drm/i915,agp/intel: Do not clear stolen entries
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / ipv4 / tcp_input.c
blob2549b29b062d00c0cdc5f5a5f6dc069ce8b86e64
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/slab.h>
66 #include <linux/module.h>
67 #include <linux/sysctl.h>
68 #include <linux/kernel.h>
69 #include <net/dst.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 #include <net/netdma.h>
76 int sysctl_tcp_timestamps __read_mostly = 1;
77 int sysctl_tcp_window_scaling __read_mostly = 1;
78 int sysctl_tcp_sack __read_mostly = 1;
79 int sysctl_tcp_fack __read_mostly = 1;
80 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
81 EXPORT_SYMBOL(sysctl_tcp_reordering);
82 int sysctl_tcp_ecn __read_mostly = 2;
83 EXPORT_SYMBOL(sysctl_tcp_ecn);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 2;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
89 int sysctl_tcp_stdurg __read_mostly;
90 int sysctl_tcp_rfc1337 __read_mostly;
91 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
92 int sysctl_tcp_frto __read_mostly = 2;
93 int sysctl_tcp_frto_response __read_mostly;
94 int sysctl_tcp_nometrics_save __read_mostly;
96 int sysctl_tcp_thin_dupack __read_mostly;
98 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
99 int sysctl_tcp_abc __read_mostly;
101 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
102 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
103 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
104 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
105 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
106 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
107 #define FLAG_ECE 0x40 /* ECE in this ACK */
108 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
114 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
122 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
123 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
125 /* Adapt the MSS value used to make delayed ack decision to the
126 * real world.
128 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
130 struct inet_connection_sock *icsk = inet_csk(sk);
131 const unsigned int lss = icsk->icsk_ack.last_seg_size;
132 unsigned int len;
134 icsk->icsk_ack.last_seg_size = 0;
136 /* skb->len may jitter because of SACKs, even if peer
137 * sends good full-sized frames.
139 len = skb_shinfo(skb)->gso_size ? : skb->len;
140 if (len >= icsk->icsk_ack.rcv_mss) {
141 icsk->icsk_ack.rcv_mss = len;
142 } else {
143 /* Otherwise, we make more careful check taking into account,
144 * that SACKs block is variable.
146 * "len" is invariant segment length, including TCP header.
148 len += skb->data - skb_transport_header(skb);
149 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
150 /* If PSH is not set, packet should be
151 * full sized, provided peer TCP is not badly broken.
152 * This observation (if it is correct 8)) allows
153 * to handle super-low mtu links fairly.
155 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
156 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
157 /* Subtract also invariant (if peer is RFC compliant),
158 * tcp header plus fixed timestamp option length.
159 * Resulting "len" is MSS free of SACK jitter.
161 len -= tcp_sk(sk)->tcp_header_len;
162 icsk->icsk_ack.last_seg_size = len;
163 if (len == lss) {
164 icsk->icsk_ack.rcv_mss = len;
165 return;
168 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
170 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
174 static void tcp_incr_quickack(struct sock *sk)
176 struct inet_connection_sock *icsk = inet_csk(sk);
177 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
179 if (quickacks == 0)
180 quickacks = 2;
181 if (quickacks > icsk->icsk_ack.quick)
182 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
185 static void tcp_enter_quickack_mode(struct sock *sk)
187 struct inet_connection_sock *icsk = inet_csk(sk);
188 tcp_incr_quickack(sk);
189 icsk->icsk_ack.pingpong = 0;
190 icsk->icsk_ack.ato = TCP_ATO_MIN;
193 /* Send ACKs quickly, if "quick" count is not exhausted
194 * and the session is not interactive.
197 static inline int tcp_in_quickack_mode(const struct sock *sk)
199 const struct inet_connection_sock *icsk = inet_csk(sk);
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
222 if (tp->ecn_flags & TCP_ECN_OK) {
223 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
224 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
225 /* Funny extension: if ECT is not set on a segment,
226 * it is surely retransmit. It is not in ECN RFC,
227 * but Linux follows this rule. */
228 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
229 tcp_enter_quickack_mode((struct sock *)tp);
233 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
239 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
241 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
242 tp->ecn_flags &= ~TCP_ECN_OK;
245 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
247 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
248 return 1;
249 return 0;
252 /* Buffer size and advertised window tuning.
254 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
257 static void tcp_fixup_sndbuf(struct sock *sk)
259 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
260 sizeof(struct sk_buff);
262 if (sk->sk_sndbuf < 3 * sndmem) {
263 sk->sk_sndbuf = 3 * sndmem;
264 if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
265 sk->sk_sndbuf = sysctl_tcp_wmem[2];
269 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
271 * All tcp_full_space() is split to two parts: "network" buffer, allocated
272 * forward and advertised in receiver window (tp->rcv_wnd) and
273 * "application buffer", required to isolate scheduling/application
274 * latencies from network.
275 * window_clamp is maximal advertised window. It can be less than
276 * tcp_full_space(), in this case tcp_full_space() - window_clamp
277 * is reserved for "application" buffer. The less window_clamp is
278 * the smoother our behaviour from viewpoint of network, but the lower
279 * throughput and the higher sensitivity of the connection to losses. 8)
281 * rcv_ssthresh is more strict window_clamp used at "slow start"
282 * phase to predict further behaviour of this connection.
283 * It is used for two goals:
284 * - to enforce header prediction at sender, even when application
285 * requires some significant "application buffer". It is check #1.
286 * - to prevent pruning of receive queue because of misprediction
287 * of receiver window. Check #2.
289 * The scheme does not work when sender sends good segments opening
290 * window and then starts to feed us spaghetti. But it should work
291 * in common situations. Otherwise, we have to rely on queue collapsing.
294 /* Slow part of check#2. */
295 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
297 struct tcp_sock *tp = tcp_sk(sk);
298 /* Optimize this! */
299 int truesize = tcp_win_from_space(skb->truesize) >> 1;
300 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
302 while (tp->rcv_ssthresh <= window) {
303 if (truesize <= skb->len)
304 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
306 truesize >>= 1;
307 window >>= 1;
309 return 0;
312 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
314 struct tcp_sock *tp = tcp_sk(sk);
316 /* Check #1 */
317 if (tp->rcv_ssthresh < tp->window_clamp &&
318 (int)tp->rcv_ssthresh < tcp_space(sk) &&
319 !tcp_memory_pressure) {
320 int incr;
322 /* Check #2. Increase window, if skb with such overhead
323 * will fit to rcvbuf in future.
325 if (tcp_win_from_space(skb->truesize) <= skb->len)
326 incr = 2 * tp->advmss;
327 else
328 incr = __tcp_grow_window(sk, skb);
330 if (incr) {
331 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
332 tp->window_clamp);
333 inet_csk(sk)->icsk_ack.quick |= 1;
338 /* 3. Tuning rcvbuf, when connection enters established state. */
340 static void tcp_fixup_rcvbuf(struct sock *sk)
342 struct tcp_sock *tp = tcp_sk(sk);
343 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
345 /* Try to select rcvbuf so that 4 mss-sized segments
346 * will fit to window and corresponding skbs will fit to our rcvbuf.
347 * (was 3; 4 is minimum to allow fast retransmit to work.)
349 while (tcp_win_from_space(rcvmem) < tp->advmss)
350 rcvmem += 128;
351 if (sk->sk_rcvbuf < 4 * rcvmem)
352 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
355 /* 4. Try to fixup all. It is made immediately after connection enters
356 * established state.
358 static void tcp_init_buffer_space(struct sock *sk)
360 struct tcp_sock *tp = tcp_sk(sk);
361 int maxwin;
363 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
364 tcp_fixup_rcvbuf(sk);
365 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
366 tcp_fixup_sndbuf(sk);
368 tp->rcvq_space.space = tp->rcv_wnd;
370 maxwin = tcp_full_space(sk);
372 if (tp->window_clamp >= maxwin) {
373 tp->window_clamp = maxwin;
375 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
376 tp->window_clamp = max(maxwin -
377 (maxwin >> sysctl_tcp_app_win),
378 4 * tp->advmss);
381 /* Force reservation of one segment. */
382 if (sysctl_tcp_app_win &&
383 tp->window_clamp > 2 * tp->advmss &&
384 tp->window_clamp + tp->advmss > maxwin)
385 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
387 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
388 tp->snd_cwnd_stamp = tcp_time_stamp;
391 /* 5. Recalculate window clamp after socket hit its memory bounds. */
392 static void tcp_clamp_window(struct sock *sk)
394 struct tcp_sock *tp = tcp_sk(sk);
395 struct inet_connection_sock *icsk = inet_csk(sk);
397 icsk->icsk_ack.quick = 0;
399 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
400 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
401 !tcp_memory_pressure &&
402 atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
403 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
404 sysctl_tcp_rmem[2]);
406 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
407 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
410 /* Initialize RCV_MSS value.
411 * RCV_MSS is an our guess about MSS used by the peer.
412 * We haven't any direct information about the MSS.
413 * It's better to underestimate the RCV_MSS rather than overestimate.
414 * Overestimations make us ACKing less frequently than needed.
415 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
417 void tcp_initialize_rcv_mss(struct sock *sk)
419 struct tcp_sock *tp = tcp_sk(sk);
420 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
422 hint = min(hint, tp->rcv_wnd / 2);
423 hint = min(hint, TCP_MSS_DEFAULT);
424 hint = max(hint, TCP_MIN_MSS);
426 inet_csk(sk)->icsk_ack.rcv_mss = hint;
428 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
430 /* Receiver "autotuning" code.
432 * The algorithm for RTT estimation w/o timestamps is based on
433 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
434 * <http://public.lanl.gov/radiant/pubs.html#DRS>
436 * More detail on this code can be found at
437 * <http://staff.psc.edu/jheffner/>,
438 * though this reference is out of date. A new paper
439 * is pending.
441 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
443 u32 new_sample = tp->rcv_rtt_est.rtt;
444 long m = sample;
446 if (m == 0)
447 m = 1;
449 if (new_sample != 0) {
450 /* If we sample in larger samples in the non-timestamp
451 * case, we could grossly overestimate the RTT especially
452 * with chatty applications or bulk transfer apps which
453 * are stalled on filesystem I/O.
455 * Also, since we are only going for a minimum in the
456 * non-timestamp case, we do not smooth things out
457 * else with timestamps disabled convergence takes too
458 * long.
460 if (!win_dep) {
461 m -= (new_sample >> 3);
462 new_sample += m;
463 } else if (m < new_sample)
464 new_sample = m << 3;
465 } else {
466 /* No previous measure. */
467 new_sample = m << 3;
470 if (tp->rcv_rtt_est.rtt != new_sample)
471 tp->rcv_rtt_est.rtt = new_sample;
474 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
476 if (tp->rcv_rtt_est.time == 0)
477 goto new_measure;
478 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
479 return;
480 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
482 new_measure:
483 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
484 tp->rcv_rtt_est.time = tcp_time_stamp;
487 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
488 const struct sk_buff *skb)
490 struct tcp_sock *tp = tcp_sk(sk);
491 if (tp->rx_opt.rcv_tsecr &&
492 (TCP_SKB_CB(skb)->end_seq -
493 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
494 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
498 * This function should be called every time data is copied to user space.
499 * It calculates the appropriate TCP receive buffer space.
501 void tcp_rcv_space_adjust(struct sock *sk)
503 struct tcp_sock *tp = tcp_sk(sk);
504 int time;
505 int space;
507 if (tp->rcvq_space.time == 0)
508 goto new_measure;
510 time = tcp_time_stamp - tp->rcvq_space.time;
511 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
512 return;
514 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
516 space = max(tp->rcvq_space.space, space);
518 if (tp->rcvq_space.space != space) {
519 int rcvmem;
521 tp->rcvq_space.space = space;
523 if (sysctl_tcp_moderate_rcvbuf &&
524 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
525 int new_clamp = space;
527 /* Receive space grows, normalize in order to
528 * take into account packet headers and sk_buff
529 * structure overhead.
531 space /= tp->advmss;
532 if (!space)
533 space = 1;
534 rcvmem = (tp->advmss + MAX_TCP_HEADER +
535 16 + sizeof(struct sk_buff));
536 while (tcp_win_from_space(rcvmem) < tp->advmss)
537 rcvmem += 128;
538 space *= rcvmem;
539 space = min(space, sysctl_tcp_rmem[2]);
540 if (space > sk->sk_rcvbuf) {
541 sk->sk_rcvbuf = space;
543 /* Make the window clamp follow along. */
544 tp->window_clamp = new_clamp;
549 new_measure:
550 tp->rcvq_space.seq = tp->copied_seq;
551 tp->rcvq_space.time = tcp_time_stamp;
554 /* There is something which you must keep in mind when you analyze the
555 * behavior of the tp->ato delayed ack timeout interval. When a
556 * connection starts up, we want to ack as quickly as possible. The
557 * problem is that "good" TCP's do slow start at the beginning of data
558 * transmission. The means that until we send the first few ACK's the
559 * sender will sit on his end and only queue most of his data, because
560 * he can only send snd_cwnd unacked packets at any given time. For
561 * each ACK we send, he increments snd_cwnd and transmits more of his
562 * queue. -DaveM
564 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
566 struct tcp_sock *tp = tcp_sk(sk);
567 struct inet_connection_sock *icsk = inet_csk(sk);
568 u32 now;
570 inet_csk_schedule_ack(sk);
572 tcp_measure_rcv_mss(sk, skb);
574 tcp_rcv_rtt_measure(tp);
576 now = tcp_time_stamp;
578 if (!icsk->icsk_ack.ato) {
579 /* The _first_ data packet received, initialize
580 * delayed ACK engine.
582 tcp_incr_quickack(sk);
583 icsk->icsk_ack.ato = TCP_ATO_MIN;
584 } else {
585 int m = now - icsk->icsk_ack.lrcvtime;
587 if (m <= TCP_ATO_MIN / 2) {
588 /* The fastest case is the first. */
589 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
590 } else if (m < icsk->icsk_ack.ato) {
591 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
592 if (icsk->icsk_ack.ato > icsk->icsk_rto)
593 icsk->icsk_ack.ato = icsk->icsk_rto;
594 } else if (m > icsk->icsk_rto) {
595 /* Too long gap. Apparently sender failed to
596 * restart window, so that we send ACKs quickly.
598 tcp_incr_quickack(sk);
599 sk_mem_reclaim(sk);
602 icsk->icsk_ack.lrcvtime = now;
604 TCP_ECN_check_ce(tp, skb);
606 if (skb->len >= 128)
607 tcp_grow_window(sk, skb);
610 /* Called to compute a smoothed rtt estimate. The data fed to this
611 * routine either comes from timestamps, or from segments that were
612 * known _not_ to have been retransmitted [see Karn/Partridge
613 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
614 * piece by Van Jacobson.
615 * NOTE: the next three routines used to be one big routine.
616 * To save cycles in the RFC 1323 implementation it was better to break
617 * it up into three procedures. -- erics
619 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
621 struct tcp_sock *tp = tcp_sk(sk);
622 long m = mrtt; /* RTT */
624 /* The following amusing code comes from Jacobson's
625 * article in SIGCOMM '88. Note that rtt and mdev
626 * are scaled versions of rtt and mean deviation.
627 * This is designed to be as fast as possible
628 * m stands for "measurement".
630 * On a 1990 paper the rto value is changed to:
631 * RTO = rtt + 4 * mdev
633 * Funny. This algorithm seems to be very broken.
634 * These formulae increase RTO, when it should be decreased, increase
635 * too slowly, when it should be increased quickly, decrease too quickly
636 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
637 * does not matter how to _calculate_ it. Seems, it was trap
638 * that VJ failed to avoid. 8)
640 if (m == 0)
641 m = 1;
642 if (tp->srtt != 0) {
643 m -= (tp->srtt >> 3); /* m is now error in rtt est */
644 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
645 if (m < 0) {
646 m = -m; /* m is now abs(error) */
647 m -= (tp->mdev >> 2); /* similar update on mdev */
648 /* This is similar to one of Eifel findings.
649 * Eifel blocks mdev updates when rtt decreases.
650 * This solution is a bit different: we use finer gain
651 * for mdev in this case (alpha*beta).
652 * Like Eifel it also prevents growth of rto,
653 * but also it limits too fast rto decreases,
654 * happening in pure Eifel.
656 if (m > 0)
657 m >>= 3;
658 } else {
659 m -= (tp->mdev >> 2); /* similar update on mdev */
661 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
662 if (tp->mdev > tp->mdev_max) {
663 tp->mdev_max = tp->mdev;
664 if (tp->mdev_max > tp->rttvar)
665 tp->rttvar = tp->mdev_max;
667 if (after(tp->snd_una, tp->rtt_seq)) {
668 if (tp->mdev_max < tp->rttvar)
669 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
670 tp->rtt_seq = tp->snd_nxt;
671 tp->mdev_max = tcp_rto_min(sk);
673 } else {
674 /* no previous measure. */
675 tp->srtt = m << 3; /* take the measured time to be rtt */
676 tp->mdev = m << 1; /* make sure rto = 3*rtt */
677 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
678 tp->rtt_seq = tp->snd_nxt;
682 /* Calculate rto without backoff. This is the second half of Van Jacobson's
683 * routine referred to above.
685 static inline void tcp_set_rto(struct sock *sk)
687 const struct tcp_sock *tp = tcp_sk(sk);
688 /* Old crap is replaced with new one. 8)
690 * More seriously:
691 * 1. If rtt variance happened to be less 50msec, it is hallucination.
692 * It cannot be less due to utterly erratic ACK generation made
693 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
694 * to do with delayed acks, because at cwnd>2 true delack timeout
695 * is invisible. Actually, Linux-2.4 also generates erratic
696 * ACKs in some circumstances.
698 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
700 /* 2. Fixups made earlier cannot be right.
701 * If we do not estimate RTO correctly without them,
702 * all the algo is pure shit and should be replaced
703 * with correct one. It is exactly, which we pretend to do.
706 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
707 * guarantees that rto is higher.
709 tcp_bound_rto(sk);
712 /* Save metrics learned by this TCP session.
713 This function is called only, when TCP finishes successfully
714 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
716 void tcp_update_metrics(struct sock *sk)
718 struct tcp_sock *tp = tcp_sk(sk);
719 struct dst_entry *dst = __sk_dst_get(sk);
721 if (sysctl_tcp_nometrics_save)
722 return;
724 dst_confirm(dst);
726 if (dst && (dst->flags & DST_HOST)) {
727 const struct inet_connection_sock *icsk = inet_csk(sk);
728 int m;
729 unsigned long rtt;
731 if (icsk->icsk_backoff || !tp->srtt) {
732 /* This session failed to estimate rtt. Why?
733 * Probably, no packets returned in time.
734 * Reset our results.
736 if (!(dst_metric_locked(dst, RTAX_RTT)))
737 dst_metric_set(dst, RTAX_RTT, 0);
738 return;
741 rtt = dst_metric_rtt(dst, RTAX_RTT);
742 m = rtt - tp->srtt;
744 /* If newly calculated rtt larger than stored one,
745 * store new one. Otherwise, use EWMA. Remember,
746 * rtt overestimation is always better than underestimation.
748 if (!(dst_metric_locked(dst, RTAX_RTT))) {
749 if (m <= 0)
750 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
751 else
752 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
755 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
756 unsigned long var;
757 if (m < 0)
758 m = -m;
760 /* Scale deviation to rttvar fixed point */
761 m >>= 1;
762 if (m < tp->mdev)
763 m = tp->mdev;
765 var = dst_metric_rtt(dst, RTAX_RTTVAR);
766 if (m >= var)
767 var = m;
768 else
769 var -= (var - m) >> 2;
771 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
774 if (tcp_in_initial_slowstart(tp)) {
775 /* Slow start still did not finish. */
776 if (dst_metric(dst, RTAX_SSTHRESH) &&
777 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
778 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
779 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
780 if (!dst_metric_locked(dst, RTAX_CWND) &&
781 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
782 dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
783 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
784 icsk->icsk_ca_state == TCP_CA_Open) {
785 /* Cong. avoidance phase, cwnd is reliable. */
786 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
787 dst_metric_set(dst, RTAX_SSTHRESH,
788 max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
789 if (!dst_metric_locked(dst, RTAX_CWND))
790 dst_metric_set(dst, RTAX_CWND,
791 (dst_metric(dst, RTAX_CWND) +
792 tp->snd_cwnd) >> 1);
793 } else {
794 /* Else slow start did not finish, cwnd is non-sense,
795 ssthresh may be also invalid.
