mfd: htc-i2cpld depends on GPIOLIB
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / regulator / core.c
blobc7bbe30010f70b3dc69542eb99fe14488cd31f45
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/delay.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/regulator/driver.h>
25 #include <linux/regulator/machine.h>
27 #include "dummy.h"
29 #define REGULATOR_VERSION "0.5"
31 static DEFINE_MUTEX(regulator_list_mutex);
32 static LIST_HEAD(regulator_list);
33 static LIST_HEAD(regulator_map_list);
34 static int has_full_constraints;
37 * struct regulator_map
39 * Used to provide symbolic supply names to devices.
41 struct regulator_map {
42 struct list_head list;
43 const char *dev_name; /* The dev_name() for the consumer */
44 const char *supply;
45 struct regulator_dev *regulator;
49 * struct regulator
51 * One for each consumer device.
53 struct regulator {
54 struct device *dev;
55 struct list_head list;
56 int uA_load;
57 int min_uV;
58 int max_uV;
59 char *supply_name;
60 struct device_attribute dev_attr;
61 struct regulator_dev *rdev;
64 static int _regulator_is_enabled(struct regulator_dev *rdev);
65 static int _regulator_disable(struct regulator_dev *rdev);
66 static int _regulator_get_voltage(struct regulator_dev *rdev);
67 static int _regulator_get_current_limit(struct regulator_dev *rdev);
68 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
69 static void _notifier_call_chain(struct regulator_dev *rdev,
70 unsigned long event, void *data);
72 static const char *rdev_get_name(struct regulator_dev *rdev)
74 if (rdev->constraints && rdev->constraints->name)
75 return rdev->constraints->name;
76 else if (rdev->desc->name)
77 return rdev->desc->name;
78 else
79 return "";
82 /* gets the regulator for a given consumer device */
83 static struct regulator *get_device_regulator(struct device *dev)
85 struct regulator *regulator = NULL;
86 struct regulator_dev *rdev;
88 mutex_lock(&regulator_list_mutex);
89 list_for_each_entry(rdev, &regulator_list, list) {
90 mutex_lock(&rdev->mutex);
91 list_for_each_entry(regulator, &rdev->consumer_list, list) {
92 if (regulator->dev == dev) {
93 mutex_unlock(&rdev->mutex);
94 mutex_unlock(&regulator_list_mutex);
95 return regulator;
98 mutex_unlock(&rdev->mutex);
100 mutex_unlock(&regulator_list_mutex);
101 return NULL;
104 /* Platform voltage constraint check */
105 static int regulator_check_voltage(struct regulator_dev *rdev,
106 int *min_uV, int *max_uV)
108 BUG_ON(*min_uV > *max_uV);
110 if (!rdev->constraints) {
111 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
112 rdev_get_name(rdev));
113 return -ENODEV;
115 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
116 printk(KERN_ERR "%s: operation not allowed for %s\n",
117 __func__, rdev_get_name(rdev));
118 return -EPERM;
121 if (*max_uV > rdev->constraints->max_uV)
122 *max_uV = rdev->constraints->max_uV;
123 if (*min_uV < rdev->constraints->min_uV)
124 *min_uV = rdev->constraints->min_uV;
126 if (*min_uV > *max_uV)
127 return -EINVAL;
129 return 0;
132 /* current constraint check */
133 static int regulator_check_current_limit(struct regulator_dev *rdev,
134 int *min_uA, int *max_uA)
136 BUG_ON(*min_uA > *max_uA);
138 if (!rdev->constraints) {
139 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
140 rdev_get_name(rdev));
141 return -ENODEV;
143 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
144 printk(KERN_ERR "%s: operation not allowed for %s\n",
145 __func__, rdev_get_name(rdev));
146 return -EPERM;
149 if (*max_uA > rdev->constraints->max_uA)
150 *max_uA = rdev->constraints->max_uA;
151 if (*min_uA < rdev->constraints->min_uA)
152 *min_uA = rdev->constraints->min_uA;
154 if (*min_uA > *max_uA)
155 return -EINVAL;
157 return 0;
160 /* operating mode constraint check */
161 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
163 switch (mode) {
164 case REGULATOR_MODE_FAST:
165 case REGULATOR_MODE_NORMAL:
166 case REGULATOR_MODE_IDLE:
167 case REGULATOR_MODE_STANDBY:
168 break;
169 default:
170 return -EINVAL;
173 if (!rdev->constraints) {
174 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
175 rdev_get_name(rdev));
176 return -ENODEV;
178 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
179 printk(KERN_ERR "%s: operation not allowed for %s\n",
180 __func__, rdev_get_name(rdev));
181 return -EPERM;
183 if (!(rdev->constraints->valid_modes_mask & mode)) {
184 printk(KERN_ERR "%s: invalid mode %x for %s\n",
185 __func__, mode, rdev_get_name(rdev));
186 return -EINVAL;
188 return 0;
191 /* dynamic regulator mode switching constraint check */
192 static int regulator_check_drms(struct regulator_dev *rdev)
194 if (!rdev->constraints) {
195 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
196 rdev_get_name(rdev));
197 return -ENODEV;
199 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
200 printk(KERN_ERR "%s: operation not allowed for %s\n",
201 __func__, rdev_get_name(rdev));
202 return -EPERM;
204 return 0;
207 static ssize_t device_requested_uA_show(struct device *dev,
208 struct device_attribute *attr, char *buf)
210 struct regulator *regulator;
212 regulator = get_device_regulator(dev);
213 if (regulator == NULL)
214 return 0;
216 return sprintf(buf, "%d\n", regulator->uA_load);
219 static ssize_t regulator_uV_show(struct device *dev,
220 struct device_attribute *attr, char *buf)
222 struct regulator_dev *rdev = dev_get_drvdata(dev);
223 ssize_t ret;
225 mutex_lock(&rdev->mutex);
226 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
227 mutex_unlock(&rdev->mutex);
229 return ret;
231 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
233 static ssize_t regulator_uA_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
236 struct regulator_dev *rdev = dev_get_drvdata(dev);
238 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
240 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
242 static ssize_t regulator_name_show(struct device *dev,
243 struct device_attribute *attr, char *buf)
245 struct regulator_dev *rdev = dev_get_drvdata(dev);
247 return sprintf(buf, "%s\n", rdev_get_name(rdev));
250 static ssize_t regulator_print_opmode(char *buf, int mode)
252 switch (mode) {
253 case REGULATOR_MODE_FAST:
254 return sprintf(buf, "fast\n");
255 case REGULATOR_MODE_NORMAL:
256 return sprintf(buf, "normal\n");
257 case REGULATOR_MODE_IDLE:
258 return sprintf(buf, "idle\n");
259 case REGULATOR_MODE_STANDBY:
260 return sprintf(buf, "standby\n");
262 return sprintf(buf, "unknown\n");
265 static ssize_t regulator_opmode_show(struct device *dev,
266 struct device_attribute *attr, char *buf)
268 struct regulator_dev *rdev = dev_get_drvdata(dev);
270 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
272 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
274 static ssize_t regulator_print_state(char *buf, int state)
276 if (state > 0)
277 return sprintf(buf, "enabled\n");
278 else if (state == 0)
279 return sprintf(buf, "disabled\n");
280 else
281 return sprintf(buf, "unknown\n");
284 static ssize_t regulator_state_show(struct device *dev,
285 struct device_attribute *attr, char *buf)
287 struct regulator_dev *rdev = dev_get_drvdata(dev);
288 ssize_t ret;
290 mutex_lock(&rdev->mutex);
291 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
292 mutex_unlock(&rdev->mutex);
294 return ret;
296 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
298 static ssize_t regulator_status_show(struct device *dev,
299 struct device_attribute *attr, char *buf)
301 struct regulator_dev *rdev = dev_get_drvdata(dev);
302 int status;
303 char *label;
305 status = rdev->desc->ops->get_status(rdev);
306 if (status < 0)
307 return status;
309 switch (status) {
310 case REGULATOR_STATUS_OFF:
311 label = "off";
312 break;
313 case REGULATOR_STATUS_ON:
314 label = "on";
315 break;
316 case REGULATOR_STATUS_ERROR:
317 label = "error";
318 break;
319 case REGULATOR_STATUS_FAST:
320 label = "fast";
321 break;
322 case REGULATOR_STATUS_NORMAL:
323 label = "normal";
324 break;
325 case REGULATOR_STATUS_IDLE:
326 label = "idle";
327 break;
328 case REGULATOR_STATUS_STANDBY:
329 label = "standby";
330 break;
331 default:
332 return -ERANGE;
335 return sprintf(buf, "%s\n", label);
337 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
339 static ssize_t regulator_min_uA_show(struct device *dev,
340 struct device_attribute *attr, char *buf)
342 struct regulator_dev *rdev = dev_get_drvdata(dev);
344 if (!rdev->constraints)
345 return sprintf(buf, "constraint not defined\n");
347 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
349 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
351 static ssize_t regulator_max_uA_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
356 if (!rdev->constraints)
357 return sprintf(buf, "constraint not defined\n");
359 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
361 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
363 static ssize_t regulator_min_uV_show(struct device *dev,
364 struct device_attribute *attr, char *buf)
366 struct regulator_dev *rdev = dev_get_drvdata(dev);
368 if (!rdev->constraints)
369 return sprintf(buf, "constraint not defined\n");
371 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
373 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
375 static ssize_t regulator_max_uV_show(struct device *dev,
376 struct device_attribute *attr, char *buf)
378 struct regulator_dev *rdev = dev_get_drvdata(dev);
380 if (!rdev->constraints)
381 return sprintf(buf, "constraint not defined\n");
383 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
385 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
387 static ssize_t regulator_total_uA_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
390 struct regulator_dev *rdev = dev_get_drvdata(dev);
391 struct regulator *regulator;
392 int uA = 0;
394 mutex_lock(&rdev->mutex);
395 list_for_each_entry(regulator, &rdev->consumer_list, list)
