
>= size
)) {
4478 btrfs_free_reserved_data_space(root
, inode
, PAGE_CACHE_SIZE
);
4479 /* page got truncated out from underneath us */
4482 wait_on_page_writeback(page
);
4484 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4485 set_page_extent_mapped(page
);
4488 * we can't set the delalloc bits if there are pending ordered
4489 * extents. Drop our locks and wait for them to finish
4491 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
4493 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4495 btrfs_start_ordered_extent(inode
, ordered
, 1);
4496 btrfs_put_ordered_extent(ordered
);
4500 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
4503 /* page is wholly or partially inside EOF */
4504 if (page_start
+ PAGE_CACHE_SIZE
> size
)
4505 zero_start
= size
& ~PAGE_CACHE_MASK
;
4507 zero_start
= PAGE_CACHE_SIZE
;
4509 if (zero_start
!= PAGE_CACHE_SIZE
) {
4511 memset(kaddr
+ zero_start
, 0, PAGE_CACHE_SIZE
- zero_start
);
4512 flush_dcache_page(page
);
4515 ClearPageChecked(page
);
4516 set_page_dirty(page
);
4518 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
4519 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
4527 static void btrfs_truncate(struct inode
*inode
)
4529 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4531 struct btrfs_trans_handle
*trans
;
4533 u64 mask
= root
->sectorsize
- 1;
4535 if (!S_ISREG(inode
->i_mode
))
4537 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4540 btrfs_truncate_page(inode
->i_mapping
, inode
->i_size
);
4541 btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
), (u64
)-1);
4543 trans
= btrfs_start_transaction(root
, 1);
4546 * setattr is responsible for setting the ordered_data_close flag,
4547 * but that is only tested during the last file release. That
4548 * could happen well after the next commit, leaving a great big
4549 * window where new writes may get lost if someone chooses to write
4550 * to this file after truncating to zero
4552 * The inode doesn't have any dirty data here, and so if we commit
4553 * this is a noop. If someone immediately starts writing to the inode
4554 * it is very likely we'll catch some of their writes in this
4555 * transaction, and the commit will find this file on the ordered
4556 * data list with good things to send down.
4558 * This is a best effort solution, there is still a window where
4559 * using truncate to replace the contents of the file will
4560 * end up with a zero length file after a crash.
4562 if (inode
->i_size
== 0 && BTRFS_I(inode
)->ordered_data_close
)
4563 btrfs_add_ordered_operation(trans
, root
, inode
);
4565 btrfs_set_trans_block_group(trans
, inode
);
4566 btrfs_i_size_write(inode
, inode
->i_size
);
4568 ret
= btrfs_orphan_add(trans
, inode
);
4571 /* FIXME, add redo link to tree so we don't leak on crash */
4572 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, inode
->i_size
,
4573 BTRFS_EXTENT_DATA_KEY
);
4574 btrfs_update_inode(trans
, root
, inode
);
4576 ret
= btrfs_orphan_del(trans
, inode
);
4580 nr
= trans
->blocks_used
;
4581 ret
= btrfs_end_transaction_throttle(trans
, root
);
4583 btrfs_btree_balance_dirty(root
, nr
);
4587 * create a new subvolume directory/inode (helper for the ioctl).