797 if (!dst_metric_locked(dst, RTAX_CWND))
798 dst_metric_set(dst, RTAX_CWND,
799 (dst_metric(dst, RTAX_CWND) +
800 tp->snd_ssthresh) >> 1);
801 if (dst_metric(dst, RTAX_SSTHRESH) &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
804 dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
815 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
817 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
819 if (!cwnd)
820 cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
827 struct tcp_sock *tp = tcp_sk(sk);
828 const struct inet_connection_sock *icsk = inet_csk(sk);
830 tp->prior_ssthresh = 0;
831 tp->bytes_acked = 0;
832 if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 tp->undo_marker = 0;
834 if (set_ssthresh)
835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 tp->snd_cwnd = min(tp->snd_cwnd,
837 tcp_packets_in_flight(tp) + 1U);
838 tp->snd_cwnd_cnt = 0;
839 tp->high_seq = tp->snd_nxt;
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 TCP_ECN_queue_cwr(tp);
843 tcp_set_ca_state(sk, TCP_CA_CWR);
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
851 static void tcp_disable_fack(struct tcp_sock *tp)
853 /* RFC3517 uses different metric in lost marker => reset on change */
854 if (tcp_is_fack(tp))
855 tp->lost_skb_hint = NULL;
856 tp->rx_opt.sack_ok &= ~2;
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
862 tp->rx_opt.sack_ok |= 4;
865 /* Initialize metrics on socket. */
867 static void tcp_init_metrics(struct sock *sk)
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct dst_entry *dst = __sk_dst_get(sk);
872 if (dst == NULL)
873 goto reset;
875 dst_confirm(dst);
877 if (dst_metric_locked(dst, RTAX_CWND))
878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 if (dst_metric(dst, RTAX_SSTHRESH)) {
880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 tp->snd_ssthresh = tp->snd_cwnd_clamp;
884 if (dst_metric(dst, RTAX_REORDERING) &&
885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886 tcp_disable_fack(tp);
887 tp->reordering = dst_metric(dst, RTAX_REORDERING);
890 if (dst_metric(dst, RTAX_RTT) == 0)
891 goto reset;
893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894 goto reset;
896 /* Initial rtt is determined from SYN,SYN-ACK.
897 * The segment is small and rtt may appear much
898 * less than real one. Use per-dst memory
899 * to make it more realistic.
901 * A bit of theory. RTT is time passed after "normal" sized packet
902 * is sent until it is ACKed. In normal circumstances sending small
903 * packets force peer to delay ACKs and calculation is correct too.
904 * The algorithm is adaptive and, provided we follow specs, it
905 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 * tricks sort of "quick acks" for time long enough to decrease RTT
907 * to low value, and then abruptly stops to do it and starts to delay
908 * ACKs, wait for troubles.
910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912 tp->rtt_seq = tp->snd_nxt;
914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
918 tcp_set_rto(sk);
919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
920 reset:
921 /* Play conservative. If timestamps are not
922 * supported, TCP will fail to recalculate correct
923 * rtt, if initial rto is too small. FORGET ALL AND RESET!
925 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
926 tp->srtt = 0;
927 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
928 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
931 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 tp->snd_cwnd_stamp = tcp_time_stamp;
935 static void tcp_update_reordering(struct sock *sk, const int metric,
936 const int ts)
938 struct tcp_sock *tp = tcp_sk(sk);
939 if (metric > tp->reordering) {
940 int mib_idx;
942 tp->reordering = min(TCP_MAX_REORDERING, metric);
944 /* This exciting event is worth to be remembered. 8) */
945 if (ts)
946 mib_idx = LINUX_MIB_TCPTSREORDER;
947 else if (tcp_is_reno(tp))
948 mib_idx = LINUX_MIB_TCPRENOREORDER;
949 else if (tcp_is_fack(tp))
950 mib_idx = LINUX_MIB_TCPFACKREORDER;
951 else
952 mib_idx = LINUX_MIB_TCPSACKREORDER;
954 NET_INC_STATS_BH(sock_net(sk), mib_idx);
955 #if FASTRETRANS_DEBUG > 1
956 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
957 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
958 tp->reordering,
959 tp->fackets_out,
960 tp->sacked_out,
961 tp->undo_marker ? tp->undo_retrans : 0);
962 #endif
963 tcp_disable_fack(tp);
967 /* This must be called before lost_out is incremented */
968 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
970 if ((tp->retransmit_skb_hint == NULL) ||
971 before(TCP_SKB_CB(skb)->seq,
972 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
973 tp->retransmit_skb_hint = skb;
975 if (!tp->lost_out ||
976 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
977 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
980 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
982 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
983 tcp_verify_retransmit_hint(tp, skb);
985 tp->lost_out += tcp_skb_pcount(skb);
986 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
990 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
991 struct sk_buff *skb)
993 tcp_verify_retransmit_hint(tp, skb);
995 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
996 tp->lost_out += tcp_skb_pcount(skb);
997 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1001 /* This procedure tags the retransmission queue when SACKs arrive.
1003 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1004 * Packets in queue with these bits set are counted in variables
1005 * sacked_out, retrans_out and lost_out, correspondingly.
1007 * Valid combinations are:
1008 * Tag InFlight Description
1009 * 0 1 - orig segment is in flight.
1010 * S 0 - nothing flies, orig reached receiver.
1011 * L 0 - nothing flies, orig lost by net.
1012 * R 2 - both orig and retransmit are in flight.
1013 * L|R 1 - orig is lost, retransmit is in flight.
1014 * S|R 1 - orig reached receiver, retrans is still in flight.
1015 * (L|S|R is logically valid, it could occur when L|R is sacked,
1016 * but it is equivalent to plain S and code short-curcuits it to S.
1017 * L|S is logically invalid, it would mean -1 packet in flight 8))
1019 * These 6 states form finite state machine, controlled by the following events:
1020 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1021 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1022 * 3. Loss detection event of one of three flavors:
1023 * A. Scoreboard estimator decided the packet is lost.
1024 * A'. Reno "three dupacks" marks head of queue lost.
1025 * A''. Its FACK modfication, head until snd.fack is lost.
1026 * B. SACK arrives sacking data transmitted after never retransmitted
1027 * hole was sent out.
1028 * C. SACK arrives sacking SND.NXT at the moment, when the
1029 * segment was retransmitted.
1030 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1032 * It is pleasant to note, that state diagram turns out to be commutative,
1033 * so that we are allowed not to be bothered by order of our actions,
1034 * when multiple events arrive simultaneously. (see the function below).
1036 * Reordering detection.
1037 * --------------------
1038 * Reordering metric is maximal distance, which a packet can be displaced
1039 * in packet stream. With SACKs we can estimate it:
1041 * 1. SACK fills old hole and the corresponding segment was not
1042 * ever retransmitted -> reordering. Alas, we cannot use it
1043 * when segment was retransmitted.
1044 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1045 * for retransmitted and already SACKed segment -> reordering..
1046 * Both of these heuristics are not used in Loss state, when we cannot
1047 * account for retransmits accurately.
1049 * SACK block validation.
1050 * ----------------------
1052 * SACK block range validation checks that the received SACK block fits to
1053 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1054 * Note that SND.UNA is not included to the range though being valid because
1055 * it means that the receiver is rather inconsistent with itself reporting
1056 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1057 * perfectly valid, however, in light of RFC2018 which explicitly states
1058 * that "SACK block MUST reflect the newest segment. Even if the newest
1059 * segment is going to be discarded ...", not that it looks very clever
1060 * in case of head skb. Due to potentional receiver driven attacks, we
1061 * choose to avoid immediate execution of a walk in write queue due to
1062 * reneging and defer head skb's loss recovery to standard loss recovery
1063 * procedure that will eventually trigger (nothing forbids us doing this).
1065 * Implements also blockage to start_seq wrap-around. Problem lies in the
1066 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1067 * there's no guarantee that it will be before snd_nxt (n). The problem
1068 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1069 * wrap (s_w):
1071 * <- outs wnd -> <- wrapzone ->
1072 * u e n u_w e_w s n_w
1073 * | | | | | | |
1074 * |<------------+------+----- TCP seqno space --------------+---------->|
1075 * ...-- <2^31 ->| |<--------...
1076 * ...---- >2^31 ------>| |<--------...
1078 * Current code wouldn't be vulnerable but it's better still to discard such
1079 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1080 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1081 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1082 * equal to the ideal case (infinite seqno space without wrap caused issues).
1084 * With D-SACK the lower bound is extended to cover sequence space below
1085 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1086 * again, D-SACK block must not to go across snd_una (for the same reason as
1087 * for the normal SACK blocks, explained above). But there all simplicity
1088 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1089 * fully below undo_marker they do not affect behavior in anyway and can
1090 * therefore be safely ignored. In rare cases (which are more or less
1091 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1092 * fragmentation and packet reordering past skb's retransmission. To consider
1093 * them correctly, the acceptable range must be extended even more though
1094 * the exact amount is rather hard to quantify. However, tp->max_window can
1095 * be used as an exaggerated estimate.
1097 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1098 u32 start_seq, u32 end_seq)
1100 /* Too far in future, or reversed (interpretation is ambiguous) */
1101 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1102 return 0;
1104 /* Nasty start_seq wrap-around check (see comments above) */
1105 if (!before(start_seq, tp->snd_nxt))
1106 return 0;
1108 /* In outstanding window? ...This is valid exit for D-SACKs too.
1109 * start_seq == snd_una is non-sensical (see comments above)
1111 if (after(start_seq, tp->snd_una))
1112 return 1;
1114 if (!is_dsack || !tp->undo_marker)
1115 return 0;
1117 /* ...Then it's D-SACK, and must reside below snd_una completely */
1118 if (!after(end_seq, tp->snd_una))
1119 return 0;
1121 if (!before(start_seq, tp->undo_marker))
1122 return 1;
1124 /* Too old */
1125 if (!after(end_seq, tp->undo_marker))
1126 return 0;
1128 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1129 * start_seq < undo_marker and end_seq >= undo_marker.
1131 return !before(start_seq, end_seq - tp->max_window);
1134 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1135 * Event "C". Later note: FACK people cheated me again 8), we have to account
1136 * for reordering! Ugly, but should help.
1138 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1139 * less than what is now known to be received by the other end (derived from
1140 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1141 * retransmitted skbs to avoid some costly processing per ACKs.
1143 static void tcp_mark_lost_retrans(struct sock *sk)
1145 const struct inet_connection_sock *icsk = inet_csk(sk);
1146 struct tcp_sock *tp = tcp_sk(sk);
1147 struct sk_buff *skb;
1148 int cnt = 0;
1149 u32 new_low_seq = tp->snd_nxt;
1150 u32 received_upto = tcp_highest_sack_seq(tp);
1152 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1153 !after(received_upto, tp->lost_retrans_low) ||
1154 icsk->icsk_ca_state != TCP_CA_Recovery)
1155 return;
1157 tcp_for_write_queue(skb, sk) {
1158 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1160 if (skb == tcp_send_head(sk))
1161 break;
1162 if (cnt == tp->retrans_out)
1163 break;
1164 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1165 continue;
1167 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1168 continue;
1170 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1171 * constraint here (see above) but figuring out that at
1172 * least tp->reordering SACK blocks reside between ack_seq
1173 * and received_upto is not easy task to do cheaply with
1174 * the available datastructures.
1176 * Whether FACK should check here for tp->reordering segs
1177 * in-between one could argue for either way (it would be
1178 * rather simple to implement as we could count fack_count
1179 * during the walk and do tp->fackets_out - fack_count).
1181 if (after(received_upto, ack_seq)) {
1182 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1183 tp->retrans_out -= tcp_skb_pcount(skb);
1185 tcp_skb_mark_lost_uncond_verify(tp, skb);
1186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1187 } else {
1188 if (before(ack_seq, new_low_seq))
1189 new_low_seq = ack_seq;
1190 cnt += tcp_skb_pcount(skb);
1194 if (tp->retrans_out)
1195 tp->lost_retrans_low = new_low_seq;
1198 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1199 struct tcp_sack_block_wire *sp, int num_sacks,
1200 u32 prior_snd_una)
1202 struct tcp_sock *tp = tcp_sk(sk);
1203 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1204 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1205 int dup_sack = 0;
1207 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1208 dup_sack = 1;
1209 tcp_dsack_seen(tp);
1210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1211 } else if (num_sacks > 1) {
1212 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1213 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1215 if (!after(end_seq_0, end_seq_1) &&
1216 !before(start_seq_0, start_seq_1)) {
1217 dup_sack = 1;
1218 tcp_dsack_seen(tp);
1219 NET_INC_STATS_BH(sock_net(sk),
1220 LINUX_MIB_TCPDSACKOFORECV);
1224 /* D-SACK for already forgotten data... Do dumb counting. */
1225 if (dup_sack &&
1226 !after(end_seq_0, prior_snd_una) &&
1227 after(end_seq_0, tp->undo_marker))
1228 tp->undo_retrans--;
1230 return dup_sack;
1233 struct tcp_sacktag_state {
1234 int reord;
1235 int fack_count;
1236 int flag;
1239 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1240 * the incoming SACK may not exactly match but we can find smaller MSS
1241 * aligned portion of it that matches. Therefore we might need to fragment
1242 * which may fail and creates some hassle (caller must handle error case
1243 * returns).
1245 * FIXME: this could be merged to shift decision code
1247 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1248 u32 start_seq, u32 end_seq)
1250 int in_sack, err;
1251 unsigned int pkt_len;
1252 unsigned int mss;
1254 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1255 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1257 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1258 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1259 mss = tcp_skb_mss(skb);
1260 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1262 if (!in_sack) {
1263 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1264 if (pkt_len < mss)
1265 pkt_len = mss;
1266 } else {
1267 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1268 if (pkt_len < mss)
1269 return -EINVAL;
1272 /* Round if necessary so that SACKs cover only full MSSes
1273 * and/or the remaining small portion (if present)
1275 if (pkt_len > mss) {
1276 unsigned int new_len = (pkt_len / mss) * mss;
1277 if (!in_sack && new_len < pkt_len) {
1278 new_len += mss;
1279 if (new_len > skb->len)
1280 return 0;
1282 pkt_len = new_len;
1284 err = tcp_fragment(sk, skb, pkt_len, mss);
1285 if (err < 0)
1286 return err;
1289 return in_sack;
1292 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1293 struct tcp_sacktag_state *state,
1294 int dup_sack, int pcount)
1296 struct tcp_sock *tp = tcp_sk(sk);
1297 u8 sacked = TCP_SKB_CB(skb)->sacked;
1298 int fack_count = state->fack_count;
1300 /* Account D-SACK for retransmitted packet. */
1301 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1302 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1303 tp->undo_retrans--;
1304 if (sacked & TCPCB_SACKED_ACKED)
1305 state->reord = min(fack_count, state->reord);
1308 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1309 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1310 return sacked;
1312 if (!(sacked & TCPCB_SACKED_ACKED)) {
1313 if (sacked & TCPCB_SACKED_RETRANS) {
1314 /* If the segment is not tagged as lost,
1315 * we do not clear RETRANS, believing
1316 * that retransmission is still in flight.
1318 if (sacked & TCPCB_LOST) {
1319 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1320 tp->lost_out -= pcount;
1321 tp->retrans_out -= pcount;
1323 } else {
1324 if (!(sacked & TCPCB_RETRANS)) {
1325 /* New sack for not retransmitted frame,
1326 * which was in hole. It is reordering.
1328 if (before(TCP_SKB_CB(skb)->seq,
1329 tcp_highest_sack_seq(tp)))
1330 state->reord = min(fack_count,
1331 state->reord);
1333 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1334 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1335 state->flag |= FLAG_ONLY_ORIG_SACKED;
1338 if (sacked & TCPCB_LOST) {
1339 sacked &= ~TCPCB_LOST;
1340 tp->lost_out -= pcount;
1344 sacked |= TCPCB_SACKED_ACKED;
1345 state->flag |= FLAG_DATA_SACKED;
1346 tp->sacked_out += pcount;
1348 fack_count += pcount;
1350 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1351 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1352 before(TCP_SKB_CB(skb)->seq,
1353 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1354 tp->lost_cnt_hint += pcount;
1356 if (fack_count > tp->fackets_out)
1357 tp->fackets_out = fack_count;
1360 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1361 * frames and clear it. undo_retrans is decreased above, L|R frames
1362 * are accounted above as well.
1364 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1365 sacked &= ~TCPCB_SACKED_RETRANS;
1366 tp->retrans_out -= pcount;
1369 return sacked;
1372 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1373 struct tcp_sacktag_state *state,
1374 unsigned int pcount, int shifted, int mss,
1375 int dup_sack)
1377 struct tcp_sock *tp = tcp_sk(sk);
1378 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1380 BUG_ON(!pcount);
1382 /* Tweak before seqno plays */
1383 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1384 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1385 tp->lost_cnt_hint += pcount;
1387 TCP_SKB_CB(prev)->end_seq += shifted;
1388 TCP_SKB_CB(skb)->seq += shifted;
1390 skb_shinfo(prev)->gso_segs += pcount;
1391 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1392 skb_shinfo(skb)->gso_segs -= pcount;
1394 /* When we're adding to gso_segs == 1, gso_size will be zero,
1395 * in theory this shouldn't be necessary but as long as DSACK
1396 * code can come after this skb later on it's better to keep
1397 * setting gso_size to something.
1399 if (!skb_shinfo(prev)->gso_size) {
1400 skb_shinfo(prev)->gso_size = mss;
1401 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1404 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1405 if (skb_shinfo(skb)->gso_segs <= 1) {
1406 skb_shinfo(skb)->gso_size = 0;
1407 skb_shinfo(skb)->gso_type = 0;
1410 /* We discard results */
1411 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1413 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1414 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1416 if (skb->len > 0) {
1417 BUG_ON(!tcp_skb_pcount(skb));
1418 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1419 return 0;
1422 /* Whole SKB was eaten :-) */
1424 if (skb == tp->retransmit_skb_hint)
1425 tp->retransmit_skb_hint = prev;
1426 if (skb == tp->scoreboard_skb_hint)
1427 tp->scoreboard_skb_hint = prev;
1428 if (skb == tp->lost_skb_hint) {
1429 tp->lost_skb_hint = prev;
1430 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1433 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1434 if (skb == tcp_highest_sack(sk))
1435 tcp_advance_highest_sack(sk, skb);
1437 tcp_unlink_write_queue(skb, sk);
1438 sk_wmem_free_skb(sk, skb);
1440 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1442 return 1;
1445 /* I wish gso_size would have a bit more sane initialization than
1446 * something-or-zero which complicates things
1448 static int tcp_skb_seglen(struct sk_buff *skb)
1450 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1453 /* Shifting pages past head area doesn't work */
1454 static int skb_can_shift(struct sk_buff *skb)
1456 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1459 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1460 * skb.
1462 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1463 struct tcp_sacktag_state *state,
1464 u32 start_seq, u32 end_seq,
1465 int dup_sack)
1467 struct tcp_sock *tp = tcp_sk(sk);
1468 struct sk_buff *prev;
1469 int mss;
1470 int pcount = 0;
1471 int len;
1472 int in_sack;
1474 if (!sk_can_gso(sk))
1475 goto fallback;
1477 /* Normally R but no L won't result in plain S */
1478 if (!dup_sack &&
1479 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1480 goto fallback;
1481 if (!skb_can_shift(skb))
1482 goto fallback;
1483 /* This frame is about to be dropped (was ACKed). */
1484 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1485 goto fallback;
1487 /* Can only happen with delayed DSACK + discard craziness */
1488 if (unlikely(skb == tcp_write_queue_head(sk)))
1489 goto fallback;
1490 prev = tcp_write_queue_prev(sk, skb);
1492 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1493 goto fallback;
1495 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1496 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1498 if (in_sack) {
1499 len = skb->len;
1500 pcount = tcp_skb_pcount(skb);
1501 mss = tcp_skb_seglen(skb);
1503 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1504 * drop this restriction as unnecessary
1506 if (mss != tcp_skb_seglen(prev))
1507 goto fallback;
1508 } else {
1509 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1510 goto noop;
1511 /* CHECKME: This is non-MSS split case only?, this will
1512 * cause skipped skbs due to advancing loop btw, original
1513 * has that feature too
1515 if (tcp_skb_pcount(skb) <= 1)
1516 goto noop;
1518 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1519 if (!in_sack) {
1520 /* TODO: head merge to next could be attempted here
1521 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1522 * though it might not be worth of the additional hassle
1524 * ...we can probably just fallback to what was done
1525 * previously. We could try merging non-SACKed ones
1526 * as well but it probably isn't going to buy off
1527 * because later SACKs might again split them, and
1528 * it would make skb timestamp tracking considerably
1529 * harder problem.