396 uA += regulator->uA_load;
397 mutex_unlock(&rdev->mutex);
398 return sprintf(buf, "%d\n", uA);
400 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
402 static ssize_t regulator_num_users_show(struct device *dev,
403 struct device_attribute *attr, char *buf)
405 struct regulator_dev *rdev = dev_get_drvdata(dev);
406 return sprintf(buf, "%d\n", rdev->use_count);
409 static ssize_t regulator_type_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
412 struct regulator_dev *rdev = dev_get_drvdata(dev);
414 switch (rdev->desc->type) {
415 case REGULATOR_VOLTAGE:
416 return sprintf(buf, "voltage\n");
417 case REGULATOR_CURRENT:
418 return sprintf(buf, "current\n");
420 return sprintf(buf, "unknown\n");
423 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
426 struct regulator_dev *rdev = dev_get_drvdata(dev);
428 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
430 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
431 regulator_suspend_mem_uV_show, NULL);
433 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
434 struct device_attribute *attr, char *buf)
436 struct regulator_dev *rdev = dev_get_drvdata(dev);
438 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
440 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
441 regulator_suspend_disk_uV_show, NULL);
443 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
448 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
450 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
451 regulator_suspend_standby_uV_show, NULL);
453 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
454 struct device_attribute *attr, char *buf)
456 struct regulator_dev *rdev = dev_get_drvdata(dev);
458 return regulator_print_opmode(buf,
459 rdev->constraints->state_mem.mode);
461 static DEVICE_ATTR(suspend_mem_mode, 0444,
462 regulator_suspend_mem_mode_show, NULL);
464 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
465 struct device_attribute *attr, char *buf)
467 struct regulator_dev *rdev = dev_get_drvdata(dev);
469 return regulator_print_opmode(buf,
470 rdev->constraints->state_disk.mode);
472 static DEVICE_ATTR(suspend_disk_mode, 0444,
473 regulator_suspend_disk_mode_show, NULL);
475 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
478 struct regulator_dev *rdev = dev_get_drvdata(dev);
480 return regulator_print_opmode(buf,
481 rdev->constraints->state_standby.mode);
483 static DEVICE_ATTR(suspend_standby_mode, 0444,
484 regulator_suspend_standby_mode_show, NULL);
486 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
487 struct device_attribute *attr, char *buf)
489 struct regulator_dev *rdev = dev_get_drvdata(dev);
491 return regulator_print_state(buf,
492 rdev->constraints->state_mem.enabled);
494 static DEVICE_ATTR(suspend_mem_state, 0444,
495 regulator_suspend_mem_state_show, NULL);
497 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
498 struct device_attribute *attr, char *buf)
500 struct regulator_dev *rdev = dev_get_drvdata(dev);
502 return regulator_print_state(buf,
503 rdev->constraints->state_disk.enabled);
505 static DEVICE_ATTR(suspend_disk_state, 0444,
506 regulator_suspend_disk_state_show, NULL);
508 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
509 struct device_attribute *attr, char *buf)
511 struct regulator_dev *rdev = dev_get_drvdata(dev);
513 return regulator_print_state(buf,
514 rdev->constraints->state_standby.enabled);
516 static DEVICE_ATTR(suspend_standby_state, 0444,
517 regulator_suspend_standby_state_show, NULL);
521 * These are the only attributes are present for all regulators.
522 * Other attributes are a function of regulator functionality.
524 static struct device_attribute regulator_dev_attrs[] = {
525 __ATTR(name, 0444, regulator_name_show, NULL),
526 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
527 __ATTR(type, 0444, regulator_type_show, NULL),
528 __ATTR_NULL,
531 static void regulator_dev_release(struct device *dev)
533 struct regulator_dev *rdev = dev_get_drvdata(dev);
534 kfree(rdev);
537 static struct class regulator_class = {
538 .name = "regulator",
539 .dev_release = regulator_dev_release,
540 .dev_attrs = regulator_dev_attrs,
543 /* Calculate the new optimum regulator operating mode based on the new total
544 * consumer load. All locks held by caller */
545 static void drms_uA_update(struct regulator_dev *rdev)
547 struct regulator *sibling;
548 int current_uA = 0, output_uV, input_uV, err;
549 unsigned int mode;
551 err = regulator_check_drms(rdev);
552 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
553 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode)
554 return;
556 /* get output voltage */
557 output_uV = rdev->desc->ops->get_voltage(rdev);
558 if (output_uV <= 0)
559 return;
561 /* get input voltage */
562 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
563 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
564 else
565 input_uV = rdev->constraints->input_uV;
566 if (input_uV <= 0)
567 return;
569 /* calc total requested load */
570 list_for_each_entry(sibling, &rdev->consumer_list, list)
571 current_uA += sibling->uA_load;
573 /* now get the optimum mode for our new total regulator load */
574 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
575 output_uV, current_uA);
577 /* check the new mode is allowed */
578 err = regulator_check_mode(rdev, mode);
579 if (err == 0)
580 rdev->desc->ops->set_mode(rdev, mode);
583 static int suspend_set_state(struct regulator_dev *rdev,
584 struct regulator_state *rstate)
586 int ret = 0;
587 bool can_set_state;
589 can_set_state = rdev->desc->ops->set_suspend_enable &&
590 rdev->desc->ops->set_suspend_disable;
592 /* If we have no suspend mode configration don't set anything;
593 * only warn if the driver actually makes the suspend mode
594 * configurable.
596 if (!rstate->enabled && !rstate->disabled) {
597 if (can_set_state)
598 printk(KERN_WARNING "%s: No configuration for %s\n",
599 __func__, rdev_get_name(rdev));
600 return 0;
603 if (rstate->enabled && rstate->disabled) {
604 printk(KERN_ERR "%s: invalid configuration for %s\n",
605 __func__, rdev_get_name(rdev));
606 return -EINVAL;
609 if (!can_set_state) {
610 printk(KERN_ERR "%s: no way to set suspend state\n",
611 __func__);
612 return -EINVAL;
615 if (rstate->enabled)
616 ret = rdev->desc->ops->set_suspend_enable(rdev);
617 else
618 ret = rdev->desc->ops->set_suspend_disable(rdev);
619 if (ret < 0) {
620 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
621 return ret;
624 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
625 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
626 if (ret < 0) {
627 printk(KERN_ERR "%s: failed to set voltage\n",
628 __func__);
629 return ret;
633 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
634 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
635 if (ret < 0) {
636 printk(KERN_ERR "%s: failed to set mode\n", __func__);
637 return ret;
640 return ret;
643 /* locks held by caller */
644 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
646 if (!rdev->constraints)
647 return -EINVAL;
649 switch (state) {
650 case PM_SUSPEND_STANDBY:
651 return suspend_set_state(rdev,
652 &rdev->constraints->state_standby);
653 case PM_SUSPEND_MEM:
654 return suspend_set_state(rdev,
655 &rdev->constraints->state_mem);
656 case PM_SUSPEND_MAX:
657 return suspend_set_state(rdev,
658 &rdev->constraints->state_disk);
659 default:
660 return -EINVAL;
664 static void print_constraints(struct regulator_dev *rdev)
666 struct regulation_constraints *constraints = rdev->constraints;
667 char buf[80] = "";
668 int count = 0;
669 int ret;
671 if (constraints->min_uV && constraints->max_uV) {
672 if (constraints->min_uV == constraints->max_uV)
673 count += sprintf(buf + count, "%d mV ",
674 constraints->min_uV / 1000);
675 else
676 count += sprintf(buf + count, "%d <--> %d mV ",
677 constraints->min_uV / 1000,
678 constraints->max_uV / 1000);
681 if (!constraints->min_uV ||
682 constraints->min_uV != constraints->max_uV) {
683 ret = _regulator_get_voltage(rdev);
684 if (ret > 0)
685 count += sprintf(buf + count, "at %d mV ", ret / 1000);
688 if (constraints->min_uA && constraints->max_uA) {
689 if (constraints->min_uA == constraints->max_uA)
690 count += sprintf(buf + count, "%d mA ",
691 constraints->min_uA / 1000);
692 else
693 count += sprintf(buf + count, "%d <--> %d mA ",
694 constraints->min_uA / 1000,
695 constraints->max_uA / 1000);
698 if (!constraints->min_uA ||
699 constraints->min_uA != constraints->max_uA) {
700 ret = _regulator_get_current_limit(rdev);
701 if (ret > 0)
702 count += sprintf(buf + count, "at %d uA ", ret / 1000);
705 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
706 count += sprintf(buf + count, "fast ");
707 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
708 count += sprintf(buf + count, "normal ");
709 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
710 count += sprintf(buf + count, "idle ");
711 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
712 count += sprintf(buf + count, "standby");
714 printk(KERN_INFO "regulator: %s: %s\n", rdev_get_name(rdev), buf);
717 static int machine_constraints_voltage(struct regulator_dev *rdev,
718 struct regulation_constraints *constraints)
720 struct regulator_ops *ops = rdev->desc->ops;
721 const char *name = rdev_get_name(rdev);
722 int ret;
724 /* do we need to apply the constraint voltage */
725 if (rdev->constraints->apply_uV &&
726 rdev->constraints->min_uV == rdev->constraints->max_uV &&
727 ops->set_voltage) {
728 ret = ops->set_voltage(rdev,
729 rdev->constraints->min_uV, rdev->constraints->max_uV);
730 if (ret < 0) {
731 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
732 __func__,
733 rdev->constraints->min_uV, name);
734 rdev->constraints = NULL;
735 return ret;
739 /* constrain machine-level voltage specs to fit
740 * the actual range supported by this regulator.