4589 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
4590 struct btrfs_root
*new_root
, struct dentry
*dentry
,
4591 u64 new_dirid
, u64 alloc_hint
)
4593 struct inode
*inode
;
4597 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2, new_dirid
,
4598 new_dirid
, alloc_hint
, S_IFDIR
| 0700, &index
);
4600 return PTR_ERR(inode
);
4601 inode
->i_op
= &btrfs_dir_inode_operations
;
4602 inode
->i_fop
= &btrfs_dir_file_operations
;
4605 btrfs_i_size_write(inode
, 0);
4607 error
= btrfs_update_inode(trans
, new_root
, inode
);
4611 d_instantiate(dentry
, inode
);
4615 /* helper function for file defrag and space balancing. This
4616 * forces readahead on a given range of bytes in an inode
4618 unsigned long btrfs_force_ra(struct address_space
*mapping
,
4619 struct file_ra_state
*ra
, struct file
*file
,
4620 pgoff_t offset
, pgoff_t last_index
)
4622 pgoff_t req_size
= last_index
- offset
+ 1;
4624 page_cache_sync_readahead(mapping
, ra
, file
, offset
, req_size
);
4625 return offset
+ req_size
;
4628 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
4630 struct btrfs_inode
*ei
;
4632 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
4636 ei
->logged_trans
= 0;
4637 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
4638 INIT_LIST_HEAD(&ei
->i_orphan
);
4639 INIT_LIST_HEAD(&ei
->ordered_operations
);
4640 return &ei
->vfs_inode
;
4643 void btrfs_destroy_inode(struct inode
*inode
)
4645 struct btrfs_ordered_extent
*ordered
;
4646 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4648 WARN_ON(!list_empty(&inode
->i_dentry
));
4649 WARN_ON(inode
->i_data
.nrpages
);
4652 * Make sure we're properly removed from the ordered operation
4656 if (!list_empty(&BTRFS_I(inode
)->ordered_operations
)) {
4657 spin_lock(&root
->fs_info
->ordered_extent_lock
);
4658 list_del_init(&BTRFS_I(inode
)->ordered_operations
);
4659 spin_unlock(&root
->fs_info
->ordered_extent_lock
);
4662 spin_lock(&root
->list_lock
);
4663 if (!list_empty(&BTRFS_I(inode
)->i_orphan
)) {
4664 printk(KERN_ERR
"BTRFS: inode %lu: inode still on the orphan"
4665 " list\n", inode
->i_ino
);
4668 spin_unlock(&root
->list_lock
);
4671 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
4675 printk(KERN_ERR
"btrfs found ordered "
4676 "extent %llu %llu on inode cleanup\n",
4677 (unsigned long long)ordered
->file_offset
,
4678 (unsigned long long)ordered
->len
);
4679 btrfs_remove_ordered_extent(inode
, ordered
);
4680 btrfs_put_ordered_extent(ordered
);
4681 btrfs_put_ordered_extent(ordered
);
4684 inode_tree_del(inode
);
4685 btrfs_drop_extent_cache(inode
, 0, (u64
)-1, 0);
4686 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
4689 static void init_once(void *foo
)
4691 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
4693 inode_init_once(&ei
->vfs_inode
);
4696 void btrfs_destroy_cachep(void)
4698 if (btrfs_inode_cachep
)
4699 kmem_cache_destroy(btrfs_inode_cachep
);
4700 if (btrfs_trans_handle_cachep
)
4701 kmem_cache_destroy(btrfs_trans_handle_cachep
);
4702 if (btrfs_transaction_cachep
)
4703 kmem_cache_destroy(btrfs_transaction_cachep
);
4704 if (btrfs_path_cachep
)
4705 kmem_cache_destroy(btrfs_path_cachep
);
4708 int btrfs_init_cachep(void)
4710 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode_cache",
4711 sizeof(struct btrfs_inode
), 0,
4712 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, init_once
);
4713 if (!btrfs_inode_cachep
)
4716 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle_cache",
4717 sizeof(struct btrfs_trans_handle
), 0,
4718 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4719 if (!btrfs_trans_handle_cachep
)
4722 btrfs_transaction_cachep
= kmem_cache_create("btrfs_transaction_cache",
4723 sizeof(struct btrfs_transaction
), 0,
4724 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4725 if (!btrfs_transaction_cachep
)
4728 btrfs_path_cachep
= kmem_cache_create("btrfs_path_cache",
4729 sizeof(struct btrfs_path
), 0,
4730 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
4731 if (!btrfs_path_cachep
)
4736 btrfs_destroy_cachep();
4740 static int btrfs_getattr(struct vfsmount
*mnt
,
4741 struct dentry
*dentry
, struct kstat
*stat
)
4743 struct inode
*inode
= dentry
->d_inode
;
4744 generic_fillattr(inode
, stat
);
4745 stat
->dev
= BTRFS_I(inode
)->root
->anon_super
.s_dev
;
4746 stat
->blksize
= PAGE_CACHE_SIZE
;
4747 stat
->blocks
= (inode_get_bytes(inode
) +
4748 BTRFS_I(inode
)->delalloc_bytes
) >> 9;
4752 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
4753 struct inode
*new_dir
, struct dentry
*new_dentry
)
4755 struct btrfs_trans_handle
*trans
;
4756 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
4757 struct inode
*new_inode
= new_dentry
->d_inode
;
4758 struct inode
*old_inode
= old_dentry
->d_inode
;
4759 struct timespec ctime
= CURRENT_TIME
;
4763 /* we're not allowed to rename between subvolumes */
4764 if (BTRFS_I(old_inode
)->root
->root_key
.objectid
!=
4765 BTRFS_I(new_dir
)->root
->root_key
.objectid
)
4768 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
4769 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
) {
4773 /* to rename a snapshot or subvolume, we need to juggle the
4774 * backrefs. This isn't coded yet
4776 if (old_inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
4779 ret
= btrfs_check_metadata_free_space(root
);
4784 * we're using rename to replace one file with another.
