2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/smp_lock.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
62 #include <asm/atomic.h>
64 static DEFINE_MUTEX(cgroup_mutex
);
67 * Generate an array of cgroup subsystem pointers. At boot time, this is
68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
69 * registered after that. The mutable section of this array is protected by
72 #define SUBSYS(_x) &_x ## _subsys,
73 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
74 #include <linux/cgroup_subsys.h>
77 #define MAX_CGROUP_ROOT_NAMELEN 64
80 * A cgroupfs_root represents the root of a cgroup hierarchy,
81 * and may be associated with a superblock to form an active
84 struct cgroupfs_root
{
85 struct super_block
*sb
;
88 * The bitmask of subsystems intended to be attached to this
91 unsigned long subsys_bits
;
93 /* Unique id for this hierarchy. */
96 /* The bitmask of subsystems currently attached to this hierarchy */
97 unsigned long actual_subsys_bits
;
99 /* A list running through the attached subsystems */
100 struct list_head subsys_list
;
102 /* The root cgroup for this hierarchy */
103 struct cgroup top_cgroup
;
105 /* Tracks how many cgroups are currently defined in hierarchy.*/
106 int number_of_cgroups
;
108 /* A list running through the active hierarchies */
109 struct list_head root_list
;
111 /* Hierarchy-specific flags */
114 /* The path to use for release notifications. */
115 char release_agent_path
[PATH_MAX
];
117 /* The name for this hierarchy - may be empty */
118 char name
[MAX_CGROUP_ROOT_NAMELEN
];
122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
123 * subsystems that are otherwise unattached - it never has more than a
124 * single cgroup, and all tasks are part of that cgroup.
126 static struct cgroupfs_root rootnode
;
129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
130 * cgroup_subsys->use_id != 0.
132 #define CSS_ID_MAX (65535)
135 * The css to which this ID points. This pointer is set to valid value
136 * after cgroup is populated. If cgroup is removed, this will be NULL.
137 * This pointer is expected to be RCU-safe because destroy()
138 * is called after synchronize_rcu(). But for safe use, css_is_removed()
139 * css_tryget() should be used for avoiding race.
141 struct cgroup_subsys_state
*css
;
147 * Depth in hierarchy which this ID belongs to.
149 unsigned short depth
;
151 * ID is freed by RCU. (and lookup routine is RCU safe.)
153 struct rcu_head rcu_head
;
155 * Hierarchy of CSS ID belongs to.
157 unsigned short stack
[0]; /* Array of Length (depth+1) */
161 * cgroup_event represents events which userspace want to recieve.
163 struct cgroup_event
{
165 * Cgroup which the event belongs to.
169 * Control file which the event associated.
173 * eventfd to signal userspace about the event.
175 struct eventfd_ctx
*eventfd
;
177 * Each of these stored in a list by the cgroup.
179 struct list_head list
;
181 * All fields below needed to unregister event when
182 * userspace closes eventfd.
185 wait_queue_head_t
*wqh
;
187 struct work_struct remove
;
190 /* The list of hierarchy roots */
192 static LIST_HEAD(roots
);
193 static int root_count
;
195 static DEFINE_IDA(hierarchy_ida
);
196 static int next_hierarchy_id
;
197 static DEFINE_SPINLOCK(hierarchy_id_lock
);
199 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200 #define dummytop (&rootnode.top_cgroup)
202 /* This flag indicates whether tasks in the fork and exit paths should
203 * check for fork/exit handlers to call. This avoids us having to do
204 * extra work in the fork/exit path if none of the subsystems need to
207 static int need_forkexit_callback __read_mostly
;
209 #ifdef CONFIG_PROVE_LOCKING
210 int cgroup_lock_is_held(void)
212 return lockdep_is_held(&cgroup_mutex
);
214 #else /* #ifdef CONFIG_PROVE_LOCKING */
215 int cgroup_lock_is_held(void)
217 return mutex_is_locked(&cgroup_mutex
);
219 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
221 EXPORT_SYMBOL_GPL(cgroup_lock_is_held
);
223 /* convenient tests for these bits */
224 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
226 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
229 /* bits in struct cgroupfs_root flags field */
231 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
234 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
237 (1 << CGRP_RELEASABLE
) |
238 (1 << CGRP_NOTIFY_ON_RELEASE
);
239 return (cgrp
->flags
& bits
) == bits
;
242 static int notify_on_release(const struct cgroup
*cgrp
)
244 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
248 * for_each_subsys() allows you to iterate on each subsystem attached to
249 * an active hierarchy
251 #define for_each_subsys(_root, _ss) \
252 list_for_each_entry(_ss, &_root->subsys_list, sibling)
254 /* for_each_active_root() allows you to iterate across the active hierarchies */
255 #define for_each_active_root(_root) \
256 list_for_each_entry(_root, &roots, root_list)
258 /* the list of cgroups eligible for automatic release. Protected by
259 * release_list_lock */
260 static LIST_HEAD(release_list
);
261 static DEFINE_SPINLOCK(release_list_lock
);
262 static void cgroup_release_agent(struct work_struct
*work
);
263 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
264 static void check_for_release(struct cgroup
*cgrp
);
266 /* Link structure for associating css_set objects with cgroups */
267 struct cg_cgroup_link
{
269 * List running through cg_cgroup_links associated with a
270 * cgroup, anchored on cgroup->css_sets
272 struct list_head cgrp_link_list
;
275 * List running through cg_cgroup_links pointing at a
276 * single css_set object, anchored on css_set->cg_links
278 struct list_head cg_link_list
;
282 /* The default css_set - used by init and its children prior to any
283 * hierarchies being mounted. It contains a pointer to the root state
284 * for each subsystem. Also used to anchor the list of css_sets. Not
285 * reference-counted, to improve performance when child cgroups
286 * haven't been created.
289 static struct css_set init_css_set
;
290 static struct cg_cgroup_link init_css_set_link
;
292 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
293 struct cgroup_subsys_state
*css
);
295 /* css_set_lock protects the list of css_set objects, and the
296 * chain of tasks off each css_set. Nests outside task->alloc_lock
297 * due to cgroup_iter_start() */
298 static DEFINE_RWLOCK(css_set_lock
);
299 static int css_set_count
;
302 * hash table for cgroup groups. This improves the performance to find
303 * an existing css_set. This hash doesn't (currently) take into
304 * account cgroups in empty hierarchies.
306 #define CSS_SET_HASH_BITS 7
307 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
308 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
310 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
314 unsigned long tmp
= 0UL;
316 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
317 tmp
+= (unsigned long)css
[i
];
318 tmp
= (tmp
>> 16) ^ tmp
;
320 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
322 return &css_set_table
[index
];
325 static void free_css_set_rcu(struct rcu_head
*obj
)
327 struct css_set
*cg
= container_of(obj
, struct css_set
, rcu_head
);
331 /* We don't maintain the lists running through each css_set to its
332 * task until after the first call to cgroup_iter_start(). This
333 * reduces the fork()/exit() overhead for people who have cgroups
334 * compiled into their kernel but not actually in use */
335 static int use_task_css_set_links __read_mostly
;
337 static void __put_css_set(struct css_set
*cg
, int taskexit
)
339 struct cg_cgroup_link
*link
;
340 struct cg_cgroup_link
*saved_link
;
342 * Ensure that the refcount doesn't hit zero while any readers
343 * can see it. Similar to atomic_dec_and_lock(), but for an
346 if (atomic_add_unless(&cg
->refcount
, -1, 1))
348 write_lock(&css_set_lock
);
349 if (!atomic_dec_and_test(&cg
->refcount
)) {
350 write_unlock(&css_set_lock
);
354 /* This css_set is dead. unlink it and release cgroup refcounts */
355 hlist_del(&cg
->hlist
);
358 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
360 struct cgroup
*cgrp
= link
->cgrp
;
361 list_del(&link
->cg_link_list
);
362 list_del(&link
->cgrp_link_list
);
363 if (atomic_dec_and_test(&cgrp
->count
) &&
364 notify_on_release(cgrp
)) {
366 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
367 check_for_release(cgrp
);
373 write_unlock(&css_set_lock
);
374 call_rcu(&cg
->rcu_head
, free_css_set_rcu
);
378 * refcounted get/put for css_set objects
380 static inline void get_css_set(struct css_set
*cg
)
382 atomic_inc(&cg
->refcount
);
385 static inline void put_css_set(struct css_set
*cg
)
387 __put_css_set(cg
, 0);
390 static inline void put_css_set_taskexit(struct css_set
*cg
)
392 __put_css_set(cg
, 1);
396 * compare_css_sets - helper function for find_existing_css_set().
397 * @cg: candidate css_set being tested
398 * @old_cg: existing css_set for a task
399 * @new_cgrp: cgroup that's being entered by the task
400 * @template: desired set of css pointers in css_set (pre-calculated)
402 * Returns true if "cg" matches "old_cg" except for the hierarchy
403 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
405 static bool compare_css_sets(struct css_set
*cg
,
406 struct css_set
*old_cg
,
407 struct cgroup
*new_cgrp
,
408 struct cgroup_subsys_state
*template[])
410 struct list_head
*l1
, *l2
;
412 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
413 /* Not all subsystems matched */
418 * Compare cgroup pointers in order to distinguish between
419 * different cgroups in heirarchies with no subsystems. We
420 * could get by with just this check alone (and skip the
421 * memcmp above) but on most setups the memcmp check will
422 * avoid the need for this more expensive check on almost all
427 l2
= &old_cg
->cg_links
;
429 struct cg_cgroup_link
*cgl1
, *cgl2
;
430 struct cgroup
*cg1
, *cg2
;
434 /* See if we reached the end - both lists are equal length. */
435 if (l1
== &cg
->cg_links
) {
436 BUG_ON(l2
!= &old_cg
->cg_links
);
439 BUG_ON(l2
== &old_cg
->cg_links
);
441 /* Locate the cgroups associated with these links. */
442 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
443 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
446 /* Hierarchies should be linked in the same order. */
447 BUG_ON(cg1
->root
!= cg2
->root
);
450 * If this hierarchy is the hierarchy of the cgroup
451 * that's changing, then we need to check that this
452 * css_set points to the new cgroup; if it's any other
453 * hierarchy, then this css_set should point to the
454 * same cgroup as the old css_set.
456 if (cg1
->root
== new_cgrp
->root
) {
468 * find_existing_css_set() is a helper for
469 * find_css_set(), and checks to see whether an existing
470 * css_set is suitable.
472 * oldcg: the cgroup group that we're using before the cgroup
475 * cgrp: the cgroup that we're moving into
477 * template: location in which to build the desired set of subsystem
478 * state objects for the new cgroup group
480 static struct css_set
*find_existing_css_set(
481 struct css_set
*oldcg
,
483 struct cgroup_subsys_state
*template[])
486 struct cgroupfs_root
*root
= cgrp
->root
;
487 struct hlist_head
*hhead
;
488 struct hlist_node
*node
;
492 * Build the set of subsystem state objects that we want to see in the
493 * new css_set. while subsystems can change globally, the entries here
494 * won't change, so no need for locking.
496 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
497 if (root
->subsys_bits
& (1UL << i
)) {
498 /* Subsystem is in this hierarchy. So we want
499 * the subsystem state from the new
501 template[i
] = cgrp
->subsys
[i
];
503 /* Subsystem is not in this hierarchy, so we
504 * don't want to change the subsystem state */
505 template[i
] = oldcg
->subsys
[i
];
509 hhead
= css_set_hash(template);
510 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
511 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
514 /* This css_set matches what we need */
518 /* No existing cgroup group matched */
522 static void free_cg_links(struct list_head
*tmp
)
524 struct cg_cgroup_link
*link
;
525 struct cg_cgroup_link
*saved_link
;
527 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
528 list_del(&link
->cgrp_link_list
);
534 * allocate_cg_links() allocates "count" cg_cgroup_link structures
535 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
536 * success or a negative error
538 static int allocate_cg_links(int count
, struct list_head
*tmp
)
540 struct cg_cgroup_link
*link
;
543 for (i
= 0; i
< count
; i
++) {
544 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
549 list_add(&link
->cgrp_link_list
, tmp
);
555 * link_css_set - a helper function to link a css_set to a cgroup
556 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
557 * @cg: the css_set to be linked
558 * @cgrp: the destination cgroup
560 static void link_css_set(struct list_head
*tmp_cg_links
,
561 struct css_set
*cg
, struct cgroup
*cgrp
)
563 struct cg_cgroup_link
*link
;
565 BUG_ON(list_empty(tmp_cg_links
));
566 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
570 atomic_inc(&cgrp
->count
);
571 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
573 * Always add links to the tail of the list so that the list
574 * is sorted by order of hierarchy creation
576 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
580 * find_css_set() takes an existing cgroup group and a
581 * cgroup object, and returns a css_set object that's
582 * equivalent to the old group, but with the given cgroup
583 * substituted into the appropriate hierarchy. Must be called with
586 static struct css_set
*find_css_set(
587 struct css_set
*oldcg
, struct cgroup
*cgrp
)
590 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
592 struct list_head tmp_cg_links
;
594 struct hlist_head
*hhead
;
595 struct cg_cgroup_link
*link
;
597 /* First see if we already have a cgroup group that matches
599 read_lock(&css_set_lock
);
600 res
= find_existing_css_set(oldcg
, cgrp
, template);
603 read_unlock(&css_set_lock
);
608 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
612 /* Allocate all the cg_cgroup_link objects that we'll need */
613 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
618 atomic_set(&res
->refcount
, 1);
619 INIT_LIST_HEAD(&res
->cg_links
);
620 INIT_LIST_HEAD(&res
->tasks
);
621 INIT_HLIST_NODE(&res
->hlist
);
623 /* Copy the set of subsystem state objects generated in
624 * find_existing_css_set() */
625 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
627 write_lock(&css_set_lock
);
628 /* Add reference counts and links from the new css_set. */
629 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
630 struct cgroup
*c
= link
->cgrp
;
631 if (c
->root
== cgrp
->root
)
633 link_css_set(&tmp_cg_links
, res
, c
);
636 BUG_ON(!list_empty(&tmp_cg_links
));
640 /* Add this cgroup group to the hash table */
641 hhead
= css_set_hash(res
->subsys
);
642 hlist_add_head(&res
->hlist
, hhead
);
644 write_unlock(&css_set_lock
);
650 * Return the cgroup for "task" from the given hierarchy. Must be
651 * called with cgroup_mutex held.