742 if (ops->list_voltage && rdev->desc->n_voltages) {
743 int count = rdev->desc->n_voltages;
744 int i;
745 int min_uV = INT_MAX;
746 int max_uV = INT_MIN;
747 int cmin = constraints->min_uV;
748 int cmax = constraints->max_uV;
750 /* it's safe to autoconfigure fixed-voltage supplies
751 and the constraints are used by list_voltage. */
752 if (count == 1 && !cmin) {
753 cmin = 1;
754 cmax = INT_MAX;
755 constraints->min_uV = cmin;
756 constraints->max_uV = cmax;
759 /* voltage constraints are optional */
760 if ((cmin == 0) && (cmax == 0))
761 return 0;
763 /* else require explicit machine-level constraints */
764 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
765 pr_err("%s: %s '%s' voltage constraints\n",
766 __func__, "invalid", name);
767 return -EINVAL;
770 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
771 for (i = 0; i < count; i++) {
772 int value;
774 value = ops->list_voltage(rdev, i);
775 if (value <= 0)
776 continue;
778 /* maybe adjust [min_uV..max_uV] */
779 if (value >= cmin && value < min_uV)
780 min_uV = value;
781 if (value <= cmax && value > max_uV)
782 max_uV = value;
785 /* final: [min_uV..max_uV] valid iff constraints valid */
786 if (max_uV < min_uV) {
787 pr_err("%s: %s '%s' voltage constraints\n",
788 __func__, "unsupportable", name);
789 return -EINVAL;
792 /* use regulator's subset of machine constraints */
793 if (constraints->min_uV < min_uV) {
794 pr_debug("%s: override '%s' %s, %d -> %d\n",
795 __func__, name, "min_uV",
796 constraints->min_uV, min_uV);
797 constraints->min_uV = min_uV;
799 if (constraints->max_uV > max_uV) {
800 pr_debug("%s: override '%s' %s, %d -> %d\n",
801 __func__, name, "max_uV",
802 constraints->max_uV, max_uV);
803 constraints->max_uV = max_uV;
807 return 0;
811 * set_machine_constraints - sets regulator constraints
812 * @rdev: regulator source
813 * @constraints: constraints to apply
815 * Allows platform initialisation code to define and constrain
816 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
817 * Constraints *must* be set by platform code in order for some
818 * regulator operations to proceed i.e. set_voltage, set_current_limit,
819 * set_mode.
821 static int set_machine_constraints(struct regulator_dev *rdev,
822 struct regulation_constraints *constraints)
824 int ret = 0;
825 const char *name;
826 struct regulator_ops *ops = rdev->desc->ops;
828 rdev->constraints = constraints;
830 name = rdev_get_name(rdev);
832 ret = machine_constraints_voltage(rdev, constraints);
833 if (ret != 0)
834 goto out;
836 /* do we need to setup our suspend state */
837 if (constraints->initial_state) {
838 ret = suspend_prepare(rdev, constraints->initial_state);
839 if (ret < 0) {
840 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
841 __func__, name);
842 rdev->constraints = NULL;
843 goto out;
847 if (constraints->initial_mode) {
848 if (!ops->set_mode) {
849 printk(KERN_ERR "%s: no set_mode operation for %s\n",
850 __func__, name);
851 ret = -EINVAL;
852 goto out;
855 ret = ops->set_mode(rdev, constraints->initial_mode);
856 if (ret < 0) {
857 printk(KERN_ERR
858 "%s: failed to set initial mode for %s: %d\n",
859 __func__, name, ret);
860 goto out;
864 /* If the constraints say the regulator should be on at this point
865 * and we have control then make sure it is enabled.
867 if ((constraints->always_on || constraints->boot_on) && ops->enable) {
868 ret = ops->enable(rdev);
869 if (ret < 0) {
870 printk(KERN_ERR "%s: failed to enable %s\n",
871 __func__, name);
872 rdev->constraints = NULL;
873 goto out;
877 print_constraints(rdev);
878 out:
879 return ret;
883 * set_supply - set regulator supply regulator
884 * @rdev: regulator name
885 * @supply_rdev: supply regulator name
887 * Called by platform initialisation code to set the supply regulator for this
888 * regulator. This ensures that a regulators supply will also be enabled by the
889 * core if it's child is enabled.
891 static int set_supply(struct regulator_dev *rdev,
892 struct regulator_dev *supply_rdev)
894 int err;
896 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
897 "supply");
898 if (err) {
899 printk(KERN_ERR
900 "%s: could not add device link %s err %d\n",
901 __func__, supply_rdev->dev.kobj.name, err);
902 goto out;
904 rdev->supply = supply_rdev;
905 list_add(&rdev->slist, &supply_rdev->supply_list);
906 out:
907 return err;
911 * set_consumer_device_supply: Bind a regulator to a symbolic supply
912 * @rdev: regulator source
913 * @consumer_dev: device the supply applies to
914 * @consumer_dev_name: dev_name() string for device supply applies to
915 * @supply: symbolic name for supply
917 * Allows platform initialisation code to map physical regulator
918 * sources to symbolic names for supplies for use by devices. Devices
919 * should use these symbolic names to request regulators, avoiding the
920 * need to provide board-specific regulator names as platform data.
922 * Only one of consumer_dev and consumer_dev_name may be specified.
