4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the opereation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page() */
27 #include <linux/module.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/init.h>
34 /* How many pages do we try to swap or page in/out together? */
37 static void put_compound_page(struct page
*page
)
39 page
= (struct page
*)page_private(page
);
40 if (put_page_testzero(page
)) {
41 void (*dtor
)(struct page
*page
);
43 dtor
= (void (*)(struct page
*))page
[1].lru
.next
;
48 void put_page(struct page
*page
)
50 if (unlikely(PageCompound(page
)))
51 put_compound_page(page
);
52 else if (put_page_testzero(page
))
53 __page_cache_release(page
);
55 EXPORT_SYMBOL(put_page
);
58 * put_pages_list(): release a list of pages
60 * Release a list of pages which are strung together on page.lru. Currently
61 * used by read_cache_pages() and related error recovery code.
63 * @pages: list of pages threaded on page->lru
65 void put_pages_list(struct list_head
*pages
)
67 while (!list_empty(pages
)) {
70 victim
= list_entry(pages
->prev
, struct page
, lru
);
71 list_del(&victim
->lru
);
72 page_cache_release(victim
);
75 EXPORT_SYMBOL(put_pages_list
);
78 * Writeback is about to end against a page which has been marked for immediate
79 * reclaim. If it still appears to be reclaimable, move it to the tail of the
80 * inactive list. The page still has PageWriteback set, which will pin it.
82 * We don't expect many pages to come through here, so don't bother batching
85 * To avoid placing the page at the tail of the LRU while PG_writeback is still
86 * set, this function will clear PG_writeback before performing the page
87 * motion. Do that inside the lru lock because once PG_writeback is cleared
88 * we may not touch the page.
90 * Returns zero if it cleared PG_writeback.
92 int rotate_reclaimable_page(struct page
*page
)
101 if (PageActive(page
))
106 zone
= page_zone(page
);
107 spin_lock_irqsave(&zone
->lru_lock
, flags
);
108 if (PageLRU(page
) && !PageActive(page
)) {
109 list_move_tail(&page
->lru
, &zone
->inactive_list
);
110 __count_vm_event(PGROTATED
);
112 if (!test_clear_page_writeback(page
))
114 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
119 * FIXME: speed this up?
121 void fastcall
activate_page(struct page
*page
)
123 struct zone
*zone
= page_zone(page
);
125 spin_lock_irq(&zone
->lru_lock
);
126 if (PageLRU(page
) && !PageActive(page
)) {
127 del_page_from_inactive_list(zone
, page
);
129 add_page_to_active_list(zone
, page
);
130 __count_vm_event(PGACTIVATE
);
132 spin_unlock_irq(&zone
->lru_lock
);
136 * Mark a page as having seen activity.
138 * inactive,unreferenced -> inactive,referenced
139 * inactive,referenced -> active,unreferenced
140 * active,unreferenced -> active,referenced
142 void fastcall
mark_page_accessed(struct page
*page
)
144 if (!PageActive(page
) && PageReferenced(page
) && PageLRU(page
)) {
146 ClearPageReferenced(page
);
147 } else if (!PageReferenced(page
)) {
148 SetPageReferenced(page
);
152 EXPORT_SYMBOL(mark_page_accessed
);
155 * lru_cache_add: add a page to the page lists
156 * @page: the page to add
158 static DEFINE_PER_CPU(struct pagevec
, lru_add_pvecs
) = { 0, };
159 static DEFINE_PER_CPU(struct pagevec
, lru_add_active_pvecs
) = { 0, };
161 void fastcall
lru_cache_add(struct page
*page
)
163 struct pagevec
*pvec
= &get_cpu_var(lru_add_pvecs
);
165 page_cache_get(page
);
166 if (!pagevec_add(pvec
, page
))
167 __pagevec_lru_add(pvec
);
168 put_cpu_var(lru_add_pvecs
);
171 void fastcall
lru_cache_add_active(struct page
*page
)
173 struct pagevec
*pvec
= &get_cpu_var(lru_add_active_pvecs
);
175 page_cache_get(page
);
176 if (!pagevec_add(pvec
, page
))
177 __pagevec_lru_add_active(pvec
);
178 put_cpu_var(lru_add_active_pvecs
);
181 static void __lru_add_drain(int cpu
)
183 struct pagevec
*pvec
= &per_cpu(lru_add_pvecs
, cpu
);
185 /* CPU is dead, so no locking needed. */
186 if (pagevec_count(pvec
))
187 __pagevec_lru_add(pvec
);
188 pvec
= &per_cpu(lru_add_active_pvecs
, cpu
);
189 if (pagevec_count(pvec
))
190 __pagevec_lru_add_active(pvec
);
193 void lru_add_drain(void)
195 __lru_add_drain(get_cpu());
200 static void lru_add_drain_per_cpu(void *dummy
)
206 * Returns 0 for success
208 int lru_add_drain_all(void)
210 return schedule_on_each_cpu(lru_add_drain_per_cpu
, NULL
);
216 * Returns 0 for success
218 int lru_add_drain_all(void)
226 * This path almost never happens for VM activity - pages are normally
227 * freed via pagevecs. But it gets used by networking.