1531 goto fallback;
1534 len = end_seq - TCP_SKB_CB(skb)->seq;
1535 BUG_ON(len < 0);
1536 BUG_ON(len > skb->len);
1538 /* MSS boundaries should be honoured or else pcount will
1539 * severely break even though it makes things bit trickier.
1540 * Optimize common case to avoid most of the divides
1542 mss = tcp_skb_mss(skb);
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1547 if (mss != tcp_skb_seglen(prev))
1548 goto fallback;
1550 if (len == mss) {
1551 pcount = 1;
1552 } else if (len < mss) {
1553 goto noop;
1554 } else {
1555 pcount = len / mss;
1556 len = pcount * mss;
1560 if (!skb_shift(prev, skb, len))
1561 goto fallback;
1562 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1563 goto out;
1565 /* Hole filled allows collapsing with the next as well, this is very
1566 * useful when hole on every nth skb pattern happens
1568 if (prev == tcp_write_queue_tail(sk))
1569 goto out;
1570 skb = tcp_write_queue_next(sk, prev);
1572 if (!skb_can_shift(skb) ||
1573 (skb == tcp_send_head(sk)) ||
1574 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1575 (mss != tcp_skb_seglen(skb)))
1576 goto out;
1578 len = skb->len;
1579 if (skb_shift(prev, skb, len)) {
1580 pcount += tcp_skb_pcount(skb);
1581 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1584 out:
1585 state->fack_count += pcount;
1586 return prev;
1588 noop:
1589 return skb;
1591 fallback:
1592 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1593 return NULL;
1596 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1597 struct tcp_sack_block *next_dup,
1598 struct tcp_sacktag_state *state,
1599 u32 start_seq, u32 end_seq,
1600 int dup_sack_in)
1602 struct tcp_sock *tp = tcp_sk(sk);
1603 struct sk_buff *tmp;
1605 tcp_for_write_queue_from(skb, sk) {
1606 int in_sack = 0;
1607 int dup_sack = dup_sack_in;
1609 if (skb == tcp_send_head(sk))
1610 break;
1612 /* queue is in-order => we can short-circuit the walk early */
1613 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1614 break;
1616 if ((next_dup != NULL) &&
1617 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1618 in_sack = tcp_match_skb_to_sack(sk, skb,
1619 next_dup->start_seq,
1620 next_dup->end_seq);
1621 if (in_sack > 0)
1622 dup_sack = 1;
1625 /* skb reference here is a bit tricky to get right, since
1626 * shifting can eat and free both this skb and the next,
1627 * so not even _safe variant of the loop is enough.
1629 if (in_sack <= 0) {
1630 tmp = tcp_shift_skb_data(sk, skb, state,
1631 start_seq, end_seq, dup_sack);
1632 if (tmp != NULL) {
1633 if (tmp != skb) {
1634 skb = tmp;
1635 continue;
1638 in_sack = 0;
1639 } else {
1640 in_sack = tcp_match_skb_to_sack(sk, skb,
1641 start_seq,
1642 end_seq);
1646 if (unlikely(in_sack < 0))
1647 break;
1649 if (in_sack) {
1650 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1651 state,
1652 dup_sack,
1653 tcp_skb_pcount(skb));
1655 if (!before(TCP_SKB_CB(skb)->seq,
1656 tcp_highest_sack_seq(tp)))
1657 tcp_advance_highest_sack(sk, skb);
1660 state->fack_count += tcp_skb_pcount(skb);
1662 return skb;
1665 /* Avoid all extra work that is being done by sacktag while walking in
1666 * a normal way
1668 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1669 struct tcp_sacktag_state *state,
1670 u32 skip_to_seq)
1672 tcp_for_write_queue_from(skb, sk) {
1673 if (skb == tcp_send_head(sk))
1674 break;
1676 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1677 break;
1679 state->fack_count += tcp_skb_pcount(skb);
1681 return skb;
1684 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1685 struct sock *sk,
1686 struct tcp_sack_block *next_dup,
1687 struct tcp_sacktag_state *state,
1688 u32 skip_to_seq)
1690 if (next_dup == NULL)
1691 return skb;
1693 if (before(next_dup->start_seq, skip_to_seq)) {
1694 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1695 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1696 next_dup->start_seq, next_dup->end_seq,
1700 return skb;
1703 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1705 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1708 static int
1709 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1710 u32 prior_snd_una)
1712 const struct inet_connection_sock *icsk = inet_csk(sk);
1713 struct tcp_sock *tp = tcp_sk(sk);
1714 unsigned char *ptr = (skb_transport_header(ack_skb) +
1715 TCP_SKB_CB(ack_skb)->sacked);
1716 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1717 struct tcp_sack_block sp[TCP_NUM_SACKS];
1718 struct tcp_sack_block *cache;
1719 struct tcp_sacktag_state state;
1720 struct sk_buff *skb;
1721 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1722 int used_sacks;
1723 int found_dup_sack = 0;
1724 int i, j;
1725 int first_sack_index;
1727 state.flag = 0;
1728 state.reord = tp->packets_out;
1730 if (!tp->sacked_out) {
1731 if (WARN_ON(tp->fackets_out))
1732 tp->fackets_out = 0;
1733 tcp_highest_sack_reset(sk);
1736 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1737 num_sacks, prior_snd_una);
1738 if (found_dup_sack)
1739 state.flag |= FLAG_DSACKING_ACK;
1741 /* Eliminate too old ACKs, but take into
1742 * account more or less fresh ones, they can
1743 * contain valid SACK info.
1745 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1746 return 0;
1748 if (!tp->packets_out)
1749 goto out;
1751 used_sacks = 0;
1752 first_sack_index = 0;
1753 for (i = 0; i < num_sacks; i++) {
1754 int dup_sack = !i && found_dup_sack;
1756 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1757 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1759 if (!tcp_is_sackblock_valid(tp, dup_sack,
1760 sp[used_sacks].start_seq,
1761 sp[used_sacks].end_seq)) {
1762 int mib_idx;
1764 if (dup_sack) {
1765 if (!tp->undo_marker)
1766 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1767 else
1768 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1769 } else {
1770 /* Don't count olds caused by ACK reordering */
1771 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1772 !after(sp[used_sacks].end_seq, tp->snd_una))
1773 continue;
1774 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1777 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1778 if (i == 0)
1779 first_sack_index = -1;
1780 continue;
1783 /* Ignore very old stuff early */
1784 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1785 continue;
1787 used_sacks++;
1790 /* order SACK blocks to allow in order walk of the retrans queue */
1791 for (i = used_sacks - 1; i > 0; i--) {
1792 for (j = 0; j < i; j++) {
1793 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1794 swap(sp[j], sp[j + 1]);
1796 /* Track where the first SACK block goes to */
1797 if (j == first_sack_index)
1798 first_sack_index = j + 1;
1803 skb = tcp_write_queue_head(sk);
1804 state.fack_count = 0;
1805 i = 0;
1807 if (!tp->sacked_out) {
1808 /* It's already past, so skip checking against it */
1809 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1810 } else {
1811 cache = tp->recv_sack_cache;
1812 /* Skip empty blocks in at head of the cache */
1813 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1814 !cache->end_seq)
1815 cache++;
1818 while (i < used_sacks) {
1819 u32 start_seq = sp[i].start_seq;
1820 u32 end_seq = sp[i].end_seq;
1821 int dup_sack = (found_dup_sack && (i == first_sack_index));
1822 struct tcp_sack_block *next_dup = NULL;
1824 if (found_dup_sack && ((i + 1) == first_sack_index))
1825 next_dup = &sp[i + 1];
1827 /* Event "B" in the comment above. */
1828 if (after(end_seq, tp->high_seq))
1829 state.flag |= FLAG_DATA_LOST;
1831 /* Skip too early cached blocks */
1832 while (tcp_sack_cache_ok(tp, cache) &&
1833 !before(start_seq, cache->end_seq))
1834 cache++;
1836 /* Can skip some work by looking recv_sack_cache? */
1837 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1838 after(end_seq, cache->start_seq)) {
1840 /* Head todo? */
1841 if (before(start_seq, cache->start_seq)) {
1842 skb = tcp_sacktag_skip(skb, sk, &state,
1843 start_seq);
1844 skb = tcp_sacktag_walk(skb, sk, next_dup,
1845 &state,
1846 start_seq,
1847 cache->start_seq,
1848 dup_sack);
1851 /* Rest of the block already fully processed? */
1852 if (!after(end_seq, cache->end_seq))
1853 goto advance_sp;
1855 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1856 &state,
1857 cache->end_seq);
1859 /* ...tail remains todo... */
1860 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1861 /* ...but better entrypoint exists! */
1862 skb = tcp_highest_sack(sk);
1863 if (skb == NULL)
1864 break;
1865 state.fack_count = tp->fackets_out;
1866 cache++;
1867 goto walk;
1870 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1871 /* Check overlap against next cached too (past this one already) */
1872 cache++;
1873 continue;
1876 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1877 skb = tcp_highest_sack(sk);
1878 if (skb == NULL)
1879 break;
1880 state.fack_count = tp->fackets_out;
1882 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1884 walk:
1885 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1886 start_seq, end_seq, dup_sack);
1888 advance_sp:
1889 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1890 * due to in-order walk
1892 if (after(end_seq, tp->frto_highmark))
1893 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1895 i++;
1898 /* Clear the head of the cache sack blocks so we can skip it next time */
1899 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1900 tp->recv_sack_cache[i].start_seq = 0;
1901 tp->recv_sack_cache[i].end_seq = 0;
1903 for (j = 0; j < used_sacks; j++)
1904 tp->recv_sack_cache[i++] = sp[j];
1906 tcp_mark_lost_retrans(sk);
1908 tcp_verify_left_out(tp);
1910 if ((state.reord < tp->fackets_out) &&
1911 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1912 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1913 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1915 out:
1917 #if FASTRETRANS_DEBUG > 0
1918 WARN_ON((int)tp->sacked_out < 0);
1919 WARN_ON((int)tp->lost_out < 0);
1920 WARN_ON((int)tp->retrans_out < 0);
1921 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1922 #endif
1923 return state.flag;
1926 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1927 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1929 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1931 u32 holes;
1933 holes = max(tp->lost_out, 1U);
1934 holes = min(holes, tp->packets_out);
1936 if ((tp->sacked_out + holes) > tp->packets_out) {
1937 tp->sacked_out = tp->packets_out - holes;
1938 return 1;
1940 return 0;
1943 /* If we receive more dupacks than we expected counting segments
1944 * in assumption of absent reordering, interpret this as reordering.
1945 * The only another reason could be bug in receiver TCP.
1947 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1949 struct tcp_sock *tp = tcp_sk(sk);
1950 if (tcp_limit_reno_sacked(tp))
1951 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1954 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1956 static void tcp_add_reno_sack(struct sock *sk)
1958 struct tcp_sock *tp = tcp_sk(sk);
1959 tp->sacked_out++;
1960 tcp_check_reno_reordering(sk, 0);
1961 tcp_verify_left_out(tp);
1964 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1966 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1968 struct tcp_sock *tp = tcp_sk(sk);
1970 if (acked > 0) {
1971 /* One ACK acked hole. The rest eat duplicate ACKs. */
1972 if (acked - 1 >= tp->sacked_out)
1973 tp->sacked_out = 0;
1974 else
1975 tp->sacked_out -= acked - 1;
1977 tcp_check_reno_reordering(sk, acked);
1978 tcp_verify_left_out(tp);
1981 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1983 tp->sacked_out = 0;
1986 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1988 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1991 /* F-RTO can only be used if TCP has never retransmitted anything other than
1992 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1994 int tcp_use_frto(struct sock *sk)
1996 const struct tcp_sock *tp = tcp_sk(sk);
1997 const struct inet_connection_sock *icsk = inet_csk(sk);
1998 struct sk_buff *skb;
2000 if (!sysctl_tcp_frto)
2001 return 0;
2003 /* MTU probe and F-RTO won't really play nicely along currently */
2004 if (icsk->icsk_mtup.probe_size)
2005 return 0;
2007 if (tcp_is_sackfrto(tp))
2008 return 1;
2010 /* Avoid expensive walking of rexmit queue if possible */
2011 if (tp->retrans_out > 1)
2012 return 0;
2014 skb = tcp_write_queue_head(sk);
2015 if (tcp_skb_is_last(sk, skb))
2016 return 1;
2017 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2018 tcp_for_write_queue_from(skb, sk) {
2019 if (skb == tcp_send_head(sk))
2020 break;
2021 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2022 return 0;
2023 /* Short-circuit when first non-SACKed skb has been checked */
2024 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2025 break;
2027 return 1;
2030 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2031 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2032 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2033 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2034 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2035 * bits are handled if the Loss state is really to be entered (in
2036 * tcp_enter_frto_loss).
2038 * Do like tcp_enter_loss() would; when RTO expires the second time it
2039 * does:
2040 * "Reduce ssthresh if it has not yet been made inside this window."
2042 void tcp_enter_frto(struct sock *sk)
2044 const struct inet_connection_sock *icsk = inet_csk(sk);
2045 struct tcp_sock *tp = tcp_sk(sk);
2046 struct sk_buff *skb;
2048 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2049 tp->snd_una == tp->high_seq ||
2050 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2051 !icsk->icsk_retransmits)) {
2052 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2053 /* Our state is too optimistic in ssthresh() call because cwnd
2054 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2055 * recovery has not yet completed. Pattern would be this: RTO,
2056 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2057 * up here twice).
2058 * RFC4138 should be more specific on what to do, even though
2059 * RTO is quite unlikely to occur after the first Cumulative ACK
2060 * due to back-off and complexity of triggering events ...
2062 if (tp->frto_counter) {
2063 u32 stored_cwnd;
2064 stored_cwnd = tp->snd_cwnd;
2065 tp->snd_cwnd = 2;
2066 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2067 tp->snd_cwnd = stored_cwnd;
2068 } else {
2069 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2071 /* ... in theory, cong.control module could do "any tricks" in
2072 * ssthresh(), which means that ca_state, lost bits and lost_out
2073 * counter would have to be faked before the call occurs. We
2074 * consider that too expensive, unlikely and hacky, so modules
2075 * using these in ssthresh() must deal these incompatibility
2076 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2078 tcp_ca_event(sk, CA_EVENT_FRTO);
2081 tp->undo_marker = tp->snd_una;
2082 tp->undo_retrans = 0;
2084 skb = tcp_write_queue_head(sk);
2085 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2086 tp->undo_marker = 0;
2087 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2088 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2089 tp->retrans_out -= tcp_skb_pcount(skb);
2091 tcp_verify_left_out(tp);
2093 /* Too bad if TCP was application limited */
2094 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2096 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2097 * The last condition is necessary at least in tp->frto_counter case.
2099 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2100 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2101 after(tp->high_seq, tp->snd_una)) {
2102 tp->frto_highmark = tp->high_seq;
2103 } else {
2104 tp->frto_highmark = tp->snd_nxt;
2106 tcp_set_ca_state(sk, TCP_CA_Disorder);
2107 tp->high_seq = tp->snd_nxt;
2108 tp->frto_counter = 1;
2111 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2112 * which indicates that we should follow the traditional RTO recovery,
2113 * i.e. mark everything lost and do go-back-N retransmission.
2115 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2117 struct tcp_sock *tp = tcp_sk(sk);
2118 struct sk_buff *skb;
2120 tp->lost_out = 0;
2121 tp->retrans_out = 0;
2122 if (tcp_is_reno(tp))
2123 tcp_reset_reno_sack(tp);
2125 tcp_for_write_queue(skb, sk) {
2126 if (skb == tcp_send_head(sk))
2127 break;
2129 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2131 * Count the retransmission made on RTO correctly (only when
2132 * waiting for the first ACK and did not get it)...
2134 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2135 /* For some reason this R-bit might get cleared? */
2136 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2137 tp->retrans_out += tcp_skb_pcount(skb);
2138 /* ...enter this if branch just for the first segment */
2139 flag |= FLAG_DATA_ACKED;
2140 } else {
2141 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2142 tp->undo_marker = 0;
2143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2146 /* Marking forward transmissions that were made after RTO lost
2147 * can cause unnecessary retransmissions in some scenarios,
2148 * SACK blocks will mitigate that in some but not in all cases.
2149 * We used to not mark them but it was causing break-ups with
2150 * receivers that do only in-order receival.
2152 * TODO: we could detect presence of such receiver and select
2153 * different behavior per flow.
2155 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2156 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2157 tp->lost_out += tcp_skb_pcount(skb);
2158 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2161 tcp_verify_left_out(tp);
2163 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2164 tp->snd_cwnd_cnt = 0;
2165 tp->snd_cwnd_stamp = tcp_time_stamp;
2166 tp->frto_counter = 0;
2167 tp->bytes_acked = 0;
2169 tp->reordering = min_t(unsigned int, tp->reordering,
2170 sysctl_tcp_reordering);
2171 tcp_set_ca_state(sk, TCP_CA_Loss);
2172 tp->high_seq = tp->snd_nxt;
2173 TCP_ECN_queue_cwr(tp);
2175 tcp_clear_all_retrans_hints(tp);
2178 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2180 tp->retrans_out = 0;
2181 tp->lost_out = 0;
2183 tp->undo_marker = 0;
2184 tp->undo_retrans = 0;
2187 void tcp_clear_retrans(struct tcp_sock *tp)
2189 tcp_clear_retrans_partial(tp);
2191 tp->fackets_out = 0;
2192 tp->sacked_out = 0;
2195 /* Enter Loss state. If "how" is not zero, forget all SACK information
2196 * and reset tags completely, otherwise preserve SACKs. If receiver
2197 * dropped its ofo queue, we will know this due to reneging detection.
2199 void tcp_enter_loss(struct sock *sk, int how)
2201 const struct inet_connection_sock *icsk = inet_csk(sk);
2202 struct tcp_sock *tp = tcp_sk(sk);
2203 struct sk_buff *skb;
2205 /* Reduce ssthresh if it has not yet been made inside this window. */
2206 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2207 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2208 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2209 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2210 tcp_ca_event(sk, CA_EVENT_LOSS);
2212 tp->snd_cwnd = 1;
2213 tp->snd_cwnd_cnt = 0;
2214 tp->snd_cwnd_stamp = tcp_time_stamp;
2216 tp->bytes_acked = 0;
2217 tcp_clear_retrans_partial(tp);
2219 if (tcp_is_reno(tp))
2220 tcp_reset_reno_sack(tp);
2222 if (!how) {
2223 /* Push undo marker, if it was plain RTO and nothing
2224 * was retransmitted. */
2225 tp->undo_marker = tp->snd_una;
2226 } else {
2227 tp->sacked_out = 0;
2228 tp->fackets_out = 0;
2230 tcp_clear_all_retrans_hints(tp);
2232 tcp_for_write_queue(skb, sk) {
2233 if (skb == tcp_send_head(sk))
2234 break;
2236 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2237 tp->undo_marker = 0;
2238 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2239 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2240 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2241 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2242 tp->lost_out += tcp_skb_pcount(skb);
2243 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2246 tcp_verify_left_out(tp);
2248 tp->reordering = min_t(unsigned int, tp->reordering,
2249 sysctl_tcp_reordering);
2250 tcp_set_ca_state(sk, TCP_CA_Loss);
2251 tp->high_seq = tp->snd_nxt;
2252 TCP_ECN_queue_cwr(tp);
2253 /* Abort F-RTO algorithm if one is in progress */
2254 tp->frto_counter = 0;
2257 /* If ACK arrived pointing to a remembered SACK, it means that our
2258 * remembered SACKs do not reflect real state of receiver i.e.
2259 * receiver _host_ is heavily congested (or buggy).
2261 * Do processing similar to RTO timeout.
2263 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2265 if (flag & FLAG_SACK_RENEGING) {
2266 struct inet_connection_sock *icsk = inet_csk(sk);
2267 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2269 tcp_enter_loss(sk, 1);
2270 icsk->icsk_retransmits++;
2271 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2272 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2273 icsk->icsk_rto, TCP_RTO_MAX);
2274 return 1;
2276 return 0;
2279 static inline int tcp_fackets_out(struct tcp_sock *tp)
2281 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2284 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2285 * counter when SACK is enabled (without SACK, sacked_out is used for
2286 * that purpose).