4785 * and the replacement file is large. Start IO on it now so
4786 * we don't add too much work to the end of the transaction
4788 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
&&
4789 old_inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
4790 filemap_flush(old_inode
->i_mapping
);
4792 trans
= btrfs_start_transaction(root
, 1);
4795 * make sure the inode gets flushed if it is replacing
4798 if (new_inode
&& new_inode
->i_size
&&
4799 old_inode
&& S_ISREG(old_inode
->i_mode
)) {
4800 btrfs_add_ordered_operation(trans
, root
, old_inode
);
4804 * this is an ugly little race, but the rename is required to make
4805 * sure that if we crash, the inode is either at the old name
4806 * or the new one. pinning the log transaction lets us make sure
4807 * we don't allow a log commit to come in after we unlink the
4808 * name but before we add the new name back in.
4810 btrfs_pin_log_trans(root
);
4812 btrfs_set_trans_block_group(trans
, new_dir
);
4814 btrfs_inc_nlink(old_dentry
->d_inode
);
4815 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
4816 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
4817 old_inode
->i_ctime
= ctime
;
4819 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
4820 btrfs_record_unlink_dir(trans
, old_dir
, old_inode
, 1);
4822 ret
= btrfs_unlink_inode(trans
, root
, old_dir
, old_dentry
->d_inode
,
4823 old_dentry
->d_name
.name
,
4824 old_dentry
->d_name
.len
);
4829 new_inode
->i_ctime
= CURRENT_TIME
;
4830 ret
= btrfs_unlink_inode(trans
, root
, new_dir
,
4831 new_dentry
->d_inode
,
4832 new_dentry
->d_name
.name
,
4833 new_dentry
->d_name
.len
);
4836 if (new_inode
->i_nlink
== 0) {
4837 ret
= btrfs_orphan_add(trans
, new_dentry
->d_inode
);
4843 ret
= btrfs_set_inode_index(new_dir
, &index
);
4847 ret
= btrfs_add_link(trans
, new_dentry
->d_parent
->d_inode
,
4848 old_inode
, new_dentry
->d_name
.name
,
4849 new_dentry
->d_name
.len
, 1, index
);
4853 btrfs_log_new_name(trans
, old_inode
, old_dir
,
4854 new_dentry
->d_parent
);
4857 /* this btrfs_end_log_trans just allows the current
4858 * log-sub transaction to complete
4860 btrfs_end_log_trans(root
);
4861 btrfs_end_transaction_throttle(trans
, root
);
4867 * some fairly slow code that needs optimization. This walks the list
4868 * of all the inodes with pending delalloc and forces them to disk.