653 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
654 struct cgroupfs_root
*root
)
657 struct cgroup
*res
= NULL
;
659 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
660 read_lock(&css_set_lock
);
662 * No need to lock the task - since we hold cgroup_mutex the
663 * task can't change groups, so the only thing that can happen
664 * is that it exits and its css is set back to init_css_set.
667 if (css
== &init_css_set
) {
668 res
= &root
->top_cgroup
;
670 struct cg_cgroup_link
*link
;
671 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
672 struct cgroup
*c
= link
->cgrp
;
673 if (c
->root
== root
) {
679 read_unlock(&css_set_lock
);
685 * There is one global cgroup mutex. We also require taking
686 * task_lock() when dereferencing a task's cgroup subsys pointers.
687 * See "The task_lock() exception", at the end of this comment.
689 * A task must hold cgroup_mutex to modify cgroups.
691 * Any task can increment and decrement the count field without lock.
692 * So in general, code holding cgroup_mutex can't rely on the count
693 * field not changing. However, if the count goes to zero, then only
694 * cgroup_attach_task() can increment it again. Because a count of zero
695 * means that no tasks are currently attached, therefore there is no
696 * way a task attached to that cgroup can fork (the other way to
697 * increment the count). So code holding cgroup_mutex can safely
698 * assume that if the count is zero, it will stay zero. Similarly, if
699 * a task holds cgroup_mutex on a cgroup with zero count, it
700 * knows that the cgroup won't be removed, as cgroup_rmdir()
703 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
704 * (usually) take cgroup_mutex. These are the two most performance
705 * critical pieces of code here. The exception occurs on cgroup_exit(),
706 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
707 * is taken, and if the cgroup count is zero, a usermode call made
708 * to the release agent with the name of the cgroup (path relative to
709 * the root of cgroup file system) as the argument.
711 * A cgroup can only be deleted if both its 'count' of using tasks
712 * is zero, and its list of 'children' cgroups is empty. Since all
713 * tasks in the system use _some_ cgroup, and since there is always at
714 * least one task in the system (init, pid == 1), therefore, top_cgroup
715 * always has either children cgroups and/or using tasks. So we don't
716 * need a special hack to ensure that top_cgroup cannot be deleted.
718 * The task_lock() exception
720 * The need for this exception arises from the action of
721 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
722 * another. It does so using cgroup_mutex, however there are
723 * several performance critical places that need to reference
724 * task->cgroup without the expense of grabbing a system global
725 * mutex. Therefore except as noted below, when dereferencing or, as
726 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
727 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
728 * the task_struct routinely used for such matters.
730 * P.S. One more locking exception. RCU is used to guard the
731 * update of a tasks cgroup pointer by cgroup_attach_task()
735 * cgroup_lock - lock out any changes to cgroup structures
738 void cgroup_lock(void)
740 mutex_lock(&cgroup_mutex
);
742 EXPORT_SYMBOL_GPL(cgroup_lock
);
745 * cgroup_unlock - release lock on cgroup changes
747 * Undo the lock taken in a previous cgroup_lock() call.
749 void cgroup_unlock(void)
751 mutex_unlock(&cgroup_mutex
);
753 EXPORT_SYMBOL_GPL(cgroup_unlock
);
756 * A couple of forward declarations required, due to cyclic reference loop:
757 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
758 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
762 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
763 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
764 static int cgroup_populate_dir(struct cgroup
*cgrp
);
765 static const struct inode_operations cgroup_dir_inode_operations
;
766 static const struct file_operations proc_cgroupstats_operations
;
768 static struct backing_dev_info cgroup_backing_dev_info
= {
770 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
773 static int alloc_css_id(struct cgroup_subsys
*ss
,
774 struct cgroup
*parent
, struct cgroup
*child
);
776 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
778 struct inode
*inode
= new_inode(sb
);
781 inode
->i_mode
= mode
;
782 inode
->i_uid
= current_fsuid();
783 inode
->i_gid
= current_fsgid();
784 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
785 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
794 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
796 struct cgroup_subsys
*ss
;
799 for_each_subsys(cgrp
->root
, ss
)
800 if (ss
->pre_destroy
) {
801 ret
= ss
->pre_destroy(ss
, cgrp
);
809 static void free_cgroup_rcu(struct rcu_head
*obj
)
811 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
816 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
818 /* is dentry a directory ? if so, kfree() associated cgroup */
819 if (S_ISDIR(inode
->i_mode
)) {
820 struct cgroup
*cgrp
= dentry
->d_fsdata
;
821 struct cgroup_subsys
*ss
;
822 BUG_ON(!(cgroup_is_removed(cgrp
)));
823 /* It's possible for external users to be holding css
824 * reference counts on a cgroup; css_put() needs to
825 * be able to access the cgroup after decrementing
826 * the reference count in order to know if it needs to
827 * queue the cgroup to be handled by the release
831 mutex_lock(&cgroup_mutex
);
833 * Release the subsystem state objects.
835 for_each_subsys(cgrp
->root
, ss
)
836 ss
->destroy(ss
, cgrp
);
838 cgrp
->root
->number_of_cgroups
--;
839 mutex_unlock(&cgroup_mutex
);
842 * Drop the active superblock reference that we took when we
845 deactivate_super(cgrp
->root
->sb
);
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
851 BUG_ON(!list_empty(&cgrp
->pidlists
));
853 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
858 static void remove_dir(struct dentry
*d
)
860 struct dentry
*parent
= dget(d
->d_parent
);
863 simple_rmdir(parent
->d_inode
, d
);
867 static void cgroup_clear_directory(struct dentry
*dentry
)
869 struct list_head
*node
;
871 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
872 spin_lock(&dcache_lock
);
873 node
= dentry
->d_subdirs
.next
;
874 while (node
!= &dentry
->d_subdirs
) {
875 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
878 /* This should never be called on a cgroup
879 * directory with child cgroups */
880 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
882 spin_unlock(&dcache_lock
);
884 simple_unlink(dentry
->d_inode
, d
);
886 spin_lock(&dcache_lock
);
888 node
= dentry
->d_subdirs
.next
;
890 spin_unlock(&dcache_lock
);
894 * NOTE : the dentry must have been dget()'ed
896 static void cgroup_d_remove_dir(struct dentry
*dentry
)
898 cgroup_clear_directory(dentry
);
900 spin_lock(&dcache_lock
);
901 list_del_init(&dentry
->d_u
.d_child
);
902 spin_unlock(&dcache_lock
);
907 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
908 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
909 * reference to css->refcnt. In general, this refcnt is expected to goes down
912 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
914 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
916 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
918 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
919 wake_up_all(&cgroup_rmdir_waitq
);
922 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
927 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
929 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
934 * Call with cgroup_mutex held. Drops reference counts on modules, including
935 * any duplicate ones that parse_cgroupfs_options took. If this function
936 * returns an error, no reference counts are touched.
938 static int rebind_subsystems(struct cgroupfs_root
*root
,
939 unsigned long final_bits
)
941 unsigned long added_bits
, removed_bits
;
942 struct cgroup
*cgrp
= &root
->top_cgroup
;
945 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
947 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
948 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
949 /* Check that any added subsystems are currently free */
950 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
951 unsigned long bit
= 1UL << i
;
952 struct cgroup_subsys
*ss
= subsys
[i
];
953 if (!(bit
& added_bits
))
956 * Nobody should tell us to do a subsys that doesn't exist:
957 * parse_cgroupfs_options should catch that case and refcounts
958 * ensure that subsystems won't disappear once selected.
961 if (ss
->root
!= &rootnode
) {
962 /* Subsystem isn't free */
967 /* Currently we don't handle adding/removing subsystems when
968 * any child cgroups exist. This is theoretically supportable
969 * but involves complex error handling, so it's being left until
971 if (root
->number_of_cgroups
> 1)
974 /* Process each subsystem */
975 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
976 struct cgroup_subsys
*ss
= subsys
[i
];
977 unsigned long bit
= 1UL << i
;
978 if (bit
& added_bits
) {
979 /* We're binding this subsystem to this hierarchy */
981 BUG_ON(cgrp
->subsys
[i
]);
982 BUG_ON(!dummytop
->subsys
[i
]);
983 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
984 mutex_lock(&ss
->hierarchy_mutex
);
985 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
986 cgrp
->subsys
[i
]->cgroup
= cgrp
;
987 list_move(&ss
->sibling
, &root
->subsys_list
);
991 mutex_unlock(&ss
->hierarchy_mutex
);
992 /* refcount was already taken, and we're keeping it */
993 } else if (bit
& removed_bits
) {
994 /* We're removing this subsystem */
996 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
997 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
998 mutex_lock(&ss
->hierarchy_mutex
);
1000 ss
->bind(ss
, dummytop
);
1001 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1002 cgrp
->subsys
[i
] = NULL
;
1003 subsys
[i
]->root
= &rootnode
;
1004 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1005 mutex_unlock(&ss
->hierarchy_mutex
);
1006 /* subsystem is now free - drop reference on module */
1007 module_put(ss
->module
);
1008 } else if (bit
& final_bits
) {
1009 /* Subsystem state should already exist */
1011 BUG_ON(!cgrp
->subsys
[i
]);
1013 * a refcount was taken, but we already had one, so
1014 * drop the extra reference.
1016 module_put(ss
->module
);
1017 #ifdef CONFIG_MODULE_UNLOAD
1018 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1021 /* Subsystem state shouldn't exist */
1022 BUG_ON(cgrp
->subsys
[i
]);
1025 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
1031 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
1033 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
1034 struct cgroup_subsys
*ss
;
1036 mutex_lock(&cgroup_mutex
);
1037 for_each_subsys(root
, ss
)
1038 seq_printf(seq
, ",%s", ss
->name
);
1039 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
1040 seq_puts(seq
, ",noprefix");
1041 if (strlen(root
->release_agent_path
))
1042 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1043 if (strlen(root
->name
))
1044 seq_printf(seq
, ",name=%s", root
->name
);
1045 mutex_unlock(&cgroup_mutex
);
1049 struct cgroup_sb_opts
{
1050 unsigned long subsys_bits
;
1051 unsigned long flags
;
1052 char *release_agent
;
1054 /* User explicitly requested empty subsystem */
1057 struct cgroupfs_root
*new_root
;
1062 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1063 * with cgroup_mutex held to protect the subsys[] array. This function takes
1064 * refcounts on subsystems to be used, unless it returns error, in which case
1065 * no refcounts are taken.
1067 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1069 char *token
, *o
= data
?: "all";
1070 unsigned long mask
= (unsigned long)-1;
1072 bool module_pin_failed
= false;
1074 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1076 #ifdef CONFIG_CPUSETS
1077 mask
= ~(1UL << cpuset_subsys_id
);
1080 memset(opts
, 0, sizeof(*opts
));
1082 while ((token
= strsep(&o
, ",")) != NULL
) {
1085 if (!strcmp(token
, "all")) {
1086 /* Add all non-disabled subsystems */
1087 opts
->subsys_bits
= 0;
1088 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1089 struct cgroup_subsys
*ss
= subsys
[i
];
1093 opts
->subsys_bits
|= 1ul << i
;
1095 } else if (!strcmp(token
, "none")) {
1096 /* Explicitly have no subsystems */
1098 } else if (!strcmp(token
, "noprefix")) {
1099 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
1100 } else if (!strncmp(token
, "release_agent=", 14)) {
1101 /* Specifying two release agents is forbidden */
1102 if (opts
->release_agent
)
1104 opts
->release_agent
=
1105 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1106 if (!opts
->release_agent
)
1108 } else if (!strncmp(token
, "name=", 5)) {
1109 const char *name
= token
+ 5;
1110 /* Can't specify an empty name */
1113 /* Must match [\w.-]+ */
1114 for (i
= 0; i
< strlen(name
); i
++) {
1118 if ((c
== '.') || (c
== '-') || (c
== '_'))
1122 /* Specifying two names is forbidden */
1125 opts
->name
= kstrndup(name
,
1126 MAX_CGROUP_ROOT_NAMELEN
- 1,
1131 struct cgroup_subsys
*ss
;
1132 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1136 if (!strcmp(token
, ss
->name
)) {
1138 set_bit(i
, &opts
->subsys_bits
);
1142 if (i
== CGROUP_SUBSYS_COUNT
)
1147 /* Consistency checks */
1150 * Option noprefix was introduced just for backward compatibility
1151 * with the old cpuset, so we allow noprefix only if mounting just
1152 * the cpuset subsystem.
1154 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
1155 (opts
->subsys_bits
& mask
))
1159 /* Can't specify "none" and some subsystems */
1160 if (opts
->subsys_bits
&& opts
->none
)
1164 * We either have to specify by name or by subsystems. (So all
1165 * empty hierarchies must have a name).
1167 if (!opts
->subsys_bits
&& !opts
->name
)
1171 * Grab references on all the modules we'll need, so the subsystems
1172 * don't dance around before rebind_subsystems attaches them. This may
1173 * take duplicate reference counts on a subsystem that's already used,
1174 * but rebind_subsystems handles this case.
1176 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1177 unsigned long bit
= 1UL << i
;
1179 if (!(bit
& opts
->subsys_bits
))
1181 if (!try_module_get(subsys
[i
]->module
)) {
1182 module_pin_failed
= true;
1186 if (module_pin_failed
) {
1188 * oops, one of the modules was going away. this means that we
1189 * raced with a module_delete call, and to the user this is
1190 * essentially a "subsystem doesn't exist" case.