2288 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2289 * segments up to the highest received SACK block so far and holes in
2290 * between them.
2292 * With reordering, holes may still be in flight, so RFC3517 recovery
2293 * uses pure sacked_out (total number of SACKed segments) even though
2294 * it violates the RFC that uses duplicate ACKs, often these are equal
2295 * but when e.g. out-of-window ACKs or packet duplication occurs,
2296 * they differ. Since neither occurs due to loss, TCP should really
2297 * ignore them.
2299 static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
2301 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2304 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2306 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2309 static inline int tcp_head_timedout(struct sock *sk)
2311 struct tcp_sock *tp = tcp_sk(sk);
2313 return tp->packets_out &&
2314 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2317 /* Linux NewReno/SACK/FACK/ECN state machine.
2318 * --------------------------------------
2320 * "Open" Normal state, no dubious events, fast path.
2321 * "Disorder" In all the respects it is "Open",
2322 * but requires a bit more attention. It is entered when
2323 * we see some SACKs or dupacks. It is split of "Open"
2324 * mainly to move some processing from fast path to slow one.
2325 * "CWR" CWND was reduced due to some Congestion Notification event.
2326 * It can be ECN, ICMP source quench, local device congestion.
2327 * "Recovery" CWND was reduced, we are fast-retransmitting.
2328 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2330 * tcp_fastretrans_alert() is entered:
2331 * - each incoming ACK, if state is not "Open"
2332 * - when arrived ACK is unusual, namely:
2333 * * SACK
2334 * * Duplicate ACK.
2335 * * ECN ECE.
2337 * Counting packets in flight is pretty simple.
2339 * in_flight = packets_out - left_out + retrans_out
2341 * packets_out is SND.NXT-SND.UNA counted in packets.
2343 * retrans_out is number of retransmitted segments.
2345 * left_out is number of segments left network, but not ACKed yet.
2347 * left_out = sacked_out + lost_out
2349 * sacked_out: Packets, which arrived to receiver out of order
2350 * and hence not ACKed. With SACKs this number is simply
2351 * amount of SACKed data. Even without SACKs
2352 * it is easy to give pretty reliable estimate of this number,
2353 * counting duplicate ACKs.
2355 * lost_out: Packets lost by network. TCP has no explicit
2356 * "loss notification" feedback from network (for now).
2357 * It means that this number can be only _guessed_.
2358 * Actually, it is the heuristics to predict lossage that
2359 * distinguishes different algorithms.
2361 * F.e. after RTO, when all the queue is considered as lost,
2362 * lost_out = packets_out and in_flight = retrans_out.
2364 * Essentially, we have now two algorithms counting
2365 * lost packets.
2367 * FACK: It is the simplest heuristics. As soon as we decided
2368 * that something is lost, we decide that _all_ not SACKed
2369 * packets until the most forward SACK are lost. I.e.
2370 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2371 * It is absolutely correct estimate, if network does not reorder
2372 * packets. And it loses any connection to reality when reordering
2373 * takes place. We use FACK by default until reordering
2374 * is suspected on the path to this destination.
2376 * NewReno: when Recovery is entered, we assume that one segment
2377 * is lost (classic Reno). While we are in Recovery and
2378 * a partial ACK arrives, we assume that one more packet
2379 * is lost (NewReno). This heuristics are the same in NewReno
2380 * and SACK.
2382 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2383 * deflation etc. CWND is real congestion window, never inflated, changes
2384 * only according to classic VJ rules.
2386 * Really tricky (and requiring careful tuning) part of algorithm
2387 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2388 * The first determines the moment _when_ we should reduce CWND and,
2389 * hence, slow down forward transmission. In fact, it determines the moment
2390 * when we decide that hole is caused by loss, rather than by a reorder.
2392 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2393 * holes, caused by lost packets.
2395 * And the most logically complicated part of algorithm is undo
2396 * heuristics. We detect false retransmits due to both too early
2397 * fast retransmit (reordering) and underestimated RTO, analyzing
2398 * timestamps and D-SACKs. When we detect that some segments were
2399 * retransmitted by mistake and CWND reduction was wrong, we undo
2400 * window reduction and abort recovery phase. This logic is hidden
2401 * inside several functions named tcp_try_undo_<something>.
2404 /* This function decides, when we should leave Disordered state
2405 * and enter Recovery phase, reducing congestion window.
2407 * Main question: may we further continue forward transmission
2408 * with the same cwnd?
2410 static int tcp_time_to_recover(struct sock *sk)
2412 struct tcp_sock *tp = tcp_sk(sk);
2413 __u32 packets_out;
2415 /* Do not perform any recovery during F-RTO algorithm */
2416 if (tp->frto_counter)
2417 return 0;
2419 /* Trick#1: The loss is proven. */
2420 if (tp->lost_out)
2421 return 1;
2423 /* Not-A-Trick#2 : Classic rule... */
2424 if (tcp_dupack_heuristics(tp) > tp->reordering)
2425 return 1;
2427 /* Trick#3 : when we use RFC2988 timer restart, fast
2428 * retransmit can be triggered by timeout of queue head.
2430 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2431 return 1;
2433 /* Trick#4: It is still not OK... But will it be useful to delay
2434 * recovery more?
2436 packets_out = tp->packets_out;
2437 if (packets_out <= tp->reordering &&
2438 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2439 !tcp_may_send_now(sk)) {
2440 /* We have nothing to send. This connection is limited
2441 * either by receiver window or by application.
2443 return 1;
2446 /* If a thin stream is detected, retransmit after first
2447 * received dupack. Employ only if SACK is supported in order
2448 * to avoid possible corner-case series of spurious retransmissions
2449 * Use only if there are no unsent data.
2451 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2452 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2453 tcp_is_sack(tp) && !tcp_send_head(sk))
2454 return 1;
2456 return 0;
2459 /* New heuristics: it is possible only after we switched to restart timer
2460 * each time when something is ACKed. Hence, we can detect timed out packets
2461 * during fast retransmit without falling to slow start.
2463 * Usefulness of this as is very questionable, since we should know which of
2464 * the segments is the next to timeout which is relatively expensive to find
2465 * in general case unless we add some data structure just for that. The
2466 * current approach certainly won't find the right one too often and when it
2467 * finally does find _something_ it usually marks large part of the window
2468 * right away (because a retransmission with a larger timestamp blocks the
2469 * loop from advancing). -ij
2471 static void tcp_timeout_skbs(struct sock *sk)
2473 struct tcp_sock *tp = tcp_sk(sk);
2474 struct sk_buff *skb;
2476 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2477 return;
2479 skb = tp->scoreboard_skb_hint;
2480 if (tp->scoreboard_skb_hint == NULL)
2481 skb = tcp_write_queue_head(sk);
2483 tcp_for_write_queue_from(skb, sk) {
2484 if (skb == tcp_send_head(sk))
2485 break;
2486 if (!tcp_skb_timedout(sk, skb))
2487 break;
2489 tcp_skb_mark_lost(tp, skb);
2492 tp->scoreboard_skb_hint = skb;
2494 tcp_verify_left_out(tp);
2497 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2498 * is against sacked "cnt", otherwise it's against facked "cnt"
2500 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2502 struct tcp_sock *tp = tcp_sk(sk);
2503 struct sk_buff *skb;
2504 int cnt, oldcnt;
2505 int err;
2506 unsigned int mss;
2508 WARN_ON(packets > tp->packets_out);
2509 if (tp->lost_skb_hint) {
2510 skb = tp->lost_skb_hint;
2511 cnt = tp->lost_cnt_hint;
2512 /* Head already handled? */
2513 if (mark_head && skb != tcp_write_queue_head(sk))
2514 return;
2515 } else {
2516 skb = tcp_write_queue_head(sk);
2517 cnt = 0;
2520 tcp_for_write_queue_from(skb, sk) {
2521 if (skb == tcp_send_head(sk))
2522 break;
2523 /* TODO: do this better */
2524 /* this is not the most efficient way to do this... */
2525 tp->lost_skb_hint = skb;
2526 tp->lost_cnt_hint = cnt;
2528 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2529 break;
2531 oldcnt = cnt;
2532 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2533 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2534 cnt += tcp_skb_pcount(skb);
2536 if (cnt > packets) {
2537 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2538 (oldcnt >= packets))
2539 break;
2541 mss = skb_shinfo(skb)->gso_size;
2542 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2543 if (err < 0)
2544 break;
2545 cnt = packets;
2548 tcp_skb_mark_lost(tp, skb);
2550 if (mark_head)
2551 break;
2553 tcp_verify_left_out(tp);
2556 /* Account newly detected lost packet(s) */
2558 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2560 struct tcp_sock *tp = tcp_sk(sk);
2562 if (tcp_is_reno(tp)) {
2563 tcp_mark_head_lost(sk, 1, 1);
2564 } else if (tcp_is_fack(tp)) {
2565 int lost = tp->fackets_out - tp->reordering;
2566 if (lost <= 0)
2567 lost = 1;
2568 tcp_mark_head_lost(sk, lost, 0);
2569 } else {
2570 int sacked_upto = tp->sacked_out - tp->reordering;
2571 if (sacked_upto >= 0)
2572 tcp_mark_head_lost(sk, sacked_upto, 0);
2573 else if (fast_rexmit)
2574 tcp_mark_head_lost(sk, 1, 1);
2577 tcp_timeout_skbs(sk);
2580 /* CWND moderation, preventing bursts due to too big ACKs
2581 * in dubious situations.
2583 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2585 tp->snd_cwnd = min(tp->snd_cwnd,
2586 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2587 tp->snd_cwnd_stamp = tcp_time_stamp;
2590 /* Lower bound on congestion window is slow start threshold
2591 * unless congestion avoidance choice decides to overide it.
2593 static inline u32 tcp_cwnd_min(const struct sock *sk)
2595 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2597 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2600 /* Decrease cwnd each second ack. */
2601 static void tcp_cwnd_down(struct sock *sk, int flag)
2603 struct tcp_sock *tp = tcp_sk(sk);
2604 int decr = tp->snd_cwnd_cnt + 1;
2606 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2607 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2608 tp->snd_cwnd_cnt = decr & 1;
2609 decr >>= 1;
2611 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2612 tp->snd_cwnd -= decr;
2614 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2615 tp->snd_cwnd_stamp = tcp_time_stamp;
2619 /* Nothing was retransmitted or returned timestamp is less
2620 * than timestamp of the first retransmission.
2622 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2624 return !tp->retrans_stamp ||
2625 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2626 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2629 /* Undo procedures. */
2631 #if FASTRETRANS_DEBUG > 1
2632 static void DBGUNDO(struct sock *sk, const char *msg)
2634 struct tcp_sock *tp = tcp_sk(sk);
2635 struct inet_sock *inet = inet_sk(sk);
2637 if (sk->sk_family == AF_INET) {
2638 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2639 msg,
2640 &inet->inet_daddr, ntohs(inet->inet_dport),
2641 tp->snd_cwnd, tcp_left_out(tp),
2642 tp->snd_ssthresh, tp->prior_ssthresh,
2643 tp->packets_out);
2645 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2646 else if (sk->sk_family == AF_INET6) {
2647 struct ipv6_pinfo *np = inet6_sk(sk);
2648 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2649 msg,
2650 &np->daddr, ntohs(inet->inet_dport),
2651 tp->snd_cwnd, tcp_left_out(tp),
2652 tp->snd_ssthresh, tp->prior_ssthresh,
2653 tp->packets_out);
2655 #endif
2657 #else
2658 #define DBGUNDO(x...) do { } while (0)
2659 #endif
2661 static void tcp_undo_cwr(struct sock *sk, const int undo)
2663 struct tcp_sock *tp = tcp_sk(sk);
2665 if (tp->prior_ssthresh) {
2666 const struct inet_connection_sock *icsk = inet_csk(sk);
2668 if (icsk->icsk_ca_ops->undo_cwnd)
2669 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2670 else
2671 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2673 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2674 tp->snd_ssthresh = tp->prior_ssthresh;
2675 TCP_ECN_withdraw_cwr(tp);
2677 } else {
2678 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2680 tcp_moderate_cwnd(tp);
2681 tp->snd_cwnd_stamp = tcp_time_stamp;
2684 static inline int tcp_may_undo(struct tcp_sock *tp)
2686 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2689 /* People celebrate: "We love our President!" */
2690 static int tcp_try_undo_recovery(struct sock *sk)
2692 struct tcp_sock *tp = tcp_sk(sk);
2694 if (tcp_may_undo(tp)) {
2695 int mib_idx;
2697 /* Happy end! We did not retransmit anything
2698 * or our original transmission succeeded.
2700 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2701 tcp_undo_cwr(sk, 1);
2702 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2703 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2704 else
2705 mib_idx = LINUX_MIB_TCPFULLUNDO;
2707 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2708 tp->undo_marker = 0;
2710 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2711 /* Hold old state until something *above* high_seq
2712 * is ACKed. For Reno it is MUST to prevent false
2713 * fast retransmits (RFC2582). SACK TCP is safe. */
2714 tcp_moderate_cwnd(tp);
2715 return 1;
2717 tcp_set_ca_state(sk, TCP_CA_Open);
2718 return 0;
2721 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2722 static void tcp_try_undo_dsack(struct sock *sk)
2724 struct tcp_sock *tp = tcp_sk(sk);
2726 if (tp->undo_marker && !tp->undo_retrans) {
2727 DBGUNDO(sk, "D-SACK");
2728 tcp_undo_cwr(sk, 1);
2729 tp->undo_marker = 0;
2730 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2734 /* We can clear retrans_stamp when there are no retransmissions in the
2735 * window. It would seem that it is trivially available for us in
2736 * tp->retrans_out, however, that kind of assumptions doesn't consider
2737 * what will happen if errors occur when sending retransmission for the
2738 * second time. ...It could the that such segment has only
2739 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2740 * the head skb is enough except for some reneging corner cases that
2741 * are not worth the effort.
2743 * Main reason for all this complexity is the fact that connection dying
2744 * time now depends on the validity of the retrans_stamp, in particular,
2745 * that successive retransmissions of a segment must not advance
2746 * retrans_stamp under any conditions.
2748 static int tcp_any_retrans_done(struct sock *sk)
2750 struct tcp_sock *tp = tcp_sk(sk);
2751 struct sk_buff *skb;
2753 if (tp->retrans_out)
2754 return 1;
2756 skb = tcp_write_queue_head(sk);
2757 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2758 return 1;
2760 return 0;
2763 /* Undo during fast recovery after partial ACK. */
2765 static int tcp_try_undo_partial(struct sock *sk, int acked)
2767 struct tcp_sock *tp = tcp_sk(sk);
2768 /* Partial ACK arrived. Force Hoe's retransmit. */
2769 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2771 if (tcp_may_undo(tp)) {
2772 /* Plain luck! Hole if filled with delayed
2773 * packet, rather than with a retransmit.
2775 if (!tcp_any_retrans_done(sk))
2776 tp->retrans_stamp = 0;
2778 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2780 DBGUNDO(sk, "Hoe");
2781 tcp_undo_cwr(sk, 0);
2782 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2784 /* So... Do not make Hoe's retransmit yet.
2785 * If the first packet was delayed, the rest
2786 * ones are most probably delayed as well.
2788 failed = 0;
2790 return failed;
2793 /* Undo during loss recovery after partial ACK. */
2794 static int tcp_try_undo_loss(struct sock *sk)
2796 struct tcp_sock *tp = tcp_sk(sk);
2798 if (tcp_may_undo(tp)) {
2799 struct sk_buff *skb;
2800 tcp_for_write_queue(skb, sk) {
2801 if (skb == tcp_send_head(sk))
2802 break;
2803 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2806 tcp_clear_all_retrans_hints(tp);
2808 DBGUNDO(sk, "partial loss");
2809 tp->lost_out = 0;
2810 tcp_undo_cwr(sk, 1);
2811 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2812 inet_csk(sk)->icsk_retransmits = 0;
2813 tp->undo_marker = 0;
2814 if (tcp_is_sack(tp))
2815 tcp_set_ca_state(sk, TCP_CA_Open);
2816 return 1;
2818 return 0;
2821 static inline void tcp_complete_cwr(struct sock *sk)
2823 struct tcp_sock *tp = tcp_sk(sk);
2824 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2825 tp->snd_cwnd_stamp = tcp_time_stamp;
2826 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2829 static void tcp_try_keep_open(struct sock *sk)
2831 struct tcp_sock *tp = tcp_sk(sk);
2832 int state = TCP_CA_Open;
2834 if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
2835 state = TCP_CA_Disorder;
2837 if (inet_csk(sk)->icsk_ca_state != state) {
2838 tcp_set_ca_state(sk, state);
2839 tp->high_seq = tp->snd_nxt;
2843 static void tcp_try_to_open(struct sock *sk, int flag)
2845 struct tcp_sock *tp = tcp_sk(sk);
2847 tcp_verify_left_out(tp);
2849 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2850 tp->retrans_stamp = 0;
2852 if (flag & FLAG_ECE)
2853 tcp_enter_cwr(sk, 1);
2855 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2856 tcp_try_keep_open(sk);
2857 tcp_moderate_cwnd(tp);
2858 } else {
2859 tcp_cwnd_down(sk, flag);
2863 static void tcp_mtup_probe_failed(struct sock *sk)
2865 struct inet_connection_sock *icsk = inet_csk(sk);
2867 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2868 icsk->icsk_mtup.probe_size = 0;
2871 static void tcp_mtup_probe_success(struct sock *sk)
2873 struct tcp_sock *tp = tcp_sk(sk);
2874 struct inet_connection_sock *icsk = inet_csk(sk);
2876 /* FIXME: breaks with very large cwnd */
2877 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2878 tp->snd_cwnd = tp->snd_cwnd *
2879 tcp_mss_to_mtu(sk, tp->mss_cache) /
2880 icsk->icsk_mtup.probe_size;
2881 tp->snd_cwnd_cnt = 0;
2882 tp->snd_cwnd_stamp = tcp_time_stamp;
2883 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2885 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2886 icsk->icsk_mtup.probe_size = 0;
2887 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2890 /* Do a simple retransmit without using the backoff mechanisms in
2891 * tcp_timer. This is used for path mtu discovery.
2892 * The socket is already locked here.
2894 void tcp_simple_retransmit(struct sock *sk)
2896 const struct inet_connection_sock *icsk = inet_csk(sk);
2897 struct tcp_sock *tp = tcp_sk(sk);
2898 struct sk_buff *skb;
2899 unsigned int mss = tcp_current_mss(sk);
2900 u32 prior_lost = tp->lost_out;
2902 tcp_for_write_queue(skb, sk) {
2903 if (skb == tcp_send_head(sk))
2904 break;
2905 if (tcp_skb_seglen(skb) > mss &&
2906 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2907 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2908 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2909 tp->retrans_out -= tcp_skb_pcount(skb);
2911 tcp_skb_mark_lost_uncond_verify(tp, skb);
2915 tcp_clear_retrans_hints_partial(tp);
2917 if (prior_lost == tp->lost_out)
2918 return;
2920 if (tcp_is_reno(tp))
2921 tcp_limit_reno_sacked(tp);
2923 tcp_verify_left_out(tp);
2925 /* Don't muck with the congestion window here.
2926 * Reason is that we do not increase amount of _data_
2927 * in network, but units changed and effective
2928 * cwnd/ssthresh really reduced now.
2930 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2931 tp->high_seq = tp->snd_nxt;
2932 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2933 tp->prior_ssthresh = 0;
2934 tp->undo_marker = 0;
2935 tcp_set_ca_state(sk, TCP_CA_Loss);
2937 tcp_xmit_retransmit_queue(sk);
2939 EXPORT_SYMBOL(tcp_simple_retransmit);
2941 /* Process an event, which can update packets-in-flight not trivially.
2942 * Main goal of this function is to calculate new estimate for left_out,
2943 * taking into account both packets sitting in receiver's buffer and
2944 * packets lost by network.
2946 * Besides that it does CWND reduction, when packet loss is detected
2947 * and changes state of machine.
2949 * It does _not_ decide what to send, it is made in function
2950 * tcp_xmit_retransmit_queue().
2952 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2954 struct inet_connection_sock *icsk = inet_csk(sk);
2955 struct tcp_sock *tp = tcp_sk(sk);
2956 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2957 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2958 (tcp_fackets_out(tp) > tp->reordering));
2959 int fast_rexmit = 0, mib_idx;
2961 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2962 tp->sacked_out = 0;
2963 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2964 tp->fackets_out = 0;
2966 /* Now state machine starts.