4870 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
4872 struct list_head
*head
= &root
->fs_info
->delalloc_inodes
;
4873 struct btrfs_inode
*binode
;
4874 struct inode
*inode
;
4876 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
4879 spin_lock(&root
->fs_info
->delalloc_lock
);
4880 while (!list_empty(head
)) {
4881 binode
= list_entry(head
->next
, struct btrfs_inode
,
4883 inode
= igrab(&binode
->vfs_inode
);
4885 list_del_init(&binode
->delalloc_inodes
);
4886 spin_unlock(&root
->fs_info
->delalloc_lock
);
4888 filemap_flush(inode
->i_mapping
);
4892 spin_lock(&root
->fs_info
->delalloc_lock
);
4894 spin_unlock(&root
->fs_info
->delalloc_lock
);
4896 /* the filemap_flush will queue IO into the worker threads, but
4897 * we have to make sure the IO is actually started and that
4898 * ordered extents get created before we return
4900 atomic_inc(&root
->fs_info
->async_submit_draining
);
4901 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
4902 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
4903 wait_event(root
->fs_info
->async_submit_wait
,
4904 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
4905 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
4907 atomic_dec(&root
->fs_info
->async_submit_draining
);
4911 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
4912 const char *symname
)
4914 struct btrfs_trans_handle
*trans
;
4915 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4916 struct btrfs_path
*path
;
4917 struct btrfs_key key
;
4918 struct inode
*inode
= NULL
;
4926 struct btrfs_file_extent_item
*ei
;
4927 struct extent_buffer
*leaf
;
4928 unsigned long nr
= 0;
4930 name_len
= strlen(symname
) + 1;
4931 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(root
))
4932 return -ENAMETOOLONG
;
4934 err
= btrfs_check_metadata_free_space(root
);
4938 trans
= btrfs_start_transaction(root
, 1);
4939 btrfs_set_trans_block_group(trans
, dir
);
4941 err
= btrfs_find_free_objectid(trans
, root
, dir
->i_ino
, &objectid
);
4947 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
4949 dentry
->d_parent
->d_inode
->i_ino
, objectid
,
4950 BTRFS_I(dir
)->block_group
, S_IFLNK
|S_IRWXUGO
,
4952 err
= PTR_ERR(inode
);
4956 err
= btrfs_init_inode_security(inode
, dir
);
4962 btrfs_set_trans_block_group(trans
, inode
);
4963 err
= btrfs_add_nondir(trans
, dentry
, inode
, 0, index
);
4967 inode
->i_mapping
->a_ops
= &btrfs_aops
;
4968 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
4969 inode
->i_fop
= &btrfs_file_operations
;
4970 inode
->i_op
= &btrfs_file_inode_operations
;
4971 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
4973 btrfs_update_inode_block_group(trans
, inode
);
4974 btrfs_update_inode_block_group(trans
, dir
);
4978 path
= btrfs_alloc_path();
4980 key
.objectid
= inode
->i_ino
;
4982 btrfs_set_key_type(&key
, BTRFS_EXTENT_DATA_KEY
);
4983 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
4984 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
4990 leaf
= path
->nodes
[0];
4991 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
4992 struct btrfs_file_extent_item
);
4993 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
4994 btrfs_set_file_extent_type(leaf
, ei
,
4995 BTRFS_FILE_EXTENT_INLINE
);
4996 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
4997 btrfs_set_file_extent_compression(leaf
, ei
, 0);
4998 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
4999 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
5001 ptr
= btrfs_file_extent_inline_start(ei
);
5002 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
5003 btrfs_mark_buffer_dirty(leaf
);
5004 btrfs_free_path(path
);
5006 inode
->i_op
= &btrfs_symlink_inode_operations
;
5007 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
5008 inode
->i_mapping
->backing_dev_info
= &root
->fs_info
->bdi
;
5009 inode_set_bytes(inode
, name_len
);
5010 btrfs_i_size_write(inode
, name_len
- 1);
5011 err
= btrfs_update_inode(trans
, root
, inode
);
5016 nr
= trans
->blocks_used
;
5017 btrfs_end_transaction_throttle(trans
, root
);
5020 inode_dec_link_count(inode
);
5023 btrfs_btree_balance_dirty(root
, nr
);
5027 static int prealloc_file_range(struct btrfs_trans_handle
*trans
,
5028 struct inode
*inode
, u64 start
, u64 end
,
5029 u64 locked_end
, u64 alloc_hint
, int mode
)
5031 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5032 struct btrfs_key ins
;
5034 u64 cur_offset
= start
;
5035 u64 num_bytes
= end
- start
;
5038 while (num_bytes
> 0) {
5039 alloc_size
= min(num_bytes
, root
->fs_info
->max_extent
);
5040 ret
= btrfs_reserve_extent(trans
, root
, alloc_size
,
5041 root
->sectorsize
, 0, alloc_hint
,
5047 ret
= insert_reserved_file_extent(trans
, inode
,
5048 cur_offset
, ins
.objectid
,
5049 ins
.offset
, ins
.offset
,
5050 ins
.offset
, locked_end
,
5052 BTRFS_FILE_EXTENT_PREALLOC
);
5054 num_bytes
-= ins
.offset
;
5055 cur_offset
+= ins
.offset
;
5056 alloc_hint
= ins
.objectid
+ ins
.offset
;
5059 if (cur_offset
> start
) {
5060 inode
->i_ctime
= CURRENT_TIME
;
5061 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
5062 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
5063 cur_offset
> i_size_read(inode
))
5064 btrfs_i_size_write(inode
, cur_offset
);
5065 ret
= btrfs_update_inode(trans
, root
, inode
);
5072 static long btrfs_fallocate(struct inode
*inode
, int mode
,
5073 loff_t offset
, loff_t len
)
5081 u64 mask
= BTRFS_I(inode
)->root
->sectorsize
- 1;
5082 struct extent_map
*em
;
5083 struct btrfs_trans_handle
*trans
;
5084 struct btrfs_root
*root
;
5087 alloc_start
= offset
& ~mask
;
5088 alloc_end
= (offset
+ len
+ mask
) & ~mask
;
5091 * wait for ordered IO before we have any locks. We'll loop again
5092 * below with the locks held.