924 static int set_consumer_device_supply(struct regulator_dev *rdev,
925 struct device *consumer_dev, const char *consumer_dev_name,
926 const char *supply)
928 struct regulator_map *node;
929 int has_dev;
931 if (consumer_dev && consumer_dev_name)
932 return -EINVAL;
934 if (!consumer_dev_name && consumer_dev)
935 consumer_dev_name = dev_name(consumer_dev);
937 if (supply == NULL)
938 return -EINVAL;
940 if (consumer_dev_name != NULL)
941 has_dev = 1;
942 else
943 has_dev = 0;
945 list_for_each_entry(node, &regulator_map_list, list) {
946 if (consumer_dev_name != node->dev_name)
947 continue;
948 if (strcmp(node->supply, supply) != 0)
949 continue;
951 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
952 dev_name(&node->regulator->dev),
953 node->regulator->desc->name,
954 supply,
955 dev_name(&rdev->dev), rdev_get_name(rdev));
956 return -EBUSY;
959 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
960 if (node == NULL)
961 return -ENOMEM;
963 node->regulator = rdev;
964 node->supply = supply;
966 if (has_dev) {
967 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
968 if (node->dev_name == NULL) {
969 kfree(node);
970 return -ENOMEM;
974 list_add(&node->list, &regulator_map_list);
975 return 0;
978 static void unset_consumer_device_supply(struct regulator_dev *rdev,
979 const char *consumer_dev_name, struct device *consumer_dev)
981 struct regulator_map *node, *n;
983 if (consumer_dev && !consumer_dev_name)
984 consumer_dev_name = dev_name(consumer_dev);
986 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
987 if (rdev != node->regulator)
988 continue;
990 if (consumer_dev_name && node->dev_name &&
991 strcmp(consumer_dev_name, node->dev_name))
992 continue;
994 list_del(&node->list);
995 kfree(node->dev_name);
996 kfree(node);
997 return;
1001 static void unset_regulator_supplies(struct regulator_dev *rdev)
1003 struct regulator_map *node, *n;
1005 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1006 if (rdev == node->regulator) {
1007 list_del(&node->list);
1008 kfree(node->dev_name);
1009 kfree(node);
1010 return;
1015 #define REG_STR_SIZE 32
1017 static struct regulator *create_regulator(struct regulator_dev *rdev,
1018 struct device *dev,
1019 const char *supply_name)
1021 struct regulator *regulator;
1022 char buf[REG_STR_SIZE];
1023 int err, size;
1025 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1026 if (regulator == NULL)
1027 return NULL;
1029 mutex_lock(&rdev->mutex);
1030 regulator->rdev = rdev;
1031 list_add(&regulator->list, &rdev->consumer_list);
1033 if (dev) {
1034 /* create a 'requested_microamps_name' sysfs entry */
1035 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1036 supply_name);
1037 if (size >= REG_STR_SIZE)
1038 goto overflow_err;
1040 regulator->dev = dev;
1041 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1042 if (regulator->dev_attr.attr.name == NULL)
1043 goto attr_name_err;
1045 regulator->dev_attr.attr.owner = THIS_MODULE;
1046 regulator->dev_attr.attr.mode = 0444;
1047 regulator->dev_attr.show = device_requested_uA_show;
1048 err = device_create_file(dev, &regulator->dev_attr);
1049 if (err < 0) {
1050 printk(KERN_WARNING "%s: could not add regulator_dev"
1051 " load sysfs\n", __func__);
1052 goto attr_name_err;
1055 /* also add a link to the device sysfs entry */
1056 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1057 dev->kobj.name, supply_name);
1058 if (size >= REG_STR_SIZE)
1059 goto attr_err;
1061 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1062 if (regulator->supply_name == NULL)
1063 goto attr_err;
1065 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1066 buf);
1067 if (err) {
1068 printk(KERN_WARNING
1069 "%s: could not add device link %s err %d\n",
1070 __func__, dev->kobj.name, err);
1071 device_remove_file(dev, &regulator->dev_attr);
1072 goto link_name_err;
1075 mutex_unlock(&rdev->mutex);
1076 return regulator;
1077 link_name_err:
1078 kfree(regulator->supply_name);
1079 attr_err:
1080 device_remove_file(regulator->dev, &regulator->dev_attr);
1081 attr_name_err:
1082 kfree(regulator->dev_attr.attr.name);
1083 overflow_err:
1084 list_del(&regulator->list);
1085 kfree(regulator);
1086 mutex_unlock(&rdev->mutex);
1087 return NULL;
1090 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1092 if (!rdev->desc->ops->enable_time)
1093 return 0;
1094 return rdev->desc->ops->enable_time(rdev);
1097 /* Internal regulator request function */
1098 static struct regulator *_regulator_get(struct device *dev, const char *id,
1099 int exclusive)
1101 struct regulator_dev *rdev;
1102 struct regulator_map *map;
1103 struct regulator *regulator = ERR_PTR(-ENODEV);
1104 const char *devname = NULL;
1105 int ret;
1107 if (id == NULL) {
1108 printk(KERN_ERR "regulator: get() with no identifier\n");
1109 return regulator;
1112 if (dev)
1113 devname = dev_name(dev);
1115 mutex_lock(&regulator_list_mutex);
1117 list_for_each_entry(map, &regulator_map_list, list) {
1118 /* If the mapping has a device set up it must match */
1119 if (map->dev_name &&
1120 (!devname || strcmp(map->dev_name, devname)))
1121 continue;
1123 if (strcmp(map->supply, id) == 0) {
1124 rdev = map->regulator;
1125 goto found;
1129 #ifdef CONFIG_REGULATOR_DUMMY
1130 if (!devname)
1131 devname = "deviceless";
1133 /* If the board didn't flag that it was fully constrained then
1134 * substitute in a dummy regulator so consumers can continue.
1136 if (!has_full_constraints) {
1137 pr_warning("%s supply %s not found, using dummy regulator\n",
1138 devname, id);
1139 rdev = dummy_regulator_rdev;
1140 goto found;
1142 #endif
1144 mutex_unlock(&regulator_list_mutex);
1145 return regulator;
1147 found:
1148 if (rdev->exclusive) {
1149 regulator = ERR_PTR(-EPERM);
1150 goto out;
1153 if (exclusive && rdev->open_count) {
1154 regulator = ERR_PTR(-EBUSY);
1155 goto out;
1158 if (!try_module_get(rdev->owner))
1159 goto out;
1161 regulator = create_regulator(rdev, dev, id);
1162 if (regulator == NULL) {
1163 regulator = ERR_PTR(-ENOMEM);
1164 module_put(rdev->owner);
1167 rdev->open_count++;
1168 if (exclusive) {
1169 rdev->exclusive = 1;
1171 ret = _regulator_is_enabled(rdev);
1172 if (ret > 0)
1173 rdev->use_count = 1;
1174 else
1175 rdev->use_count = 0;
1178 out:
1179 mutex_unlock(&regulator_list_mutex);
1181 return regulator;
1185 * regulator_get - lookup and obtain a reference to a regulator.
1186 * @dev: device for regulator "consumer"
1187 * @id: Supply name or regulator ID.
1189 * Returns a struct regulator corresponding to the regulator producer,
1190 * or IS_ERR() condition containing errno.
1192 * Use of supply names configured via regulator_set_device_supply() is
1193 * strongly encouraged. It is recommended that the supply name used
1194 * should match the name used for the supply and/or the relevant
1195 * device pins in the datasheet.
1197 struct regulator *regulator_get(struct device *dev, const char *id)
1199 return _regulator_get(dev, id, 0);
1201 EXPORT_SYMBOL_GPL(regulator_get);
1204 * regulator_get_exclusive - obtain exclusive access to a regulator.
1205 * @dev: device for regulator "consumer"
1206 * @id: Supply name or regulator ID.
1208 * Returns a struct regulator corresponding to the regulator producer,
1209 * or IS_ERR() condition containing errno. Other consumers will be
1210 * unable to obtain this reference is held and the use count for the
1211 * regulator will be initialised to reflect the current state of the
1212 * regulator.
1214 * This is intended for use by consumers which cannot tolerate shared
1215 * use of the regulator such as those which need to force the
1216 * regulator off for correct operation of the hardware they are
1217 * controlling.
1219 * Use of supply names configured via regulator_set_device_supply() is
1220 * strongly encouraged. It is recommended that the supply name used
1221 * should match the name used for the supply and/or the relevant
1222 * device pins in the datasheet.
1224 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1226 return _regulator_get(dev, id, 1);
1228 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1231 * regulator_put - "free" the regulator source
1232 * @regulator: regulator source
1234 * Note: drivers must ensure that all regulator_enable calls made on this
1235 * regulator source are balanced by regulator_disable calls prior to calling
1236 * this function.
1238 void regulator_put(struct regulator *regulator)
1240 struct regulator_dev *rdev;
1242 if (regulator == NULL || IS_ERR(regulator))
1243 return;
1245 mutex_lock(&regulator_list_mutex);
1246 rdev = regulator->rdev;
1248 /* remove any sysfs entries */
1249 if (regulator->dev) {
1250 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1251 kfree(regulator->supply_name);
1252 device_remove_file(regulator->dev, &regulator->dev_attr);
1253 kfree(regulator->dev_attr.attr.name);
1255 list_del(&regulator->list);
1256 kfree(regulator);
1258 rdev->open_count--;
1259 rdev->exclusive = 0;
1261 module_put(rdev->owner);
1262 mutex_unlock(&regulator_list_mutex);
1264 EXPORT_SYMBOL_GPL(regulator_put);
1266 static int _regulator_can_change_status(struct regulator_dev *rdev)
1268 if (!rdev->constraints)
1269 return 0;
1271 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1272 return 1;
1273 else
1274 return 0;
1277 /* locks held by regulator_enable() */
1278 static int _regulator_enable(struct regulator_dev *rdev)
1280 int ret, delay;
1282 /* do we need to enable the supply regulator first */
1283 if (rdev->supply) {
1284 ret = _regulator_enable(rdev->supply);
1285 if (ret < 0) {
1286 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1287 __func__, rdev_get_name(rdev), ret);
1288 return ret;
1292 /* check voltage and requested load before enabling */
1293 if (rdev->constraints &&
1294 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1295 drms_uA_update(rdev);
1297 if (rdev->use_count == 0) {
1298 /* The regulator may on if it's not switchable or left on */
1299 ret = _regulator_is_enabled(rdev);
1300 if (ret == -EINVAL || ret == 0) {
1301 if (!_regulator_can_change_status(rdev))
1302 return -EPERM;
1304 if (!rdev->desc->ops->enable)
1305 return -EINVAL;
1307 /* Query before enabling in case configuration
1308 * dependant. */
1309 ret = _regulator_get_enable_time(rdev);
1310 if (ret >= 0) {
1311 delay = ret;
1312 } else {
1313 printk(KERN_WARNING
1314 "%s: enable_time() failed for %s: %d\n",
1315 __func__, rdev_get_name(rdev),
1316 ret);
1317 delay = 0;
1320 /* Allow the regulator to ramp; it would be useful
1321 * to extend this for bulk operations so that the
1322 * regulators can ramp together. */
1323 ret = rdev->desc->ops->enable(rdev);
1324 if (ret < 0)
1325 return ret;
1327 if (delay >= 1000)
1328 mdelay(delay / 1000);
1329 else if (delay)
1330 udelay(delay);
1332 } else if (ret < 0) {
1333 printk(KERN_ERR "%s: is_enabled() failed for %s: %d\n",
1334 __func__, rdev_get_name(rdev), ret);
1335 return ret;
1337 /* Fallthrough on positive return values - already enabled */
1340 rdev->use_count++;
1342 return 0;
1346 * regulator_enable - enable regulator output
1347 * @regulator: regulator source
1349 * Request that the regulator be enabled with the regulator output at
1350 * the predefined voltage or current value. Calls to regulator_enable()
1351 * must be balanced with calls to regulator_disable().