2967 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2968 if (flag & FLAG_ECE)
2969 tp->prior_ssthresh = 0;
2971 /* B. In all the states check for reneging SACKs. */
2972 if (tcp_check_sack_reneging(sk, flag))
2973 return;
2975 /* C. Process data loss notification, provided it is valid. */
2976 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2977 before(tp->snd_una, tp->high_seq) &&
2978 icsk->icsk_ca_state != TCP_CA_Open &&
2979 tp->fackets_out > tp->reordering) {
2980 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
2981 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2984 /* D. Check consistency of the current state. */
2985 tcp_verify_left_out(tp);
2987 /* E. Check state exit conditions. State can be terminated
2988 * when high_seq is ACKed. */
2989 if (icsk->icsk_ca_state == TCP_CA_Open) {
2990 WARN_ON(tp->retrans_out != 0);
2991 tp->retrans_stamp = 0;
2992 } else if (!before(tp->snd_una, tp->high_seq)) {
2993 switch (icsk->icsk_ca_state) {
2994 case TCP_CA_Loss:
2995 icsk->icsk_retransmits = 0;
2996 if (tcp_try_undo_recovery(sk))
2997 return;
2998 break;
3000 case TCP_CA_CWR:
3001 /* CWR is to be held something *above* high_seq
3002 * is ACKed for CWR bit to reach receiver. */
3003 if (tp->snd_una != tp->high_seq) {
3004 tcp_complete_cwr(sk);
3005 tcp_set_ca_state(sk, TCP_CA_Open);
3007 break;
3009 case TCP_CA_Disorder:
3010 tcp_try_undo_dsack(sk);
3011 if (!tp->undo_marker ||
3012 /* For SACK case do not Open to allow to undo
3013 * catching for all duplicate ACKs. */
3014 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
3015 tp->undo_marker = 0;
3016 tcp_set_ca_state(sk, TCP_CA_Open);
3018 break;
3020 case TCP_CA_Recovery:
3021 if (tcp_is_reno(tp))
3022 tcp_reset_reno_sack(tp);
3023 if (tcp_try_undo_recovery(sk))
3024 return;
3025 tcp_complete_cwr(sk);
3026 break;
3030 /* F. Process state. */
3031 switch (icsk->icsk_ca_state) {
3032 case TCP_CA_Recovery:
3033 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3034 if (tcp_is_reno(tp) && is_dupack)
3035 tcp_add_reno_sack(sk);
3036 } else
3037 do_lost = tcp_try_undo_partial(sk, pkts_acked);
3038 break;
3039 case TCP_CA_Loss:
3040 if (flag & FLAG_DATA_ACKED)
3041 icsk->icsk_retransmits = 0;
3042 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3043 tcp_reset_reno_sack(tp);
3044 if (!tcp_try_undo_loss(sk)) {
3045 tcp_moderate_cwnd(tp);
3046 tcp_xmit_retransmit_queue(sk);
3047 return;
3049 if (icsk->icsk_ca_state != TCP_CA_Open)
3050 return;
3051 /* Loss is undone; fall through to processing in Open state. */
3052 default:
3053 if (tcp_is_reno(tp)) {
3054 if (flag & FLAG_SND_UNA_ADVANCED)
3055 tcp_reset_reno_sack(tp);
3056 if (is_dupack)
3057 tcp_add_reno_sack(sk);
3060 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3061 tcp_try_undo_dsack(sk);
3063 if (!tcp_time_to_recover(sk)) {
3064 tcp_try_to_open(sk, flag);
3065 return;
3068 /* MTU probe failure: don't reduce cwnd */
3069 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3070 icsk->icsk_mtup.probe_size &&
3071 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3072 tcp_mtup_probe_failed(sk);
3073 /* Restores the reduction we did in tcp_mtup_probe() */
3074 tp->snd_cwnd++;
3075 tcp_simple_retransmit(sk);
3076 return;
3079 /* Otherwise enter Recovery state */
3081 if (tcp_is_reno(tp))
3082 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3083 else
3084 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3086 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3088 tp->high_seq = tp->snd_nxt;
3089 tp->prior_ssthresh = 0;
3090 tp->undo_marker = tp->snd_una;
3091 tp->undo_retrans = tp->retrans_out;
3093 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3094 if (!(flag & FLAG_ECE))
3095 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3096 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3097 TCP_ECN_queue_cwr(tp);
3100 tp->bytes_acked = 0;
3101 tp->snd_cwnd_cnt = 0;
3102 tcp_set_ca_state(sk, TCP_CA_Recovery);
3103 fast_rexmit = 1;
3106 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3107 tcp_update_scoreboard(sk, fast_rexmit);
3108 tcp_cwnd_down(sk, flag);
3109 tcp_xmit_retransmit_queue(sk);
3112 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3114 tcp_rtt_estimator(sk, seq_rtt);
3115 tcp_set_rto(sk);
3116 inet_csk(sk)->icsk_backoff = 0;
3119 /* Read draft-ietf-tcplw-high-performance before mucking
3120 * with this code. (Supersedes RFC1323)
3122 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3124 /* RTTM Rule: A TSecr value received in a segment is used to
3125 * update the averaged RTT measurement only if the segment
3126 * acknowledges some new data, i.e., only if it advances the
3127 * left edge of the send window.
3129 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3130 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3132 * Changed: reset backoff as soon as we see the first valid sample.
3133 * If we do not, we get strongly overestimated rto. With timestamps
3134 * samples are accepted even from very old segments: f.e., when rtt=1
3135 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3136 * answer arrives rto becomes 120 seconds! If at least one of segments
3137 * in window is lost... Voila. --ANK (010210)
3139 struct tcp_sock *tp = tcp_sk(sk);
3141 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3144 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3146 /* We don't have a timestamp. Can only use
3147 * packets that are not retransmitted to determine
3148 * rtt estimates. Also, we must not reset the
3149 * backoff for rto until we get a non-retransmitted
3150 * packet. This allows us to deal with a situation
3151 * where the network delay has increased suddenly.
3152 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3155 if (flag & FLAG_RETRANS_DATA_ACKED)
3156 return;
3158 tcp_valid_rtt_meas(sk, seq_rtt);
3161 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3162 const s32 seq_rtt)
3164 const struct tcp_sock *tp = tcp_sk(sk);
3165 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3166 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3167 tcp_ack_saw_tstamp(sk, flag);
3168 else if (seq_rtt >= 0)
3169 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3172 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3174 const struct inet_connection_sock *icsk = inet_csk(sk);
3175 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3176 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3179 /* Restart timer after forward progress on connection.
3180 * RFC2988 recommends to restart timer to now+rto.
3182 static void tcp_rearm_rto(struct sock *sk)
3184 struct tcp_sock *tp = tcp_sk(sk);
3186 if (!tp->packets_out) {
3187 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3188 } else {
3189 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3190 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3194 /* If we get here, the whole TSO packet has not been acked. */
3195 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3197 struct tcp_sock *tp = tcp_sk(sk);
3198 u32 packets_acked;
3200 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3202 packets_acked = tcp_skb_pcount(skb);
3203 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3204 return 0;
3205 packets_acked -= tcp_skb_pcount(skb);
3207 if (packets_acked) {
3208 BUG_ON(tcp_skb_pcount(skb) == 0);
3209 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3212 return packets_acked;
3215 /* Remove acknowledged frames from the retransmission queue. If our packet
3216 * is before the ack sequence we can discard it as it's confirmed to have
3217 * arrived at the other end.
3219 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3220 u32 prior_snd_una)
3222 struct tcp_sock *tp = tcp_sk(sk);
3223 const struct inet_connection_sock *icsk = inet_csk(sk);
3224 struct sk_buff *skb;
3225 u32 now = tcp_time_stamp;
3226 int fully_acked = 1;
3227 int flag = 0;
3228 u32 pkts_acked = 0;
3229 u32 reord = tp->packets_out;
3230 u32 prior_sacked = tp->sacked_out;
3231 s32 seq_rtt = -1;
3232 s32 ca_seq_rtt = -1;
3233 ktime_t last_ackt = net_invalid_timestamp();
3235 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3236 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3237 u32 acked_pcount;
3238 u8 sacked = scb->sacked;
3240 /* Determine how many packets and what bytes were acked, tso and else */
3241 if (after(scb->end_seq, tp->snd_una)) {
3242 if (tcp_skb_pcount(skb) == 1 ||
3243 !after(tp->snd_una, scb->seq))
3244 break;
3246 acked_pcount = tcp_tso_acked(sk, skb);
3247 if (!acked_pcount)
3248 break;
3250 fully_acked = 0;
3251 } else {
3252 acked_pcount = tcp_skb_pcount(skb);
3255 if (sacked & TCPCB_RETRANS) {
3256 if (sacked & TCPCB_SACKED_RETRANS)
3257 tp->retrans_out -= acked_pcount;
3258 flag |= FLAG_RETRANS_DATA_ACKED;
3259 ca_seq_rtt = -1;
3260 seq_rtt = -1;
3261 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3262 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3263 } else {
3264 ca_seq_rtt = now - scb->when;
3265 last_ackt = skb->tstamp;
3266 if (seq_rtt < 0) {
3267 seq_rtt = ca_seq_rtt;
3269 if (!(sacked & TCPCB_SACKED_ACKED))
3270 reord = min(pkts_acked, reord);
3273 if (sacked & TCPCB_SACKED_ACKED)
3274 tp->sacked_out -= acked_pcount;
3275 if (sacked & TCPCB_LOST)
3276 tp->lost_out -= acked_pcount;
3278 tp->packets_out -= acked_pcount;
3279 pkts_acked += acked_pcount;
3281 /* Initial outgoing SYN's get put onto the write_queue
3282 * just like anything else we transmit. It is not
3283 * true data, and if we misinform our callers that
3284 * this ACK acks real data, we will erroneously exit
3285 * connection startup slow start one packet too
3286 * quickly. This is severely frowned upon behavior.
3288 if (!(scb->flags & TCPHDR_SYN)) {
3289 flag |= FLAG_DATA_ACKED;
3290 } else {
3291 flag |= FLAG_SYN_ACKED;
3292 tp->retrans_stamp = 0;
3295 if (!fully_acked)
3296 break;
3298 tcp_unlink_write_queue(skb, sk);
3299 sk_wmem_free_skb(sk, skb);
3300 tp->scoreboard_skb_hint = NULL;
3301 if (skb == tp->retransmit_skb_hint)
3302 tp->retransmit_skb_hint = NULL;
3303 if (skb == tp->lost_skb_hint)
3304 tp->lost_skb_hint = NULL;
3307 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3308 tp->snd_up = tp->snd_una;
3310 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3311 flag |= FLAG_SACK_RENEGING;
3313 if (flag & FLAG_ACKED) {
3314 const struct tcp_congestion_ops *ca_ops
3315 = inet_csk(sk)->icsk_ca_ops;
3317 if (unlikely(icsk->icsk_mtup.probe_size &&
3318 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3319 tcp_mtup_probe_success(sk);
3322 tcp_ack_update_rtt(sk, flag, seq_rtt);
3323 tcp_rearm_rto(sk);
3325 if (tcp_is_reno(tp)) {
3326 tcp_remove_reno_sacks(sk, pkts_acked);
3327 } else {
3328 int delta;
3330 /* Non-retransmitted hole got filled? That's reordering */
3331 if (reord < prior_fackets)
3332 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3334 delta = tcp_is_fack(tp) ? pkts_acked :
3335 prior_sacked - tp->sacked_out;
3336 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3339 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3341 if (ca_ops->pkts_acked) {
3342 s32 rtt_us = -1;
3344 /* Is the ACK triggering packet unambiguous? */
3345 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3346 /* High resolution needed and available? */
3347 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3348 !ktime_equal(last_ackt,
3349 net_invalid_timestamp()))
3350 rtt_us = ktime_us_delta(ktime_get_real(),
3351 last_ackt);
3352 else if (ca_seq_rtt > 0)
3353 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3356 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3360 #if FASTRETRANS_DEBUG > 0
3361 WARN_ON((int)tp->sacked_out < 0);
3362 WARN_ON((int)tp->lost_out < 0);
3363 WARN_ON((int)tp->retrans_out < 0);
3364 if (!tp->packets_out && tcp_is_sack(tp)) {
3365 icsk = inet_csk(sk);
3366 if (tp->lost_out) {
3367 printk(KERN_DEBUG "Leak l=%u %d\n",
3368 tp->lost_out, icsk->icsk_ca_state);
3369 tp->lost_out = 0;
3371 if (tp->sacked_out) {
3372 printk(KERN_DEBUG "Leak s=%u %d\n",
3373 tp->sacked_out, icsk->icsk_ca_state);
3374 tp->sacked_out = 0;
3376 if (tp->retrans_out) {
3377 printk(KERN_DEBUG "Leak r=%u %d\n",
3378 tp->retrans_out, icsk->icsk_ca_state);
3379 tp->retrans_out = 0;
3382 #endif
3383 return flag;
3386 static void tcp_ack_probe(struct sock *sk)
3388 const struct tcp_sock *tp = tcp_sk(sk);
3389 struct inet_connection_sock *icsk = inet_csk(sk);
3391 /* Was it a usable window open? */
3393 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3394 icsk->icsk_backoff = 0;
3395 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3396 /* Socket must be waked up by subsequent tcp_data_snd_check().
3397 * This function is not for random using!
3399 } else {
3400 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3401 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3402 TCP_RTO_MAX);
3406 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3408 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3409 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3412 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3414 const struct tcp_sock *tp = tcp_sk(sk);
3415 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3416 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3419 /* Check that window update is acceptable.
3420 * The function assumes that snd_una<=ack<=snd_next.
3422 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3423 const u32 ack, const u32 ack_seq,
3424 const u32 nwin)
3426 return after(ack, tp->snd_una) ||
3427 after(ack_seq, tp->snd_wl1) ||
3428 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3431 /* Update our send window.
3433 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3434 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3436 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3437 u32 ack_seq)
3439 struct tcp_sock *tp = tcp_sk(sk);
3440 int flag = 0;
3441 u32 nwin = ntohs(tcp_hdr(skb)->window);
3443 if (likely(!tcp_hdr(skb)->syn))
3444 nwin <<= tp->rx_opt.snd_wscale;
3446 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3447 flag |= FLAG_WIN_UPDATE;
3448 tcp_update_wl(tp, ack_seq);
3450 if (tp->snd_wnd != nwin) {
3451 tp->snd_wnd = nwin;
3453 /* Note, it is the only place, where
3454 * fast path is recovered for sending TCP.
3456 tp->pred_flags = 0;
3457 tcp_fast_path_check(sk);
3459 if (nwin > tp->max_window) {
3460 tp->max_window = nwin;
3461 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3466 tp->snd_una = ack;
3468 return flag;
3471 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3472 * continue in congestion avoidance.
3474 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3476 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3477 tp->snd_cwnd_cnt = 0;
3478 tp->bytes_acked = 0;
3479 TCP_ECN_queue_cwr(tp);
3480 tcp_moderate_cwnd(tp);
3483 /* A conservative spurious RTO response algorithm: reduce cwnd using
3484 * rate halving and continue in congestion avoidance.
3486 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3488 tcp_enter_cwr(sk, 0);
3491 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3493 if (flag & FLAG_ECE)
3494 tcp_ratehalving_spur_to_response(sk);
3495 else
3496 tcp_undo_cwr(sk, 1);
3499 /* F-RTO spurious RTO detection algorithm (RFC4138)
3501 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3502 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3503 * window (but not to or beyond highest sequence sent before RTO):
3504 * On First ACK, send two new segments out.
3505 * On Second ACK, RTO was likely spurious. Do spurious response (response
3506 * algorithm is not part of the F-RTO detection algorithm
3507 * given in RFC4138 but can be selected separately).
3508 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3509 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3510 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3511 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3513 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3514 * original window even after we transmit two new data segments.
3516 * SACK version:
3517 * on first step, wait until first cumulative ACK arrives, then move to
3518 * the second step. In second step, the next ACK decides.
3520 * F-RTO is implemented (mainly) in four functions:
3521 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3522 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3523 * called when tcp_use_frto() showed green light
3524 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3525 * - tcp_enter_frto_loss() is called if there is not enough evidence
3526 * to prove that the RTO is indeed spurious. It transfers the control
3527 * from F-RTO to the conventional RTO recovery
3529 static int tcp_process_frto(struct sock *sk, int flag)
3531 struct tcp_sock *tp = tcp_sk(sk);
3533 tcp_verify_left_out(tp);
3535 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3536 if (flag & FLAG_DATA_ACKED)
3537 inet_csk(sk)->icsk_retransmits = 0;
3539 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3540 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3541 tp->undo_marker = 0;
3543 if (!before(tp->snd_una, tp->frto_highmark)) {
3544 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3545 return 1;
3548 if (!tcp_is_sackfrto(tp)) {
3549 /* RFC4138 shortcoming in step 2; should also have case c):
3550 * ACK isn't duplicate nor advances window, e.g., opposite dir
3551 * data, winupdate
3553 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3554 return 1;
3556 if (!(flag & FLAG_DATA_ACKED)) {
3557 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3558 flag);
3559 return 1;
3561 } else {
3562 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3563 /* Prevent sending of new data. */
3564 tp->snd_cwnd = min(tp->snd_cwnd,
3565 tcp_packets_in_flight(tp));
3566 return 1;
3569 if ((tp->frto_counter >= 2) &&
3570 (!(flag & FLAG_FORWARD_PROGRESS) ||
3571 ((flag & FLAG_DATA_SACKED) &&
3572 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3573 /* RFC4138 shortcoming (see comment above) */
3574 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3575 (flag & FLAG_NOT_DUP))
3576 return 1;
3578 tcp_enter_frto_loss(sk, 3, flag);
3579 return 1;
3583 if (tp->frto_counter == 1) {
3584 /* tcp_may_send_now needs to see updated state */
3585 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3586 tp->frto_counter = 2;
3588 if (!tcp_may_send_now(sk))
3589 tcp_enter_frto_loss(sk, 2, flag);
3591 return 1;
3592 } else {
3593 switch (sysctl_tcp_frto_response) {
3594 case 2:
3595 tcp_undo_spur_to_response(sk, flag);
3596 break;
3597 case 1:
3598 tcp_conservative_spur_to_response(tp);
3599 break;
3600 default:
3601 tcp_ratehalving_spur_to_response(sk);
3602 break;
3604 tp->frto_counter = 0;
3605 tp->undo_marker = 0;
3606 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3608 return 0;
3611 /* This routine deals with incoming acks, but not outgoing ones. */
3612 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3614 struct inet_connection_sock *icsk = inet_csk(sk);
3615 struct tcp_sock *tp = tcp_sk(sk);
3616 u32 prior_snd_una = tp->snd_una;
3617 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3618 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3619 u32 prior_in_flight;
3620 u32 prior_fackets;
3621 int prior_packets;
3622 int frto_cwnd = 0;
3624 /* If the ack is older than previous acks
3625 * then we can probably ignore it.
3627 if (before(ack, prior_snd_una))
3628 goto old_ack;
3630 /* If the ack includes data we haven't sent yet, discard
3631 * this segment (RFC793 Section 3.9).
3633 if (after(ack, tp->snd_nxt))
3634 goto invalid_ack;
3636 if (after(ack, prior_snd_una))
3637 flag |= FLAG_SND_UNA_ADVANCED;
3639 if (sysctl_tcp_abc) {
3640 if (icsk->icsk_ca_state < TCP_CA_CWR)
3641 tp->bytes_acked += ack - prior_snd_una;
3642 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3643 /* we assume just one segment left network */
3644 tp->bytes_acked += min(ack - prior_snd_una,
3645 tp->mss_cache);
3648 prior_fackets = tp->fackets_out;
3649 prior_in_flight = tcp_packets_in_flight(tp);
3651 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3652 /* Window is constant, pure forward advance.
3653 * No more checks are required.
3654 * Note, we use the fact that SND.UNA>=SND.WL2.
3656 tcp_update_wl(tp, ack_seq);
3657 tp->snd_una = ack;
3658 flag |= FLAG_WIN_UPDATE;
3660 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3662 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3663 } else {
3664 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3665 flag |= FLAG_DATA;
3666 else
3667 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3669 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3671 if (TCP_SKB_CB(skb)->sacked)
3672 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3674 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3675 flag |= FLAG_ECE;
3677 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3680 /* We passed data and got it acked, remove any soft error
3681 * log. Something worked...