5094 btrfs_wait_ordered_range(inode
, alloc_start
, alloc_end
- alloc_start
);
5096 mutex_lock(&inode
->i_mutex
);
5097 if (alloc_start
> inode
->i_size
) {
5098 ret
= btrfs_cont_expand(inode
, alloc_start
);
5103 root
= BTRFS_I(inode
)->root
;
5105 ret
= btrfs_check_data_free_space(root
, inode
,
5106 alloc_end
- alloc_start
);
5110 locked_end
= alloc_end
- 1;
5112 struct btrfs_ordered_extent
*ordered
;
5114 trans
= btrfs_start_transaction(BTRFS_I(inode
)->root
, 1);
5120 /* the extent lock is ordered inside the running
5123 lock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5125 ordered
= btrfs_lookup_first_ordered_extent(inode
,
5128 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
5129 ordered
->file_offset
< alloc_end
) {
5130 btrfs_put_ordered_extent(ordered
);
5131 unlock_extent(&BTRFS_I(inode
)->io_tree
,
5132 alloc_start
, locked_end
, GFP_NOFS
);
5133 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5136 * we can't wait on the range with the transaction
5137 * running or with the extent lock held
5139 btrfs_wait_ordered_range(inode
, alloc_start
,
5140 alloc_end
- alloc_start
);
5143 btrfs_put_ordered_extent(ordered
);
5148 cur_offset
= alloc_start
;
5150 em
= btrfs_get_extent(inode
, NULL
, 0, cur_offset
,
5151 alloc_end
- cur_offset
, 0);
5152 BUG_ON(IS_ERR(em
) || !em
);
5153 last_byte
= min(extent_map_end(em
), alloc_end
);
5154 last_byte
= (last_byte
+ mask
) & ~mask
;
5155 if (em
->block_start
== EXTENT_MAP_HOLE
) {
5156 ret
= prealloc_file_range(trans
, inode
, cur_offset
,
5157 last_byte
, locked_end
+ 1,
5160 free_extent_map(em
);
5164 if (em
->block_start
<= EXTENT_MAP_LAST_BYTE
)
5165 alloc_hint
= em
->block_start
;
5166 free_extent_map(em
);
5168 cur_offset
= last_byte
;
5169 if (cur_offset
>= alloc_end
) {
5174 unlock_extent(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
5177 btrfs_end_transaction(trans
, BTRFS_I(inode
)->root
);
5179 btrfs_free_reserved_data_space(root
, inode
, alloc_end
- alloc_start
);
5181 mutex_unlock(&inode
->i_mutex
);
5185 static int btrfs_set_page_dirty(struct page
*page
)
5187 return __set_page_dirty_nobuffers(page
);
5190 static int btrfs_permission(struct inode
*inode
, int mask
)
5192 if ((BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
) && (mask
& MAY_WRITE
))
5194 return generic_permission(inode
, mask
, btrfs_check_acl
);
5197 static struct inode_operations btrfs_dir_inode_operations
= {
5198 .getattr
= btrfs_getattr
,
5199 .lookup
= btrfs_lookup
,
5200 .create
= btrfs_create
,
5201 .unlink
= btrfs_unlink
,
5203 .mkdir
= btrfs_mkdir
,
5204 .rmdir
= btrfs_rmdir
,
5205 .rename
= btrfs_rename
,
5206 .symlink
= btrfs_symlink
,
5207 .setattr
= btrfs_setattr
,
5208 .mknod
= btrfs_mknod
,
5209 .setxattr
= btrfs_setxattr
,
5210 .getxattr
= btrfs_getxattr
,
5211 .listxattr
= btrfs_listxattr
,
5212 .removexattr
= btrfs_removexattr
,
5213 .permission
= btrfs_permission
,
5215 static struct inode_operations btrfs_dir_ro_inode_operations
= {
5216 .lookup
= btrfs_lookup
,
5217 .permission
= btrfs_permission
,