1353 * NOTE: the output value can be set by other drivers, boot loader or may be
1354 * hardwired in the regulator.
1356 int regulator_enable(struct regulator *regulator)
1358 struct regulator_dev *rdev = regulator->rdev;
1359 int ret = 0;
1361 mutex_lock(&rdev->mutex);
1362 ret = _regulator_enable(rdev);
1363 mutex_unlock(&rdev->mutex);
1364 return ret;
1366 EXPORT_SYMBOL_GPL(regulator_enable);
1368 /* locks held by regulator_disable() */
1369 static int _regulator_disable(struct regulator_dev *rdev)
1371 int ret = 0;
1373 if (WARN(rdev->use_count <= 0,
1374 "unbalanced disables for %s\n",
1375 rdev_get_name(rdev)))
1376 return -EIO;
1378 /* are we the last user and permitted to disable ? */
1379 if (rdev->use_count == 1 &&
1380 (rdev->constraints && !rdev->constraints->always_on)) {
1382 /* we are last user */
1383 if (_regulator_can_change_status(rdev) &&
1384 rdev->desc->ops->disable) {
1385 ret = rdev->desc->ops->disable(rdev);
1386 if (ret < 0) {
1387 printk(KERN_ERR "%s: failed to disable %s\n",
1388 __func__, rdev_get_name(rdev));
1389 return ret;
1392 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1393 NULL);
1396 /* decrease our supplies ref count and disable if required */
1397 if (rdev->supply)
1398 _regulator_disable(rdev->supply);
1400 rdev->use_count = 0;
1401 } else if (rdev->use_count > 1) {
1403 if (rdev->constraints &&
1404 (rdev->constraints->valid_ops_mask &
1405 REGULATOR_CHANGE_DRMS))
1406 drms_uA_update(rdev);
1408 rdev->use_count--;
1410 return ret;
1414 * regulator_disable - disable regulator output
1415 * @regulator: regulator source
1417 * Disable the regulator output voltage or current. Calls to
1418 * regulator_enable() must be balanced with calls to
1419 * regulator_disable().
1421 * NOTE: this will only disable the regulator output if no other consumer
1422 * devices have it enabled, the regulator device supports disabling and
1423 * machine constraints permit this operation.
1425 int regulator_disable(struct regulator *regulator)
1427 struct regulator_dev *rdev = regulator->rdev;
1428 int ret = 0;
1430 mutex_lock(&rdev->mutex);
1431 ret = _regulator_disable(rdev);
1432 mutex_unlock(&rdev->mutex);
1433 return ret;
1435 EXPORT_SYMBOL_GPL(regulator_disable);
1437 /* locks held by regulator_force_disable() */
1438 static int _regulator_force_disable(struct regulator_dev *rdev)
1440 int ret = 0;
1442 /* force disable */
1443 if (rdev->desc->ops->disable) {
1444 /* ah well, who wants to live forever... */
1445 ret = rdev->desc->ops->disable(rdev);
1446 if (ret < 0) {
1447 printk(KERN_ERR "%s: failed to force disable %s\n",
1448 __func__, rdev_get_name(rdev));
1449 return ret;
1451 /* notify other consumers that power has been forced off */
1452 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1453 REGULATOR_EVENT_DISABLE, NULL);
1456 /* decrease our supplies ref count and disable if required */
1457 if (rdev->supply)
1458 _regulator_disable(rdev->supply);
1460 rdev->use_count = 0;
1461 return ret;
1465 * regulator_force_disable - force disable regulator output
1466 * @regulator: regulator source
1468 * Forcibly disable the regulator output voltage or current.
1469 * NOTE: this *will* disable the regulator output even if other consumer
1470 * devices have it enabled. This should be used for situations when device
1471 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1473 int regulator_force_disable(struct regulator *regulator)
1475 int ret;
1477 mutex_lock(&regulator->rdev->mutex);
1478 regulator->uA_load = 0;
1479 ret = _regulator_force_disable(regulator->rdev);
1480 mutex_unlock(&regulator->rdev->mutex);
1481 return ret;
1483 EXPORT_SYMBOL_GPL(regulator_force_disable);
1485 static int _regulator_is_enabled(struct regulator_dev *rdev)
1487 /* If we don't know then assume that the regulator is always on */
1488 if (!rdev->desc->ops->is_enabled)
1489 return 1;
1491 return rdev->desc->ops->is_enabled(rdev);
1495 * regulator_is_enabled - is the regulator output enabled
1496 * @regulator: regulator source
1498 * Returns positive if the regulator driver backing the source/client
1499 * has requested that the device be enabled, zero if it hasn't, else a
1500 * negative errno code.
1502 * Note that the device backing this regulator handle can have multiple
1503 * users, so it might be enabled even if regulator_enable() was never
1504 * called for this particular source.
1506 int regulator_is_enabled(struct regulator *regulator)
1508 int ret;
1510 mutex_lock(&regulator->rdev->mutex);
1511 ret = _regulator_is_enabled(regulator->rdev);
1512 mutex_unlock(&regulator->rdev->mutex);
1514 return ret;
1516 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1519 * regulator_count_voltages - count regulator_list_voltage() selectors
1520 * @regulator: regulator source
1522 * Returns number of selectors, or negative errno. Selectors are
1523 * numbered starting at zero, and typically correspond to bitfields
1524 * in hardware registers.
1526 int regulator_count_voltages(struct regulator *regulator)
1528 struct regulator_dev *rdev = regulator->rdev;
1530 return rdev->desc->n_voltages ? : -EINVAL;
1532 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1535 * regulator_list_voltage - enumerate supported voltages
1536 * @regulator: regulator source
1537 * @selector: identify voltage to list
1538 * Context: can sleep
1540 * Returns a voltage that can be passed to @regulator_set_voltage(),
1541 * zero if this selector code can't be used on this sytem, or a
1542 * negative errno.
1544 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1546 struct regulator_dev *rdev = regulator->rdev;
1547 struct regulator_ops *ops = rdev->desc->ops;
1548 int ret;
1550 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1551 return -EINVAL;
1553 mutex_lock(&rdev->mutex);
1554 ret = ops->list_voltage(rdev, selector);
1555 mutex_unlock(&rdev->mutex);
1557 if (ret > 0) {
1558 if (ret < rdev->constraints->min_uV)
1559 ret = 0;
1560 else if (ret > rdev->constraints->max_uV)
1561 ret = 0;
1564 return ret;
1566 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1569 * regulator_is_supported_voltage - check if a voltage range can be supported
1571 * @regulator: Regulator to check.
1572 * @min_uV: Minimum required voltage in uV.
1573 * @max_uV: Maximum required voltage in uV.
1575 * Returns a boolean or a negative error code.
1577 int regulator_is_supported_voltage(struct regulator *regulator,
1578 int min_uV, int max_uV)
1580 int i, voltages, ret;
1582 ret = regulator_count_voltages(regulator);
1583 if (ret < 0)
1584 return ret;
1585 voltages = ret;
1587 for (i = 0; i < voltages; i++) {
1588 ret = regulator_list_voltage(regulator, i);
1590 if (ret >= min_uV && ret <= max_uV)
1591 return 1;
1594 return 0;
1598 * regulator_set_voltage - set regulator output voltage
1599 * @regulator: regulator source
1600 * @min_uV: Minimum required voltage in uV
1601 * @max_uV: Maximum acceptable voltage in uV
1603 * Sets a voltage regulator to the desired output voltage. This can be set
1604 * during any regulator state. IOW, regulator can be disabled or enabled.
1606 * If the regulator is enabled then the voltage will change to the new value
1607 * immediately otherwise if the regulator is disabled the regulator will
1608 * output at the new voltage when enabled.
1610 * NOTE: If the regulator is shared between several devices then the lowest
1611 * request voltage that meets the system constraints will be used.
1612 * Regulator system constraints must be set for this regulator before
1613 * calling this function otherwise this call will fail.