3683 sk->sk_err_soft = 0;
3684 icsk->icsk_probes_out = 0;
3685 tp->rcv_tstamp = tcp_time_stamp;
3686 prior_packets = tp->packets_out;
3687 if (!prior_packets)
3688 goto no_queue;
3690 /* See if we can take anything off of the retransmit queue. */
3691 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3693 if (tp->frto_counter)
3694 frto_cwnd = tcp_process_frto(sk, flag);
3695 /* Guarantee sacktag reordering detection against wrap-arounds */
3696 if (before(tp->frto_highmark, tp->snd_una))
3697 tp->frto_highmark = 0;
3699 if (tcp_ack_is_dubious(sk, flag)) {
3700 /* Advance CWND, if state allows this. */
3701 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3702 tcp_may_raise_cwnd(sk, flag))
3703 tcp_cong_avoid(sk, ack, prior_in_flight);
3704 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3705 flag);
3706 } else {
3707 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3708 tcp_cong_avoid(sk, ack, prior_in_flight);
3711 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3712 dst_confirm(__sk_dst_get(sk));
3714 return 1;
3716 no_queue:
3717 /* If this ack opens up a zero window, clear backoff. It was
3718 * being used to time the probes, and is probably far higher than
3719 * it needs to be for normal retransmission.
3721 if (tcp_send_head(sk))
3722 tcp_ack_probe(sk);
3723 return 1;
3725 invalid_ack:
3726 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727 return -1;
3729 old_ack:
3730 if (TCP_SKB_CB(skb)->sacked) {
3731 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3732 if (icsk->icsk_ca_state == TCP_CA_Open)
3733 tcp_try_keep_open(sk);
3736 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3737 return 0;
3740 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3741 * But, this can also be called on packets in the established flow when
3742 * the fast version below fails.
3744 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3745 u8 **hvpp, int estab)
3747 unsigned char *ptr;
3748 struct tcphdr *th = tcp_hdr(skb);
3749 int length = (th->doff * 4) - sizeof(struct tcphdr);
3751 ptr = (unsigned char *)(th + 1);
3752 opt_rx->saw_tstamp = 0;
3754 while (length > 0) {
3755 int opcode = *ptr++;
3756 int opsize;
3758 switch (opcode) {
3759 case TCPOPT_EOL:
3760 return;
3761 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3762 length--;
3763 continue;
3764 default:
3765 opsize = *ptr++;
3766 if (opsize < 2) /* "silly options" */
3767 return;
3768 if (opsize > length)
3769 return; /* don't parse partial options */
3770 switch (opcode) {
3771 case TCPOPT_MSS:
3772 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3773 u16 in_mss = get_unaligned_be16(ptr);
3774 if (in_mss) {
3775 if (opt_rx->user_mss &&
3776 opt_rx->user_mss < in_mss)
3777 in_mss = opt_rx->user_mss;
3778 opt_rx->mss_clamp = in_mss;
3781 break;
3782 case TCPOPT_WINDOW:
3783 if (opsize == TCPOLEN_WINDOW && th->syn &&
3784 !estab && sysctl_tcp_window_scaling) {
3785 __u8 snd_wscale = *(__u8 *)ptr;
3786 opt_rx->wscale_ok = 1;
3787 if (snd_wscale > 14) {
3788 if (net_ratelimit())
3789 printk(KERN_INFO "tcp_parse_options: Illegal window "
3790 "scaling value %d >14 received.\n",
3791 snd_wscale);
3792 snd_wscale = 14;
3794 opt_rx->snd_wscale = snd_wscale;
3796 break;
3797 case TCPOPT_TIMESTAMP:
3798 if ((opsize == TCPOLEN_TIMESTAMP) &&
3799 ((estab && opt_rx->tstamp_ok) ||
3800 (!estab && sysctl_tcp_timestamps))) {
3801 opt_rx->saw_tstamp = 1;
3802 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3803 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3805 break;
3806 case TCPOPT_SACK_PERM:
3807 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3808 !estab && sysctl_tcp_sack) {
3809 opt_rx->sack_ok = 1;
3810 tcp_sack_reset(opt_rx);
3812 break;
3814 case TCPOPT_SACK:
3815 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3816 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3817 opt_rx->sack_ok) {
3818 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3820 break;
3821 #ifdef CONFIG_TCP_MD5SIG
3822 case TCPOPT_MD5SIG:
3824 * The MD5 Hash has already been
3825 * checked (see tcp_v{4,6}_do_rcv()).
3827 break;
3828 #endif
3829 case TCPOPT_COOKIE:
3830 /* This option is variable length.
3832 switch (opsize) {
3833 case TCPOLEN_COOKIE_BASE:
3834 /* not yet implemented */
3835 break;
3836 case TCPOLEN_COOKIE_PAIR:
3837 /* not yet implemented */
3838 break;
3839 case TCPOLEN_COOKIE_MIN+0:
3840 case TCPOLEN_COOKIE_MIN+2:
3841 case TCPOLEN_COOKIE_MIN+4:
3842 case TCPOLEN_COOKIE_MIN+6:
3843 case TCPOLEN_COOKIE_MAX:
3844 /* 16-bit multiple */
3845 opt_rx->cookie_plus = opsize;
3846 *hvpp = ptr;
3847 break;
3848 default:
3849 /* ignore option */
3850 break;
3852 break;
3855 ptr += opsize-2;
3856 length -= opsize;
3860 EXPORT_SYMBOL(tcp_parse_options);
3862 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3864 __be32 *ptr = (__be32 *)(th + 1);
3866 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3867 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3868 tp->rx_opt.saw_tstamp = 1;
3869 ++ptr;
3870 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3871 ++ptr;
3872 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3873 return 1;
3875 return 0;
3878 /* Fast parse options. This hopes to only see timestamps.
3879 * If it is wrong it falls back on tcp_parse_options().
3881 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3882 struct tcp_sock *tp, u8 **hvpp)
3884 /* In the spirit of fast parsing, compare doff directly to constant
3885 * values. Because equality is used, short doff can be ignored here.
3887 if (th->doff == (sizeof(*th) / 4)) {
3888 tp->rx_opt.saw_tstamp = 0;
3889 return 0;
3890 } else if (tp->rx_opt.tstamp_ok &&
3891 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3892 if (tcp_parse_aligned_timestamp(tp, th))
3893 return 1;
3895 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
3896 return 1;
3899 #ifdef CONFIG_TCP_MD5SIG
3901 * Parse MD5 Signature option
3903 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3905 int length = (th->doff << 2) - sizeof (*th);
3906 u8 *ptr = (u8*)(th + 1);
3908 /* If the TCP option is too short, we can short cut */
3909 if (length < TCPOLEN_MD5SIG)
3910 return NULL;
3912 while (length > 0) {
3913 int opcode = *ptr++;
3914 int opsize;
3916 switch(opcode) {
3917 case TCPOPT_EOL:
3918 return NULL;
3919 case TCPOPT_NOP:
3920 length--;
3921 continue;
3922 default:
3923 opsize = *ptr++;
3924 if (opsize < 2 || opsize > length)
3925 return NULL;
3926 if (opcode == TCPOPT_MD5SIG)
3927 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3929 ptr += opsize - 2;
3930 length -= opsize;
3932 return NULL;
3934 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3935 #endif
3937 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3939 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3940 tp->rx_opt.ts_recent_stamp = get_seconds();
3943 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3945 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3946 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3947 * extra check below makes sure this can only happen
3948 * for pure ACK frames. -DaveM
3950 * Not only, also it occurs for expired timestamps.
3953 if (tcp_paws_check(&tp->rx_opt, 0))
3954 tcp_store_ts_recent(tp);
3958 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3960 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3961 * it can pass through stack. So, the following predicate verifies that
3962 * this segment is not used for anything but congestion avoidance or
3963 * fast retransmit. Moreover, we even are able to eliminate most of such
3964 * second order effects, if we apply some small "replay" window (~RTO)
3965 * to timestamp space.
3967 * All these measures still do not guarantee that we reject wrapped ACKs
3968 * on networks with high bandwidth, when sequence space is recycled fastly,
3969 * but it guarantees that such events will be very rare and do not affect
3970 * connection seriously. This doesn't look nice, but alas, PAWS is really
3971 * buggy extension.
3973 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3974 * states that events when retransmit arrives after original data are rare.
3975 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3976 * the biggest problem on large power networks even with minor reordering.
3977 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3978 * up to bandwidth of 18Gigabit/sec. 8) ]
3981 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3983 struct tcp_sock *tp = tcp_sk(sk);
3984 struct tcphdr *th = tcp_hdr(skb);
3985 u32 seq = TCP_SKB_CB(skb)->seq;
3986 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3988 return (/* 1. Pure ACK with correct sequence number. */
3989 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3991 /* 2. ... and duplicate ACK. */
3992 ack == tp->snd_una &&
3994 /* 3. ... and does not update window. */
3995 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3997 /* 4. ... and sits in replay window. */
3998 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4001 static inline int tcp_paws_discard(const struct sock *sk,
4002 const struct sk_buff *skb)
4004 const struct tcp_sock *tp = tcp_sk(sk);
4006 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4007 !tcp_disordered_ack(sk, skb);
4010 /* Check segment sequence number for validity.
4012 * Segment controls are considered valid, if the segment
4013 * fits to the window after truncation to the window. Acceptability
4014 * of data (and SYN, FIN, of course) is checked separately.
4015 * See tcp_data_queue(), for example.
4017 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4018 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4019 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4020 * (borrowed from freebsd)
4023 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
4025 return !before(end_seq, tp->rcv_wup) &&
4026 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4029 /* When we get a reset we do this. */
4030 static void tcp_reset(struct sock *sk)
4032 /* We want the right error as BSD sees it (and indeed as we do). */
4033 switch (sk->sk_state) {
4034 case TCP_SYN_SENT:
4035 sk->sk_err = ECONNREFUSED;
4036 break;
4037 case TCP_CLOSE_WAIT:
4038 sk->sk_err = EPIPE;
4039 break;
4040 case TCP_CLOSE:
4041 return;
4042 default:
4043 sk->sk_err = ECONNRESET;
4045 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4046 smp_wmb();
4048 if (!sock_flag(sk, SOCK_DEAD))
4049 sk->sk_error_report(sk);
4051 tcp_done(sk);
4055 * Process the FIN bit. This now behaves as it is supposed to work
4056 * and the FIN takes effect when it is validly part of sequence
4057 * space. Not before when we get holes.
4059 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4060 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4061 * TIME-WAIT)
4063 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4064 * close and we go into CLOSING (and later onto TIME-WAIT)
4066 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4068 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
4070 struct tcp_sock *tp = tcp_sk(sk);
4072 inet_csk_schedule_ack(sk);
4074 sk->sk_shutdown |= RCV_SHUTDOWN;
4075 sock_set_flag(sk, SOCK_DONE);
4077 switch (sk->sk_state) {
4078 case TCP_SYN_RECV:
4079 case TCP_ESTABLISHED:
4080 /* Move to CLOSE_WAIT */
4081 tcp_set_state(sk, TCP_CLOSE_WAIT);
4082 inet_csk(sk)->icsk_ack.pingpong = 1;
4083 break;
4085 case TCP_CLOSE_WAIT:
4086 case TCP_CLOSING:
4087 /* Received a retransmission of the FIN, do
4088 * nothing.
4090 break;
4091 case TCP_LAST_ACK:
4092 /* RFC793: Remain in the LAST-ACK state. */
4093 break;
4095 case TCP_FIN_WAIT1:
4096 /* This case occurs when a simultaneous close
4097 * happens, we must ack the received FIN and
4098 * enter the CLOSING state.
4100 tcp_send_ack(sk);
4101 tcp_set_state(sk, TCP_CLOSING);
4102 break;
4103 case TCP_FIN_WAIT2:
4104 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4105 tcp_send_ack(sk);
4106 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4107 break;
4108 default:
4109 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4110 * cases we should never reach this piece of code.
4112 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4113 __func__, sk->sk_state);
4114 break;
4117 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4118 * Probably, we should reset in this case. For now drop them.
4120 __skb_queue_purge(&tp->out_of_order_queue);
4121 if (tcp_is_sack(tp))
4122 tcp_sack_reset(&tp->rx_opt);
4123 sk_mem_reclaim(sk);
4125 if (!sock_flag(sk, SOCK_DEAD)) {
4126 sk->sk_state_change(sk);
4128 /* Do not send POLL_HUP for half duplex close. */
4129 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4130 sk->sk_state == TCP_CLOSE)
4131 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4132 else
4133 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4137 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4138 u32 end_seq)
4140 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4141 if (before(seq, sp->start_seq))
4142 sp->start_seq = seq;
4143 if (after(end_seq, sp->end_seq))
4144 sp->end_seq = end_seq;
4145 return 1;
4147 return 0;
4150 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4152 struct tcp_sock *tp = tcp_sk(sk);
4154 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4155 int mib_idx;
4157 if (before(seq, tp->rcv_nxt))
4158 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4159 else
4160 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4162 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4164 tp->rx_opt.dsack = 1;
4165 tp->duplicate_sack[0].start_seq = seq;
4166 tp->duplicate_sack[0].end_seq = end_seq;
4170 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4172 struct tcp_sock *tp = tcp_sk(sk);
4174 if (!tp->rx_opt.dsack)
4175 tcp_dsack_set(sk, seq, end_seq);
4176 else
4177 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4180 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4182 struct tcp_sock *tp = tcp_sk(sk);
4184 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4185 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4187 tcp_enter_quickack_mode(sk);
4189 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4190 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4192 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4193 end_seq = tp->rcv_nxt;
4194 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4198 tcp_send_ack(sk);
4201 /* These routines update the SACK block as out-of-order packets arrive or
4202 * in-order packets close up the sequence space.
4204 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4206 int this_sack;
4207 struct tcp_sack_block *sp = &tp->selective_acks[0];
4208 struct tcp_sack_block *swalk = sp + 1;
4210 /* See if the recent change to the first SACK eats into
4211 * or hits the sequence space of other SACK blocks, if so coalesce.
4213 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4214 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4215 int i;
4217 /* Zap SWALK, by moving every further SACK up by one slot.
4218 * Decrease num_sacks.
4220 tp->rx_opt.num_sacks--;
4221 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4222 sp[i] = sp[i + 1];
4223 continue;
4225 this_sack++, swalk++;
4229 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4231 struct tcp_sock *tp = tcp_sk(sk);
4232 struct tcp_sack_block *sp = &tp->selective_acks[0];
4233 int cur_sacks = tp->rx_opt.num_sacks;
4234 int this_sack;
4236 if (!cur_sacks)
4237 goto new_sack;
4239 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4240 if (tcp_sack_extend(sp, seq, end_seq)) {
4241 /* Rotate this_sack to the first one. */
4242 for (; this_sack > 0; this_sack--, sp--)
4243 swap(*sp, *(sp - 1));
4244 if (cur_sacks > 1)
4245 tcp_sack_maybe_coalesce(tp);
4246 return;
4250 /* Could not find an adjacent existing SACK, build a new one,
4251 * put it at the front, and shift everyone else down. We
4252 * always know there is at least one SACK present already here.
4254 * If the sack array is full, forget about the last one.
4256 if (this_sack >= TCP_NUM_SACKS) {
4257 this_sack--;
4258 tp->rx_opt.num_sacks--;
4259 sp--;
4261 for (; this_sack > 0; this_sack--, sp--)
4262 *sp = *(sp - 1);
4264 new_sack:
4265 /* Build the new head SACK, and we're done. */
4266 sp->start_seq = seq;
4267 sp->end_seq = end_seq;
4268 tp->rx_opt.num_sacks++;
4271 /* RCV.NXT advances, some SACKs should be eaten. */
4273 static void tcp_sack_remove(struct tcp_sock *tp)
4275 struct tcp_sack_block *sp = &tp->selective_acks[0];
4276 int num_sacks = tp->rx_opt.num_sacks;
4277 int this_sack;
4279 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4280 if (skb_queue_empty(&tp->out_of_order_queue)) {
4281 tp->rx_opt.num_sacks = 0;
4282 return;
4285 for (this_sack = 0; this_sack < num_sacks;) {
4286 /* Check if the start of the sack is covered by RCV.NXT. */
4287 if (!before(tp->rcv_nxt, sp->start_seq)) {
4288 int i;
4290 /* RCV.NXT must cover all the block! */
4291 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4293 /* Zap this SACK, by moving forward any other SACKS. */
4294 for (i=this_sack+1; i < num_sacks; i++)
4295 tp->selective_acks[i-1] = tp->selective_acks[i];
4296 num_sacks--;
4297 continue;
4299 this_sack++;
4300 sp++;
4302 tp->rx_opt.num_sacks = num_sacks;
4305 /* This one checks to see if we can put data from the
4306 * out_of_order queue into the receive_queue.
4308 static void tcp_ofo_queue(struct sock *sk)
4310 struct tcp_sock *tp = tcp_sk(sk);
4311 __u32 dsack_high = tp->rcv_nxt;
4312 struct sk_buff *skb;
4314 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4315 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4316 break;
4318 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4319 __u32 dsack = dsack_high;
4320 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4321 dsack_high = TCP_SKB_CB(skb)->end_seq;
4322 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4325 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4326 SOCK_DEBUG(sk, "ofo packet was already received\n");
4327 __skb_unlink(skb, &tp->out_of_order_queue);
4328 __kfree_skb(skb);
4329 continue;
4331 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4332 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4333 TCP_SKB_CB(skb)->end_seq);
4335 __skb_unlink(skb, &tp->out_of_order_queue);
4336 __skb_queue_tail(&sk->sk_receive_queue, skb);
4337 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4338 if (tcp_hdr(skb)->fin)
4339 tcp_fin(skb, sk, tcp_hdr(skb));
4343 static int tcp_prune_ofo_queue(struct sock *sk);
4344 static int tcp_prune_queue(struct sock *sk);
4346 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4348 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4349 !sk_rmem_schedule(sk, size)) {
4351 if (tcp_prune_queue(sk) < 0)
4352 return -1;
4354 if (!sk_rmem_schedule(sk, size)) {
4355 if (!tcp_prune_ofo_queue(sk))
4356 return -1;
4358 if (!sk_rmem_schedule(sk, size))
4359 return -1;
4362 return 0;
4365 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4367 struct tcphdr *th = tcp_hdr(skb);
4368 struct tcp_sock *tp = tcp_sk(sk);
4369 int eaten = -1;
4371 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4372 goto drop;
4374 skb_dst_drop(skb);
4375 __skb_pull(skb, th->doff * 4);
4377 TCP_ECN_accept_cwr(tp, skb);
4379 tp->rx_opt.dsack = 0;
4381 /* Queue data for delivery to the user.
4382 * Packets in sequence go to the receive queue.
4383 * Out of sequence packets to the out_of_order_queue.
4385 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4386 if (tcp_receive_window(tp) == 0)
4387 goto out_of_window;
4389 /* Ok. In sequence. In window. */
4390 if (tp->ucopy.task == current &&
4391 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4392 sock_owned_by_user(sk) && !tp->urg_data) {
4393 int chunk = min_t(unsigned int, skb->len,
4394 tp->ucopy.len);
4396 __set_current_state(TASK_RUNNING);
4398 local_bh_enable();
4399 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4400 tp->ucopy.len -= chunk;
4401 tp->copied_seq += chunk;
4402 eaten = (chunk == skb->len && !th->fin);
4403 tcp_rcv_space_adjust(sk);
4405 local_bh_disable();
4408 if (eaten <= 0) {
4409 queue_and_out:
4410 if (eaten < 0 &&
4411 tcp_try_rmem_schedule(sk, skb->truesize))
4412 goto drop;
4414 skb_set_owner_r(skb, sk);
4415 __skb_queue_tail(&sk->sk_receive_queue, skb);
4417 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4418 if (skb->len)
4419 tcp_event_data_recv(sk, skb);
4420 if (th->fin)
4421 tcp_fin(skb, sk, th);
4423 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4424 tcp_ofo_queue(sk);
4426 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4427 * gap in queue is filled.
4429 if (skb_queue_empty(&tp->out_of_order_queue))
4430 inet_csk(sk)->icsk_ack.pingpong = 0;
4433 if (tp->rx_opt.num_sacks)
4434 tcp_sack_remove(tp);
4436 tcp_fast_path_check(sk);
4438 if (eaten > 0)
4439 __kfree_skb(skb);
4440 else if (!sock_flag(sk, SOCK_DEAD))
4441 sk->sk_data_ready(sk, 0);
4442 return;
4445 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4446 /* A retransmit, 2nd most common case. Force an immediate ack. */
4447 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4448 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4450 out_of_window:
4451 tcp_enter_quickack_mode(sk);
4452 inet_csk_schedule_ack(sk);
4453 drop:
4454 __kfree_skb(skb);
4455 return;
4458 /* Out of window. F.e. zero window probe. */
4459 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4460 goto out_of_window;
4462 tcp_enter_quickack_mode(sk);
4464 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4465 /* Partial packet, seq < rcv_next < end_seq */
4466 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4467 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4468 TCP_SKB_CB(skb)->end_seq);
4470 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4472 /* If window is closed, drop tail of packet. But after
4473 * remembering D-SACK for its head made in previous line.