1192 for (i
--; i
>= CGROUP_BUILTIN_SUBSYS_COUNT
; i
--) {
1193 /* drop refcounts only on the ones we took */
1194 unsigned long bit
= 1UL << i
;
1196 if (!(bit
& opts
->subsys_bits
))
1198 module_put(subsys
[i
]->module
);
1206 static void drop_parsed_module_refcounts(unsigned long subsys_bits
)
1209 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1210 unsigned long bit
= 1UL << i
;
1212 if (!(bit
& subsys_bits
))
1214 module_put(subsys
[i
]->module
);
1218 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1221 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1222 struct cgroup
*cgrp
= &root
->top_cgroup
;
1223 struct cgroup_sb_opts opts
;
1226 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1227 mutex_lock(&cgroup_mutex
);
1229 /* See what subsystems are wanted */
1230 ret
= parse_cgroupfs_options(data
, &opts
);
1234 /* Don't allow flags or name to change at remount */
1235 if (opts
.flags
!= root
->flags
||
1236 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1238 drop_parsed_module_refcounts(opts
.subsys_bits
);
1242 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
1244 drop_parsed_module_refcounts(opts
.subsys_bits
);
1248 /* (re)populate subsystem files */
1249 cgroup_populate_dir(cgrp
);
1251 if (opts
.release_agent
)
1252 strcpy(root
->release_agent_path
, opts
.release_agent
);
1254 kfree(opts
.release_agent
);
1256 mutex_unlock(&cgroup_mutex
);
1257 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1262 static const struct super_operations cgroup_ops
= {
1263 .statfs
= simple_statfs
,
1264 .drop_inode
= generic_delete_inode
,
1265 .show_options
= cgroup_show_options
,
1266 .remount_fs
= cgroup_remount
,
1269 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1271 INIT_LIST_HEAD(&cgrp
->sibling
);
1272 INIT_LIST_HEAD(&cgrp
->children
);
1273 INIT_LIST_HEAD(&cgrp
->css_sets
);
1274 INIT_LIST_HEAD(&cgrp
->release_list
);
1275 INIT_LIST_HEAD(&cgrp
->pidlists
);
1276 mutex_init(&cgrp
->pidlist_mutex
);
1277 INIT_LIST_HEAD(&cgrp
->event_list
);
1278 spin_lock_init(&cgrp
->event_list_lock
);
1281 static void init_cgroup_root(struct cgroupfs_root
*root
)
1283 struct cgroup
*cgrp
= &root
->top_cgroup
;
1284 INIT_LIST_HEAD(&root
->subsys_list
);
1285 INIT_LIST_HEAD(&root
->root_list
);
1286 root
->number_of_cgroups
= 1;
1288 cgrp
->top_cgroup
= cgrp
;
1289 init_cgroup_housekeeping(cgrp
);
1292 static bool init_root_id(struct cgroupfs_root
*root
)
1297 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1299 spin_lock(&hierarchy_id_lock
);
1300 /* Try to allocate the next unused ID */
1301 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1302 &root
->hierarchy_id
);
1304 /* Try again starting from 0 */
1305 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1307 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1308 } else if (ret
!= -EAGAIN
) {
1309 /* Can only get here if the 31-bit IDR is full ... */
1312 spin_unlock(&hierarchy_id_lock
);
1317 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1319 struct cgroup_sb_opts
*opts
= data
;
1320 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1322 /* If we asked for a name then it must match */
1323 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1327 * If we asked for subsystems (or explicitly for no
1328 * subsystems) then they must match
1330 if ((opts
->subsys_bits
|| opts
->none
)
1331 && (opts
->subsys_bits
!= root
->subsys_bits
))
1337 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1339 struct cgroupfs_root
*root
;
1341 if (!opts
->subsys_bits
&& !opts
->none
)
1344 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1346 return ERR_PTR(-ENOMEM
);
1348 if (!init_root_id(root
)) {
1350 return ERR_PTR(-ENOMEM
);
1352 init_cgroup_root(root
);
1354 root
->subsys_bits
= opts
->subsys_bits
;
1355 root
->flags
= opts
->flags
;
1356 if (opts
->release_agent
)
1357 strcpy(root
->release_agent_path
, opts
->release_agent
);
1359 strcpy(root
->name
, opts
->name
);
1363 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1368 BUG_ON(!root
->hierarchy_id
);
1369 spin_lock(&hierarchy_id_lock
);
1370 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1371 spin_unlock(&hierarchy_id_lock
);
1375 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1378 struct cgroup_sb_opts
*opts
= data
;
1380 /* If we don't have a new root, we can't set up a new sb */
1381 if (!opts
->new_root
)
1384 BUG_ON(!opts
->subsys_bits
&& !opts
->none
);
1386 ret
= set_anon_super(sb
, NULL
);
1390 sb
->s_fs_info
= opts
->new_root
;
1391 opts
->new_root
->sb
= sb
;
1393 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1394 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1395 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1396 sb
->s_op
= &cgroup_ops
;
1401 static int cgroup_get_rootdir(struct super_block
*sb
)
1403 struct inode
*inode
=
1404 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1405 struct dentry
*dentry
;
1410 inode
->i_fop
= &simple_dir_operations
;
1411 inode
->i_op
= &cgroup_dir_inode_operations
;
1412 /* directories start off with i_nlink == 2 (for "." entry) */
1414 dentry
= d_alloc_root(inode
);
1419 sb
->s_root
= dentry
;
1423 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1424 int flags
, const char *unused_dev_name
,
1425 void *data
, struct vfsmount
*mnt
)
1427 struct cgroup_sb_opts opts
;
1428 struct cgroupfs_root
*root
;
1430 struct super_block
*sb
;
1431 struct cgroupfs_root
*new_root
;
1433 /* First find the desired set of subsystems */
1434 mutex_lock(&cgroup_mutex
);
1435 ret
= parse_cgroupfs_options(data
, &opts
);
1436 mutex_unlock(&cgroup_mutex
);
1441 * Allocate a new cgroup root. We may not need it if we're
1442 * reusing an existing hierarchy.
1444 new_root
= cgroup_root_from_opts(&opts
);
1445 if (IS_ERR(new_root
)) {
1446 ret
= PTR_ERR(new_root
);
1449 opts
.new_root
= new_root
;
1451 /* Locate an existing or new sb for this hierarchy */
1452 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, &opts
);
1455 cgroup_drop_root(opts
.new_root
);
1459 root
= sb
->s_fs_info
;
1461 if (root
== opts
.new_root
) {
1462 /* We used the new root structure, so this is a new hierarchy */
1463 struct list_head tmp_cg_links
;
1464 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1465 struct inode
*inode
;
1466 struct cgroupfs_root
*existing_root
;
1469 BUG_ON(sb
->s_root
!= NULL
);
1471 ret
= cgroup_get_rootdir(sb
);
1473 goto drop_new_super
;
1474 inode
= sb
->s_root
->d_inode
;
1476 mutex_lock(&inode
->i_mutex
);
1477 mutex_lock(&cgroup_mutex
);
1479 if (strlen(root
->name
)) {
1480 /* Check for name clashes with existing mounts */
1481 for_each_active_root(existing_root
) {
1482 if (!strcmp(existing_root
->name
, root
->name
)) {
1484 mutex_unlock(&cgroup_mutex
);
1485 mutex_unlock(&inode
->i_mutex
);
1486 goto drop_new_super
;
1492 * We're accessing css_set_count without locking
1493 * css_set_lock here, but that's OK - it can only be
1494 * increased by someone holding cgroup_lock, and
1495 * that's us. The worst that can happen is that we
1496 * have some link structures left over
1498 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1500 mutex_unlock(&cgroup_mutex
);
1501 mutex_unlock(&inode
->i_mutex
);
1502 goto drop_new_super
;
1505 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1506 if (ret
== -EBUSY
) {
1507 mutex_unlock(&cgroup_mutex
);
1508 mutex_unlock(&inode
->i_mutex
);
1509 free_cg_links(&tmp_cg_links
);
1510 goto drop_new_super
;
1513 * There must be no failure case after here, since rebinding
1514 * takes care of subsystems' refcounts, which are explicitly
1515 * dropped in the failure exit path.
1518 /* EBUSY should be the only error here */
1521 list_add(&root
->root_list
, &roots
);
1524 sb
->s_root
->d_fsdata
= root_cgrp
;
1525 root
->top_cgroup
.dentry
= sb
->s_root
;
1527 /* Link the top cgroup in this hierarchy into all
1528 * the css_set objects */
1529 write_lock(&css_set_lock
);
1530 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1531 struct hlist_head
*hhead
= &css_set_table
[i
];
1532 struct hlist_node
*node
;
1535 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1536 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1538 write_unlock(&css_set_lock
);
1540 free_cg_links(&tmp_cg_links
);
1542 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1543 BUG_ON(!list_empty(&root_cgrp
->children
));
1544 BUG_ON(root
->number_of_cgroups
!= 1);
1546 cgroup_populate_dir(root_cgrp
);
1547 mutex_unlock(&cgroup_mutex
);
1548 mutex_unlock(&inode
->i_mutex
);
1551 * We re-used an existing hierarchy - the new root (if
1552 * any) is not needed
1554 cgroup_drop_root(opts
.new_root
);
1555 /* no subsys rebinding, so refcounts don't change */
1556 drop_parsed_module_refcounts(opts
.subsys_bits
);
1559 simple_set_mnt(mnt
, sb
);
1560 kfree(opts
.release_agent
);
1565 deactivate_locked_super(sb
);
1567 drop_parsed_module_refcounts(opts
.subsys_bits
);
1569 kfree(opts
.release_agent
);
1575 static void cgroup_kill_sb(struct super_block
*sb
) {
1576 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1577 struct cgroup
*cgrp
= &root
->top_cgroup
;
1579 struct cg_cgroup_link
*link
;
1580 struct cg_cgroup_link
*saved_link
;
1584 BUG_ON(root
->number_of_cgroups
!= 1);
1585 BUG_ON(!list_empty(&cgrp
->children
));
1586 BUG_ON(!list_empty(&cgrp
->sibling
));
1588 mutex_lock(&cgroup_mutex
);
1590 /* Rebind all subsystems back to the default hierarchy */
1591 ret
= rebind_subsystems(root
, 0);
1592 /* Shouldn't be able to fail ... */
1596 * Release all the links from css_sets to this hierarchy's
1599 write_lock(&css_set_lock
);
1601 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1603 list_del(&link
->cg_link_list
);
1604 list_del(&link
->cgrp_link_list
);
1607 write_unlock(&css_set_lock
);
1609 if (!list_empty(&root
->root_list
)) {
1610 list_del(&root
->root_list
);
1614 mutex_unlock(&cgroup_mutex
);
1616 kill_litter_super(sb
);
1617 cgroup_drop_root(root
);
1620 static struct file_system_type cgroup_fs_type
= {
1622 .get_sb
= cgroup_get_sb
,
1623 .kill_sb
= cgroup_kill_sb
,
1626 static struct kobject
*cgroup_kobj
;
1628 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1630 return dentry
->d_fsdata
;
1633 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1635 return dentry
->d_fsdata
;
1639 * cgroup_path - generate the path of a cgroup
1640 * @cgrp: the cgroup in question
1641 * @buf: the buffer to write the path into
1642 * @buflen: the length of the buffer
1644 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1645 * reference. Writes path of cgroup into buf. Returns 0 on success,
1648 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1651 struct dentry
*dentry
= rcu_dereference_check(cgrp
->dentry
,
1652 rcu_read_lock_held() ||
1653 cgroup_lock_is_held());
1655 if (!dentry
|| cgrp
== dummytop
) {
1657 * Inactive subsystems have no dentry for their root
1664 start
= buf
+ buflen
;
1668 int len
= dentry
->d_name
.len
;
1670 if ((start
-= len
) < buf
)
1671 return -ENAMETOOLONG
;
1672 memcpy(start
, dentry
->d_name
.name
, len
);
1673 cgrp
= cgrp
->parent
;
1677 dentry
= rcu_dereference_check(cgrp
->dentry
,
1678 rcu_read_lock_held() ||
1679 cgroup_lock_is_held());
1683 return -ENAMETOOLONG
;
1686 memmove(buf
, start
, buf
+ buflen
- start
);
1689 EXPORT_SYMBOL_GPL(cgroup_path
);
1692 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1693 * @cgrp: the cgroup the task is attaching to
1694 * @tsk: the task to be attached
1696 * Call holding cgroup_mutex. May take task_lock of
1697 * the task 'tsk' during call.
1699 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1702 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1703 struct cgroup
*oldcgrp
;
1705 struct css_set
*newcg
;
1706 struct cgroupfs_root
*root
= cgrp
->root
;
1708 /* Nothing to do if the task is already in that cgroup */
1709 oldcgrp
= task_cgroup_from_root(tsk
, root
);
1710 if (cgrp
== oldcgrp
)
1713 for_each_subsys(root
, ss
) {
1714 if (ss
->can_attach
) {
1715 retval
= ss
->can_attach(ss
, cgrp
, tsk
, false);
1718 * Remember on which subsystem the can_attach()
1719 * failed, so that we only call cancel_attach()
1720 * against the subsystems whose can_attach()
1721 * succeeded. (See below)
1734 * Locate or allocate a new css_set for this task,
1735 * based on its final set of cgroups
1737 newcg
= find_css_set(cg
, cgrp
);
1745 if (tsk
->flags
& PF_EXITING
) {
1751 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1754 /* Update the css_set linked lists if we're using them */
1755 write_lock(&css_set_lock
);
1756 if (!list_empty(&tsk
->cg_list
)) {
1757 list_del(&tsk
->cg_list
);
1758 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1760 write_unlock(&css_set_lock
);
1762 for_each_subsys(root
, ss
) {
1764 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
, false);
1766 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1771 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1772 * is no longer empty.
1774 cgroup_wakeup_rmdir_waiter(cgrp
);
1777 for_each_subsys(root
, ss
) {
1778 if (ss
== failed_ss
)
1780 * This subsystem was the one that failed the
1781 * can_attach() check earlier, so we don't need
1782 * to call cancel_attach() against it or any
1783 * remaining subsystems.
1786 if (ss
->cancel_attach
)
1787 ss
->cancel_attach(ss
, cgrp
, tsk
, false);
1794 * cgroup_attach_task_current_cg - attach task 'tsk' to current task's cgroup
1795 * @tsk: the task to be attached
1797 int cgroup_attach_task_current_cg(struct task_struct
*tsk
)
1799 struct cgroupfs_root
*root
;
1800 struct cgroup
*cur_cg
;
1804 for_each_active_root(root
) {
1805 cur_cg
= task_cgroup_from_root(current
, root
);
1806 retval
= cgroup_attach_task(cur_cg
, tsk
);
1814 EXPORT_SYMBOL_GPL(cgroup_attach_task_current_cg
);
1817 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1818 * held. May take task_lock of task
1820 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1822 struct task_struct
*tsk
;
1823 const struct cred
*cred
= current_cred(), *tcred
;
1828 tsk
= find_task_by_vpid(pid
);
1829 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1834 tcred
= __task_cred(tsk
);
1836 cred
->euid
!= tcred
->uid
&&
1837 cred
->euid
!= tcred
->suid
) {
1841 get_task_struct(tsk
);
1845 get_task_struct(tsk
);
1848 ret
= cgroup_attach_task(cgrp
, tsk
);
1849 put_task_struct(tsk
);
1853 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1856 if (!cgroup_lock_live_group(cgrp
))
1858 ret
= attach_task_by_pid(cgrp
, pid
);
1864 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1865 * @cgrp: the cgroup to be checked for liveness
1867 * On success, returns true; the lock should be later released with
1868 * cgroup_unlock(). On failure returns false with no lock held.