1615 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1617 struct regulator_dev *rdev = regulator->rdev;
1618 int ret;
1620 mutex_lock(&rdev->mutex);
1622 /* sanity check */
1623 if (!rdev->desc->ops->set_voltage) {
1624 ret = -EINVAL;
1625 goto out;
1628 /* constraints check */
1629 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1630 if (ret < 0)
1631 goto out;
1632 regulator->min_uV = min_uV;
1633 regulator->max_uV = max_uV;
1634 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1636 out:
1637 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE, NULL);
1638 mutex_unlock(&rdev->mutex);
1639 return ret;
1641 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1643 static int _regulator_get_voltage(struct regulator_dev *rdev)
1645 /* sanity check */
1646 if (rdev->desc->ops->get_voltage)
1647 return rdev->desc->ops->get_voltage(rdev);
1648 else
1649 return -EINVAL;
1653 * regulator_get_voltage - get regulator output voltage
1654 * @regulator: regulator source
1656 * This returns the current regulator voltage in uV.
1658 * NOTE: If the regulator is disabled it will return the voltage value. This
1659 * function should not be used to determine regulator state.
1661 int regulator_get_voltage(struct regulator *regulator)
1663 int ret;
1665 mutex_lock(&regulator->rdev->mutex);
1667 ret = _regulator_get_voltage(regulator->rdev);
1669 mutex_unlock(&regulator->rdev->mutex);
1671 return ret;
1673 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1676 * regulator_set_current_limit - set regulator output current limit
1677 * @regulator: regulator source
1678 * @min_uA: Minimuum supported current in uA
1679 * @max_uA: Maximum supported current in uA
1681 * Sets current sink to the desired output current. This can be set during
1682 * any regulator state. IOW, regulator can be disabled or enabled.
1684 * If the regulator is enabled then the current will change to the new value
1685 * immediately otherwise if the regulator is disabled the regulator will
1686 * output at the new current when enabled.
1688 * NOTE: Regulator system constraints must be set for this regulator before
1689 * calling this function otherwise this call will fail.
1691 int regulator_set_current_limit(struct regulator *regulator,
1692 int min_uA, int max_uA)
1694 struct regulator_dev *rdev = regulator->rdev;
1695 int ret;
1697 mutex_lock(&rdev->mutex);
1699 /* sanity check */
1700 if (!rdev->desc->ops->set_current_limit) {
1701 ret = -EINVAL;
1702 goto out;
1705 /* constraints check */
1706 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1707 if (ret < 0)
1708 goto out;
1710 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1711 out:
1712 mutex_unlock(&rdev->mutex);
1713 return ret;
1715 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1717 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1719 int ret;
1721 mutex_lock(&rdev->mutex);
1723 /* sanity check */
1724 if (!rdev->desc->ops->get_current_limit) {
1725 ret = -EINVAL;
1726 goto out;
1729 ret = rdev->desc->ops->get_current_limit(rdev);
1730 out:
1731 mutex_unlock(&rdev->mutex);
1732 return ret;
1736 * regulator_get_current_limit - get regulator output current
1737 * @regulator: regulator source
1739 * This returns the current supplied by the specified current sink in uA.
1741 * NOTE: If the regulator is disabled it will return the current value. This
1742 * function should not be used to determine regulator state.
1744 int regulator_get_current_limit(struct regulator *regulator)
1746 return _regulator_get_current_limit(regulator->rdev);
1748 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1751 * regulator_set_mode - set regulator operating mode
1752 * @regulator: regulator source
1753 * @mode: operating mode - one of the REGULATOR_MODE constants
1755 * Set regulator operating mode to increase regulator efficiency or improve
1756 * regulation performance.
1758 * NOTE: Regulator system constraints must be set for this regulator before
1759 * calling this function otherwise this call will fail.
1761 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1763 struct regulator_dev *rdev = regulator->rdev;
1764 int ret;
1766 mutex_lock(&rdev->mutex);
1768 /* sanity check */
1769 if (!rdev->desc->ops->set_mode) {
1770 ret = -EINVAL;
1771 goto out;
1774 /* constraints check */
1775 ret = regulator_check_mode(rdev, mode);
1776 if (ret < 0)
1777 goto out;
1779 ret = rdev->desc->ops->set_mode(rdev, mode);
1780 out:
1781 mutex_unlock(&rdev->mutex);
1782 return ret;
1784 EXPORT_SYMBOL_GPL(regulator_set_mode);
1786 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1788 int ret;
1790 mutex_lock(&rdev->mutex);
1792 /* sanity check */
1793 if (!rdev->desc->ops->get_mode) {
1794 ret = -EINVAL;
1795 goto out;
1798 ret = rdev->desc->ops->get_mode(rdev);
1799 out:
1800 mutex_unlock(&rdev->mutex);
1801 return ret;
1805 * regulator_get_mode - get regulator operating mode
1806 * @regulator: regulator source
1808 * Get the current regulator operating mode.
1810 unsigned int regulator_get_mode(struct regulator *regulator)
1812 return _regulator_get_mode(regulator->rdev);
1814 EXPORT_SYMBOL_GPL(regulator_get_mode);
1817 * regulator_set_optimum_mode - set regulator optimum operating mode
1818 * @regulator: regulator source
1819 * @uA_load: load current
1821 * Notifies the regulator core of a new device load. This is then used by
1822 * DRMS (if enabled by constraints) to set the most efficient regulator
1823 * operating mode for the new regulator loading.
1825 * Consumer devices notify their supply regulator of the maximum power
1826 * they will require (can be taken from device datasheet in the power
1827 * consumption tables) when they change operational status and hence power
1828 * state. Examples of operational state changes that can affect power
1829 * consumption are :-
1831 * o Device is opened / closed.
1832 * o Device I/O is about to begin or has just finished.
1833 * o Device is idling in between work.
1835 * This information is also exported via sysfs to userspace.
1837 * DRMS will sum the total requested load on the regulator and change
1838 * to the most efficient operating mode if platform constraints allow.
1840 * Returns the new regulator mode or error.
1842 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1844 struct regulator_dev *rdev = regulator->rdev;
1845 struct regulator *consumer;
1846 int ret, output_uV, input_uV, total_uA_load = 0;
1847 unsigned int mode;
1849 mutex_lock(&rdev->mutex);
1851 regulator->uA_load = uA_load;
1852 ret = regulator_check_drms(rdev);
1853 if (ret < 0)
1854 goto out;
1855 ret = -EINVAL;
1857 /* sanity check */
1858 if (!rdev->desc->ops->get_optimum_mode)
1859 goto out;
1861 /* get output voltage */
1862 output_uV = rdev->desc->ops->get_voltage(rdev);
1863 if (output_uV <= 0) {
1864 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1865 __func__, rdev_get_name(rdev));
1866 goto out;
1869 /* get input voltage */
1870 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1871 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1872 else
1873 input_uV = rdev->constraints->input_uV;
1874 if (input_uV <= 0) {
1875 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1876 __func__, rdev_get_name(rdev));
1877 goto out;
1880 /* calc total requested load for this regulator */
1881 list_for_each_entry(consumer, &rdev->consumer_list, list)
1882 total_uA_load += consumer->uA_load;
1884 mode = rdev->desc->ops->get_optimum_mode(rdev,
1885 input_uV, output_uV,
1886 total_uA_load);
1887 ret = regulator_check_mode(rdev, mode);
1888 if (ret < 0) {
1889 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1890 " %d uA %d -> %d uV\n", __func__, rdev_get_name(rdev),
1891 total_uA_load, input_uV, output_uV);
1892 goto out;
1895 ret = rdev->desc->ops->set_mode(rdev, mode);
1896 if (ret < 0) {
1897 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1898 __func__, mode, rdev_get_name(rdev));
1899 goto out;
1901 ret = mode;
1902 out:
1903 mutex_unlock(&rdev->mutex);
1904 return ret;
1906 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1909 * regulator_register_notifier - register regulator event notifier
1910 * @regulator: regulator source
1911 * @nb: notifier block
1913 * Register notifier block to receive regulator events.
1915 int regulator_register_notifier(struct regulator *regulator,
1916 struct notifier_block *nb)
1918 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1919 nb);
1921 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1924 * regulator_unregister_notifier - unregister regulator event notifier
1925 * @regulator: regulator source
1926 * @nb: notifier block
1928 * Unregister regulator event notifier block.
1930 int regulator_unregister_notifier(struct regulator *regulator,
1931 struct notifier_block *nb)
1933 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1934 nb);
1936 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1938 /* notify regulator consumers and downstream regulator consumers.
1939 * Note mutex must be held by caller.