4475 if (!tcp_receive_window(tp))
4476 goto out_of_window;
4477 goto queue_and_out;
4480 TCP_ECN_check_ce(tp, skb);
4482 if (tcp_try_rmem_schedule(sk, skb->truesize))
4483 goto drop;
4485 /* Disable header prediction. */
4486 tp->pred_flags = 0;
4487 inet_csk_schedule_ack(sk);
4489 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4490 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4492 skb_set_owner_r(skb, sk);
4494 if (!skb_peek(&tp->out_of_order_queue)) {
4495 /* Initial out of order segment, build 1 SACK. */
4496 if (tcp_is_sack(tp)) {
4497 tp->rx_opt.num_sacks = 1;
4498 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4499 tp->selective_acks[0].end_seq =
4500 TCP_SKB_CB(skb)->end_seq;
4502 __skb_queue_head(&tp->out_of_order_queue, skb);
4503 } else {
4504 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4505 u32 seq = TCP_SKB_CB(skb)->seq;
4506 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4508 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4509 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4511 if (!tp->rx_opt.num_sacks ||
4512 tp->selective_acks[0].end_seq != seq)
4513 goto add_sack;
4515 /* Common case: data arrive in order after hole. */
4516 tp->selective_acks[0].end_seq = end_seq;
4517 return;
4520 /* Find place to insert this segment. */
4521 while (1) {
4522 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4523 break;
4524 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4525 skb1 = NULL;
4526 break;
4528 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4531 /* Do skb overlap to previous one? */
4532 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4533 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4534 /* All the bits are present. Drop. */
4535 __kfree_skb(skb);
4536 tcp_dsack_set(sk, seq, end_seq);
4537 goto add_sack;
4539 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4540 /* Partial overlap. */
4541 tcp_dsack_set(sk, seq,
4542 TCP_SKB_CB(skb1)->end_seq);
4543 } else {
4544 if (skb_queue_is_first(&tp->out_of_order_queue,
4545 skb1))
4546 skb1 = NULL;
4547 else
4548 skb1 = skb_queue_prev(
4549 &tp->out_of_order_queue,
4550 skb1);
4553 if (!skb1)
4554 __skb_queue_head(&tp->out_of_order_queue, skb);
4555 else
4556 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4558 /* And clean segments covered by new one as whole. */
4559 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4560 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4562 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4563 break;
4564 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4565 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4566 end_seq);
4567 break;
4569 __skb_unlink(skb1, &tp->out_of_order_queue);
4570 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4571 TCP_SKB_CB(skb1)->end_seq);
4572 __kfree_skb(skb1);
4575 add_sack:
4576 if (tcp_is_sack(tp))
4577 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4581 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4582 struct sk_buff_head *list)
4584 struct sk_buff *next = NULL;
4586 if (!skb_queue_is_last(list, skb))
4587 next = skb_queue_next(list, skb);
4589 __skb_unlink(skb, list);
4590 __kfree_skb(skb);
4591 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4593 return next;
4596 /* Collapse contiguous sequence of skbs head..tail with
4597 * sequence numbers start..end.
4599 * If tail is NULL, this means until the end of the list.
4601 * Segments with FIN/SYN are not collapsed (only because this
4602 * simplifies code)
4604 static void
4605 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4606 struct sk_buff *head, struct sk_buff *tail,
4607 u32 start, u32 end)
4609 struct sk_buff *skb, *n;
4610 bool end_of_skbs;
4612 /* First, check that queue is collapsible and find
4613 * the point where collapsing can be useful. */
4614 skb = head;
4615 restart:
4616 end_of_skbs = true;
4617 skb_queue_walk_from_safe(list, skb, n) {
4618 if (skb == tail)
4619 break;
4620 /* No new bits? It is possible on ofo queue. */
4621 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4622 skb = tcp_collapse_one(sk, skb, list);
4623 if (!skb)
4624 break;
4625 goto restart;
4628 /* The first skb to collapse is:
4629 * - not SYN/FIN and
4630 * - bloated or contains data before "start" or
4631 * overlaps to the next one.
4633 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4634 (tcp_win_from_space(skb->truesize) > skb->len ||
4635 before(TCP_SKB_CB(skb)->seq, start))) {
4636 end_of_skbs = false;
4637 break;
4640 if (!skb_queue_is_last(list, skb)) {
4641 struct sk_buff *next = skb_queue_next(list, skb);
4642 if (next != tail &&
4643 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4644 end_of_skbs = false;
4645 break;
4649 /* Decided to skip this, advance start seq. */
4650 start = TCP_SKB_CB(skb)->end_seq;
4652 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4653 return;
4655 while (before(start, end)) {
4656 struct sk_buff *nskb;
4657 unsigned int header = skb_headroom(skb);
4658 int copy = SKB_MAX_ORDER(header, 0);
4660 /* Too big header? This can happen with IPv6. */
4661 if (copy < 0)
4662 return;
4663 if (end - start < copy)
4664 copy = end - start;
4665 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4666 if (!nskb)
4667 return;
4669 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4670 skb_set_network_header(nskb, (skb_network_header(skb) -
4671 skb->head));
4672 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4673 skb->head));
4674 skb_reserve(nskb, header);
4675 memcpy(nskb->head, skb->head, header);
4676 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4677 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4678 __skb_queue_before(list, skb, nskb);
4679 skb_set_owner_r(nskb, sk);
4681 /* Copy data, releasing collapsed skbs. */
4682 while (copy > 0) {
4683 int offset = start - TCP_SKB_CB(skb)->seq;
4684 int size = TCP_SKB_CB(skb)->end_seq - start;
4686 BUG_ON(offset < 0);
4687 if (size > 0) {
4688 size = min(copy, size);
4689 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4690 BUG();
4691 TCP_SKB_CB(nskb)->end_seq += size;
4692 copy -= size;
4693 start += size;
4695 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4696 skb = tcp_collapse_one(sk, skb, list);
4697 if (!skb ||
4698 skb == tail ||
4699 tcp_hdr(skb)->syn ||
4700 tcp_hdr(skb)->fin)
4701 return;
4707 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4708 * and tcp_collapse() them until all the queue is collapsed.
4710 static void tcp_collapse_ofo_queue(struct sock *sk)
4712 struct tcp_sock *tp = tcp_sk(sk);
4713 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4714 struct sk_buff *head;
4715 u32 start, end;
4717 if (skb == NULL)
4718 return;
4720 start = TCP_SKB_CB(skb)->seq;
4721 end = TCP_SKB_CB(skb)->end_seq;
4722 head = skb;
4724 for (;;) {
4725 struct sk_buff *next = NULL;
4727 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4728 next = skb_queue_next(&tp->out_of_order_queue, skb);
4729 skb = next;
4731 /* Segment is terminated when we see gap or when
4732 * we are at the end of all the queue. */
4733 if (!skb ||
4734 after(TCP_SKB_CB(skb)->seq, end) ||
4735 before(TCP_SKB_CB(skb)->end_seq, start)) {
4736 tcp_collapse(sk, &tp->out_of_order_queue,
4737 head, skb, start, end);
4738 head = skb;
4739 if (!skb)
4740 break;
4741 /* Start new segment */
4742 start = TCP_SKB_CB(skb)->seq;
4743 end = TCP_SKB_CB(skb)->end_seq;
4744 } else {
4745 if (before(TCP_SKB_CB(skb)->seq, start))
4746 start = TCP_SKB_CB(skb)->seq;
4747 if (after(TCP_SKB_CB(skb)->end_seq, end))
4748 end = TCP_SKB_CB(skb)->end_seq;
4754 * Purge the out-of-order queue.
4755 * Return true if queue was pruned.
4757 static int tcp_prune_ofo_queue(struct sock *sk)
4759 struct tcp_sock *tp = tcp_sk(sk);
4760 int res = 0;
4762 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4763 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4764 __skb_queue_purge(&tp->out_of_order_queue);
4766 /* Reset SACK state. A conforming SACK implementation will
4767 * do the same at a timeout based retransmit. When a connection
4768 * is in a sad state like this, we care only about integrity
4769 * of the connection not performance.
4771 if (tp->rx_opt.sack_ok)
4772 tcp_sack_reset(&tp->rx_opt);
4773 sk_mem_reclaim(sk);
4774 res = 1;
4776 return res;
4779 /* Reduce allocated memory if we can, trying to get
4780 * the socket within its memory limits again.
4782 * Return less than zero if we should start dropping frames
4783 * until the socket owning process reads some of the data
4784 * to stabilize the situation.
4786 static int tcp_prune_queue(struct sock *sk)
4788 struct tcp_sock *tp = tcp_sk(sk);
4790 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4792 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4794 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4795 tcp_clamp_window(sk);
4796 else if (tcp_memory_pressure)
4797 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4799 tcp_collapse_ofo_queue(sk);
4800 if (!skb_queue_empty(&sk->sk_receive_queue))
4801 tcp_collapse(sk, &sk->sk_receive_queue,
4802 skb_peek(&sk->sk_receive_queue),
4803 NULL,
4804 tp->copied_seq, tp->rcv_nxt);
4805 sk_mem_reclaim(sk);
4807 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4808 return 0;
4810 /* Collapsing did not help, destructive actions follow.
4811 * This must not ever occur. */
4813 tcp_prune_ofo_queue(sk);
4815 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4816 return 0;
4818 /* If we are really being abused, tell the caller to silently
4819 * drop receive data on the floor. It will get retransmitted
4820 * and hopefully then we'll have sufficient space.
4822 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4824 /* Massive buffer overcommit. */
4825 tp->pred_flags = 0;
4826 return -1;
4829 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4830 * As additional protections, we do not touch cwnd in retransmission phases,
4831 * and if application hit its sndbuf limit recently.
4833 void tcp_cwnd_application_limited(struct sock *sk)
4835 struct tcp_sock *tp = tcp_sk(sk);
4837 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4838 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4839 /* Limited by application or receiver window. */
4840 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4841 u32 win_used = max(tp->snd_cwnd_used, init_win);
4842 if (win_used < tp->snd_cwnd) {
4843 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4844 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4846 tp->snd_cwnd_used = 0;
4848 tp->snd_cwnd_stamp = tcp_time_stamp;
4851 static int tcp_should_expand_sndbuf(struct sock *sk)
4853 struct tcp_sock *tp = tcp_sk(sk);
4855 /* If the user specified a specific send buffer setting, do
4856 * not modify it.
4858 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4859 return 0;
4861 /* If we are under global TCP memory pressure, do not expand. */
4862 if (tcp_memory_pressure)
4863 return 0;
4865 /* If we are under soft global TCP memory pressure, do not expand. */
4866 if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4867 return 0;
4869 /* If we filled the congestion window, do not expand. */
4870 if (tp->packets_out >= tp->snd_cwnd)
4871 return 0;
4873 return 1;
4876 /* When incoming ACK allowed to free some skb from write_queue,
4877 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4878 * on the exit from tcp input handler.
4880 * PROBLEM: sndbuf expansion does not work well with largesend.
4882 static void tcp_new_space(struct sock *sk)
4884 struct tcp_sock *tp = tcp_sk(sk);
4886 if (tcp_should_expand_sndbuf(sk)) {
4887 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4888 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4889 int demanded = max_t(unsigned int, tp->snd_cwnd,
4890 tp->reordering + 1);
4891 sndmem *= 2 * demanded;
4892 if (sndmem > sk->sk_sndbuf)
4893 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4894 tp->snd_cwnd_stamp = tcp_time_stamp;
4897 sk->sk_write_space(sk);
4900 static void tcp_check_space(struct sock *sk)
4902 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4903 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4904 if (sk->sk_socket &&
4905 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4906 tcp_new_space(sk);
4910 static inline void tcp_data_snd_check(struct sock *sk)
4912 tcp_push_pending_frames(sk);
4913 tcp_check_space(sk);
4917 * Check if sending an ack is needed.
4919 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4921 struct tcp_sock *tp = tcp_sk(sk);
4923 /* More than one full frame received... */
4924 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4925 /* ... and right edge of window advances far enough.
4926 * (tcp_recvmsg() will send ACK otherwise). Or...
4928 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4929 /* We ACK each frame or... */
4930 tcp_in_quickack_mode(sk) ||
4931 /* We have out of order data. */
4932 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4933 /* Then ack it now */
4934 tcp_send_ack(sk);
4935 } else {
4936 /* Else, send delayed ack. */
4937 tcp_send_delayed_ack(sk);
4941 static inline void tcp_ack_snd_check(struct sock *sk)
4943 if (!inet_csk_ack_scheduled(sk)) {
4944 /* We sent a data segment already. */
4945 return;
4947 __tcp_ack_snd_check(sk, 1);
4951 * This routine is only called when we have urgent data
4952 * signaled. Its the 'slow' part of tcp_urg. It could be
4953 * moved inline now as tcp_urg is only called from one
4954 * place. We handle URGent data wrong. We have to - as
4955 * BSD still doesn't use the correction from RFC961.
4956 * For 1003.1g we should support a new option TCP_STDURG to permit
4957 * either form (or just set the sysctl tcp_stdurg).
4960 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4962 struct tcp_sock *tp = tcp_sk(sk);
4963 u32 ptr = ntohs(th->urg_ptr);
4965 if (ptr && !sysctl_tcp_stdurg)
4966 ptr--;
4967 ptr += ntohl(th->seq);
4969 /* Ignore urgent data that we've already seen and read. */
4970 if (after(tp->copied_seq, ptr))
4971 return;
4973 /* Do not replay urg ptr.
4975 * NOTE: interesting situation not covered by specs.
4976 * Misbehaving sender may send urg ptr, pointing to segment,
4977 * which we already have in ofo queue. We are not able to fetch
4978 * such data and will stay in TCP_URG_NOTYET until will be eaten
4979 * by recvmsg(). Seems, we are not obliged to handle such wicked
4980 * situations. But it is worth to think about possibility of some
4981 * DoSes using some hypothetical application level deadlock.
4983 if (before(ptr, tp->rcv_nxt))
4984 return;
4986 /* Do we already have a newer (or duplicate) urgent pointer? */
4987 if (tp->urg_data && !after(ptr, tp->urg_seq))
4988 return;
4990 /* Tell the world about our new urgent pointer. */
4991 sk_send_sigurg(sk);
4993 /* We may be adding urgent data when the last byte read was
4994 * urgent. To do this requires some care. We cannot just ignore
4995 * tp->copied_seq since we would read the last urgent byte again
4996 * as data, nor can we alter copied_seq until this data arrives
4997 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4999 * NOTE. Double Dutch. Rendering to plain English: author of comment
5000 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5001 * and expect that both A and B disappear from stream. This is _wrong_.
5002 * Though this happens in BSD with high probability, this is occasional.
5003 * Any application relying on this is buggy. Note also, that fix "works"
5004 * only in this artificial test. Insert some normal data between A and B and we will
5005 * decline of BSD again. Verdict: it is better to remove to trap
5006 * buggy users.
5008 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5009 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5010 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5011 tp->copied_seq++;
5012 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5013 __skb_unlink(skb, &sk->sk_receive_queue);
5014 __kfree_skb(skb);
5018 tp->urg_data = TCP_URG_NOTYET;
5019 tp->urg_seq = ptr;
5021 /* Disable header prediction. */
5022 tp->pred_flags = 0;
5025 /* This is the 'fast' part of urgent handling. */
5026 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
5028 struct tcp_sock *tp = tcp_sk(sk);
5030 /* Check if we get a new urgent pointer - normally not. */
5031 if (th->urg)
5032 tcp_check_urg(sk, th);
5034 /* Do we wait for any urgent data? - normally not... */
5035 if (tp->urg_data == TCP_URG_NOTYET) {
5036 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5037 th->syn;
5039 /* Is the urgent pointer pointing into this packet? */
5040 if (ptr < skb->len) {
5041 u8 tmp;
5042 if (skb_copy_bits(skb, ptr, &tmp, 1))
5043 BUG();
5044 tp->urg_data = TCP_URG_VALID | tmp;
5045 if (!sock_flag(sk, SOCK_DEAD))
5046 sk->sk_data_ready(sk, 0);
5051 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5053 struct tcp_sock *tp = tcp_sk(sk);
5054 int chunk = skb->len - hlen;
5055 int err;
5057 local_bh_enable();
5058 if (skb_csum_unnecessary(skb))
5059 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5060 else
5061 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5062 tp->ucopy.iov);
5064 if (!err) {
5065 tp->ucopy.len -= chunk;
5066 tp->copied_seq += chunk;
5067 tcp_rcv_space_adjust(sk);
5070 local_bh_disable();
5071 return err;
5074 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5075 struct sk_buff *skb)
5077 __sum16 result;
5079 if (sock_owned_by_user(sk)) {
5080 local_bh_enable();
5081 result = __tcp_checksum_complete(skb);
5082 local_bh_disable();
5083 } else {
5084 result = __tcp_checksum_complete(skb);
5086 return result;
5089 static inline int tcp_checksum_complete_user(struct sock *sk,
5090 struct sk_buff *skb)
5092 return !skb_csum_unnecessary(skb) &&
5093 __tcp_checksum_complete_user(sk, skb);
5096 #ifdef CONFIG_NET_DMA
5097 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5098 int hlen)
5100 struct tcp_sock *tp = tcp_sk(sk);
5101 int chunk = skb->len - hlen;
5102 int dma_cookie;
5103 int copied_early = 0;
5105 if (tp->ucopy.wakeup)
5106 return 0;
5108 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5109 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5111 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5113 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5114 skb, hlen,
5115 tp->ucopy.iov, chunk,
5116 tp->ucopy.pinned_list);
5118 if (dma_cookie < 0)
5119 goto out;
5121 tp->ucopy.dma_cookie = dma_cookie;
5122 copied_early = 1;
5124 tp->ucopy.len -= chunk;
5125 tp->copied_seq += chunk;
5126 tcp_rcv_space_adjust(sk);
5128 if ((tp->ucopy.len == 0) ||
5129 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5130 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5131 tp->ucopy.wakeup = 1;
5132 sk->sk_data_ready(sk, 0);
5134 } else if (chunk > 0) {
5135 tp->ucopy.wakeup = 1;
5136 sk->sk_data_ready(sk, 0);
5138 out:
5139 return copied_early;
5141 #endif /* CONFIG_NET_DMA */
5143 /* Does PAWS and seqno based validation of an incoming segment, flags will
5144 * play significant role here.
5146 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5147 struct tcphdr *th, int syn_inerr)
5149 u8 *hash_location;
5150 struct tcp_sock *tp = tcp_sk(sk);
5152 /* RFC1323: H1. Apply PAWS check first. */
5153 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5154 tp->rx_opt.saw_tstamp &&
5155 tcp_paws_discard(sk, skb)) {
5156 if (!th->rst) {
5157 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5158 tcp_send_dupack(sk, skb);
5159 goto discard;
5161 /* Reset is accepted even if it did not pass PAWS. */
5164 /* Step 1: check sequence number */
5165 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5166 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5167 * (RST) segments are validated by checking their SEQ-fields."
5168 * And page 69: "If an incoming segment is not acceptable,
5169 * an acknowledgment should be sent in reply (unless the RST
5170 * bit is set, if so drop the segment and return)".
5172 if (!th->rst)
5173 tcp_send_dupack(sk, skb);
5174 goto discard;
5177 /* Step 2: check RST bit */
5178 if (th->rst) {
5179 tcp_reset(sk);
5180 goto discard;
5183 /* ts_recent update must be made after we are sure that the packet
5184 * is in window.
5186 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5188 /* step 3: check security and precedence [ignored] */
5190 /* step 4: Check for a SYN in window. */
5191 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5192 if (syn_inerr)
5193 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5194 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5195 tcp_reset(sk);
5196 return -1;
5199 return 1;
5201 discard:
5202 __kfree_skb(skb);
5203 return 0;
5207 * TCP receive function for the ESTABLISHED state.
5209 * It is split into a fast path and a slow path. The fast path is
5210 * disabled when:
5211 * - A zero window was announced from us - zero window probing
5212 * is only handled properly in the slow path.