1870 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1872 mutex_lock(&cgroup_mutex
);
1873 if (cgroup_is_removed(cgrp
)) {
1874 mutex_unlock(&cgroup_mutex
);
1879 EXPORT_SYMBOL_GPL(cgroup_lock_live_group
);
1881 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1884 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1885 if (!cgroup_lock_live_group(cgrp
))
1887 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1892 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1893 struct seq_file
*seq
)
1895 if (!cgroup_lock_live_group(cgrp
))
1897 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1898 seq_putc(seq
, '\n');
1903 /* A buffer size big enough for numbers or short strings */
1904 #define CGROUP_LOCAL_BUFFER_SIZE 64
1906 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1908 const char __user
*userbuf
,
1909 size_t nbytes
, loff_t
*unused_ppos
)
1911 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1917 if (nbytes
>= sizeof(buffer
))
1919 if (copy_from_user(buffer
, userbuf
, nbytes
))
1922 buffer
[nbytes
] = 0; /* nul-terminate */
1923 if (cft
->write_u64
) {
1924 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
1927 retval
= cft
->write_u64(cgrp
, cft
, val
);
1929 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
1932 retval
= cft
->write_s64(cgrp
, cft
, val
);
1939 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1941 const char __user
*userbuf
,
1942 size_t nbytes
, loff_t
*unused_ppos
)
1944 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1946 size_t max_bytes
= cft
->max_write_len
;
1947 char *buffer
= local_buffer
;
1950 max_bytes
= sizeof(local_buffer
) - 1;
1951 if (nbytes
>= max_bytes
)
1953 /* Allocate a dynamic buffer if we need one */
1954 if (nbytes
>= sizeof(local_buffer
)) {
1955 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1959 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1964 buffer
[nbytes
] = 0; /* nul-terminate */
1965 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
1969 if (buffer
!= local_buffer
)
1974 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1975 size_t nbytes
, loff_t
*ppos
)
1977 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1978 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1980 if (cgroup_is_removed(cgrp
))
1983 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1984 if (cft
->write_u64
|| cft
->write_s64
)
1985 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1986 if (cft
->write_string
)
1987 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1989 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1990 return ret
? ret
: nbytes
;
1995 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1997 char __user
*buf
, size_t nbytes
,
2000 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2001 u64 val
= cft
->read_u64(cgrp
, cft
);
2002 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2004 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2007 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2009 char __user
*buf
, size_t nbytes
,
2012 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2013 s64 val
= cft
->read_s64(cgrp
, cft
);
2014 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2016 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2019 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2020 size_t nbytes
, loff_t
*ppos
)
2022 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2023 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2025 if (cgroup_is_removed(cgrp
))
2029 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2031 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2033 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2038 * seqfile ops/methods for returning structured data. Currently just
2039 * supports string->u64 maps, but can be extended in future.
2042 struct cgroup_seqfile_state
{
2044 struct cgroup
*cgroup
;
2047 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2049 struct seq_file
*sf
= cb
->state
;
2050 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2053 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2055 struct cgroup_seqfile_state
*state
= m
->private;
2056 struct cftype
*cft
= state
->cft
;
2057 if (cft
->read_map
) {
2058 struct cgroup_map_cb cb
= {
2059 .fill
= cgroup_map_add
,
2062 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2064 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2067 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2069 struct seq_file
*seq
= file
->private_data
;
2070 kfree(seq
->private);
2071 return single_release(inode
, file
);
2074 static const struct file_operations cgroup_seqfile_operations
= {
2076 .write
= cgroup_file_write
,
2077 .llseek
= seq_lseek
,
2078 .release
= cgroup_seqfile_release
,
2081 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2086 err
= generic_file_open(inode
, file
);
2089 cft
= __d_cft(file
->f_dentry
);
2091 if (cft
->read_map
|| cft
->read_seq_string
) {
2092 struct cgroup_seqfile_state
*state
=
2093 kzalloc(sizeof(*state
), GFP_USER
);
2097 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2098 file
->f_op
= &cgroup_seqfile_operations
;
2099 err
= single_open(file
, cgroup_seqfile_show
, state
);
2102 } else if (cft
->open
)
2103 err
= cft
->open(inode
, file
);
2110 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2112 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2114 return cft
->release(inode
, file
);
2119 * cgroup_rename - Only allow simple rename of directories in place.
2121 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2122 struct inode
*new_dir
, struct dentry
*new_dentry
)
2124 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2126 if (new_dentry
->d_inode
)
2128 if (old_dir
!= new_dir
)
2130 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2133 static const struct file_operations cgroup_file_operations
= {
2134 .read
= cgroup_file_read
,
2135 .write
= cgroup_file_write
,
2136 .llseek
= generic_file_llseek
,
2137 .open
= cgroup_file_open
,
2138 .release
= cgroup_file_release
,
2141 static const struct inode_operations cgroup_dir_inode_operations
= {
2142 .lookup
= simple_lookup
,
2143 .mkdir
= cgroup_mkdir
,
2144 .rmdir
= cgroup_rmdir
,
2145 .rename
= cgroup_rename
,
2149 * Check if a file is a control file
2151 static inline struct cftype
*__file_cft(struct file
*file
)
2153 if (file
->f_dentry
->d_inode
->i_fop
!= &cgroup_file_operations
)
2154 return ERR_PTR(-EINVAL
);
2155 return __d_cft(file
->f_dentry
);
2158 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
2159 struct super_block
*sb
)
2161 static const struct dentry_operations cgroup_dops
= {
2162 .d_iput
= cgroup_diput
,
2165 struct inode
*inode
;
2169 if (dentry
->d_inode
)
2172 inode
= cgroup_new_inode(mode
, sb
);
2176 if (S_ISDIR(mode
)) {
2177 inode
->i_op
= &cgroup_dir_inode_operations
;
2178 inode
->i_fop
= &simple_dir_operations
;
2180 /* start off with i_nlink == 2 (for "." entry) */
2183 /* start with the directory inode held, so that we can
2184 * populate it without racing with another mkdir */
2185 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
2186 } else if (S_ISREG(mode
)) {
2188 inode
->i_fop
= &cgroup_file_operations
;
2190 dentry
->d_op
= &cgroup_dops
;
2191 d_instantiate(dentry
, inode
);
2192 dget(dentry
); /* Extra count - pin the dentry in core */
2197 * cgroup_create_dir - create a directory for an object.
2198 * @cgrp: the cgroup we create the directory for. It must have a valid
2199 * ->parent field. And we are going to fill its ->dentry field.
2200 * @dentry: dentry of the new cgroup
2201 * @mode: mode to set on new directory.
2203 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
2206 struct dentry
*parent
;
2209 parent
= cgrp
->parent
->dentry
;
2210 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
2212 dentry
->d_fsdata
= cgrp
;
2213 inc_nlink(parent
->d_inode
);
2214 rcu_assign_pointer(cgrp
->dentry
, dentry
);
2223 * cgroup_file_mode - deduce file mode of a control file
2224 * @cft: the control file in question
2226 * returns cft->mode if ->mode is not 0
2227 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2228 * returns S_IRUGO if it has only a read handler
2229 * returns S_IWUSR if it has only a write hander
2231 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
2238 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2239 cft
->read_map
|| cft
->read_seq_string
)
2242 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2243 cft
->write_string
|| cft
->trigger
)
2249 int cgroup_add_file(struct cgroup
*cgrp
,
2250 struct cgroup_subsys
*subsys
,
2251 const struct cftype
*cft
)
2253 struct dentry
*dir
= cgrp
->dentry
;
2254 struct dentry
*dentry
;
2258 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2259 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
2260 strcpy(name
, subsys
->name
);
2263 strcat(name
, cft
->name
);
2264 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2265 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2266 if (!IS_ERR(dentry
)) {
2267 mode
= cgroup_file_mode(cft
);
2268 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
2271 dentry
->d_fsdata
= (void *)cft
;
2274 error
= PTR_ERR(dentry
);
2277 EXPORT_SYMBOL_GPL(cgroup_add_file
);
2279 int cgroup_add_files(struct cgroup
*cgrp
,
2280 struct cgroup_subsys
*subsys
,
2281 const struct cftype cft
[],
2285 for (i
= 0; i
< count
; i
++) {
2286 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
2292 EXPORT_SYMBOL_GPL(cgroup_add_files
);
2295 * cgroup_task_count - count the number of tasks in a cgroup.
2296 * @cgrp: the cgroup in question
2298 * Return the number of tasks in the cgroup.
2300 int cgroup_task_count(const struct cgroup
*cgrp
)
2303 struct cg_cgroup_link
*link
;
2305 read_lock(&css_set_lock
);
2306 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2307 count
+= atomic_read(&link
->cg
->refcount
);
2309 read_unlock(&css_set_lock
);
2314 * Advance a list_head iterator. The iterator should be positioned at
2315 * the start of a css_set
2317 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2318 struct cgroup_iter
*it
)
2320 struct list_head
*l
= it
->cg_link
;
2321 struct cg_cgroup_link
*link
;
2324 /* Advance to the next non-empty css_set */
2327 if (l
== &cgrp
->css_sets
) {
2331 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2333 } while (list_empty(&cg
->tasks
));
2335 it
->task
= cg
->tasks
.next
;
2339 * To reduce the fork() overhead for systems that are not actually
2340 * using their cgroups capability, we don't maintain the lists running
2341 * through each css_set to its tasks until we see the list actually
2342 * used - in other words after the first call to cgroup_iter_start().
2344 * The tasklist_lock is not held here, as do_each_thread() and
2345 * while_each_thread() are protected by RCU.
2347 static void cgroup_enable_task_cg_lists(void)
2349 struct task_struct
*p
, *g
;
2350 write_lock(&css_set_lock
);
2351 use_task_css_set_links
= 1;
2352 do_each_thread(g
, p
) {
2355 * We should check if the process is exiting, otherwise
2356 * it will race with cgroup_exit() in that the list
2357 * entry won't be deleted though the process has exited.
2359 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2360 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2362 } while_each_thread(g
, p
);
2363 write_unlock(&css_set_lock
);
2366 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2369 * The first time anyone tries to iterate across a cgroup,
2370 * we need to enable the list linking each css_set to its
2371 * tasks, and fix up all existing tasks.
2373 if (!use_task_css_set_links
)
2374 cgroup_enable_task_cg_lists();
2376 read_lock(&css_set_lock
);
2377 it
->cg_link
= &cgrp
->css_sets
;
2378 cgroup_advance_iter(cgrp
, it
);
2381 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
2382 struct cgroup_iter
*it
)
2384 struct task_struct
*res
;
2385 struct list_head
*l
= it
->task
;
2386 struct cg_cgroup_link
*link
;
2388 /* If the iterator cg is NULL, we have no tasks */
2391 res
= list_entry(l
, struct task_struct
, cg_list
);
2392 /* Advance iterator to find next entry */
2394 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
2395 if (l
== &link
->cg
->tasks
) {
2396 /* We reached the end of this task list - move on to
2397 * the next cg_cgroup_link */
2398 cgroup_advance_iter(cgrp
, it
);
2405 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
2407 read_unlock(&css_set_lock
);
2410 static inline int started_after_time(struct task_struct
*t1
,
2411 struct timespec
*time
,
2412 struct task_struct
*t2
)
2414 int start_diff
= timespec_compare(&t1
->start_time
, time
);
2415 if (start_diff
> 0) {
2417 } else if (start_diff
< 0) {
2421 * Arbitrarily, if two processes started at the same
2422 * time, we'll say that the lower pointer value
2423 * started first. Note that t2 may have exited by now
2424 * so this may not be a valid pointer any longer, but
2425 * that's fine - it still serves to distinguish
2426 * between two tasks started (effectively) simultaneously.
2433 * This function is a callback from heap_insert() and is used to order
2435 * In this case we order the heap in descending task start time.
2437 static inline int started_after(void *p1
, void *p2
)
2439 struct task_struct
*t1
= p1
;
2440 struct task_struct
*t2
= p2
;
2441 return started_after_time(t1
, &t2
->start_time
, t2
);
2445 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2446 * @scan: struct cgroup_scanner containing arguments for the scan
2448 * Arguments include pointers to callback functions test_task() and
2450 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2451 * and if it returns true, call process_task() for it also.
2452 * The test_task pointer may be NULL, meaning always true (select all tasks).
2453 * Effectively duplicates cgroup_iter_{start,next,end}()
2454 * but does not lock css_set_lock for the call to process_task().
2455 * The struct cgroup_scanner may be embedded in any structure of the caller's
2457 * It is guaranteed that process_task() will act on every task that
2458 * is a member of the cgroup for the duration of this call. This
2459 * function may or may not call process_task() for tasks that exit
2460 * or move to a different cgroup during the call, or are forked or
2461 * move into the cgroup during the call.
2463 * Note that test_task() may be called with locks held, and may in some
2464 * situations be called multiple times for the same task, so it should
2466 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2467 * pre-allocated and will be used for heap operations (and its "gt" member will
2468 * be overwritten), else a temporary heap will be used (allocation of which
2469 * may cause this function to fail).
2471 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2474 struct cgroup_iter it
;
2475 struct task_struct
*p
, *dropped
;
2476 /* Never dereference latest_task, since it's not refcounted */
2477 struct task_struct
*latest_task
= NULL
;
2478 struct ptr_heap tmp_heap
;
2479 struct ptr_heap
*heap
;
2480 struct timespec latest_time
= { 0, 0 };
2483 /* The caller supplied our heap and pre-allocated its memory */
2485 heap
->gt
= &started_after
;
2487 /* We need to allocate our own heap memory */
2489 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2491 /* cannot allocate the heap */
2497 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2498 * to determine which are of interest, and using the scanner's
2499 * "process_task" callback to process any of them that need an update.
2500 * Since we don't want to hold any locks during the task updates,
2501 * gather tasks to be processed in a heap structure.
2502 * The heap is sorted by descending task start time.
2503 * If the statically-sized heap fills up, we overflow tasks that
2504 * started later, and in future iterations only consider tasks that
2505 * started after the latest task in the previous pass. This
2506 * guarantees forward progress and that we don't miss any tasks.