1941 static void _notifier_call_chain(struct regulator_dev *rdev,
1942 unsigned long event, void *data)
1944 struct regulator_dev *_rdev;
1946 /* call rdev chain first */
1947 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1949 /* now notify regulator we supply */
1950 list_for_each_entry(_rdev, &rdev->supply_list, slist) {
1951 mutex_lock(&_rdev->mutex);
1952 _notifier_call_chain(_rdev, event, data);
1953 mutex_unlock(&_rdev->mutex);
1958 * regulator_bulk_get - get multiple regulator consumers
1960 * @dev: Device to supply
1961 * @num_consumers: Number of consumers to register
1962 * @consumers: Configuration of consumers; clients are stored here.
1964 * @return 0 on success, an errno on failure.
1966 * This helper function allows drivers to get several regulator
1967 * consumers in one operation. If any of the regulators cannot be
1968 * acquired then any regulators that were allocated will be freed
1969 * before returning to the caller.
1971 int regulator_bulk_get(struct device *dev, int num_consumers,
1972 struct regulator_bulk_data *consumers)
1974 int i;
1975 int ret;
1977 for (i = 0; i < num_consumers; i++)
1978 consumers[i].consumer = NULL;
1980 for (i = 0; i < num_consumers; i++) {
1981 consumers[i].consumer = regulator_get(dev,
1982 consumers[i].supply);
1983 if (IS_ERR(consumers[i].consumer)) {
1984 ret = PTR_ERR(consumers[i].consumer);
1985 dev_err(dev, "Failed to get supply '%s': %d\n",
1986 consumers[i].supply, ret);
1987 consumers[i].consumer = NULL;
1988 goto err;
1992 return 0;
1994 err:
1995 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1996 regulator_put(consumers[i].consumer);
1998 return ret;
2000 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2003 * regulator_bulk_enable - enable multiple regulator consumers
2005 * @num_consumers: Number of consumers
2006 * @consumers: Consumer data; clients are stored here.
2007 * @return 0 on success, an errno on failure
2009 * This convenience API allows consumers to enable multiple regulator
2010 * clients in a single API call. If any consumers cannot be enabled
2011 * then any others that were enabled will be disabled again prior to
2012 * return.
2014 int regulator_bulk_enable(int num_consumers,
2015 struct regulator_bulk_data *consumers)
2017 int i;
2018 int ret;
2020 for (i = 0; i < num_consumers; i++) {
2021 ret = regulator_enable(consumers[i].consumer);
2022 if (ret != 0)
2023 goto err;
2026 return 0;
2028 err:
2029 printk(KERN_ERR "Failed to enable %s: %d\n", consumers[i].supply, ret);
2030 for (--i; i >= 0; --i)
2031 regulator_disable(consumers[i].consumer);
2033 return ret;
2035 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2038 * regulator_bulk_disable - disable multiple regulator consumers
2040 * @num_consumers: Number of consumers
2041 * @consumers: Consumer data; clients are stored here.
2042 * @return 0 on success, an errno on failure
2044 * This convenience API allows consumers to disable multiple regulator
2045 * clients in a single API call. If any consumers cannot be enabled
2046 * then any others that were disabled will be disabled again prior to
2047 * return.
2049 int regulator_bulk_disable(int num_consumers,
2050 struct regulator_bulk_data *consumers)
2052 int i;
2053 int ret;
2055 for (i = 0; i < num_consumers; i++) {
2056 ret = regulator_disable(consumers[i].consumer);
2057 if (ret != 0)
2058 goto err;
2061 return 0;
2063 err:
2064 printk(KERN_ERR "Failed to disable %s: %d\n", consumers[i].supply,
2065 ret);
2066 for (--i; i >= 0; --i)
2067 regulator_enable(consumers[i].consumer);
2069 return ret;
2071 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2074 * regulator_bulk_free - free multiple regulator consumers
2076 * @num_consumers: Number of consumers
2077 * @consumers: Consumer data; clients are stored here.
2079 * This convenience API allows consumers to free multiple regulator
2080 * clients in a single API call.
2082 void regulator_bulk_free(int num_consumers,
2083 struct regulator_bulk_data *consumers)
2085 int i;
2087 for (i = 0; i < num_consumers; i++) {
2088 regulator_put(consumers[i].consumer);
2089 consumers[i].consumer = NULL;
2092 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2095 * regulator_notifier_call_chain - call regulator event notifier
2096 * @rdev: regulator source
2097 * @event: notifier block
2098 * @data: callback-specific data.
2100 * Called by regulator drivers to notify clients a regulator event has
2101 * occurred. We also notify regulator clients downstream.
2102 * Note lock must be held by caller.
2104 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2105 unsigned long event, void *data)
2107 _notifier_call_chain(rdev, event, data);
2108 return NOTIFY_DONE;
2111 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2114 * regulator_mode_to_status - convert a regulator mode into a status
2116 * @mode: Mode to convert
2118 * Convert a regulator mode into a status.
2120 int regulator_mode_to_status(unsigned int mode)
2122 switch (mode) {
2123 case REGULATOR_MODE_FAST:
2124 return REGULATOR_STATUS_FAST;
2125 case REGULATOR_MODE_NORMAL:
2126 return REGULATOR_STATUS_NORMAL;
2127 case REGULATOR_MODE_IDLE:
2128 return REGULATOR_STATUS_IDLE;
2129 case REGULATOR_STATUS_STANDBY:
2130 return REGULATOR_STATUS_STANDBY;
2131 default:
2132 return 0;
2135 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2138 * To avoid cluttering sysfs (and memory) with useless state, only
2139 * create attributes that can be meaningfully displayed.
2141 static int add_regulator_attributes(struct regulator_dev *rdev)
2143 struct device *dev = &rdev->dev;
2144 struct regulator_ops *ops = rdev->desc->ops;
2145 int status = 0;
2147 /* some attributes need specific methods to be displayed */
2148 if (ops->get_voltage) {
2149 status = device_create_file(dev, &dev_attr_microvolts);
2150 if (status < 0)
2151 return status;
2153 if (ops->get_current_limit) {
2154 status = device_create_file(dev, &dev_attr_microamps);
2155 if (status < 0)
2156 return status;
2158 if (ops->get_mode) {
2159 status = device_create_file(dev, &dev_attr_opmode);
2160 if (status < 0)
2161 return status;
2163 if (ops->is_enabled) {
2164 status = device_create_file(dev, &dev_attr_state);
2165 if (status < 0)
2166 return status;
2168 if (ops->get_status) {
2169 status = device_create_file(dev, &dev_attr_status);
2170 if (status < 0)
2171 return status;
2174 /* some attributes are type-specific */
2175 if (rdev->desc->type == REGULATOR_CURRENT) {
2176 status = device_create_file(dev, &dev_attr_requested_microamps);
2177 if (status < 0)
2178 return status;
2181 /* all the other attributes exist to support constraints;
2182 * don't show them if there are no constraints, or if the
2183 * relevant supporting methods are missing.
2185 if (!rdev->constraints)
2186 return status;
2188 /* constraints need specific supporting methods */
2189 if (ops->set_voltage) {
2190 status = device_create_file(dev, &dev_attr_min_microvolts);
2191 if (status < 0)
2192 return status;
2193 status = device_create_file(dev, &dev_attr_max_microvolts);
2194 if (status < 0)
2195 return status;
2197 if (ops->set_current_limit) {
2198 status = device_create_file(dev, &dev_attr_min_microamps);
2199 if (status < 0)
2200 return status;
2201 status = device_create_file(dev, &dev_attr_max_microamps);
2202 if (status < 0)
2203 return status;
2206 /* suspend mode constraints need multiple supporting methods */
2207 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2208 return status;
2210 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2211 if (status < 0)
2212 return status;
2213 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2214 if (status < 0)
2215 return status;
2216 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2217 if (status < 0)
2218 return status;
2220 if (ops->set_suspend_voltage) {
2221 status = device_create_file(dev,
2222 &dev_attr_suspend_standby_microvolts);
2223 if (status < 0)
2224 return status;
2225 status = device_create_file(dev,
2226 &dev_attr_suspend_mem_microvolts);
2227 if (status < 0)
2228 return status;
2229 status = device_create_file(dev,
2230 &dev_attr_suspend_disk_microvolts);
2231 if (status < 0)
2232 return status;
2235 if (ops->set_suspend_mode) {
2236 status = device_create_file(dev,
2237 &dev_attr_suspend_standby_mode);
2238 if (status < 0)
2239 return status;
2240 status = device_create_file(dev,
2241 &dev_attr_suspend_mem_mode);
2242 if (status < 0)
2243 return status;
2244 status = device_create_file(dev,
2245 &dev_attr_suspend_disk_mode);
2246 if (status < 0)
2247 return status;
2250 return status;
2254 * regulator_register - register regulator
2255 * @regulator_desc: regulator to register
2256 * @dev: struct device for the regulator
2257 * @init_data: platform provided init data, passed through by driver
2258 * @driver_data: private regulator data
2260 * Called by regulator drivers to register a regulator.
2261 * Returns 0 on success.