5219 static struct file_operations btrfs_dir_file_operations
= {
5220 .llseek
= generic_file_llseek
,
5221 .read
= generic_read_dir
,
5222 .readdir
= btrfs_real_readdir
,
5223 .unlocked_ioctl
= btrfs_ioctl
,
5224 #ifdef CONFIG_COMPAT
5225 .compat_ioctl
= btrfs_ioctl
,
5227 .release
= btrfs_release_file
,
5228 .fsync
= btrfs_sync_file
,
5231 static struct extent_io_ops btrfs_extent_io_ops
= {
5232 .fill_delalloc
= run_delalloc_range
,
5233 .submit_bio_hook
= btrfs_submit_bio_hook
,
5234 .merge_bio_hook
= btrfs_merge_bio_hook
,
5235 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
5236 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
5237 .writepage_start_hook
= btrfs_writepage_start_hook
,
5238 .readpage_io_failed_hook
= btrfs_io_failed_hook
,
5239 .set_bit_hook
= btrfs_set_bit_hook
,
5240 .clear_bit_hook
= btrfs_clear_bit_hook
,
5244 * btrfs doesn't support the bmap operation because swapfiles
5245 * use bmap to make a mapping of extents in the file. They assume
5246 * these extents won't change over the life of the file and they
5247 * use the bmap result to do IO directly to the drive.
5249 * the btrfs bmap call would return logical addresses that aren't
5250 * suitable for IO and they also will change frequently as COW
5251 * operations happen. So, swapfile + btrfs == corruption.
5253 * For now we're avoiding this by dropping bmap.
5255 static struct address_space_operations btrfs_aops
= {
5256 .readpage
= btrfs_readpage
,
5257 .writepage
= btrfs_writepage
,
5258 .writepages
= btrfs_writepages
,
5259 .readpages
= btrfs_readpages
,
5260 .sync_page
= block_sync_page
,
5261 .direct_IO
= btrfs_direct_IO
,
5262 .invalidatepage
= btrfs_invalidatepage
,
5263 .releasepage
= btrfs_releasepage
,
5264 .set_page_dirty
= btrfs_set_page_dirty
,
5267 static struct address_space_operations btrfs_symlink_aops
= {
5268 .readpage
= btrfs_readpage
,
5269 .writepage
= btrfs_writepage
,
5270 .invalidatepage
= btrfs_invalidatepage
,
5271 .releasepage
= btrfs_releasepage
,
5274 static struct inode_operations btrfs_file_inode_operations
= {
5275 .truncate
= btrfs_truncate
,
5276 .getattr
= btrfs_getattr
,
5277 .setattr
= btrfs_setattr
,
5278 .setxattr
= btrfs_setxattr
,
5279 .getxattr
= btrfs_getxattr
,
5280 .listxattr
= btrfs_listxattr
,
5281 .removexattr
= btrfs_removexattr
,
5282 .permission
= btrfs_permission
,
5283 .fallocate
= btrfs_fallocate
,
5284 .fiemap
= btrfs_fiemap
,
5286 static struct inode_operations btrfs_special_inode_operations
= {
5287 .getattr
= btrfs_getattr
,
5288 .setattr
= btrfs_setattr
,
5289 .permission
= btrfs_permission
,
5290 .setxattr
= btrfs_setxattr
,
5291 .getxattr
= btrfs_getxattr
,
5292 .listxattr
= btrfs_listxattr
,
5293 .removexattr
= btrfs_removexattr
,
5295 static struct inode_operations btrfs_symlink_inode_operations
= {
5296 .readlink
= generic_readlink
,
5297 .follow_link
= page_follow_link_light
,
5298 .put_link
= page_put_link
,
5299 .permission
= btrfs_permission
,
5300 .setxattr
= btrfs_setxattr
,
5301 .getxattr
= btrfs_getxattr
,
5302 .listxattr
= btrfs_listxattr
,
5303 .removexattr
= btrfs_removexattr
,