5213 * - Out of order segments arrived.
5214 * - Urgent data is expected.
5215 * - There is no buffer space left
5216 * - Unexpected TCP flags/window values/header lengths are received
5217 * (detected by checking the TCP header against pred_flags)
5218 * - Data is sent in both directions. Fast path only supports pure senders
5219 * or pure receivers (this means either the sequence number or the ack
5220 * value must stay constant)
5221 * - Unexpected TCP option.
5223 * When these conditions are not satisfied it drops into a standard
5224 * receive procedure patterned after RFC793 to handle all cases.
5225 * The first three cases are guaranteed by proper pred_flags setting,
5226 * the rest is checked inline. Fast processing is turned on in
5227 * tcp_data_queue when everything is OK.
5229 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5230 struct tcphdr *th, unsigned len)
5232 struct tcp_sock *tp = tcp_sk(sk);
5233 int res;
5236 * Header prediction.
5237 * The code loosely follows the one in the famous
5238 * "30 instruction TCP receive" Van Jacobson mail.
5240 * Van's trick is to deposit buffers into socket queue
5241 * on a device interrupt, to call tcp_recv function
5242 * on the receive process context and checksum and copy
5243 * the buffer to user space. smart...
5245 * Our current scheme is not silly either but we take the
5246 * extra cost of the net_bh soft interrupt processing...
5247 * We do checksum and copy also but from device to kernel.
5250 tp->rx_opt.saw_tstamp = 0;
5252 /* pred_flags is 0xS?10 << 16 + snd_wnd
5253 * if header_prediction is to be made
5254 * 'S' will always be tp->tcp_header_len >> 2
5255 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5256 * turn it off (when there are holes in the receive
5257 * space for instance)
5258 * PSH flag is ignored.
5261 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5262 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5263 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5264 int tcp_header_len = tp->tcp_header_len;
5266 /* Timestamp header prediction: tcp_header_len
5267 * is automatically equal to th->doff*4 due to pred_flags
5268 * match.
5271 /* Check timestamp */
5272 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5273 /* No? Slow path! */
5274 if (!tcp_parse_aligned_timestamp(tp, th))
5275 goto slow_path;
5277 /* If PAWS failed, check it more carefully in slow path */
5278 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5279 goto slow_path;
5281 /* DO NOT update ts_recent here, if checksum fails
5282 * and timestamp was corrupted part, it will result
5283 * in a hung connection since we will drop all
5284 * future packets due to the PAWS test.
5288 if (len <= tcp_header_len) {
5289 /* Bulk data transfer: sender */
5290 if (len == tcp_header_len) {
5291 /* Predicted packet is in window by definition.
5292 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5293 * Hence, check seq<=rcv_wup reduces to:
5295 if (tcp_header_len ==
5296 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5297 tp->rcv_nxt == tp->rcv_wup)
5298 tcp_store_ts_recent(tp);
5300 /* We know that such packets are checksummed
5301 * on entry.
5303 tcp_ack(sk, skb, 0);
5304 __kfree_skb(skb);
5305 tcp_data_snd_check(sk);
5306 return 0;
5307 } else { /* Header too small */
5308 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5309 goto discard;
5311 } else {
5312 int eaten = 0;
5313 int copied_early = 0;
5315 if (tp->copied_seq == tp->rcv_nxt &&
5316 len - tcp_header_len <= tp->ucopy.len) {
5317 #ifdef CONFIG_NET_DMA
5318 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5319 copied_early = 1;
5320 eaten = 1;
5322 #endif
5323 if (tp->ucopy.task == current &&
5324 sock_owned_by_user(sk) && !copied_early) {
5325 __set_current_state(TASK_RUNNING);
5327 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5328 eaten = 1;
5330 if (eaten) {
5331 /* Predicted packet is in window by definition.
5332 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5333 * Hence, check seq<=rcv_wup reduces to:
5335 if (tcp_header_len ==
5336 (sizeof(struct tcphdr) +
5337 TCPOLEN_TSTAMP_ALIGNED) &&
5338 tp->rcv_nxt == tp->rcv_wup)
5339 tcp_store_ts_recent(tp);
5341 tcp_rcv_rtt_measure_ts(sk, skb);
5343 __skb_pull(skb, tcp_header_len);
5344 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5347 if (copied_early)
5348 tcp_cleanup_rbuf(sk, skb->len);
5350 if (!eaten) {
5351 if (tcp_checksum_complete_user(sk, skb))
5352 goto csum_error;
5354 /* Predicted packet is in window by definition.
5355 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5356 * Hence, check seq<=rcv_wup reduces to:
5358 if (tcp_header_len ==
5359 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5360 tp->rcv_nxt == tp->rcv_wup)
5361 tcp_store_ts_recent(tp);
5363 tcp_rcv_rtt_measure_ts(sk, skb);
5365 if ((int)skb->truesize > sk->sk_forward_alloc)
5366 goto step5;
5368 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5370 /* Bulk data transfer: receiver */
5371 __skb_pull(skb, tcp_header_len);
5372 __skb_queue_tail(&sk->sk_receive_queue, skb);
5373 skb_set_owner_r(skb, sk);
5374 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5377 tcp_event_data_recv(sk, skb);
5379 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5380 /* Well, only one small jumplet in fast path... */
5381 tcp_ack(sk, skb, FLAG_DATA);
5382 tcp_data_snd_check(sk);
5383 if (!inet_csk_ack_scheduled(sk))
5384 goto no_ack;
5387 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5388 __tcp_ack_snd_check(sk, 0);
5389 no_ack:
5390 #ifdef CONFIG_NET_DMA
5391 if (copied_early)
5392 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5393 else
5394 #endif
5395 if (eaten)
5396 __kfree_skb(skb);
5397 else
5398 sk->sk_data_ready(sk, 0);
5399 return 0;
5403 slow_path:
5404 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5405 goto csum_error;
5408 * Standard slow path.
5411 res = tcp_validate_incoming(sk, skb, th, 1);
5412 if (res <= 0)
5413 return -res;
5415 step5:
5416 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5417 goto discard;
5419 tcp_rcv_rtt_measure_ts(sk, skb);
5421 /* Process urgent data. */
5422 tcp_urg(sk, skb, th);
5424 /* step 7: process the segment text */
5425 tcp_data_queue(sk, skb);
5427 tcp_data_snd_check(sk);
5428 tcp_ack_snd_check(sk);
5429 return 0;
5431 csum_error:
5432 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5434 discard:
5435 __kfree_skb(skb);
5436 return 0;
5438 EXPORT_SYMBOL(tcp_rcv_established);
5440 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5441 struct tcphdr *th, unsigned len)
5443 u8 *hash_location;
5444 struct inet_connection_sock *icsk = inet_csk(sk);
5445 struct tcp_sock *tp = tcp_sk(sk);
5446 struct tcp_cookie_values *cvp = tp->cookie_values;
5447 int saved_clamp = tp->rx_opt.mss_clamp;
5449 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
5451 if (th->ack) {
5452 /* rfc793:
5453 * "If the state is SYN-SENT then
5454 * first check the ACK bit
5455 * If the ACK bit is set
5456 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5457 * a reset (unless the RST bit is set, if so drop
5458 * the segment and return)"
5460 * We do not send data with SYN, so that RFC-correct
5461 * test reduces to:
5463 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5464 goto reset_and_undo;
5466 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5467 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5468 tcp_time_stamp)) {
5469 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5470 goto reset_and_undo;
5473 /* Now ACK is acceptable.
5475 * "If the RST bit is set
5476 * If the ACK was acceptable then signal the user "error:
5477 * connection reset", drop the segment, enter CLOSED state,
5478 * delete TCB, and return."
5481 if (th->rst) {
5482 tcp_reset(sk);
5483 goto discard;
5486 /* rfc793:
5487 * "fifth, if neither of the SYN or RST bits is set then
5488 * drop the segment and return."
5490 * See note below!
5491 * --ANK(990513)
5493 if (!th->syn)
5494 goto discard_and_undo;
5496 /* rfc793:
5497 * "If the SYN bit is on ...
5498 * are acceptable then ...
5499 * (our SYN has been ACKed), change the connection
5500 * state to ESTABLISHED..."
5503 TCP_ECN_rcv_synack(tp, th);
5505 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5506 tcp_ack(sk, skb, FLAG_SLOWPATH);
5508 /* Ok.. it's good. Set up sequence numbers and
5509 * move to established.
5511 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5512 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5514 /* RFC1323: The window in SYN & SYN/ACK segments is
5515 * never scaled.
5517 tp->snd_wnd = ntohs(th->window);
5518 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5520 if (!tp->rx_opt.wscale_ok) {
5521 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5522 tp->window_clamp = min(tp->window_clamp, 65535U);
5525 if (tp->rx_opt.saw_tstamp) {
5526 tp->rx_opt.tstamp_ok = 1;
5527 tp->tcp_header_len =
5528 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5529 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5530 tcp_store_ts_recent(tp);
5531 } else {
5532 tp->tcp_header_len = sizeof(struct tcphdr);
5535 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5536 tcp_enable_fack(tp);
5538 tcp_mtup_init(sk);
5539 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5540 tcp_initialize_rcv_mss(sk);
5542 /* Remember, tcp_poll() does not lock socket!
5543 * Change state from SYN-SENT only after copied_seq
5544 * is initialized. */
5545 tp->copied_seq = tp->rcv_nxt;
5547 if (cvp != NULL &&
5548 cvp->cookie_pair_size > 0 &&
5549 tp->rx_opt.cookie_plus > 0) {
5550 int cookie_size = tp->rx_opt.cookie_plus
5551 - TCPOLEN_COOKIE_BASE;
5552 int cookie_pair_size = cookie_size
5553 + cvp->cookie_desired;
5555 /* A cookie extension option was sent and returned.
5556 * Note that each incoming SYNACK replaces the
5557 * Responder cookie. The initial exchange is most
5558 * fragile, as protection against spoofing relies
5559 * entirely upon the sequence and timestamp (above).
5560 * This replacement strategy allows the correct pair to
5561 * pass through, while any others will be filtered via
5562 * Responder verification later.
5564 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5565 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5566 hash_location, cookie_size);
5567 cvp->cookie_pair_size = cookie_pair_size;
5571 smp_mb();
5572 tcp_set_state(sk, TCP_ESTABLISHED);
5574 security_inet_conn_established(sk, skb);
5576 /* Make sure socket is routed, for correct metrics. */
5577 icsk->icsk_af_ops->rebuild_header(sk);
5579 tcp_init_metrics(sk);
5581 tcp_init_congestion_control(sk);
5583 /* Prevent spurious tcp_cwnd_restart() on first data
5584 * packet.
5586 tp->lsndtime = tcp_time_stamp;
5588 tcp_init_buffer_space(sk);
5590 if (sock_flag(sk, SOCK_KEEPOPEN))
5591 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5593 if (!tp->rx_opt.snd_wscale)
5594 __tcp_fast_path_on(tp, tp->snd_wnd);
5595 else
5596 tp->pred_flags = 0;
5598 if (!sock_flag(sk, SOCK_DEAD)) {
5599 sk->sk_state_change(sk);
5600 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5603 if (sk->sk_write_pending ||
5604 icsk->icsk_accept_queue.rskq_defer_accept ||
5605 icsk->icsk_ack.pingpong) {
5606 /* Save one ACK. Data will be ready after
5607 * several ticks, if write_pending is set.
5609 * It may be deleted, but with this feature tcpdumps
5610 * look so _wonderfully_ clever, that I was not able
5611 * to stand against the temptation 8) --ANK
5613 inet_csk_schedule_ack(sk);
5614 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5615 icsk->icsk_ack.ato = TCP_ATO_MIN;
5616 tcp_incr_quickack(sk);
5617 tcp_enter_quickack_mode(sk);
5618 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5619 TCP_DELACK_MAX, TCP_RTO_MAX);
5621 discard:
5622 __kfree_skb(skb);
5623 return 0;
5624 } else {
5625 tcp_send_ack(sk);
5627 return -1;
5630 /* No ACK in the segment */
5632 if (th->rst) {
5633 /* rfc793:
5634 * "If the RST bit is set
5636 * Otherwise (no ACK) drop the segment and return."
5639 goto discard_and_undo;
5642 /* PAWS check. */
5643 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5644 tcp_paws_reject(&tp->rx_opt, 0))
5645 goto discard_and_undo;
5647 if (th->syn) {
5648 /* We see SYN without ACK. It is attempt of
5649 * simultaneous connect with crossed SYNs.
5650 * Particularly, it can be connect to self.
5652 tcp_set_state(sk, TCP_SYN_RECV);
5654 if (tp->rx_opt.saw_tstamp) {
5655 tp->rx_opt.tstamp_ok = 1;
5656 tcp_store_ts_recent(tp);
5657 tp->tcp_header_len =
5658 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5659 } else {
5660 tp->tcp_header_len = sizeof(struct tcphdr);
5663 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5664 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5666 /* RFC1323: The window in SYN & SYN/ACK segments is
5667 * never scaled.
5669 tp->snd_wnd = ntohs(th->window);
5670 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5671 tp->max_window = tp->snd_wnd;
5673 TCP_ECN_rcv_syn(tp, th);
5675 tcp_mtup_init(sk);
5676 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5677 tcp_initialize_rcv_mss(sk);
5679 tcp_send_synack(sk);
5680 #if 0
5681 /* Note, we could accept data and URG from this segment.
5682 * There are no obstacles to make this.
5684 * However, if we ignore data in ACKless segments sometimes,
5685 * we have no reasons to accept it sometimes.
5686 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5687 * is not flawless. So, discard packet for sanity.
5688 * Uncomment this return to process the data.
5690 return -1;
5691 #else
5692 goto discard;
5693 #endif
5695 /* "fifth, if neither of the SYN or RST bits is set then
5696 * drop the segment and return."
5699 discard_and_undo:
5700 tcp_clear_options(&tp->rx_opt);
5701 tp->rx_opt.mss_clamp = saved_clamp;
5702 goto discard;
5704 reset_and_undo:
5705 tcp_clear_options(&tp->rx_opt);
5706 tp->rx_opt.mss_clamp = saved_clamp;
5707 return 1;
5711 * This function implements the receiving procedure of RFC 793 for
5712 * all states except ESTABLISHED and TIME_WAIT.
5713 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5714 * address independent.
5717 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5718 struct tcphdr *th, unsigned len)
5720 struct tcp_sock *tp = tcp_sk(sk);
5721 struct inet_connection_sock *icsk = inet_csk(sk);
5722 int queued = 0;
5723 int res;
5725 tp->rx_opt.saw_tstamp = 0;
5727 switch (sk->sk_state) {
5728 case TCP_CLOSE:
5729 goto discard;
5731 case TCP_LISTEN:
5732 if (th->ack)
5733 return 1;
5735 if (th->rst)
5736 goto discard;
5738 if (th->syn) {
5739 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5740 return 1;
5742 /* Now we have several options: In theory there is
5743 * nothing else in the frame. KA9Q has an option to
5744 * send data with the syn, BSD accepts data with the
5745 * syn up to the [to be] advertised window and
5746 * Solaris 2.1 gives you a protocol error. For now
5747 * we just ignore it, that fits the spec precisely
5748 * and avoids incompatibilities. It would be nice in
5749 * future to drop through and process the data.
5751 * Now that TTCP is starting to be used we ought to
5752 * queue this data.
5753 * But, this leaves one open to an easy denial of
5754 * service attack, and SYN cookies can't defend
5755 * against this problem. So, we drop the data
5756 * in the interest of security over speed unless
5757 * it's still in use.
5759 kfree_skb(skb);
5760 return 0;
5762 goto discard;
5764 case TCP_SYN_SENT:
5765 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5766 if (queued >= 0)
5767 return queued;
5769 /* Do step6 onward by hand. */
5770 tcp_urg(sk, skb, th);
5771 __kfree_skb(skb);
5772 tcp_data_snd_check(sk);
5773 return 0;
5776 res = tcp_validate_incoming(sk, skb, th, 0);
5777 if (res <= 0)
5778 return -res;
5780 /* step 5: check the ACK field */
5781 if (th->ack) {
5782 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5784 switch (sk->sk_state) {
5785 case TCP_SYN_RECV:
5786 if (acceptable) {
5787 tp->copied_seq = tp->rcv_nxt;
5788 smp_mb();
5789 tcp_set_state(sk, TCP_ESTABLISHED);
5790 sk->sk_state_change(sk);
5792 /* Note, that this wakeup is only for marginal
5793 * crossed SYN case. Passively open sockets
5794 * are not waked up, because sk->sk_sleep ==
5795 * NULL and sk->sk_socket == NULL.
5797 if (sk->sk_socket)
5798 sk_wake_async(sk,
5799 SOCK_WAKE_IO, POLL_OUT);
5801 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5802 tp->snd_wnd = ntohs(th->window) <<
5803 tp->rx_opt.snd_wscale;
5804 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5806 /* tcp_ack considers this ACK as duplicate
5807 * and does not calculate rtt.
5808 * Force it here.
5810 tcp_ack_update_rtt(sk, 0, 0);
5812 if (tp->rx_opt.tstamp_ok)
5813 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5815 /* Make sure socket is routed, for
5816 * correct metrics.
5818 icsk->icsk_af_ops->rebuild_header(sk);
5820 tcp_init_metrics(sk);
5822 tcp_init_congestion_control(sk);
5824 /* Prevent spurious tcp_cwnd_restart() on
5825 * first data packet.
5827 tp->lsndtime = tcp_time_stamp;
5829 tcp_mtup_init(sk);
5830 tcp_initialize_rcv_mss(sk);
5831 tcp_init_buffer_space(sk);
5832 tcp_fast_path_on(tp);
5833 } else {
5834 return 1;
5836 break;
5838 case TCP_FIN_WAIT1:
5839 if (tp->snd_una == tp->write_seq) {
5840 tcp_set_state(sk, TCP_FIN_WAIT2);
5841 sk->sk_shutdown |= SEND_SHUTDOWN;
5842 dst_confirm(__sk_dst_get(sk));
5844 if (!sock_flag(sk, SOCK_DEAD))
5845 /* Wake up lingering close() */
5846 sk->sk_state_change(sk);
5847 else {
5848 int tmo;
5850 if (tp->linger2 < 0 ||
5851 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5852 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5853 tcp_done(sk);
5854 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5855 return 1;
5858 tmo = tcp_fin_time(sk);
5859 if (tmo > TCP_TIMEWAIT_LEN) {
5860 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5861 } else if (th->fin || sock_owned_by_user(sk)) {
5862 /* Bad case. We could lose such FIN otherwise.
5863 * It is not a big problem, but it looks confusing
5864 * and not so rare event. We still can lose it now,
5865 * if it spins in bh_lock_sock(), but it is really
5866 * marginal case.
5868 inet_csk_reset_keepalive_timer(sk, tmo);
5869 } else {
5870 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5871 goto discard;
5875 break;
5877 case TCP_CLOSING:
5878 if (tp->snd_una == tp->write_seq) {
5879 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5880 goto discard;
5882 break;
5884 case TCP_LAST_ACK:
5885 if (tp->snd_una == tp->write_seq) {
5886 tcp_update_metrics(sk);
5887 tcp_done(sk);
5888 goto discard;
5890 break;
5892 } else
5893 goto discard;
5895 /* step 6: check the URG bit */
5896 tcp_urg(sk, skb, th);
5898 /* step 7: process the segment text */
5899 switch (sk->sk_state) {
5900 case TCP_CLOSE_WAIT:
5901 case TCP_CLOSING:
5902 case TCP_LAST_ACK:
5903 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5904 break;
5905 case TCP_FIN_WAIT1:
5906 case TCP_FIN_WAIT2:
5907 /* RFC 793 says to queue data in these states,
5908 * RFC 1122 says we MUST send a reset.
5909 * BSD 4.4 also does reset.
5911 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5912 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5913 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5914 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5915 tcp_reset(sk);
5916 return 1;
5919 /* Fall through */
5920 case TCP_ESTABLISHED:
5921 tcp_data_queue(sk, skb);
5922 queued = 1;
5923 break;
5926 /* tcp_data could move socket to TIME-WAIT */
5927 if (sk->sk_state != TCP_CLOSE) {
5928 tcp_data_snd_check(sk);
5929 tcp_ack_snd_check(sk);
5932 if (!queued) {
5933 discard:
5934 __kfree_skb(skb);
5936 return 0;
5938 EXPORT_SYMBOL(tcp_rcv_state_process);