2263 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2264 struct device *dev, struct regulator_init_data *init_data,
2265 void *driver_data)
2267 static atomic_t regulator_no = ATOMIC_INIT(0);
2268 struct regulator_dev *rdev;
2269 int ret, i;
2271 if (regulator_desc == NULL)
2272 return ERR_PTR(-EINVAL);
2274 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2275 return ERR_PTR(-EINVAL);
2277 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2278 regulator_desc->type != REGULATOR_CURRENT)
2279 return ERR_PTR(-EINVAL);
2281 if (!init_data)
2282 return ERR_PTR(-EINVAL);
2284 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2285 if (rdev == NULL)
2286 return ERR_PTR(-ENOMEM);
2288 mutex_lock(&regulator_list_mutex);
2290 mutex_init(&rdev->mutex);
2291 rdev->reg_data = driver_data;
2292 rdev->owner = regulator_desc->owner;
2293 rdev->desc = regulator_desc;
2294 INIT_LIST_HEAD(&rdev->consumer_list);
2295 INIT_LIST_HEAD(&rdev->supply_list);
2296 INIT_LIST_HEAD(&rdev->list);
2297 INIT_LIST_HEAD(&rdev->slist);
2298 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2300 /* preform any regulator specific init */
2301 if (init_data->regulator_init) {
2302 ret = init_data->regulator_init(rdev->reg_data);
2303 if (ret < 0)
2304 goto clean;
2307 /* register with sysfs */
2308 rdev->dev.class = &regulator_class;
2309 rdev->dev.parent = dev;
2310 dev_set_name(&rdev->dev, "regulator.%d",
2311 atomic_inc_return(&regulator_no) - 1);
2312 ret = device_register(&rdev->dev);
2313 if (ret != 0)
2314 goto clean;
2316 dev_set_drvdata(&rdev->dev, rdev);
2318 /* set regulator constraints */
2319 ret = set_machine_constraints(rdev, &init_data->constraints);
2320 if (ret < 0)
2321 goto scrub;
2323 /* add attributes supported by this regulator */
2324 ret = add_regulator_attributes(rdev);
2325 if (ret < 0)
2326 goto scrub;
2328 /* set supply regulator if it exists */
2329 if (init_data->supply_regulator_dev) {
2330 ret = set_supply(rdev,
2331 dev_get_drvdata(init_data->supply_regulator_dev));
2332 if (ret < 0)
2333 goto scrub;
2336 /* add consumers devices */
2337 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2338 ret = set_consumer_device_supply(rdev,
2339 init_data->consumer_supplies[i].dev,
2340 init_data->consumer_supplies[i].dev_name,
2341 init_data->consumer_supplies[i].supply);
2342 if (ret < 0) {
2343 for (--i; i >= 0; i--)
2344 unset_consumer_device_supply(rdev,
2345 init_data->consumer_supplies[i].dev_name,
2346 init_data->consumer_supplies[i].dev);
2347 goto scrub;
2351 list_add(&rdev->list, &regulator_list);
2352 out:
2353 mutex_unlock(&regulator_list_mutex);
2354 return rdev;
2356 scrub:
2357 device_unregister(&rdev->dev);
2358 /* device core frees rdev */
2359 rdev = ERR_PTR(ret);
2360 goto out;
2362 clean:
2363 kfree(rdev);
2364 rdev = ERR_PTR(ret);
2365 goto out;
2367 EXPORT_SYMBOL_GPL(regulator_register);
2370 * regulator_unregister - unregister regulator
2371 * @rdev: regulator to unregister
2373 * Called by regulator drivers to unregister a regulator.
2375 void regulator_unregister(struct regulator_dev *rdev)
2377 if (rdev == NULL)
2378 return;
2380 mutex_lock(&regulator_list_mutex);
2381 WARN_ON(rdev->open_count);
2382 unset_regulator_supplies(rdev);
2383 list_del(&rdev->list);
2384 if (rdev->supply)
2385 sysfs_remove_link(&rdev->dev.kobj, "supply");
2386 device_unregister(&rdev->dev);
2387 mutex_unlock(&regulator_list_mutex);
2389 EXPORT_SYMBOL_GPL(regulator_unregister);
2392 * regulator_suspend_prepare - prepare regulators for system wide suspend
2393 * @state: system suspend state
2395 * Configure each regulator with it's suspend operating parameters for state.
2396 * This will usually be called by machine suspend code prior to supending.
2398 int regulator_suspend_prepare(suspend_state_t state)
2400 struct regulator_dev *rdev;
2401 int ret = 0;
2403 /* ON is handled by regulator active state */
2404 if (state == PM_SUSPEND_ON)
2405 return -EINVAL;
2407 mutex_lock(&regulator_list_mutex);
2408 list_for_each_entry(rdev, &regulator_list, list) {
2410 mutex_lock(&rdev->mutex);
2411 ret = suspend_prepare(rdev, state);
2412 mutex_unlock(&rdev->mutex);
2414 if (ret < 0) {
2415 printk(KERN_ERR "%s: failed to prepare %s\n",
2416 __func__, rdev_get_name(rdev));
2417 goto out;
2420 out:
2421 mutex_unlock(&regulator_list_mutex);
2422 return ret;
2424 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2427 * regulator_has_full_constraints - the system has fully specified constraints
2429 * Calling this function will cause the regulator API to disable all
2430 * regulators which have a zero use count and don't have an always_on
2431 * constraint in a late_initcall.
2433 * The intention is that this will become the default behaviour in a
2434 * future kernel release so users are encouraged to use this facility
2435 * now.
2437 void regulator_has_full_constraints(void)
2439 has_full_constraints = 1;
2441 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2444 * rdev_get_drvdata - get rdev regulator driver data
2445 * @rdev: regulator
2447 * Get rdev regulator driver private data. This call can be used in the
2448 * regulator driver context.
2450 void *rdev_get_drvdata(struct regulator_dev *rdev)
2452 return rdev->reg_data;
2454 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2457 * regulator_get_drvdata - get regulator driver data
2458 * @regulator: regulator
2460 * Get regulator driver private data. This call can be used in the consumer
2461 * driver context when non API regulator specific functions need to be called.
2463 void *regulator_get_drvdata(struct regulator *regulator)
2465 return regulator->rdev->reg_data;
2467 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2470 * regulator_set_drvdata - set regulator driver data
2471 * @regulator: regulator
2472 * @data: data
2474 void regulator_set_drvdata(struct regulator *regulator, void *data)
2476 regulator->rdev->reg_data = data;
2478 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2481 * regulator_get_id - get regulator ID
2482 * @rdev: regulator
2484 int rdev_get_id(struct regulator_dev *rdev)
2486 return rdev->desc->id;
2488 EXPORT_SYMBOL_GPL(rdev_get_id);
2490 struct device *rdev_get_dev(struct regulator_dev *rdev)
2492 return &rdev->dev;
2494 EXPORT_SYMBOL_GPL(rdev_get_dev);
2496 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2498 return reg_init_data->driver_data;
2500 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2502 static int __init regulator_init(void)
2504 int ret;
2506 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2508 ret = class_register(&regulator_class);
2510 regulator_dummy_init();
2512 return ret;
2515 /* init early to allow our consumers to complete system booting */
2516 core_initcall(regulator_init);
2518 static int __init regulator_init_complete(void)
2520 struct regulator_dev *rdev;
2521 struct regulator_ops *ops;
2522 struct regulation_constraints *c;
2523 int enabled, ret;
2524 const char *name;
2526 mutex_lock(&regulator_list_mutex);
2528 /* If we have a full configuration then disable any regulators
2529 * which are not in use or always_on. This will become the
2530 * default behaviour in the future.
2532 list_for_each_entry(rdev, &regulator_list, list) {
2533 ops = rdev->desc->ops;
2534 c = rdev->constraints;
2536 name = rdev_get_name(rdev);
2538 if (!ops->disable || (c && c->always_on))
2539 continue;
2541 mutex_lock(&rdev->mutex);
2543 if (rdev->use_count)
2544 goto unlock;
2546 /* If we can't read the status assume it's on. */
2547 if (ops->is_enabled)
2548 enabled = ops->is_enabled(rdev);
2549 else
2550 enabled = 1;
2552 if (!enabled)
2553 goto unlock;
2555 if (has_full_constraints) {
2556 /* We log since this may kill the system if it
2557 * goes wrong. */
2558 printk(KERN_INFO "%s: disabling %s\n",
2559 __func__, name);
2560 ret = ops->disable(rdev);
2561 if (ret != 0) {
2562 printk(KERN_ERR
2563 "%s: couldn't disable %s: %d\n",
2564 __func__, name, ret);
2566 } else {
2567 /* The intention is that in future we will
2568 * assume that full constraints are provided
2569 * so warn even if we aren't going to do
2570 * anything here.
2572 printk(KERN_WARNING
2573 "%s: incomplete constraints, leaving %s on\n",
2574 __func__, name);
2577 unlock:
2578 mutex_unlock(&rdev->mutex);
2581 mutex_unlock(&regulator_list_mutex);
2583 return 0;
2585 late_initcall(regulator_init_complete);