2509 cgroup_iter_start(scan
->cg
, &it
);
2510 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2512 * Only affect tasks that qualify per the caller's callback,
2513 * if he provided one
2515 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2518 * Only process tasks that started after the last task
2521 if (!started_after_time(p
, &latest_time
, latest_task
))
2523 dropped
= heap_insert(heap
, p
);
2524 if (dropped
== NULL
) {
2526 * The new task was inserted; the heap wasn't
2530 } else if (dropped
!= p
) {
2532 * The new task was inserted, and pushed out a
2536 put_task_struct(dropped
);
2539 * Else the new task was newer than anything already in
2540 * the heap and wasn't inserted
2543 cgroup_iter_end(scan
->cg
, &it
);
2546 for (i
= 0; i
< heap
->size
; i
++) {
2547 struct task_struct
*q
= heap
->ptrs
[i
];
2549 latest_time
= q
->start_time
;
2552 /* Process the task per the caller's callback */
2553 scan
->process_task(q
, scan
);
2557 * If we had to process any tasks at all, scan again
2558 * in case some of them were in the middle of forking
2559 * children that didn't get processed.
2560 * Not the most efficient way to do it, but it avoids
2561 * having to take callback_mutex in the fork path
2565 if (heap
== &tmp_heap
)
2566 heap_free(&tmp_heap
);
2571 * Stuff for reading the 'tasks'/'procs' files.
2573 * Reading this file can return large amounts of data if a cgroup has
2574 * *lots* of attached tasks. So it may need several calls to read(),
2575 * but we cannot guarantee that the information we produce is correct
2576 * unless we produce it entirely atomically.
2581 * The following two functions "fix" the issue where there are more pids
2582 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2583 * TODO: replace with a kernel-wide solution to this problem
2585 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2586 static void *pidlist_allocate(int count
)
2588 if (PIDLIST_TOO_LARGE(count
))
2589 return vmalloc(count
* sizeof(pid_t
));
2591 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
2593 static void pidlist_free(void *p
)
2595 if (is_vmalloc_addr(p
))
2600 static void *pidlist_resize(void *p
, int newcount
)
2603 /* note: if new alloc fails, old p will still be valid either way */
2604 if (is_vmalloc_addr(p
)) {
2605 newlist
= vmalloc(newcount
* sizeof(pid_t
));
2608 memcpy(newlist
, p
, newcount
* sizeof(pid_t
));
2611 newlist
= krealloc(p
, newcount
* sizeof(pid_t
), GFP_KERNEL
);
2617 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2618 * If the new stripped list is sufficiently smaller and there's enough memory
2619 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2620 * number of unique elements.
2622 /* is the size difference enough that we should re-allocate the array? */
2623 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2624 static int pidlist_uniq(pid_t
**p
, int length
)
2631 * we presume the 0th element is unique, so i starts at 1. trivial
2632 * edge cases first; no work needs to be done for either
2634 if (length
== 0 || length
== 1)
2636 /* src and dest walk down the list; dest counts unique elements */
2637 for (src
= 1; src
< length
; src
++) {
2638 /* find next unique element */
2639 while (list
[src
] == list
[src
-1]) {
2644 /* dest always points to where the next unique element goes */
2645 list
[dest
] = list
[src
];
2650 * if the length difference is large enough, we want to allocate a
2651 * smaller buffer to save memory. if this fails due to out of memory,
2652 * we'll just stay with what we've got.
2654 if (PIDLIST_REALLOC_DIFFERENCE(length
, dest
)) {
2655 newlist
= pidlist_resize(list
, dest
);
2662 static int cmppid(const void *a
, const void *b
)
2664 return *(pid_t
*)a
- *(pid_t
*)b
;
2668 * find the appropriate pidlist for our purpose (given procs vs tasks)
2669 * returns with the lock on that pidlist already held, and takes care
2670 * of the use count, or returns NULL with no locks held if we're out of
2673 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
2674 enum cgroup_filetype type
)
2676 struct cgroup_pidlist
*l
;
2677 /* don't need task_nsproxy() if we're looking at ourself */
2678 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2681 * We can't drop the pidlist_mutex before taking the l->mutex in case
2682 * the last ref-holder is trying to remove l from the list at the same
2683 * time. Holding the pidlist_mutex precludes somebody taking whichever
2684 * list we find out from under us - compare release_pid_array().
2686 mutex_lock(&cgrp
->pidlist_mutex
);
2687 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
2688 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
2689 /* make sure l doesn't vanish out from under us */
2690 down_write(&l
->mutex
);
2691 mutex_unlock(&cgrp
->pidlist_mutex
);
2695 /* entry not found; create a new one */
2696 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
2698 mutex_unlock(&cgrp
->pidlist_mutex
);
2701 init_rwsem(&l
->mutex
);
2702 down_write(&l
->mutex
);
2704 l
->key
.ns
= get_pid_ns(ns
);
2705 l
->use_count
= 0; /* don't increment here */
2708 list_add(&l
->links
, &cgrp
->pidlists
);
2709 mutex_unlock(&cgrp
->pidlist_mutex
);
2714 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2716 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
2717 struct cgroup_pidlist
**lp
)
2721 int pid
, n
= 0; /* used for populating the array */
2722 struct cgroup_iter it
;
2723 struct task_struct
*tsk
;
2724 struct cgroup_pidlist
*l
;
2727 * If cgroup gets more users after we read count, we won't have
2728 * enough space - tough. This race is indistinguishable to the
2729 * caller from the case that the additional cgroup users didn't
2730 * show up until sometime later on.
2732 length
= cgroup_task_count(cgrp
);
2733 array
= pidlist_allocate(length
);
2736 /* now, populate the array */
2737 cgroup_iter_start(cgrp
, &it
);
2738 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2739 if (unlikely(n
== length
))
2741 /* get tgid or pid for procs or tasks file respectively */
2742 if (type
== CGROUP_FILE_PROCS
)
2743 pid
= task_tgid_vnr(tsk
);
2745 pid
= task_pid_vnr(tsk
);
2746 if (pid
> 0) /* make sure to only use valid results */
2749 cgroup_iter_end(cgrp
, &it
);
2751 /* now sort & (if procs) strip out duplicates */
2752 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
2753 if (type
== CGROUP_FILE_PROCS
)
2754 length
= pidlist_uniq(&array
, length
);
2755 l
= cgroup_pidlist_find(cgrp
, type
);
2757 pidlist_free(array
);
2760 /* store array, freeing old if necessary - lock already held */
2761 pidlist_free(l
->list
);
2765 up_write(&l
->mutex
);
2771 * cgroupstats_build - build and fill cgroupstats
2772 * @stats: cgroupstats to fill information into
2773 * @dentry: A dentry entry belonging to the cgroup for which stats have
2776 * Build and fill cgroupstats so that taskstats can export it to user
2779 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2782 struct cgroup
*cgrp
;
2783 struct cgroup_iter it
;
2784 struct task_struct
*tsk
;
2787 * Validate dentry by checking the superblock operations,
2788 * and make sure it's a directory.
2790 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2791 !S_ISDIR(dentry
->d_inode
->i_mode
))
2795 cgrp
= dentry
->d_fsdata
;
2797 cgroup_iter_start(cgrp
, &it
);
2798 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2799 switch (tsk
->state
) {
2801 stats
->nr_running
++;
2803 case TASK_INTERRUPTIBLE
:
2804 stats
->nr_sleeping
++;
2806 case TASK_UNINTERRUPTIBLE
:
2807 stats
->nr_uninterruptible
++;
2810 stats
->nr_stopped
++;
2813 if (delayacct_is_task_waiting_on_io(tsk
))
2814 stats
->nr_io_wait
++;
2818 cgroup_iter_end(cgrp
, &it
);
2826 * seq_file methods for the tasks/procs files. The seq_file position is the
2827 * next pid to display; the seq_file iterator is a pointer to the pid
2828 * in the cgroup->l->list array.
2831 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
2834 * Initially we receive a position value that corresponds to
2835 * one more than the last pid shown (or 0 on the first call or
2836 * after a seek to the start). Use a binary-search to find the
2837 * next pid to display, if any
2839 struct cgroup_pidlist
*l
= s
->private;
2840 int index
= 0, pid
= *pos
;
2843 down_read(&l
->mutex
);
2845 int end
= l
->length
;
2847 while (index
< end
) {
2848 int mid
= (index
+ end
) / 2;
2849 if (l
->list
[mid
] == pid
) {
2852 } else if (l
->list
[mid
] <= pid
)
2858 /* If we're off the end of the array, we're done */
2859 if (index
>= l
->length
)
2861 /* Update the abstract position to be the actual pid that we found */
2862 iter
= l
->list
+ index
;
2867 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
2869 struct cgroup_pidlist
*l
= s
->private;
2873 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2875 struct cgroup_pidlist
*l
= s
->private;
2877 pid_t
*end
= l
->list
+ l
->length
;
2879 * Advance to the next pid in the array. If this goes off the
2891 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
2893 return seq_printf(s
, "%d\n", *(int *)v
);
2897 * seq_operations functions for iterating on pidlists through seq_file -
2898 * independent of whether it's tasks or procs
2900 static const struct seq_operations cgroup_pidlist_seq_operations
= {
2901 .start
= cgroup_pidlist_start
,
2902 .stop
= cgroup_pidlist_stop
,
2903 .next
= cgroup_pidlist_next
,
2904 .show
= cgroup_pidlist_show
,
2907 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
2910 * the case where we're the last user of this particular pidlist will
2911 * have us remove it from the cgroup's list, which entails taking the
2912 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2913 * pidlist_mutex, we have to take pidlist_mutex first.
2915 mutex_lock(&l
->owner
->pidlist_mutex
);
2916 down_write(&l
->mutex
);
2917 BUG_ON(!l
->use_count
);
2918 if (!--l
->use_count
) {
2919 /* we're the last user if refcount is 0; remove and free */
2920 list_del(&l
->links
);
2921 mutex_unlock(&l
->owner
->pidlist_mutex
);
2922 pidlist_free(l
->list
);
2923 put_pid_ns(l
->key
.ns
);
2924 up_write(&l
->mutex
);
2928 mutex_unlock(&l
->owner
->pidlist_mutex
);
2929 up_write(&l
->mutex
);
2932 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
2934 struct cgroup_pidlist
*l
;
2935 if (!(file
->f_mode
& FMODE_READ
))
2938 * the seq_file will only be initialized if the file was opened for
2939 * reading; hence we check if it's not null only in that case.
2941 l
= ((struct seq_file
*)file
->private_data
)->private;
2942 cgroup_release_pid_array(l
);
2943 return seq_release(inode
, file
);
2946 static const struct file_operations cgroup_pidlist_operations
= {
2948 .llseek
= seq_lseek
,
2949 .write
= cgroup_file_write
,
2950 .release
= cgroup_pidlist_release
,
2954 * The following functions handle opens on a file that displays a pidlist
2955 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2958 /* helper function for the two below it */
2959 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
2961 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2962 struct cgroup_pidlist
*l
;
2965 /* Nothing to do for write-only files */
2966 if (!(file
->f_mode
& FMODE_READ
))
2969 /* have the array populated */
2970 retval
= pidlist_array_load(cgrp
, type
, &l
);
2973 /* configure file information */
2974 file
->f_op
= &cgroup_pidlist_operations
;
2976 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
2978 cgroup_release_pid_array(l
);
2981 ((struct seq_file
*)file
->private_data
)->private = l
;
2984 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2986 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
2988 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
2990 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
2993 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2996 return notify_on_release(cgrp
);
2999 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3003 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3005 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3007 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3012 * Unregister event and free resources.
3014 * Gets called from workqueue.
3016 static void cgroup_event_remove(struct work_struct
*work
)
3018 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3020 struct cgroup
*cgrp
= event
->cgrp
;
3022 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3024 eventfd_ctx_put(event
->eventfd
);
3030 * Gets called on POLLHUP on eventfd when user closes it.
3032 * Called with wqh->lock held and interrupts disabled.
3034 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3035 int sync
, void *key
)
3037 struct cgroup_event
*event
= container_of(wait
,
3038 struct cgroup_event
, wait
);
3039 struct cgroup
*cgrp
= event
->cgrp
;
3040 unsigned long flags
= (unsigned long)key
;
3042 if (flags
& POLLHUP
) {
3043 __remove_wait_queue(event
->wqh
, &event
->wait
);
3044 spin_lock(&cgrp
->event_list_lock
);
3045 list_del(&event
->list
);
3046 spin_unlock(&cgrp
->event_list_lock
);
3048 * We are in atomic context, but cgroup_event_remove() may
3049 * sleep, so we have to call it in workqueue.
3051 schedule_work(&event
->remove
);
3057 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3058 wait_queue_head_t
*wqh
, poll_table
*pt
)
3060 struct cgroup_event
*event
= container_of(pt
,
3061 struct cgroup_event
, pt
);
3064 add_wait_queue(wqh
, &event
->wait
);
3068 * Parse input and register new cgroup event handler.
3070 * Input must be in format '<event_fd> <control_fd> <args>'.
3071 * Interpretation of args is defined by control file implementation.
3073 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3076 struct cgroup_event
*event
= NULL
;
3077 unsigned int efd
, cfd
;
3078 struct file
*efile
= NULL
;
3079 struct file
*cfile
= NULL
;
3083 efd
= simple_strtoul(buffer
, &endp
, 10);
3088 cfd
= simple_strtoul(buffer
, &endp
, 10);
3089 if ((*endp
!= ' ') && (*endp
!= '\0'))
3093 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3097 INIT_LIST_HEAD(&event
->list
);
3098 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3099 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3100 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3102 efile
= eventfd_fget(efd
);
3103 if (IS_ERR(efile
)) {
3104 ret
= PTR_ERR(efile
);
3108 event
->eventfd
= eventfd_ctx_fileget(efile
);
3109 if (IS_ERR(event
->eventfd
)) {
3110 ret
= PTR_ERR(event
->eventfd
);
3120 /* the process need read permission on control file */
3121 ret
= file_permission(cfile
, MAY_READ
);
3125 event
->cft
= __file_cft(cfile
);
3126 if (IS_ERR(event
->cft
)) {
3127 ret
= PTR_ERR(event
->cft
);
3131 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3136 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3137 event
->eventfd
, buffer
);
3141 if (efile
->f_op
->poll(efile
, &event
->pt
) & POLLHUP
) {
3142 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3148 * Events should be removed after rmdir of cgroup directory, but before
3149 * destroying subsystem state objects. Let's take reference to cgroup
3150 * directory dentry to do that.