229 void fastcall
__page_cache_release(struct page
*page
)
233 struct zone
*zone
= page_zone(page
);
235 spin_lock_irqsave(&zone
->lru_lock
, flags
);
236 BUG_ON(!PageLRU(page
));
237 __ClearPageLRU(page
);
238 del_page_from_lru(zone
, page
);
239 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
243 EXPORT_SYMBOL(__page_cache_release
);
246 * Batched page_cache_release(). Decrement the reference count on all the
247 * passed pages. If it fell to zero then remove the page from the LRU and
250 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
251 * for the remainder of the operation.
253 * The locking in this function is against shrink_cache(): we recheck the
254 * page count inside the lock to see whether shrink_cache grabbed the page
255 * via the LRU. If it did, give up: shrink_cache will free it.
257 void release_pages(struct page
**pages
, int nr
, int cold
)
260 struct pagevec pages_to_free
;
261 struct zone
*zone
= NULL
;
263 pagevec_init(&pages_to_free
, cold
);
264 for (i
= 0; i
< nr
; i
++) {
265 struct page
*page
= pages
[i
];
267 if (unlikely(PageCompound(page
))) {
269 spin_unlock_irq(&zone
->lru_lock
);
272 put_compound_page(page
);
276 if (!put_page_testzero(page
))
280 struct zone
*pagezone
= page_zone(page
);
281 if (pagezone
!= zone
) {
283 spin_unlock_irq(&zone
->lru_lock
);
285 spin_lock_irq(&zone
->lru_lock
);
287 BUG_ON(!PageLRU(page
));
288 __ClearPageLRU(page
);
289 del_page_from_lru(zone
, page
);
292 if (!pagevec_add(&pages_to_free
, page
)) {
294 spin_unlock_irq(&zone
->lru_lock
);
297 __pagevec_free(&pages_to_free
);
298 pagevec_reinit(&pages_to_free
);
302 spin_unlock_irq(&zone
->lru_lock
);
304 pagevec_free(&pages_to_free
);
308 * The pages which we're about to release may be in the deferred lru-addition
309 * queues. That would prevent them from really being freed right now. That's
310 * OK from a correctness point of view but is inefficient - those pages may be
311 * cache-warm and we want to give them back to the page allocator ASAP.
313 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
314 * and __pagevec_lru_add_active() call release_pages() directly to avoid
317 void __pagevec_release(struct pagevec
*pvec
)
320 release_pages(pvec
->pages
, pagevec_count(pvec
), pvec
->cold
);
321 pagevec_reinit(pvec
);
324 EXPORT_SYMBOL(__pagevec_release
);
327 * pagevec_release() for pages which are known to not be on the LRU
329 * This function reinitialises the caller's pagevec.
331 void __pagevec_release_nonlru(struct pagevec
*pvec
)
334 struct pagevec pages_to_free
;
336 pagevec_init(&pages_to_free
, pvec
->cold
);
337 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
338 struct page
*page
= pvec
->pages
[i
];
340 BUG_ON(PageLRU(page
));
341 if (put_page_testzero(page
))
342 pagevec_add(&pages_to_free
, page
);
344 pagevec_free(&pages_to_free
);
345 pagevec_reinit(pvec
);
349 * Add the passed pages to the LRU, then drop the caller's refcount
350 * on them. Reinitialises the caller's pagevec.