3154 spin_lock(&cgrp
->event_list_lock
);
3155 list_add(&event
->list
, &cgrp
->event_list
);
3156 spin_unlock(&cgrp
->event_list_lock
);
3167 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3168 eventfd_ctx_put(event
->eventfd
);
3170 if (!IS_ERR_OR_NULL(efile
))
3179 * for the common functions, 'private' gives the type of file
3181 /* for hysterical raisins, we can't put this on the older files */
3182 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3183 static struct cftype files
[] = {
3186 .open
= cgroup_tasks_open
,
3187 .write_u64
= cgroup_tasks_write
,
3188 .release
= cgroup_pidlist_release
,
3189 .mode
= S_IRUGO
| S_IWUSR
,
3192 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3193 .open
= cgroup_procs_open
,
3194 /* .write_u64 = cgroup_procs_write, TODO */
3195 .release
= cgroup_pidlist_release
,
3199 .name
= "notify_on_release",
3200 .read_u64
= cgroup_read_notify_on_release
,
3201 .write_u64
= cgroup_write_notify_on_release
,
3204 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3205 .write_string
= cgroup_write_event_control
,
3210 static struct cftype cft_release_agent
= {
3211 .name
= "release_agent",
3212 .read_seq_string
= cgroup_release_agent_show
,
3213 .write_string
= cgroup_release_agent_write
,
3214 .max_write_len
= PATH_MAX
,
3217 static int cgroup_populate_dir(struct cgroup
*cgrp
)
3220 struct cgroup_subsys
*ss
;
3222 /* First clear out any existing files */
3223 cgroup_clear_directory(cgrp
->dentry
);
3225 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
3229 if (cgrp
== cgrp
->top_cgroup
) {
3230 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
3234 for_each_subsys(cgrp
->root
, ss
) {
3235 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
3238 /* This cgroup is ready now */
3239 for_each_subsys(cgrp
->root
, ss
) {
3240 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3242 * Update id->css pointer and make this css visible from
3243 * CSS ID functions. This pointer will be dereferened
3244 * from RCU-read-side without locks.
3247 rcu_assign_pointer(css
->id
->css
, css
);
3253 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
3254 struct cgroup_subsys
*ss
,
3255 struct cgroup
*cgrp
)
3258 atomic_set(&css
->refcnt
, 1);
3261 if (cgrp
== dummytop
)
3262 set_bit(CSS_ROOT
, &css
->flags
);
3263 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
3264 cgrp
->subsys
[ss
->subsys_id
] = css
;
3267 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
3269 /* We need to take each hierarchy_mutex in a consistent order */
3273 * No worry about a race with rebind_subsystems that might mess up the
3274 * locking order, since both parties are under cgroup_mutex.
3276 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3277 struct cgroup_subsys
*ss
= subsys
[i
];
3280 if (ss
->root
== root
)
3281 mutex_lock(&ss
->hierarchy_mutex
);
3285 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
3289 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3290 struct cgroup_subsys
*ss
= subsys
[i
];
3293 if (ss
->root
== root
)
3294 mutex_unlock(&ss
->hierarchy_mutex
);
3299 * cgroup_create - create a cgroup
3300 * @parent: cgroup that will be parent of the new cgroup
3301 * @dentry: dentry of the new cgroup
3302 * @mode: mode to set on new inode
3304 * Must be called with the mutex on the parent inode held
3306 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
3309 struct cgroup
*cgrp
;
3310 struct cgroupfs_root
*root
= parent
->root
;
3312 struct cgroup_subsys
*ss
;
3313 struct super_block
*sb
= root
->sb
;
3315 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
3319 /* Grab a reference on the superblock so the hierarchy doesn't
3320 * get deleted on unmount if there are child cgroups. This
3321 * can be done outside cgroup_mutex, since the sb can't
3322 * disappear while someone has an open control file on the
3324 atomic_inc(&sb
->s_active
);
3326 mutex_lock(&cgroup_mutex
);
3328 init_cgroup_housekeeping(cgrp
);
3330 cgrp
->parent
= parent
;
3331 cgrp
->root
= parent
->root
;
3332 cgrp
->top_cgroup
= parent
->top_cgroup
;
3334 if (notify_on_release(parent
))
3335 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3337 for_each_subsys(root
, ss
) {
3338 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
3344 init_cgroup_css(css
, ss
, cgrp
);
3346 err
= alloc_css_id(ss
, parent
, cgrp
);
3350 /* At error, ->destroy() callback has to free assigned ID. */
3353 cgroup_lock_hierarchy(root
);
3354 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
3355 cgroup_unlock_hierarchy(root
);
3356 root
->number_of_cgroups
++;
3358 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
3362 /* The cgroup directory was pre-locked for us */
3363 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
3365 err
= cgroup_populate_dir(cgrp
);
3366 /* If err < 0, we have a half-filled directory - oh well ;) */
3368 mutex_unlock(&cgroup_mutex
);
3369 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
3375 cgroup_lock_hierarchy(root
);
3376 list_del(&cgrp
->sibling
);
3377 cgroup_unlock_hierarchy(root
);
3378 root
->number_of_cgroups
--;
3382 for_each_subsys(root
, ss
) {
3383 if (cgrp
->subsys
[ss
->subsys_id
])
3384 ss
->destroy(ss
, cgrp
);
3387 mutex_unlock(&cgroup_mutex
);
3389 /* Release the reference count that we took on the superblock */
3390 deactivate_super(sb
);
3396 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
3398 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
3400 /* the vfs holds inode->i_mutex already */
3401 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
3404 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
3406 /* Check the reference count on each subsystem. Since we
3407 * already established that there are no tasks in the
3408 * cgroup, if the css refcount is also 1, then there should
3409 * be no outstanding references, so the subsystem is safe to
3410 * destroy. We scan across all subsystems rather than using
3411 * the per-hierarchy linked list of mounted subsystems since
3412 * we can be called via check_for_release() with no
3413 * synchronization other than RCU, and the subsystem linked
3414 * list isn't RCU-safe */
3417 * We won't need to lock the subsys array, because the subsystems
3418 * we're concerned about aren't going anywhere since our cgroup root
3419 * has a reference on them.
3421 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3422 struct cgroup_subsys
*ss
= subsys
[i
];
3423 struct cgroup_subsys_state
*css
;
3424 /* Skip subsystems not present or not in this hierarchy */
3425 if (ss
== NULL
|| ss
->root
!= cgrp
->root
)
3427 css
= cgrp
->subsys
[ss
->subsys_id
];
3428 /* When called from check_for_release() it's possible
3429 * that by this point the cgroup has been removed
3430 * and the css deleted. But a false-positive doesn't
3431 * matter, since it can only happen if the cgroup
3432 * has been deleted and hence no longer needs the
3433 * release agent to be called anyway. */
3434 if (css
&& (atomic_read(&css
->refcnt
) > 1))
3441 * Atomically mark all (or else none) of the cgroup's CSS objects as
3442 * CSS_REMOVED. Return true on success, or false if the cgroup has
3443 * busy subsystems. Call with cgroup_mutex held
3446 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
3448 struct cgroup_subsys
*ss
;
3449 unsigned long flags
;
3450 bool failed
= false;
3451 local_irq_save(flags
);
3452 for_each_subsys(cgrp
->root
, ss
) {
3453 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3456 /* We can only remove a CSS with a refcnt==1 */
3457 refcnt
= atomic_read(&css
->refcnt
);
3464 * Drop the refcnt to 0 while we check other
3465 * subsystems. This will cause any racing
3466 * css_tryget() to spin until we set the
3467 * CSS_REMOVED bits or abort
3469 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
3475 for_each_subsys(cgrp
->root
, ss
) {
3476 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
3479 * Restore old refcnt if we previously managed
3480 * to clear it from 1 to 0
3482 if (!atomic_read(&css
->refcnt
))
3483 atomic_set(&css
->refcnt
, 1);
3485 /* Commit the fact that the CSS is removed */
3486 set_bit(CSS_REMOVED
, &css
->flags
);
3489 local_irq_restore(flags
);
3493 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
3495 struct cgroup
*cgrp
= dentry
->d_fsdata
;
3497 struct cgroup
*parent
;
3499 struct cgroup_event
*event
, *tmp
;
3502 /* the vfs holds both inode->i_mutex already */
3504 mutex_lock(&cgroup_mutex
);
3505 if (atomic_read(&cgrp
->count
) != 0) {
3506 mutex_unlock(&cgroup_mutex
);
3509 if (!list_empty(&cgrp
->children
)) {
3510 mutex_unlock(&cgroup_mutex
);
3513 mutex_unlock(&cgroup_mutex
);
3516 * In general, subsystem has no css->refcnt after pre_destroy(). But
3517 * in racy cases, subsystem may have to get css->refcnt after
3518 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3519 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3520 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3521 * and subsystem's reference count handling. Please see css_get/put
3522 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3524 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3527 * Call pre_destroy handlers of subsys. Notify subsystems
3528 * that rmdir() request comes.
3530 ret
= cgroup_call_pre_destroy(cgrp
);
3532 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3536 mutex_lock(&cgroup_mutex
);
3537 parent
= cgrp
->parent
;
3538 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
3539 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3540 mutex_unlock(&cgroup_mutex
);
3543 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
3544 if (!cgroup_clear_css_refs(cgrp
)) {
3545 mutex_unlock(&cgroup_mutex
);
3547 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3548 * prepare_to_wait(), we need to check this flag.
3550 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
3552 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3553 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3554 if (signal_pending(current
))
3558 /* NO css_tryget() can success after here. */
3559 finish_wait(&cgroup_rmdir_waitq
, &wait
);
3560 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
3562 spin_lock(&release_list_lock
);
3563 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
3564 if (!list_empty(&cgrp
->release_list
))
3565 list_del(&cgrp
->release_list
);
3566 spin_unlock(&release_list_lock
);
3568 cgroup_lock_hierarchy(cgrp
->root
);
3569 /* delete this cgroup from parent->children */
3570 list_del(&cgrp
->sibling
);
3571 cgroup_unlock_hierarchy(cgrp
->root
);
3573 spin_lock(&cgrp
->dentry
->d_lock
);
3574 d
= dget(cgrp
->dentry
);
3575 spin_unlock(&d
->d_lock
);
3577 cgroup_d_remove_dir(d
);
3580 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
3581 check_for_release(parent
);
3584 * Unregister events and notify userspace.
3585 * Notify userspace about cgroup removing only after rmdir of cgroup
3586 * directory to avoid race between userspace and kernelspace
3588 spin_lock(&cgrp
->event_list_lock
);
3589 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
3590 list_del(&event
->list
);
3591 remove_wait_queue(event
->wqh
, &event
->wait
);
3592 eventfd_signal(event
->eventfd
, 1);
3593 schedule_work(&event
->remove
);
3595 spin_unlock(&cgrp
->event_list_lock
);
3597 mutex_unlock(&cgroup_mutex
);
3601 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
3603 struct cgroup_subsys_state
*css
;
3605 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
3607 /* Create the top cgroup state for this subsystem */
3608 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3609 ss
->root
= &rootnode
;
3610 css
= ss
->create(ss
, dummytop
);
3611 /* We don't handle early failures gracefully */
3612 BUG_ON(IS_ERR(css
));
3613 init_cgroup_css(css
, ss
, dummytop
);
3615 /* Update the init_css_set to contain a subsys
3616 * pointer to this state - since the subsystem is
3617 * newly registered, all tasks and hence the
3618 * init_css_set is in the subsystem's top cgroup. */
3619 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
3621 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
3623 /* At system boot, before all subsystems have been
3624 * registered, no tasks have been forked, so we don't
3625 * need to invoke fork callbacks here. */
3626 BUG_ON(!list_empty(&init_task
.tasks
));
3628 mutex_init(&ss
->hierarchy_mutex
);
3629 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3632 /* this function shouldn't be used with modular subsystems, since they
3633 * need to register a subsys_id, among other things */
3638 * cgroup_load_subsys: load and register a modular subsystem at runtime
3639 * @ss: the subsystem to load
3641 * This function should be called in a modular subsystem's initcall. If the
3642 * subsystem is built as a module, it will be assigned a new subsys_id and set
3643 * up for use. If the subsystem is built-in anyway, work is delegated to the
3644 * simpler cgroup_init_subsys.
3646 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
3649 struct cgroup_subsys_state
*css
;
3651 /* check name and function validity */
3652 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
3653 ss
->create
== NULL
|| ss
->destroy
== NULL
)
3657 * we don't support callbacks in modular subsystems. this check is
3658 * before the ss->module check for consistency; a subsystem that could
3659 * be a module should still have no callbacks even if the user isn't
3660 * compiling it as one.
3662 if (ss
->fork
|| ss
->exit
)
3666 * an optionally modular subsystem is built-in: we want to do nothing,
3667 * since cgroup_init_subsys will have already taken care of it.
3669 if (ss
->module
== NULL
) {
3670 /* a few sanity checks */
3671 BUG_ON(ss
->subsys_id
>= CGROUP_BUILTIN_SUBSYS_COUNT
);
3672 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
3677 * need to register a subsys id before anything else - for example,
3678 * init_cgroup_css needs it.
3680 mutex_lock(&cgroup_mutex
);
3681 /* find the first empty slot in the array */
3682 for (i
= CGROUP_BUILTIN_SUBSYS_COUNT
; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3683 if (subsys
[i
] == NULL
)
3686 if (i
== CGROUP_SUBSYS_COUNT
) {
3687 /* maximum number of subsystems already registered! */
3688 mutex_unlock(&cgroup_mutex
);
3691 /* assign ourselves the subsys_id */
3696 * no ss->create seems to need anything important in the ss struct, so
3697 * this can happen first (i.e. before the rootnode attachment).
3699 css
= ss
->create(ss
, dummytop
);
3701 /* failure case - need to deassign the subsys[] slot. */
3703 mutex_unlock(&cgroup_mutex
);
3704 return PTR_ERR(css
);
3707 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
3708 ss
->root
= &rootnode
;
3710 /* our new subsystem will be attached to the dummy hierarchy. */
3711 init_cgroup_css(css
, ss
, dummytop
);
3712 /* init_idr must be after init_cgroup_css because it sets css->id. */
3714 int ret
= cgroup_init_idr(ss
, css
);
3716 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3717 ss
->destroy(ss
, dummytop
);
3719 mutex_unlock(&cgroup_mutex
);
3725 * Now we need to entangle the css into the existing css_sets. unlike
3726 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3727 * will need a new pointer to it; done by iterating the css_set_table.
3728 * furthermore, modifying the existing css_sets will corrupt the hash
3729 * table state, so each changed css_set will need its hash recomputed.
3730 * this is all done under the css_set_lock.
3732 write_lock(&css_set_lock
);
3733 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
3735 struct hlist_node
*node
, *tmp
;
3736 struct hlist_head
*bucket
= &css_set_table
[i
], *new_bucket
;
3738 hlist_for_each_entry_safe(cg
, node
, tmp
, bucket
, hlist
) {
3739 /* skip entries that we already rehashed */
3740 if (cg
->subsys
[ss
->subsys_id
])
3742 /* remove existing entry */
3743 hlist_del(&cg
->hlist
);
3745 cg
->subsys
[ss
->subsys_id
] = css
;
3746 /* recompute hash and restore entry */
3747 new_bucket
= css_set_hash(cg
->subsys
);
3748 hlist_add_head(&cg
->hlist
, new_bucket
);
3751 write_unlock(&css_set_lock
);
3753 mutex_init(&ss
->hierarchy_mutex
);
3754 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
3758 mutex_unlock(&cgroup_mutex
);
3761 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
3764 * cgroup_unload_subsys: unload a modular subsystem
3765 * @ss: the subsystem to unload
3767 * This function should be called in a modular subsystem's exitcall. When this
3768 * function is invoked, the refcount on the subsystem's module will be 0, so
3769 * the subsystem will not be attached to any hierarchy.
3771 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
3773 struct cg_cgroup_link
*link
;
3774 struct hlist_head
*hhead
;
3776 BUG_ON(ss
->module
== NULL
);
3779 * we shouldn't be called if the subsystem is in use, and the use of
3780 * try_module_get in parse_cgroupfs_options should ensure that it
3781 * doesn't start being used while we're killing it off.
3783 BUG_ON(ss
->root
!= &rootnode
);
3785 mutex_lock(&cgroup_mutex
);
3786 /* deassign the subsys_id */
3787 BUG_ON(ss
->subsys_id
< CGROUP_BUILTIN_SUBSYS_COUNT
);
3788 subsys
[ss
->subsys_id
] = NULL
;
3790 /* remove subsystem from rootnode's list of subsystems */
3791 list_del(&ss
->sibling
);
3794 * disentangle the css from all css_sets attached to the dummytop. as
3795 * in loading, we need to pay our respects to the hashtable gods.
3797 write_lock(&css_set_lock
);
3798 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
3799 struct css_set
*cg
= link
->cg
;
3801 hlist_del(&cg
->hlist
);
3802 BUG_ON(!cg
->subsys
[ss
->subsys_id
]);
3803 cg
->subsys
[ss
->subsys_id
] = NULL
;
3804 hhead
= css_set_hash(cg
->subsys
);
3805 hlist_add_head(&cg
->hlist
, hhead
);
3807 write_unlock(&css_set_lock
);
3810 * remove subsystem's css from the dummytop and free it - need to free
3811 * before marking as null because ss->destroy needs the cgrp->subsys
3812 * pointer to find their state. note that this also takes care of
3813 * freeing the css_id.
3815 ss
->destroy(ss
, dummytop
);
3816 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
3818 mutex_unlock(&cgroup_mutex
);
3820 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
3823 * cgroup_init_early - cgroup initialization at system boot
3825 * Initialize cgroups at system boot, and initialize any
3826 * subsystems that request early init.
3828 int __init
cgroup_init_early(void)
3831 atomic_set(&init_css_set
.refcount
, 1);
3832 INIT_LIST_HEAD(&init_css_set
.cg_links
);
3833 INIT_LIST_HEAD(&init_css_set
.tasks
);
3834 INIT_HLIST_NODE(&init_css_set
.hlist
);
3836 init_cgroup_root(&rootnode
);
3838 init_task
.cgroups
= &init_css_set
;
3840 init_css_set_link
.cg
= &init_css_set
;
3841 init_css_set_link
.cgrp
= dummytop
;
3842 list_add(&init_css_set_link
.cgrp_link_list
,
3843 &rootnode
.top_cgroup
.css_sets
);
3844 list_add(&init_css_set_link
.cg_link_list
,
3845 &init_css_set
.cg_links
);
3847 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
3848 INIT_HLIST_HEAD(&css_set_table
[i
]);
3850 /* at bootup time, we don't worry about modular subsystems */
3851 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3852 struct cgroup_subsys
*ss
= subsys
[i
];
3855 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
3856 BUG_ON(!ss
->create
);
3857 BUG_ON(!ss
->destroy
);
3858 if (ss
->subsys_id
!= i
) {
3859 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
3860 ss
->name
, ss
->subsys_id
);
3865 cgroup_init_subsys(ss
);
3871 * cgroup_init - cgroup initialization
3873 * Register cgroup filesystem and /proc file, and initialize
3874 * any subsystems that didn't request early init.
3876 int __init
cgroup_init(void)
3880 struct hlist_head
*hhead
;
3882 err
= bdi_init(&cgroup_backing_dev_info
);
3886 /* at bootup time, we don't worry about modular subsystems */
3887 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
3888 struct cgroup_subsys
*ss
= subsys
[i
];
3889 if (!ss
->early_init
)
3890 cgroup_init_subsys(ss
);
3892 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
3895 /* Add init_css_set to the hash table */
3896 hhead
= css_set_hash(init_css_set
.subsys
);
3897 hlist_add_head(&init_css_set
.hlist
, hhead
);
3898 BUG_ON(!init_root_id(&rootnode
));
3900 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
3906 err
= register_filesystem(&cgroup_fs_type
);
3908 kobject_put(cgroup_kobj
);
3912 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
3916 bdi_destroy(&cgroup_backing_dev_info
);
3922 * proc_cgroup_show()
3923 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3924 * - Used for /proc/<pid>/cgroup.
3925 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3926 * doesn't really matter if tsk->cgroup changes after we read it,
3927 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3928 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3929 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3930 * cgroup to top_cgroup.
3933 /* TODO: Use a proper seq_file iterator */
3934 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
3937 struct task_struct
*tsk
;
3940 struct cgroupfs_root
*root
;
3943 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3949 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
3955 mutex_lock(&cgroup_mutex
);
3957 for_each_active_root(root
) {
3958 struct cgroup_subsys
*ss
;
3959 struct cgroup
*cgrp
;
3962 seq_printf(m
, "%d:", root
->hierarchy_id
);
3963 for_each_subsys(root
, ss
)
3964 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
3965 if (strlen(root
->name
))
3966 seq_printf(m
, "%sname=%s", count
? "," : "",
3969 cgrp
= task_cgroup_from_root(tsk
, root
);
3970 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
3978 mutex_unlock(&cgroup_mutex
);
3979 put_task_struct(tsk
);
3986 static int cgroup_open(struct inode
*inode
, struct file
*file
)
3988 struct pid
*pid
= PROC_I(inode
)->pid
;
3989 return single_open(file
, proc_cgroup_show
, pid
);
3992 const struct file_operations proc_cgroup_operations
= {
3993 .open
= cgroup_open
,
3995 .llseek
= seq_lseek
,
3996 .release
= single_release
,
3999 /* Display information about each subsystem and each hierarchy */
4000 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4004 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4006 * ideally we don't want subsystems moving around while we do this.
4007 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4008 * subsys/hierarchy state.
4010 mutex_lock(&cgroup_mutex
);
4011 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4012 struct cgroup_subsys
*ss
= subsys
[i
];
4015 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4016 ss
->name
, ss
->root
->hierarchy_id
,
4017 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4019 mutex_unlock(&cgroup_mutex
);
4023 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4025 return single_open(file
, proc_cgroupstats_show
, NULL
);
4028 static const struct file_operations proc_cgroupstats_operations
= {
4029 .open
= cgroupstats_open
,
4031 .llseek
= seq_lseek
,
4032 .release
= single_release
,
4036 * cgroup_fork - attach newly forked task to its parents cgroup.
4037 * @child: pointer to task_struct of forking parent process.
4039 * Description: A task inherits its parent's cgroup at fork().
4041 * A pointer to the shared css_set was automatically copied in
4042 * fork.c by dup_task_struct(). However, we ignore that copy, since
4043 * it was not made under the protection of RCU or cgroup_mutex, so
4044 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4045 * have already changed current->cgroups, allowing the previously
4046 * referenced cgroup group to be removed and freed.
4048 * At the point that cgroup_fork() is called, 'current' is the parent
4049 * task, and the passed argument 'child' points to the child task.
4051 void cgroup_fork(struct task_struct
*child
)
4054 child
->cgroups
= current
->cgroups
;
4055 get_css_set(child
->cgroups
);
4056 task_unlock(current
);
4057 INIT_LIST_HEAD(&child
->cg_list
);
4061 * cgroup_fork_callbacks - run fork callbacks
4062 * @child: the new task
4064 * Called on a new task very soon before adding it to the
4065 * tasklist. No need to take any locks since no-one can
4066 * be operating on this task.
4068 void cgroup_fork_callbacks(struct task_struct
*child
)
4070 if (need_forkexit_callback
) {
4073 * forkexit callbacks are only supported for builtin
4074 * subsystems, and the builtin section of the subsys array is
4075 * immutable, so we don't need to lock the subsys array here.
4077 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4078 struct cgroup_subsys
*ss
= subsys
[i
];
4080 ss
->fork(ss
, child
);
4086 * cgroup_post_fork - called on a new task after adding it to the task list
4087 * @child: the task in question
4089 * Adds the task to the list running through its css_set if necessary.
4090 * Has to be after the task is visible on the task list in case we race
4091 * with the first call to cgroup_iter_start() - to guarantee that the
4092 * new task ends up on its list.
4094 void cgroup_post_fork(struct task_struct
*child
)
4096 if (use_task_css_set_links
) {
4097 write_lock(&css_set_lock
);
4099 if (list_empty(&child
->cg_list
))
4100 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4102 write_unlock(&css_set_lock
);
4106 * cgroup_exit - detach cgroup from exiting task
4107 * @tsk: pointer to task_struct of exiting process
4108 * @run_callback: run exit callbacks?
4110 * Description: Detach cgroup from @tsk and release it.
4112 * Note that cgroups marked notify_on_release force every task in
4113 * them to take the global cgroup_mutex mutex when exiting.
4114 * This could impact scaling on very large systems. Be reluctant to
4115 * use notify_on_release cgroups where very high task exit scaling
4116 * is required on large systems.
4118 * the_top_cgroup_hack:
4120 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4122 * We call cgroup_exit() while the task is still competent to
4123 * handle notify_on_release(), then leave the task attached to the
4124 * root cgroup in each hierarchy for the remainder of its exit.
4126 * To do this properly, we would increment the reference count on
4127 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4128 * code we would add a second cgroup function call, to drop that
4129 * reference. This would just create an unnecessary hot spot on
4130 * the top_cgroup reference count, to no avail.
4132 * Normally, holding a reference to a cgroup without bumping its
4133 * count is unsafe. The cgroup could go away, or someone could
4134 * attach us to a different cgroup, decrementing the count on
4135 * the first cgroup that we never incremented. But in this case,
4136 * top_cgroup isn't going away, and either task has PF_EXITING set,
4137 * which wards off any cgroup_attach_task() attempts, or task is a failed
4138 * fork, never visible to cgroup_attach_task.
4140 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4145 if (run_callbacks
&& need_forkexit_callback
) {
4147 * modular subsystems can't use callbacks, so no need to lock
4150 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4151 struct cgroup_subsys
*ss
= subsys
[i
];
4158 * Unlink from the css_set task list if necessary.
4159 * Optimistically check cg_list before taking
4162 if (!list_empty(&tsk
->cg_list
)) {
4163 write_lock(&css_set_lock
);
4164 if (!list_empty(&tsk
->cg_list
))
4165 list_del(&tsk
->cg_list
);
4166 write_unlock(&css_set_lock
);
4169 /* Reassign the task to the init_css_set. */
4172 tsk
->cgroups
= &init_css_set
;
4175 put_css_set_taskexit(cg
);
4179 * cgroup_clone - clone the cgroup the given subsystem is attached to
4180 * @tsk: the task to be moved
4181 * @subsys: the given subsystem
4182 * @nodename: the name for the new cgroup
4184 * Duplicate the current cgroup in the hierarchy that the given
4185 * subsystem is attached to, and move this task into the new
4188 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
4191 struct dentry
*dentry
;
4193 struct cgroup
*parent
, *child
;
4194 struct inode
*inode
;
4196 struct cgroupfs_root
*root
;
4197 struct cgroup_subsys
*ss
;
4199 /* We shouldn't be called by an unregistered subsystem */
4200 BUG_ON(!subsys
->active
);
4202 /* First figure out what hierarchy and cgroup we're dealing
4203 * with, and pin them so we can drop cgroup_mutex */
4204 mutex_lock(&cgroup_mutex
);
4206 root
= subsys
->root
;
4207 if (root
== &rootnode
) {
4208 mutex_unlock(&cgroup_mutex
);
4212 /* Pin the hierarchy */
4213 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
4214 /* We race with the final deactivate_super() */
4215 mutex_unlock(&cgroup_mutex
);
4219 /* Keep the cgroup alive */
4221 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
4226 mutex_unlock(&cgroup_mutex
);
4228 /* Now do the VFS work to create a cgroup */
4229 inode
= parent
->dentry
->d_inode
;
4231 /* Hold the parent directory mutex across this operation to
4232 * stop anyone else deleting the new cgroup */
4233 mutex_lock(&inode
->i_mutex
);
4234 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
4235 if (IS_ERR(dentry
)) {
4237 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
4239 ret
= PTR_ERR(dentry
);
4243 /* Create the cgroup directory, which also creates the cgroup */
4244 ret
= vfs_mkdir(inode
, dentry
, 0755);
4245 child
= __d_cgrp(dentry
);
4249 "Failed to create cgroup %s: %d\n", nodename
,
4254 /* The cgroup now exists. Retake cgroup_mutex and check
4255 * that we're still in the same state that we thought we
4257 mutex_lock(&cgroup_mutex
);
4258 if ((root
!= subsys
->root
) ||
4259 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
4260 /* Aargh, we raced ... */
4261 mutex_unlock(&inode
->i_mutex
);
4264 deactivate_super(root
->sb
);
4265 /* The cgroup is still accessible in the VFS, but
4266 * we're not going to try to rmdir() it at this
4269 "Race in cgroup_clone() - leaking cgroup %s\n",
4274 /* do any required auto-setup */
4275 for_each_subsys(root
, ss
) {
4277 ss
->post_clone(ss
, child
);
4280 /* All seems fine. Finish by moving the task into the new cgroup */
4281 ret
= cgroup_attach_task(child
, tsk
);
4282 mutex_unlock(&cgroup_mutex
);
4285 mutex_unlock(&inode
->i_mutex
);
4287 mutex_lock(&cgroup_mutex
);
4289 mutex_unlock(&cgroup_mutex
);
4290 deactivate_super(root
->sb
);
4295 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4296 * @cgrp: the cgroup in question
4297 * @task: the task in question
4299 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4302 * If we are sending in dummytop, then presumably we are creating
4303 * the top cgroup in the subsystem.