352 void __pagevec_lru_add(struct pagevec
*pvec
)
355 struct zone
*zone
= NULL
;
357 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
358 struct page
*page
= pvec
->pages
[i
];
359 struct zone
*pagezone
= page_zone(page
);
361 if (pagezone
!= zone
) {
363 spin_unlock_irq(&zone
->lru_lock
);
365 spin_lock_irq(&zone
->lru_lock
);
367 BUG_ON(PageLRU(page
));
369 add_page_to_inactive_list(zone
, page
);
372 spin_unlock_irq(&zone
->lru_lock
);
373 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
374 pagevec_reinit(pvec
);
377 EXPORT_SYMBOL(__pagevec_lru_add
);
379 void __pagevec_lru_add_active(struct pagevec
*pvec
)
382 struct zone
*zone
= NULL
;
384 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
385 struct page
*page
= pvec
->pages
[i
];
386 struct zone
*pagezone
= page_zone(page
);
388 if (pagezone
!= zone
) {
390 spin_unlock_irq(&zone
->lru_lock
);
392 spin_lock_irq(&zone
->lru_lock
);
394 BUG_ON(PageLRU(page
));
396 BUG_ON(PageActive(page
));
398 add_page_to_active_list(zone
, page
);
401 spin_unlock_irq(&zone
->lru_lock
);
402 release_pages(pvec
->pages
, pvec
->nr
, pvec
->cold
);
403 pagevec_reinit(pvec
);
407 * Try to drop buffers from the pages in a pagevec
409 void pagevec_strip(struct pagevec
*pvec
)
413 for (i
= 0; i
< pagevec_count(pvec
); i
++) {
414 struct page
*page
= pvec
->pages
[i
];
416 if (PagePrivate(page
) && !TestSetPageLocked(page
)) {
417 if (PagePrivate(page
))
418 try_to_release_page(page
, 0);
425 * pagevec_lookup - gang pagecache lookup
426 * @pvec: Where the resulting pages are placed
427 * @mapping: The address_space to search
428 * @start: The starting page index
429 * @nr_pages: The maximum number of pages
431 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
432 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
433 * reference against the pages in @pvec.
435 * The search returns a group of mapping-contiguous pages with ascending
436 * indexes. There may be holes in the indices due to not-present pages.
438 * pagevec_lookup() returns the number of pages which were found.
440 unsigned pagevec_lookup(struct pagevec
*pvec
, struct address_space
*mapping
,
441 pgoff_t start
, unsigned nr_pages
)
443 pvec
->nr
= find_get_pages(mapping
, start
, nr_pages
, pvec
->pages
);
444 return pagevec_count(pvec
);
447 EXPORT_SYMBOL(pagevec_lookup
);
449 unsigned pagevec_lookup_tag(struct pagevec
*pvec
, struct address_space
*mapping
,
450 pgoff_t
*index
, int tag
, unsigned nr_pages
)
452 pvec
->nr
= find_get_pages_tag(mapping
, index
, tag
,
453 nr_pages
, pvec
->pages
);
454 return pagevec_count(pvec
);
457 EXPORT_SYMBOL(pagevec_lookup_tag
);
461 * We tolerate a little inaccuracy to avoid ping-ponging the counter between
464 #define ACCT_THRESHOLD max(16, NR_CPUS * 2)
466 static DEFINE_PER_CPU(long, committed_space
) = 0;
468 void vm_acct_memory(long pages
)
473 local
= &__get_cpu_var(committed_space
);
475 if (*local
> ACCT_THRESHOLD
|| *local
< -ACCT_THRESHOLD
) {
476 atomic_add(*local
, &vm_committed_space
);
482 #ifdef CONFIG_HOTPLUG_CPU
484 /* Drop the CPU's cached committed space back into the central pool. */
485 static int cpu_swap_callback(struct notifier_block
*nfb
,
486 unsigned long action
,
491 committed
= &per_cpu(committed_space
, (long)hcpu
);
492 if (action
== CPU_DEAD
) {
493 atomic_add(*committed
, &vm_committed_space
);
495 __lru_add_drain((long)hcpu
);
499 #endif /* CONFIG_HOTPLUG_CPU */
500 #endif /* CONFIG_SMP */
503 * Perform any setup for the swap system
505 void __init
swap_setup(void)
507 unsigned long megs
= num_physpages
>> (20 - PAGE_SHIFT
);
509 /* Use a smaller cluster for small-memory machines */
515 * Right now other parts of the system means that we
516 * _really_ don't want to cluster much more
518 hotcpu_notifier(cpu_swap_callback
, 0);