4305 * Called only by the ns (nsproxy) cgroup.
4307 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
4310 struct cgroup
*target
;
4312 if (cgrp
== dummytop
)
4315 target
= task_cgroup_from_root(task
, cgrp
->root
);
4316 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
4317 cgrp
= cgrp
->parent
;
4318 ret
= (cgrp
== target
);
4322 static void check_for_release(struct cgroup
*cgrp
)
4324 /* All of these checks rely on RCU to keep the cgroup
4325 * structure alive */
4326 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
4327 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
4328 /* Control Group is currently removeable. If it's not
4329 * already queued for a userspace notification, queue
4331 int need_schedule_work
= 0;
4332 spin_lock(&release_list_lock
);
4333 if (!cgroup_is_removed(cgrp
) &&
4334 list_empty(&cgrp
->release_list
)) {
4335 list_add(&cgrp
->release_list
, &release_list
);
4336 need_schedule_work
= 1;
4338 spin_unlock(&release_list_lock
);
4339 if (need_schedule_work
)
4340 schedule_work(&release_agent_work
);
4344 /* Caller must verify that the css is not for root cgroup */
4345 void __css_put(struct cgroup_subsys_state
*css
, int count
)
4347 struct cgroup
*cgrp
= css
->cgroup
;
4350 val
= atomic_sub_return(count
, &css
->refcnt
);
4352 if (notify_on_release(cgrp
)) {
4353 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4354 check_for_release(cgrp
);
4356 cgroup_wakeup_rmdir_waiter(cgrp
);
4359 WARN_ON_ONCE(val
< 1);
4361 EXPORT_SYMBOL_GPL(__css_put
);
4364 * Notify userspace when a cgroup is released, by running the
4365 * configured release agent with the name of the cgroup (path
4366 * relative to the root of cgroup file system) as the argument.
4368 * Most likely, this user command will try to rmdir this cgroup.
4370 * This races with the possibility that some other task will be
4371 * attached to this cgroup before it is removed, or that some other
4372 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4373 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4374 * unused, and this cgroup will be reprieved from its death sentence,
4375 * to continue to serve a useful existence. Next time it's released,
4376 * we will get notified again, if it still has 'notify_on_release' set.
4378 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4379 * means only wait until the task is successfully execve()'d. The
4380 * separate release agent task is forked by call_usermodehelper(),
4381 * then control in this thread returns here, without waiting for the
4382 * release agent task. We don't bother to wait because the caller of
4383 * this routine has no use for the exit status of the release agent
4384 * task, so no sense holding our caller up for that.
4386 static void cgroup_release_agent(struct work_struct
*work
)
4388 BUG_ON(work
!= &release_agent_work
);
4389 mutex_lock(&cgroup_mutex
);
4390 spin_lock(&release_list_lock
);
4391 while (!list_empty(&release_list
)) {
4392 char *argv
[3], *envp
[3];
4394 char *pathbuf
= NULL
, *agentbuf
= NULL
;
4395 struct cgroup
*cgrp
= list_entry(release_list
.next
,
4398 list_del_init(&cgrp
->release_list
);
4399 spin_unlock(&release_list_lock
);
4400 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4403 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
4405 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
4410 argv
[i
++] = agentbuf
;
4411 argv
[i
++] = pathbuf
;
4415 /* minimal command environment */
4416 envp
[i
++] = "HOME=/";
4417 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4420 /* Drop the lock while we invoke the usermode helper,
4421 * since the exec could involve hitting disk and hence
4422 * be a slow process */
4423 mutex_unlock(&cgroup_mutex
);
4424 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
4425 mutex_lock(&cgroup_mutex
);
4429 spin_lock(&release_list_lock
);
4431 spin_unlock(&release_list_lock
);
4432 mutex_unlock(&cgroup_mutex
);
4435 static int __init
cgroup_disable(char *str
)
4440 while ((token
= strsep(&str
, ",")) != NULL
) {
4444 * cgroup_disable, being at boot time, can't know about module
4445 * subsystems, so we don't worry about them.
4447 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4448 struct cgroup_subsys
*ss
= subsys
[i
];
4450 if (!strcmp(token
, ss
->name
)) {
4452 printk(KERN_INFO
"Disabling %s control group"
4453 " subsystem\n", ss
->name
);
4460 __setup("cgroup_disable=", cgroup_disable
);
4463 * Functons for CSS ID.
4467 *To get ID other than 0, this should be called when !cgroup_is_removed().
4469 unsigned short css_id(struct cgroup_subsys_state
*css
)
4471 struct css_id
*cssid
;
4474 * This css_id() can return correct value when somone has refcnt
4475 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4476 * it's unchanged until freed.
4478 cssid
= rcu_dereference_check(css
->id
,
4479 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4485 EXPORT_SYMBOL_GPL(css_id
);
4487 unsigned short css_depth(struct cgroup_subsys_state
*css
)
4489 struct css_id
*cssid
;
4491 cssid
= rcu_dereference_check(css
->id
,
4492 rcu_read_lock_held() || atomic_read(&css
->refcnt
));
4495 return cssid
->depth
;
4498 EXPORT_SYMBOL_GPL(css_depth
);
4501 * css_is_ancestor - test "root" css is an ancestor of "child"
4502 * @child: the css to be tested.
4503 * @root: the css supporsed to be an ancestor of the child.
4505 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4506 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4507 * But, considering usual usage, the csses should be valid objects after test.
4508 * Assuming that the caller will do some action to the child if this returns
4509 * returns true, the caller must take "child";s reference count.
4510 * If "child" is valid object and this returns true, "root" is valid, too.
4513 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
4514 const struct cgroup_subsys_state
*root
)
4516 struct css_id
*child_id
;
4517 struct css_id
*root_id
;
4521 child_id
= rcu_dereference(child
->id
);
4522 root_id
= rcu_dereference(root
->id
);
4525 || (child_id
->depth
< root_id
->depth
)
4526 || (child_id
->stack
[root_id
->depth
] != root_id
->id
))
4532 static void __free_css_id_cb(struct rcu_head
*head
)
4536 id
= container_of(head
, struct css_id
, rcu_head
);
4540 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
4542 struct css_id
*id
= css
->id
;
4543 /* When this is called before css_id initialization, id can be NULL */
4547 BUG_ON(!ss
->use_id
);
4549 rcu_assign_pointer(id
->css
, NULL
);
4550 rcu_assign_pointer(css
->id
, NULL
);
4551 spin_lock(&ss
->id_lock
);
4552 idr_remove(&ss
->idr
, id
->id
);
4553 spin_unlock(&ss
->id_lock
);
4554 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
4556 EXPORT_SYMBOL_GPL(free_css_id
);
4559 * This is called by init or create(). Then, calls to this function are
4560 * always serialized (By cgroup_mutex() at create()).
4563 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
4565 struct css_id
*newid
;
4566 int myid
, error
, size
;
4568 BUG_ON(!ss
->use_id
);
4570 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
4571 newid
= kzalloc(size
, GFP_KERNEL
);
4573 return ERR_PTR(-ENOMEM
);
4575 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
4579 spin_lock(&ss
->id_lock
);
4580 /* Don't use 0. allocates an ID of 1-65535 */
4581 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
4582 spin_unlock(&ss
->id_lock
);
4584 /* Returns error when there are no free spaces for new ID.*/
4589 if (myid
> CSS_ID_MAX
)
4593 newid
->depth
= depth
;
4597 spin_lock(&ss
->id_lock
);
4598 idr_remove(&ss
->idr
, myid
);
4599 spin_unlock(&ss
->id_lock
);
4602 return ERR_PTR(error
);
4606 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
4607 struct cgroup_subsys_state
*rootcss
)
4609 struct css_id
*newid
;
4611 spin_lock_init(&ss
->id_lock
);
4614 newid
= get_new_cssid(ss
, 0);
4616 return PTR_ERR(newid
);
4618 newid
->stack
[0] = newid
->id
;
4619 newid
->css
= rootcss
;
4620 rootcss
->id
= newid
;
4624 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
4625 struct cgroup
*child
)
4627 int subsys_id
, i
, depth
= 0;
4628 struct cgroup_subsys_state
*parent_css
, *child_css
;
4629 struct css_id
*child_id
, *parent_id
;
4631 subsys_id
= ss
->subsys_id
;
4632 parent_css
= parent
->subsys
[subsys_id
];
4633 child_css
= child
->subsys
[subsys_id
];
4634 parent_id
= parent_css
->id
;
4635 depth
= parent_id
->depth
+ 1;
4637 child_id
= get_new_cssid(ss
, depth
);
4638 if (IS_ERR(child_id
))
4639 return PTR_ERR(child_id
);
4641 for (i
= 0; i
< depth
; i
++)
4642 child_id
->stack
[i
] = parent_id
->stack
[i
];
4643 child_id
->stack
[depth
] = child_id
->id
;
4645 * child_id->css pointer will be set after this cgroup is available
4646 * see cgroup_populate_dir()
4648 rcu_assign_pointer(child_css
->id
, child_id
);
4654 * css_lookup - lookup css by id
4655 * @ss: cgroup subsys to be looked into.
4658 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4659 * NULL if not. Should be called under rcu_read_lock()
4661 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
4663 struct css_id
*cssid
= NULL
;
4665 BUG_ON(!ss
->use_id
);
4666 cssid
= idr_find(&ss
->idr
, id
);
4668 if (unlikely(!cssid
))
4671 return rcu_dereference(cssid
->css
);
4673 EXPORT_SYMBOL_GPL(css_lookup
);
4676 * css_get_next - lookup next cgroup under specified hierarchy.
4677 * @ss: pointer to subsystem
4678 * @id: current position of iteration.
4679 * @root: pointer to css. search tree under this.
4680 * @foundid: position of found object.
4682 * Search next css under the specified hierarchy of rootid. Calling under
4683 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4685 struct cgroup_subsys_state
*
4686 css_get_next(struct cgroup_subsys
*ss
, int id
,
4687 struct cgroup_subsys_state
*root
, int *foundid
)
4689 struct cgroup_subsys_state
*ret
= NULL
;
4692 int rootid
= css_id(root
);
4693 int depth
= css_depth(root
);
4698 BUG_ON(!ss
->use_id
);
4699 /* fill start point for scan */
4703 * scan next entry from bitmap(tree), tmpid is updated after
4706 spin_lock(&ss
->id_lock
);
4707 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
4708 spin_unlock(&ss
->id_lock
);
4712 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
4713 ret
= rcu_dereference(tmp
->css
);
4719 /* continue to scan from next id */
4725 #ifdef CONFIG_CGROUP_DEBUG
4726 static struct cgroup_subsys_state
*debug_create(struct cgroup_subsys
*ss
,
4727 struct cgroup
*cont
)
4729 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
4732 return ERR_PTR(-ENOMEM
);
4737 static void debug_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4739 kfree(cont
->subsys
[debug_subsys_id
]);
4742 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4744 return atomic_read(&cont
->count
);
4747 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
4749 return cgroup_task_count(cont
);
4752 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
4754 return (u64
)(unsigned long)current
->cgroups
;
4757 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
4763 count
= atomic_read(¤t
->cgroups
->refcount
);
4768 static int current_css_set_cg_links_read(struct cgroup
*cont
,
4770 struct seq_file
*seq
)
4772 struct cg_cgroup_link
*link
;
4775 read_lock(&css_set_lock
);
4777 cg
= rcu_dereference(current
->cgroups
);
4778 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
4779 struct cgroup
*c
= link
->cgrp
;
4783 name
= c
->dentry
->d_name
.name
;
4786 seq_printf(seq
, "Root %d group %s\n",
4787 c
->root
->hierarchy_id
, name
);
4790 read_unlock(&css_set_lock
);
4794 #define MAX_TASKS_SHOWN_PER_CSS 25
4795 static int cgroup_css_links_read(struct cgroup
*cont
,
4797 struct seq_file
*seq
)
4799 struct cg_cgroup_link
*link
;
4801 read_lock(&css_set_lock
);
4802 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
4803 struct css_set
*cg
= link
->cg
;
4804 struct task_struct
*task
;
4806 seq_printf(seq
, "css_set %p\n", cg
);
4807 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
4808 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
4809 seq_puts(seq
, " ...\n");
4812 seq_printf(seq
, " task %d\n",
4813 task_pid_vnr(task
));
4817 read_unlock(&css_set_lock
);
4821 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
4823 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
4826 static struct cftype debug_files
[] = {
4828 .name
= "cgroup_refcount",
4829 .read_u64
= cgroup_refcount_read
,
4832 .name
= "taskcount",
4833 .read_u64
= debug_taskcount_read
,
4837 .name
= "current_css_set",
4838 .read_u64
= current_css_set_read
,
4842 .name
= "current_css_set_refcount",
4843 .read_u64
= current_css_set_refcount_read
,
4847 .name
= "current_css_set_cg_links",
4848 .read_seq_string
= current_css_set_cg_links_read
,
4852 .name
= "cgroup_css_links",
4853 .read_seq_string
= cgroup_css_links_read
,
4857 .name
= "releasable",
4858 .read_u64
= releasable_read
,
4862 static int debug_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4864 return cgroup_add_files(cont
, ss
, debug_files
,
4865 ARRAY_SIZE(debug_files
));
4868 struct cgroup_subsys debug_subsys
= {
4870 .create
= debug_create
,
4871 .destroy
= debug_destroy
,
4872 .populate
= debug_populate
,
4873 .subsys_id
= debug_subsys_id
,
4875 #endif /* CONFIG_CGROUP_DEBUG */